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PREFACE

Over the past 20 years, there have been tremendous developments in microelectronics,
microfabrication technology, MEMS and NEMS, quantum structures (e.g., superlattices,
nanowires, nanotubes, and nanoparticles), optoelectronics and lasers, including ultrafast
lasers, and molecular- to atomic-level imaging techniques (such as high-resolution elec-
tron microscopy, scanning tunneling microscopy, atomic force microscopy, near-field
optical microscopy, and scanning thermal microscopy). The field is fast moving into scal-
ing up and systems engineering to explore the unlimited potential that nanoscience and
nanoengineering may offer to restructure the technologies in the new millennia. When the
characteristic length becomes comparable to the mechanistic length scale, continuum
assumptions that are often made in conventional thermal analyses may break down.
Similarly, when the characteristic time becomes comparable to the mechanistic timescale,
traditional equilibrium approaches may not be appropriate. Understanding the energy
transport mechanisms in small dimensions and short timescales is crucial for future
advances of nanotechnology. In recent years, a growing number of research publications
have been in nano/microscale thermophysical engineering. Timely dissemination of the
knowledge gained from contemporary research to educate future scientists and engineers
is of emerging significance. For this reason, more and more universities have started to
offer courses in microscale areas. A self-contained textbook suitable for engineering stu-
dents is much needed. Many practicing engineers who have graduated earlier wish to learn
what is going on in this fascinating area, but are often frustrated due to the lack of a solid
background to comprehend the contemporary literature. A book that does not require prior
knowledge in statistical mechanics, quantum mechanics, solid state physics, and electro-
dynamics is extremely helpful. On the other hand, such a book should cover all these sub-
jects in some depth without significant prerequisites.

This book is written for engineering senior undergraduate and graduate students, prac-
ticing engineers, and academic researchers who have not been extensively exposed to
nanoscale sciences but wish to gain a solid background in the thermal phenomena occur-
ring at small length scales and short timescales. The basic philosophy behind this book is
to logically integrate the traditional knowledge in thermal engineering and physics with
newly developed theories in an easy-to-understand approach, with ample examples and
homework problems. The materials have been used in the graduate course and undergrad-
uate elective that I have taught a number of times at two universities since 1999. While this
book can be used as a text for a senior elective or an entry-level graduate course, it is not
expected that all the materials will be covered in a one-semester course. The instructors
should have the freedom to select materials from the book according to students’ back-
grounds and interests. Some chapters and sections can also be used to integrate with tradi-
tional thermal science courses in order to update the current undergraduate and graduate
curricula with nanotechnology contents.

The content of this book includes microscopic descriptions and approaches, as well as
their applications in thermal science and engineering, with an emphasis on energy trans-
port in gases and solids by conduction (diffusion) and radiation (with or without a
medium), as well as convection in micro/nanofluidics. Following the introduction in

xiii
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Chapter 1, an in-depth overview on the foundation of macroscopic thermodynamics, heat
transfer, and fluid mechanics is given in Chapter 2. Chapter 3 summarizes the well-established
theories in statistical mechanics, including classical and quantum statistics; thermal prop-
erties of ideal gases are described in the context of statistical thermodynamics, followed by
a concise presentation of quantum mechanics. Chapter 4 focuses on microfluidics and
introduces the Boltzmann transport equation. The heat transfer and microflow regimes
from continuous flow to free molecule flow are described. In Chapters 5, 6, and 7, heat
transfer in solid nanostructures is extensively discussed. Chapter 5 presents the classical
and quantum size effects on specific heat and thermal conductivity without involving
detailed solid state theories, which are introduced in Chapter 6. This arrangement allows a
more intuitive learning experience. Chapter 7 focuses on transient as well as nonequilib-
rium energy transport processes in nanostructures. The next three chapters deal with
thermal radiation at nanoscales. Chapter 8 provides the fundamental understanding of elec-
tromagnetic waves and the dielectric properties of various materials. The concept of radia-
tion entropy is also introduced, along with the recently demonstrated metamaterials with
exotic properties. Chapter 9 describes interference effects of thin films and multilayers, the
band structure of photonic crystals, diffraction from surface-relief gratings, and scattering
from rough surfaces. Chapter 10 explores the evanescent wave and the coupling phenom-
ena in the near field for energy transfer. Recent advances in nanophotonics and nanoscale
radiation heat transfer are also summarized. The dual nature of particles and waves are
emphasized throughout the book in explaining the energy carriers, such as molecules in
ideal gases, electrons in metals, phonons in dielectric crystalline materials, and photons for
radiative transfer.

In the early 1990s, I was fortunate to work with Professor Markus Flik for my Ph.D. dis-
sertation on the infrared spectroscopy of thin (down to 10 nanometers) high-temperature
superconducting films for microfabricated, highly sensitive radiation detectors, as well as
to assist him in the summer short course on microscale heat transfer at the Massachusetts
Institute of Technology. While I was still a postdoctoral researcher, late Professor Chang-Lin
Tien, then Chancellor of the University of California at Berkeley, wrote an invitation letter
to me to give a seminar in the Department of Mechanical Engineering of Berkeley in
January 1994; he continuously supported me, including the development of the concept of
this book. The last time I heard from him was just a few weeks prior to the 2000 National
Heat Transfer Conference in Pittsburgh, where he delivered a plenary speech before he fell
ill. In his letter dated August 10, 2000, Professor Tien enthusiastically endorsed my plan to
write a microscale textbook and encouraged me to include nano aspects. He wrote “I would
like to express to you my strongest support for your project; however, I would suggest that
you broaden the content somewhat beginning with the title to ‘Micro/Nanoscale Heat ...,’
and to talk about some coverage on nano aspects.” Professor Tien opened my eyes, and it
took me several years afterward to complete this book, which now has more emphasis on
nanoscale thermal sciences and engineering.

I also benefited greatly from the encouragements and comments received through dis-
cussions with a large number of people in the heat transfer and thermophysics community,
too many to be listed here. I am grateful to my colleagues and friends at both University of
Florida (UF) and Georgia Tech for their help whenever needed. I especially want to thank
Professor William Tiederman, who was Chair of the Department of Mechanical Engineering
during my stay at UF, for his support and mentorship at the early stage of my independent
research and teaching career. Professor David Tanner in the Department of Physics of UF
helped me understand solid state physics; I have enjoyed collaboration with him since
1995. Through the years, Dr. Jack Hsia, former Chief of Academic Affairs at the National
Institute of Standards and Technology (NIST), offered me much personal and professional
advice. He is one of the many outstanding mentors I have had from NIST, where I gained
my postdoctoral experience and worked for a number of summers afterward. This book

xiv PREFACE



would not have been possible without my graduate students’ hard work and dedication.
Most of them have taken my classes and proofread different versions of the manuscript.
Some materials in the last few chapters of the book were generated based on their thesis
research. Many graduate and undergraduate students who have taken my classes or worked
in the Nanoscale Thermal Radiation Lab also provided constructive suggestions. I enjoyed
working with all of them. I must thank the Sponsoring Editor, Ken McCombs, for his
endurance and persistence that kept me on the writing track over the past few years, and the
whole production team, for carefully editing the manuscript and setting the final pages.
While this project was partially supported by the National Science Foundation as part of
my educational plan in the CAREER/PECASE grant, I take full responsibility for any inad-
vertent errors or mistakes.

Finally, I thank my family for their understanding and support throughout the writing
journey. My three children, Emmy, Angie, and Bryan, have given me great happiness and
made my life meaningful. This book is dedicated to my wife Lingyun for the unconditional
love and selfless care she has provided to me and to our children.

ZHUOMIN M. ZHANG
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LIST OF SYMBOLS

A area, m2; Helmholtz free energy, J
Ac cross-sectional area, m2

A�
l

directional-spectral absorptance of a semitransparent material
a acceleration, m/s2

a lattice constant, m; magnitude of acceleration, m/s2

a0 Bohr radius, 0.0529 nm
a
l

absorption coefficient, m�1

B magnetic induction or magnetic flux density, T (tesla) or Wb/m2

C volumetric heat capacity (rc
p
), J/(m3 � K)

c phase velocity of electromagnetic wave, m/s
c0 speed of light in vacuum, 2.998 � 108 m/s
c

v
or c–

v
mass or molar specific heat for constant volume, J/(kg � K) or J/(kmol � K)

c
p

or c–
p

mass or molar specific heat for constant pressure, J/(kg � K) or J/(kmol � K)
D dynamical matrix; electric displacement, C/m2

D density of states, m�3; diameter, m
DAB binary diffusion coefficient, m2/s
d diameter or film thickness, m
E electric field vector, N/C or V/m
E energy, J; magnitude of electric field, V/m
EF Fermi energy, J
Eg bandgap energy, J
e electron charge (absolute value), 1.602 � 10�19 C
eb blackbody emissive power, W/m2

F, F force, N
F normalized distribution function
f distribution function (sometimes normalized)
G reciprocal lattice vector, m�1; dyadic Green function
G Gibbs free energy, J; electron-phonon coupling constant, W/(m3 � K)
g– molar specific Gibbs free energy, J/kmol
g degeneracy
H magnetic field vector, A/m or C/(m � s)
H enthalpy, J; magnetic field strength, A/m or C/(m � s)
h mass specific enthalpy, J/kg; convection heat transfer coefficient, W/(m2 � K);

Planck’s constant, 6.626 � 10�34 J � s
h

m
convection mass transfer coefficient, m/s

h– Planck’s constant divided by 2p, h/2p
h
– molar specific enthalpy, J/kmol
I unit matrix; unit dyadic

xvii
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I moment of inertia, kg � m2; intensity or radiance, W/(m2 � �m � sr); electric current, A

i
i, j, k indices used in series
J or J flux vector or magnitude (quantity transferred per unit area per unit time)
J, Je current density (also called  electric charge flux), A/m2

J
E

energy flux, W/m2

J
m

mass flux, kg/(s � m2)
J

N
particle flux, m�2

J
p

momentum flux, Pa (N/m2)
K spring constant, N/m; Thomson’s coefficient, V/K; Bloch wavevector, m�1

k wavevector, m�1

k magnitude of the wavevector, m�1

kB Boltzmann’s constant, 1.381 � 10�23 J/K
L characteristic length, m
L0 average distance between molecules or atoms, m
L
l

radiation entropy intensity, W/(K � m2 � �m � sr)
l length, m
l, m, n index numbers
M molecular weight, kg/kmol
m mass of a system or a single particle, kg
mr reduced mass, kg
m* effective mass, kg
ṁ mass flow rate or mass transfer rate, kg/s
N number of particles; number of phonon oscillators
NA Avegadro’s constant, 6.022 � 1026 kmol�1; acceptor concentration, m�3

ND donor concentration, m�3

Ṅ particle flow rate, s�1

n number density, m�3; quantum number; real part of refractive index or refractive
index

n– amount of substance, kmol
n~ complex refractive index
P propagation matrix; polarization vector or dipole moment per unit volume, C/m2

P pressure, Pa (N/m2)
P

i j
momentum flux component, Pa

p momentum vector (mv or h–k), kg � m/s
p momentum (mv or h– k

.
), kg � m/s; probability; specularity

p,q index numbers
Q heat, J, quality factor
Q

.
heat transfer rate, W

q number of coexisting phases; number of atoms per molecule
q
. thermal energy generation rate, W/m3

q″ heat flux vector, W/m2

q″ heat flux, W/m2

R gas constant, J/(kg � K); electrical resistance, � or V/A
R′ directional-hemispherical reflectance
Rb″ thermal boundary resistance, m2 � K/W
Rt″ thermal resistance, m2 � K/W
R
–

universal gas constant, 8314.5 J/(kmol � K)

2�1

xviii LIST OF SYMBOLS



r distance or radius, m; Fresnel reflection coefficient
re electrical resistivity, � � m
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INTRODUCTION

Improvement in performance and shrinkage of device sizes in microelectronics have been
major driving forces for scientific and economic progress over the past 30 years.
Developments in semiconductor processing and surface sciences have allowed precise con-
trol over critical dimensions with desirable properties for solid state devices. In the past 20
years, there have been tremendous developments in micro- and nanoelectromechanical sys-
tems (MEMS and NEMS), microfluidics and nanofluidics, quantum structures and devices,
photonics and optoelectronics, nanomaterials for molecular sensing and biomedical diag-
nosis, and scanning probe microscopy for measurement and manipulation at the molecular
and atomic levels.

Nanotechnology research has not only emerged as a new area of science and engineer-
ing, but it has also become an integral part of almost all natural science and engineering dis-
ciplines. According to the Web site of Georgia Institute of Technology (www.gatech.edu),
more than 10% of the faculty members at the university have been involved with research
projects related to nanoscience and nanoengineering. The same can be said for most major
research universities in the United States and in many other countries. Furthermore, the
study of nanoscience and nanoengineering requires and has resulted in close interactions
across the boundaries of many traditional disciplines. Knowledge of physical behavior at
the molecular and atomic levels has played and will continue to play an important role in
our understanding of the fundamental processes occurring in the macro world. This will
enable us to design and develop novel devices and machines, ranging from a few nanome-
ters all the way to the size of automobiles and airplanes. We have already enjoyed camera
phones and the iPod that can store thousands of pictures and songs. In the next few decades,
the advancement of nano/microscale science and engineering will fundamentally restruc-
ture the technologies currently used in manufacturing, energy production and utilization,
communication, transportation, space exploration, and medicine.1,2

A key issue associated with miniaturization is the tremendous increase in the heat dis-
sipation per unit volume. Micro/nanostructures may enable engineered materials with
unique thermal properties to allow significant enhancement or reduction of the heat flow
rate. Therefore, knowledge of thermal transport from the micrometer scale down to the
nanometer scale and thermal properties of micro/nanostructures is of critical importance to
future technological growth. Solutions to more and more problems in small devices and
systems require a solid understanding of the heat (or more generally, energy) transfer
mechanisms in reduced dimensions and/or short time scales, because classical equilibrium
and continuum assumptions are not valid anymore. Examples are the thermal analysis and
modeling of micro/nanodevices, ultrafast laser interaction with materials, micromachined
thermal sensors and actuators, thermoelectricity in nanostructures, photonic crystals,
microscale thermophotovoltaic devices, and so forth.3,4
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1.1 LIMITATIONS OF THE MACROSCOPIC
FORMULATION

As an ancient Chinese philosopher put it, suppose you take a foot-long wood stick and cut
off half of it each day; you will never reach an end even after thousands of years, as shown
in Fig. 1.1. Modern science has taught us that, at some stage, one would reach the molecular
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FIGURE 1.1 The length of the wood stick: l1 � 1 ft in day 1, l2 � 1/2 ft
in day 2, and ln � 1/2n�1 ft in day n.

level and even the atomic level, below which the physical and chemical properties are
completely different from those of the original material. The wooden stick or slice would
eventually become something else that is not distinguishable from the other constituents
in the atmosphere. Basically, properties of materials at very small scales may be quite
different from those of the corresponding bulk materials. Note that 1 nm (nanometer) is
one-billionth of a meter. The diameter of a hydrogen atom H is on the order of 0.1 nm,
and that of a hydrogen molecule H2 is approximately 0.3 nm. Using the formula ln �

m, where n is number of days, we find m (or 0.57 nm)
after just a month, which is already near the diameter of a hydrogen atom. 

While atoms can still be divided with large and sophisticated facilities, our ability to
observe, manipulate, and utilize them is very limited. On the other hand, most biological
processes occur at the molecular level. Many novel physical phenomena happen at the
length scale of a few nanometers and can be integrated into large systems. This is why the
nanometer is a critical length scale for the realization of practically important new materials,
structures, and phenomena. For example, carbon nanotubes with diameters ranging from 0.4 to
50 nm or so have dramatically different properties. Some researchers have shown that these
nanotubes hold promise as the building block of nanoelectronics. Others have found that the
thermal conductivity of single-walled carbon nanotubes at room temperature could be an
order of magnitude higher than that of copper. Therefore, carbon nanotubes have been con-
sidered as a candidate material for applications that require a high heat flux.

In conventional fluid mechanics and heat transfer, we treat the medium as a contin-
uum, i.e., indefinitely divisible without changing its physical nature. All the intensive

l30 � 5.7 � 10�100.3048>2n�1



properties can be defined locally and continuously. For example, the local density is
defined as

(1.1)

where is the mass enclosed within a volume element . When the characteristic dimen-
sion is comparable with or smaller than that of the mechanistic length—for example, the
molecular mean free path, which is the average distance that a molecule travels between two
collisions—the continuum assumption will break down. The density defined in Eq. (1.1) will
depend on the size of the volume, , and will fluctuate with time even at macroscopic
equilibrium. Noting that the mean free path of air at standard atmospheric conditions is about
70 nm, the continuum assumption is well justified for many engineering applications until
the submicrometer regime or the nanoscale is reached. Nevertheless, if the pressure is very
low, as in an evacuated chamber or at a high elevation, the mean free path can be very large;
and thus, the continuum assumption may break down even at relatively large length scales.

Within the macroscopic framework, we calculate the temperature distribution in a fluid
or solid by assuming that the medium under consideration is not only a continuum but
also at thermodynamic equilibrium everywhere. The latter condition is called the local-
equilibrium assumption, which is required because temperature can be defined only for stable-
equilibrium states. With extremely high temperature gradients at sufficiently small length
scales and/or during very short periods of time, the assumption of local equilibrium may be
inappropriate. An example is the interaction between short laser pulses and a material.
Depending on the type of laser, the pulse duration or width can vary from a few tens of
nanoseconds down to several femtoseconds (1 fs � 10�15 s). In the case of ultrafast laser
interaction with metals, free electrons in the metal could gain energy quickly to arrive at an
excited state corresponding to an effective temperature of several thousand kelvins,
whereas the crystalline lattices remain near room temperature. After an elapse of time rep-
resented by the electron relaxation time, the excess energy of electrons will be transferred
to phonons, which are energy quanta of lattice vibration, thereby causing a heating effect
that raises the temperature or changes the phase of the material under irradiation.

Additional mechanisms may affect the behavior of a system as the physical dimensions
shrink or as the excitation and detection times are reduced. A scale-down of the theories
developed from macroscopic observations often proves to be unsuitable for applications
involving micro/nanoscale phenomena. Examples are reductions in the conductivity of thin
films or thin wires due to boundary scattering (size effect), discontinuous velocity and tem-
perature boundary conditions in microfluidics, wave interferences in thin films, and tun-
neling of electrons and photons through narrow gaps. In the quantum limit, the thermal
conductance of a nanowire will reach a limiting value that is independent of the material
that the nanowire is made of. At the nanoscale, the radiation heat transfer between two sur-
faces can exceed that calculated from the Stefan-Boltzmann law by several orders of mag-
nitude. Another effect of miniaturization is that surface forces (such as shear forces) will
scale down with , where L is the characteristic length, while volume forces (such as buoy-
ancy) will scale down with . This will make surface forces predominant over volume
forces at the microscale.

1.2 THE LENGTH SCALES

It is instructive to compare the length scales of different phenomena and structures, espe-
cially against the wavelength of the electromagnetic spectrum. Figure 1.2 compares the
wavelength ranges with some characteristic dimensions. One can see that MEMS generally
produce micromachining capabilities from several millimeters down to a few micrometers.

L3
L2

dV

dVdm

r � lim
dVS0

dm

dV
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Currently, the smallest feature of integrated circuits is well below 100 nm. The layer thick-
ness of thin films ranges from a few nanometers up to several micrometers. The wave-
lengths of the visible light are in the range from approximately 380 to 760 nm. On the other
hand, thermal radiation covers a part of the ultraviolet, the entire visible and infrared, and
a portion of the microwave region. The thickness of human hair is between 50 and 100 �m,
while the diameter of red blood cells is about 6 to 8 �m. A typical optical microscope can
magnify 100 times with a resolution of 200 to 300 nm, which is about half the wavelength
and is limited due to the diffraction of light. Therefore, optical microscopy is commonly
used to study micrometer-sized objects. On the other hand, atoms and molecules are on the
order of 1 nm, which falls in the x-ray and electron-beam wavelength region. Therefore, x-
ray and electron microscopes are typically used for determining crystal structures and
defects, as well as for imaging nanostructures. The development of scanning probe micro-
scopes (SPMs) and near-field scanning optical microscopes (NSOMs) in the 1980s enabled
unprecedented capabilities for the visualization and manipulation of nanostructures, such
as nanowires, nanotubes, nanocrystals, single molecules, individual atoms, and so forth,
as will be discussed in Sec. 1.3.4. Figure 1.2 also shows that the mean free path of heat
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FIGURE 1.2 Characteristic length scales as compared with the wavelength of elec-
tromagnetic spectrum.

10 cm

1 cm

1 mm

100 µm

10 µm

1 µm

100 nm

10 nm

1 nm

0.1 nm

Wavelength range

Microwave

Far-IR

Mid-IR

Near-IR
Visible

Ultraviolet

Deep UV

X-ray
E-beam

Characteristic dimension

Molecules

Lattice constants
Atoms

MEMS

Nanotubes, SPM tips

Semiconductor wafers
Human hands and fingers
Microelectronic chips

Thickness of human hair

Thickness of wafers (substrates)

Thickness of films or coatings
S

Radio waves

T
he

rm
al

 R
ad

ia
tio

n

Pollen grains; blood cells 

Sand grains

Nanoparticles, nanorods, nanowires

Smallest feature of integrated circuits

urface roughness; mean free paths

carriers (e.g., molecules in gases, electrons in metals, and phonons or lattice vibration in
dielectric solids) often falls in the micrometer to nanometer scales, depending on the
material, temperature, and type of carrier. 

This book is motivated by the need to understand the thermal phenomena and heat trans-
fer processes in micro/nanosystems and at very short time scales for solving problems
occurring in contemporary and future technologies. A brief historical retrospective is given
in the next section on the development of modern science and technologies, with a focus



on the recent technological advances leading to nanotechnology. The role of thermal engi-
neering throughout this technological advancement is outlined.

1.3 FROM ANCIENT PHILOSOPHY TO
CONTEMPORARY TECHNOLOGIES

Understanding the fundamentals of the composition of all things in the universe, their
movement in space and with time, and the interactions between one and another is a human
curiosity and the inner drive that makes us different from other living beings on the earth.
The ancient Chinese believed that everything was composed of the five elements: metal,
wood, water, fire, and earth (or soil) that generate and overcome one another in certain
order and time sequence. These simple beliefs were not merely used for fortune-telling but
have helped the development of traditional Chinese medicine, music, military strategy,
astronomy, and calendar. In ancient Greece, the four elements (fire, earth, air, and water)
were considered as the realm wherein all things existed and whereof all things consisted.
These classical element theories prevailed in several other countries in somewhat different
versions for over 2000 years, until the establishment of modern atomic theory that began
with John Dalton’s experiment on gases some 200 years ago. In 1811, Italian chemist
Amedeo Avogadro introduced the concept of the molecule, which consists of stable sys-
tems or bound state of atoms. A molecule is the smallest particle that retains the chemical
properties and composition of a pure substance. The first periodic table was developed by
Russian chemist Dmitri Mendeleev in 1869. Although the original meaning of atom in
Greek is “indivisible,” subatomic particles have since been discovered. For example, elec-
trons as a subatomic particle were discovered in 1897 by J. J. Thomson, who won the 1906
Nobel Prize in Physics. An atom is known as the smallest unit of one of the 116 confirmed
elements so far.

The first industrial revolution began in the late eighteenth century and boosted the econ-
omy of western countries from manual labor to the machine age by the introduction of
machine tools and textile manufacturing. Following the invention of the steam engine in
the mid-nineteenth century, the second industrial revolution had an even bigger impact on
human life through the development of steam-powered ships and trains, along with the
internal combustion engines, and the generation of electrical power. Newtonian mechanics
and classical thermodynamics have played an indispensable role in the industrial revolu-
tions. The development of machinery and the understanding of the composition of matter
have allowed unprecedented precision of experimental investigation of physical phenom-
ena, leading to the establishment of modern physics in the early twentieth century. 

The nature of light has long been debated. At the turn of the eighteenth century, Isaac
Newton formulated the corpuscular theory of light and observed with his prism experiment
that sunlight is composed of different colors. In the early nineteenth century, the discovery
of infrared and ultraviolet radiation and Young’s double-slit experiment confirmed Huygens’
wave theory, which was overshadowed by Newton’s corpuscular theory for some 100 years.
With the establishment of Maxwell’s equations that fully describe the electromagnetic waves
and Michelson’s interferometric experiment, the wave theory of radiation had been largely
accepted by the end of the nineteenth century. While the wave theory was able to explain
most of the observed phenomena, it could not explain thermal emission over a wide spec-
trum, nor was it able to explain the photoelectric effect. Max Planck in 1901 used the
hypothesis of light, or radiation quanta, or oscillators, to successfully derive the blackbody
spectral distribution function. In 1905, Albert Einstein explained the photoelectric effect
based on the concept of radiation quanta. To knock out an electron from the metal surface,
the energy of each incoming radiation quantum (h�) must be sufficiently large because one
electron can absorb only one quantum. This explained why photoemission could not occur
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at frequencies below the threshold value, no matter how intense the incoming radiation
might be. It appears that light is not indefinitely divisible but must exist in multiples of the
smallest massless quanta, which are known as photons. In 1924, Louis de Broglie hypoth-
esized that particles should also exhibit wavelike characteristics. With the electron diffrac-
tion experiment, it was found that electrons indeed can behave like waves with a
wavelength inversely proportional to the momentum. Electron microscopy was based on
the principle of electron diffraction. The wave-particle duality was essential to the estab-
lishment of quantum mechanics in the early twentieth century. Quantum mechanics
describes the phenomena occurring in minute particles, structures, and their interaction
with radiation, for which classical mechanics and electrodynamics are not applicable. The
fundamental scientific understanding gained during the first half of the twentieth century
has facilitated the development of contemporary technologies that have transformed from
the industrial economy to the knowledge-based economy and from the machine age to the
information age. The major technological advancements in the last half of the century are
highlighted in the following sections.

1.3.1 Microelectronics and Information Technology

In his master’s thesis at MIT published in 1940, Claude Shannon (1916–2001) used the
Boolean algebra and showed how to use TRUE and FALSE to represent function of switches
in electronic circuits. Digital computers were invented during the 1940s in several countries,
including the IBM Mark I which is 2.4 m high and 16 m long. In 1948, while working at Bell
Labs, Shannon published an article, “A Mathematical Theory of Communication,” which
marked the beginning of modern communication and information technology.5 In that paper,
he laid out the basic principles of underlying communication of information with two
symbols, 1 and 0, and coined the term “bit” for a binary digit. His theory made it possible
for digital storage and transmission of pictures, sounds, and so forth.

In December 1947, three scientists invented the semiconductor point contact transistor
at Bell Labs using germanium. The earlier computers and radios were based on bulky vac-
uum tubes that generated a huge amount of heat. The invention of the transistor by William
Shockley, John Bardeen, and Walter Brattain was recognized through the Nobel Prize in
Physics conferred on them in 1956. There had been intense research on semiconductor
physics using the atomic theory and the mechanism of point contact for the fabrication of
transistors to become possible. The invention of transistors ushered the information age
with a whole new industry.

In 1954, Gordon Teal at Texas Instruments built the first silicon transistor. The native
oxide of silicon appeared to be particularly suitable as the electric insulator. In 1958, Jack
Kilby (1923–2005) at Texas Instruments was able to cramp all the discrete components
onto a silicon base and later onto one piece of germanium. He filed a patent application the
next year on “Miniaturized Electronic Circuits,” where he described how to make inte-
grated circuits and connect the passive components via gold wires. Working independently,
Robert Noyce at Fairchild Electronics in California found aluminum to adhere well to both
silicon and silicon oxide and filed a patent application in 1959 on “Semiconductor Device-
and-Lead Structure.” Kilby and Noyce are considered the coinventors of integrated circuits.
Noyce was one of the founders of Intel and died in 1990. Kilby was awarded half of the
Nobel Prize in Physics in 2000 “for his part in the invention of the integrated circuit.” (See
http://nobelprize.org/nobel_prizes/). The other half was shared by Zhores Alferov and
Herbert Kroemer for developing semiconductor heterogeneous structures used in opto-
electronics, to be discussed in the next section. 

In 1965, around 60 transistors could be packed on a single silicon chip. Seeing the fast
development and future potential of integrated circuits, Gordon Moore, a cofounder of
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Intel, made a famous prediction that the number and complexity of semiconductor devices
would double every year.6 This is Moore’s law, well-known in the microelectronics indus-
try. In the mid-1970s, the number of transistors on a chip increased from 60 to 5000. By
1985, the Intel 386 processor contained a quarter million transistors on a chip. In 2001, the
Pentium 4 processor reached 42 million transistors. The number has now exceeded 1 bil-
lion per chip in 2006. When the device density is plotted against time in a log scale, the
growth almost follows a straight line, suggesting that the packaging density has doubled
approximately every 18 months.6 Reducing the device size and increasing the packaging
density have several advantages. For example, the processor speed increases by reducing
the distance between transistors. Furthermore, new performance features can be added into
the chip to enhance the performance. The cost for the same performance also reduces.
Advanced supercomputer systems have played a critical role in enabling modeling and
understanding micro/nanoscale phenomena.

The process is first to grow high-quality silicon crystals and then dice and polish into
wafers. Devices are usually made on SiO2 layer that can be grown by heating the wafer to
sufficiently high temperatures in a furnace with controlled oxygen partial pressure. The
wafers are then patterned using photolithographic techniques combined with etching
processes. Donors and acceptors are added to the wafer to form n- and p-type regions by
ion implantation and then annealed in a thermal environment. Metals or heavily doped
polycrystalline silicon are used as gates with proper coverage and patterns through lithog-
raphy. A schematic of metal-oxide-semiconductor field-effect transistor (MOSFET) is
shown in Fig. 1.3. Millions of transistors can be packed in 1-mm2 area with several layers
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FIGURE 1.3 Schematic of a metal-oxide-semiconductor
field-effect transistor (MOSFET).

through very-large-scale integration (VLSI) with the smallest features smaller than 100 nm.
As mentioned earlier, managing heat dissipation is a challenge especially as the device
dimension continues to shrink. Local heating or hot spots on the size of 10 nm can cause
device failure. The principles governing the heat transfer at the nanoscale are very differ-
ent from those at large scales. A fundamental understanding of the phonon transport is
required for device-level thermal analysis. Furthermore, understanding heat transfer in
microfluidics is necessary to enable reliable device cooling at the micro- and nanoscales.
Additional discussions will be given in subsequent chapters of the book.

The progress in microelectronics is not possible without the advances in materials such
as crystal growth and thermal processing during semiconductor manufacturing, as well as
the deposition and photolithographic technologies. Rapid thermal processing (RTP) is nec-
essary during annealing and oxidation to prevent ions from deep diffusion into the wafer.
Thermal modeling of RTP must consider the combined conduction, convection, and radia-
tion modes. A lightpipe thermometer is commonly used to monitor the temperature of the wafer.
In an RTP furnace, the thermal radiation emitted by the wafer is collected by the light pipe
and then transmitted to the radiometer for inferring the surface temperature.7 In some cases,



the wafer surface is rough with anisotropic features. A better understanding of light scat-
tering by anisotropic rough surfaces is also necessary.

According to the International Technology Roadmap for Semiconductors, the gate
length and the junction depth will be 25 and 13.8 nm, respectively, for the 65-nm devices
used in high-performance complementary-metal-oxide-semiconductor (CMOS) technol-
ogy.8 High-intensity Ar or Xe arc lamps with millisecond optical pulses are considered as
a suitable annealing tool following ion implantation in ultra-shallow junction fabrication.
Because the optical energy is absorbed within milliseconds, thermal diffusion cannot dis-
tribute heat uniformly across the wafer surface. Therefore, temperature uniformity across
the nanometer-patterned wafer is expected to be a critical issue. To reduce the feature size
further, deep-UV lithography and x-ray lithography have also been developed. It is pre-
dicted that Moore’s law will reach its limit in 2017, when the critical dimensions would be
less than 10 nm. Further reduction will be subjected to serious barriers due to problems
associated with gate dielectrics and fabrication difficulties. Molecular nanoelectronics
using self-assembly is sought as an alternative, along with quantum computing. Therefore,
nanoelectronics and quantum computing are anticipated to brighten the electronics and
computer future.

1.3.2 Lasers, Optoelectronics, and Nanophotonics

It is hard to imagine what the current technology would look like without lasers. Lasers of
different types have tremendous applications in metrology, microelectronics fabrication,
manufacturing, medicine, and communication. Examples are laser printers, laser bar code
readers, laser Doppler velocimetry, laser machining, and laser corneal surgery for vision
correction. The concept of laser was demonstrated in late 1950s independently in the
United States and the Soviet Union during the cold war. The Nobel Prize in Physics of 1964
recognized the fundamental contributions in the field of quantum electronics by Charles
Townes, Nicolay Basov, and Aleksandr Prokhorov. The first working laser was a Ruby laser
built by Theodore Maiman at Hughes Aircraft Company in 1960. The principle of lasers
dates back to 1917, when Einstein elegantly depicted his conception of stimulated emission
of radiation by atoms. Unlike thermal emission and plasma emission, lasers are coherent
light sources and, with the assistance of optical cavity, lasers can emit nearly monochro-
matic light and point to the same direction with little divergence. Lasers enabled a branch
of nonlinear optics, which is important to understand the fundamentals of light-matter inter-
actions, communication, as well as optical computing. In 1981, Nicolaas Bloembergen and
Arthur Schawlow received the Nobel Prize in Physics for their contributions in laser
spectroscopy. There are a variety of nonlinear spectroscopic techniques, including Raman
spectroscopy, as reviewed by Fan and Longtin.9 Two-photon spectroscopy has become an
important tool for molecular detection.10 Furthermore, two-photon 3-D lithography has
also been developed for microfabrication.11

Gas lasers such as He-Ne (red) and Ar (green) have been extensively used for precision
alignment, dimension measurements, and laser Doppler velocimetry due to their narrow
linewidth. On the other hand, powerful Nd:YAG and CO2 lasers are used in thermal man-
ufacturing, where the heat transfer processes include radiation, phase change, and conduc-
tion.12 Excimer lasers create nanosecond pulses in ultraviolet and have been extensively
used in materials processing, ablation, eye surgery, dermatology, as well as photolithography
in microelectronics and microfabrication. High-energy nanosecond pulses can also be pro-
duced by Q-switching, typically with a solid state laser such as Nd:YAG laser at a wave-
length near 1 �m. On the other hand, mode-locking technique allows pulse widths from
picoseconds down to a few femtoseconds. Pulse durations less than 10 fs have been
achieved since 1985. Ultrafast lasers have enabled the study of reaction dynamics and
formed a branch in chemistry called femtochemistry. Ahmed Zewail of Caltech received the
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1999 Nobel Prize in Chemistry for his pioneering research in this field. In 2005, John Hall
and Thoedor Hänsch received the Nobel Prize in Physics for developing laser-based preci-
sion spectroscopy, in particular, the frequency comb technique. Short-pulse lasers can
facilitate fabrication, the study of electron-phonon interaction in the nonequilibrium
process, measurement of thermal properties including interface resistance, nondestructive
evaluation of materials, and so forth.13–16

Room-temperature continuous-operation semiconductor lasers were realized in May
1970 by Zhores Alferov and coworkers at the Ioffe Physical Institute in Russia, and inde-
pendently by Morton Panish and Izuo Hayashi at Bell Labs a month later. Alferov received
the Nobel Prize in Physics in 2000, together with Herbert Kroemer who conceived the idea
of double-heterojunction laser in 1963 and was also an earlier pioneer of molecular beam
epitaxy (MBE). Invented in 1968 by Alfred Cho and John Arthur at Bell Labs and developed
in the 1970s, MBE is a high-vacuum deposition technique that enables the growth of highly
pure semiconductor thin films with atomic precision. The name heterojunction refers to two
layers of semiconductor materials with different bandgaps, such as GaAs/AlxGa1-x As pair.
In a double-heterojunction structure, a lower-bandgap layer is sandwiched between two
higher-bandgap layers.17 When the middle layer is made thin enough, on the order of a few
nanometers, the structure is called a quantum well because of the discrete energy levels and
enhanced density of states. Quantum well lasers can have better performance with a smaller
driving current. Multiple quantum wells (MQWs), also called superlattices, that consist of
periodic structures can also be used to further improve the performance. In a laser setting, an
optical cavity is needed to confine the laser bandwidth as well as enhance the intensity at a
desired wavelength with narrow linewidth. Distributed Bragg reflectors (DBRs) are used on
both ends of the quantum well (active region). DBRs are the simplest photonic crystals made
of periodic dielectric layers of different refractive indices; each layer thickness is equal to a
quarter of the wavelength in that medium (l /n). DBRs are dielectric mirrors with nearly
100% reflectance, except at the resonance wavelength l, where light will eventually escape
from the cavity. Figure 1.4 illustrates a vertical cavity surface emitting laser (VCSEL),
where light is emitted through the substrate (bottom of the structure). The energy transfer
mechanisms through phonon waves and electron waves have been extensively investigated.18
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FIGURE 1.4 Schematic of a VCSEL laser made of heterogeneous quan-
tum well structure. The smaller layer thickness can be 3 nm, and there can
be as many as several hundred layers.



Further improvement in the laser efficiency and control of the wavelength has been made
using quantum wires and quantum dots (QDs).17

Semiconductor lasers are the most popular lasers (in quantity), and several hundred-million
units are sold each year. Their applications include CD/DVD reading/writing, optical com-
munication, laser pointers, laser printers, bar code readers, and so forth. A simpler device is
the light-emitting diode (LED), which emits incoherent light with a two-layer p-n junction
without DBRs. LEDs have been used for lighting, including traffic lights with improved effi-
ciency and decorating lights. The development of wide-bandgap materials, such as GaN and
AlN epitaxially grown through metal-organic chemical vapor deposition (MOCVD), allows
the LED and semiconductor laser wavelength to be pushed to the blue and ultraviolet.
Organic light-emitting diodes (OLEDs) based on electroluminescence are being developed as
a promising candidate for the next-generation computer and TV displays.

Alongside the development of light sources, there have been continuous development
and improvement in photodetectors, mainly in focal plane arrays, charge-coupled devices
(CCDs), quantum well detectors, readout electronics, data transfer and processing, compact
refrigeration and temperature control, and so forth. On the other hand, optical fibers have
become an essential and rapidly growing technology in telecommunication and computer
networks. The optical fiber technology for communication was developed in the 1970s
along with the development of semiconductor lasers. In 1978, Nippon Telegraph and
Telephone (NTT) demonstrated the transmission of 32 Mbps (million-bits-per-second)
through 53 km of graded-index fiber at 1.3-�m wavelength. By 2001, 3 � 1011 m of fiber-
optic wires had been installed worldwide; this is a round-trip from the earth to the sun. In
March 2006, NEC Corporation announced a 40-Gbps optical-fiber transmission system.
Optical fibers have also been widely applied as sensors for biochemical detection as well
as temperature and pressure measurements. Fiber drawing process involves complicated
heat transfer and fluid dynamics at different length scales and temperatures.19

Nanophotonics is an emerging frontier that integrates photonics with physics, chem-
istry, biology, materials science, manufacture, and nanotechnology. The foundation of
nanophotonics is to study interactions between light and matter, to explore the unique char-
acteristics of nanostructures for utilizing light energy, and to develop novel nanofabrication
and sensing techniques. Recent studies have focused on photonic crystals, nanocrystals,
plasmonic waveguides, nanofabrication and nanolithography, light interaction with organic
materials, biophotonics, biosensors, quantum electrodynamics, nanocavities, quantum dot
and quantum wire lasers, solar cells, and so forth. Readers are referred to Prasad20 for an
extensive discussion of the recent developments. In the field of thermal radiation,
nanoscale radiative transfer and properties have become an active research area, and a spe-
cial issue of the Journal of Heat Transfer is devoted to this exciting area.21

1.3.3 Microfabrication and Nanofabrication

Richard Feynman, one of the best theoretical physicists of his time and a Nobel Laureate
in Physics, delivered a visionary speech at Caltech in December 1959, entitled “There’s
plenty of room at the bottom.” At that time, lasers had never existed and integrated circuits
had just been invented and were not practically useful, and a single computer that is not as
fast as a present-day handheld calculator would occupy a whole classroom with enormous
heat generation. Feynman envisioned the future of controlling and manipulating things on
very small scales, such as writing (with an electron beam) the whole 24 volumes of
Encyclopedia Britannica on the head of a pin and rearranging atoms one at a time.22 Many
of the things Feynman predicted were once considered scientific fictions or jokes but have
been realized in practice by now, especially since the 1980s. In 1983, Feynman gave a second
talk about the use of swimming machine as a medical device: the surgeon that you could
swallow, as well as quantum computing.22 In the 1990s, micromachining and MEMS
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FIGURE 1.5 MEMS structures. (a) A dust mite on a microfabricated mirror assembly, where the gears are
smaller than the thickness of human hair. (b) Drive gear chain with linkages, where coagulated red blood cells
are on the upper left and the lower right and a grain of pollen is on the upper right. (Courtesy of Sandia

National Laboratories, SUMMiT Technologies, www.mems.sandia.gov.)

emerged as an active research area, with a great success by the commercialization of the
micromachined accelerometers in the automobile airbag. Using the etching and litho-
graphic techniques, engineers were able to manufacture microscopic machines with moving
parts, as shown in Fig. 1.5, such as gears with a size less than the cross-section of human hair.

The technologies used in microfabrication have been extensively discussed in the text of
Madou.23 These MEMS devices were later developed as tools for biological and medical
diagnostics, such as the so-called lab-on-a-chip, with pump, valve, and analysis sections on
the 10 to 100 �m scale. In aerospace engineering, an application is to build micro–air vehi-
cles or microflyers, with sizes ranging from a human hand down to a bumblebee that could
be used for surveillance and reconnaissance under extreme conditions. Microchannels and
microscale heat pipes have also been developed and tested for electronic cooling applica-
tions. The study of microfluidics has naturally become an active research area in mechan-
ical engineering. The development of SPM and MEMS technologies, together with
materials development through self-assembly and other technologies, lead to further devel-
opment of even smaller structures and the bottom-up approach of nanotechnology. Laser-
based manufacturing, focused ion beam (FIB), and electron-beam lithography have also
been developed to facilitate nanomanufacturing. In NEMS, quantum behavior becomes
important and quantum mechanics is inevitable in understanding the behavior.

Robert Curl, Harold Kroto, and Richard Smalley were winners of the Nobel Prize in
Chemistry in 1996 for their discovery of fullerenes in 1985 at Rice University, during a
period Kroto visited from University of Sussex. The group used pulsed laser irradiation to
vaporize graphite and form carbon plasma in a pressurized helium gas stream. The result
as diagnosed by time-of-flight mass spectroscopy suggested that self-assembled C60 mole-
cules were formed and would be shaped like a soccer ball with 60 vertices made of the 60
carbon atoms; see Kroto et al., Nature, 318, 162 (1985). The results were confirmed later
to be C60 molecules indeed with a diameter on the order of 1 nm with wave-particle duality.
This type of carbon allotrope is called a buckminsterfullerene, or fullerene, or buckyball,
after the famous architect Buckminster Fuller (1895–1983) who designed geodesic domes.
In 1991, Sumio Iijima of NEC Corporation synthesized carbon nanotubes (CNTs) using
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arc discharge. Soon his group and an IBM group were able to produce single-walled car-
bon nanotubes (SWNTs) with a diameter on the order of 1 nm. There have been intensive
studies of CNTs for hydrogen storage, nanotransistors, field emission, light emission and
absorption, quantum conductance, nanocomposites, and high thermal conductivity.
Figure 1.6a shows CNTs growth at a room-temperature environment by chemical vapor
deposition on a heated cantilever tip with a size around 5 �m.24 Figure 1.6b shows the syn-
thesized SWNTs with encapsulated metallofullerenes of Gd:C82 (i.e., a gadolinium inside
a fullerene molecule). The high-resolution transmission electron microscope (TEM) image
suggests that the diameter of the SWNT is from 1.4 to 1.5 nm.25 It should be noted that elec-
tron microscopes, including SEM and TEM, have become a powerful tool for imaging
micro/nanoscale objects with a magnification up to 2 million. The first electron microscope
was built by Ernst Ruska and Max Knoll in Germany during the early 1930s, and Ruska
shared the Nobel Prize in Physics in 1986 for his contributions to electron optics and
microscopy.

Various nanostructured materials have been synthesized, such as silicon nanowires,
InAs/GaAs QDs, and Ag nanorods. Figure 1.6c shows some images for nanohelices or
nanosprings made of ZnO nanobelts or nanoribbons using a solid-vapor process.26 These
self-assembled structures under controlled conditions could be fundamental to the study of
electromagnetic coupled nanodevices for use as sensors and actuators, as well as the growth
dynamics at the nanoscale. 

One of the successful technologies that operate in the regime of quantum mechanical
domain is the giant magnetoresistive (GMR) head and hard drive. The GMR head is based
on ferromagnetic layers separated by an extremely thin (about 1 nm) nonferromagnetic
spacer, such as Fe/Cr/Fe and Co/Cu/Co. MBE enabled the metallic film growth with
required precision and quality. The electrical resistance of GMR materials depends
strongly on the applied magnetic field, which affects the spin states of electrons. IBM first
introduced this technology in 1996, which was only about 10 years after the publication of
the original research results; see Grünberg et al., Phys. Rev. Lett., 57, 2442 (1986); Baibich
et al., Phys. Rev. Lett., 61, 2472 (1988). GMR materials have been extensively used in com-
puter hard drive and read/write head. Overheating, due to friction with the disk surface, can
render the data unreadable for a short period until the head temperature stabilizes; such an
effect is called thermal asperity. Yang et al. performed a detailed thermal characterization
of Cu/CoFe superlattices for GMR head applications using MEMS-based thermal
metrology tools.27

1.3.4 Probing and Manipulation of Small Structures

Tunneling by elementary particles is a quantum mechanical phenomenon or wavelike
behavior. It refers to a potential barrier of the particles that normally will confine the parti-
cles to either side of the barrier, like a mountain that is so high as to separate people on one
side from those on the other. When the barrier thickness is thin enough, quantum tunneling
can occur and particles can transmit through the barrier, as if a tunnel is dug through a
mountain. An example is an insulator between two metal strips. Trained in mechanical
engineering, Ivar Giaever performed the first tunneling experiment with superconductors
in 1960 at the General Electric Research Laboratory and received the 1973 Nobel Prize in
Physics, together with Leo Esaki of IBM and Brian Josephson. Esaki made significant con-
tributions in semiconductor tunneling, superlattices, and the development of MBE tech-
nology. He invented a tunneling diode, called the Esaki diode, which is capable of very fast
operation in the microwave region. Josephson further developed the tunneling theory and
a device, called a Josephson junction, which is used in the superconducting quantum interface
devices (SQUIDs), for measuring extremely small magnetic fields. SQUIDs are used in
magnetic resonance imaging (MRI) for medical diagnostics.
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FIGURE 1.6 Examples of nanostructures. (a) SEM image of CNTs grown on heated cantilever tip.
(Reprinted with permission from Sunden et al.,24 copyright 2006, American Institute of Physics.) (b) Buckyballs
inside a SWNT (the lower is a TEM image in which the nanotube diameter is 1.4 to 1.5 nm). (Reprinted with

permission from Hirahara et al.,25 copyright 2000, American Physical Society.) (c) TEM images of ZnO
nanobelts that are coiled into nanohelices or nanosprings. [Reprinted with permission from Gao et al.,26

copyright 2005, AAAS (image courtesy of Prof. Z. L. Wang, Georgia Tech).]



In 1981, Gerd Binnig and Heinrich Rohrer of IBM Zurich Research Laboratory devel-
oped the first scanning tunneling microscope (STM) based on electron tunneling through
vacuum. This invention has enabled the detection and manipulation of surface phenomena
at the atomic level and, thus, has largely shaped the nanoscale science and technology
through further development of similar instrumentation. Binnig and Rohrer shared the
Nobel Prize in Physics in 1986, along with Ruska who developed the first electron micro-
scope as mentioned earlier. STM uses a sharp-stylus-probe tip and piezoelectricity for
motion control. When the tip is near 1 nm from the surface, an electron can tunnel through the
tip to the conductive substrate. The tunneling current is very sensitive to the gap. Therefore,
by maintaining the tip in position and scanning the substrate in the x-y direction with a con-
stant current (or distance), the height variation can be obtained with extremely good reso-
lution (0.02 nm). Using STM, Binnig et al. soon obtained the real-space reconstruction of
the 7 � 7 unit cells of Si(111).28 In 1993, another group at IBM Almaden Research Center
was able to manipulate iron atoms to create a 48-atom quantum corral on a copper sub-
strate.29 The images have appeared in the front cover of many magazines, including Science
and Physics Today. STM can also be used to assemble organic molecules and to study DNA
molecules.2

In 1996, Gerd Binnig, Calvin Quate, and Christoph Gerber developed another type of
SPM, i.e., the atomic force microscope (AFM) that can operate without a vacuum environ-
ment and for electrical insulators.30 AFM uses a tapered tip at the end of a cantilever and
an optical position sensor, as shown in Fig. 1.7. The position sensor is very sensitive to the
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FIGURE 1.7 Schematic of an atomic force microscope (AFM).

bending of the cantilever (with a 0.1-nm vertical resolution). When the tip is brought close
to the surface, there exist intermolecular forces (repulsive or attractive) between the tip and
the atoms on the underneath surface. In the contact mode, the cantilever is maintained in
position using the servo signal from the position-sensing diode to adjust the height of the
sample, while it scans in the lateral direction. Surface topographic data can be obtained in



an ambient environment for nonconductive materials. Other SPMs have also been devel-
oped and the family of SPMs is quite large today. Wickramasinghe and coworkers first
investigated thermal probing by attaching a thermocouple to the cantilever tip.31 Later,
Arun Majumdar’s group developed several types of scanning thermal microscope (SThM)
for nanoscale thermal imaging of heated samples, including microelectronic devices and
nanotubes.32 Recently, researchers have modified SThM for measuring and mapping ther-
moelectric power at nanoscales.33

Because of its simplicity, AFM has become one of the most versatile tools in nanoscale
research, including friction measurements, nanoscale indentation, dip-pen nanolithography,
and so forth. Heated cantilever tips were proposed for nanoscale indentation or writing on
the polymethyl methacrylate (PMMA) surface, either using a laser or by heating the can-
tilever legs.34 The method was further developed to concentrate the heat dissipation to the
tip by using heavily doped legs as electrical leads, resulting in writing (with a density near
500 Gb/in2) and erasing (with a density near 400 Gb/in2) capabilities. The temperature signal
measured by the tip resistance can also be used to read the stored data due to the difference
in heat loss as the tip scans the area.35 In an effort to improve the data-writing speed, IBM
initiated the “millipede” project in 2000 and succeeded in making 32 � 32 heated-cantilever
array for which each cantilever was separately controlled.36 Obviously, heat transfer and
mechanical characteristics are at the center of these systems. The heated AFM cantilever tips
have been used as a local heating source for a number of applications, including the above-
mentioned CVD growth of CNTs locally and thermal dip-pen nanolithography.37

1.3.5 Energy Conversion Devices

Nanostructures may have unique thermal properties that can be used to facilitate heat trans-
fer for heat removal and thermal management applications. An example was mentioned
earlier to utilize nanotubes with high thermal conductivity, although nanotube bundles
often suffer from interface resistance and phonon scattering by defects and boundaries.
Recently, there have been a number of studies on nanofluids, which are liquids with sus-
pensions of nanostructured solid materials, such as nanoparticles, nanofibers, and nan-
otubes.38 Enhanced thermal conductivity and increased heat flux have been demonstrated;
however, the mechanisms that contributed to the enhancement and temperature dependence
are still being debated.39

Thermoelectricity utilizes the irreversible thermodynamics principle for thermal-electrical
conversion and can be used for cooling in microelectronics as well as miniaturized power
generation. A critical issue is to enhance the figure of merit of performance, with a reduced
thermal conductivity. Multilayer heterogeneous structures create heat barriers due to size
effects and the boundary resistance. These structures have been extensively studied in the
literature and demonstrate enhanced performances. Understanding the thermal and electri-
cal properties of heterogeneous structures is critically important for future design and
advancement.40

Fast-depleting reserves of conventional energy sources have resulted in an urgent need
for increasing energy conversion efficiencies and recycling of waste heat. One of the poten-
tial candidates for fulfilling these requirements is thermophotovoltaic devices, which gener-
ate electricity from either the complete combustion of different fuels or the waste heat of
other energy sources, thereby saving energy. The thermal radiation from the emitter is inci-
dent on a photovoltaic cell, which generates electrical currents. Applications of such devices
range from hybrid electric vehicles to power sources for microelectronic systems. At pre-
sent, thermophotovoltaic systems suffer from low conversion efficiency. Nanostructures
have been extensively used to engineer surfaces with designed absorption, reflection, and
emission characteristics. Moreover, at the nanoscale, the radiative energy transfer can be
greatly enhanced due to tunneling and enhanced local density of states. A viable solution to
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increase the thermophotovoltaic efficiency is to apply microscale radiation principles in the
design of different components to utilize the characteristics of thermal radiation at small dis-
tances and in microstructures.41 Nanostructures can also help increase the energy conversion
efficiency and reduce the cost of solar cells. Figure 1.8 shows the device structure of a
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FIGURE 1.8 ZnO nanowires for dye-sensitized solar cells, from Law et al.42

(Reprinted by permission from Macmillan Publishers Ltd.: Nature Materials,

copyright 2005.) The height of the wires is near 16 �m and their diameters vary
between 130 and 200 nm. (a) Schematic of the cell with light incident through
the bottom electrode. (b) SEM image of a cleaved nanowire array.
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ZnO-nanowire array for dye-sensitized solar cells.42 This structure can greatly enhance the
absorption or quantum efficiency over nanoparticle-based films. Knowledge of the spectral
and directional absorptance of nanostructures and heat dissipation mechanisms is critically
important for further advancement of this type of device.43

Hydrogen technologies are being considered and actively pursued as the energy source
of the future. There are two ways in which hydrogen H2 may be used: one is in a combus-
tion heat engine where hydrogen reacts with oxygen intensively while releasing heat; the
other is in a fuel cell where electrochemical reaction occurs quietly to generate electricity
just like a battery. Because the only reaction product is water, hydrogen-powered automo-
biles can be made pollution free in principle. Grand challenges exist in generation, storage,



and transport of hydrogen. If all hydrogen is obtained from fossil fuels, there will be no
reduction in either the fossil fuel consumption or the carbon dioxide emission, except that
the emission is centralized in the hydrogen production plant. Alternatively, hydrogen may
be produced from water with other energy sources, such as renewable energy sources.
Nanomaterials are being developed for several key issues related to hydrogen technologies,
such as hydrogen storage using nanoporous materials, effective hydrogen generation by
harvesting solar energy with inexpensive photovoltaic materials, and fuel cells based on
nanostructure catalysts .44

1.3.6 Biomolecule Imaging and Molecular Electronics

Optical microscopy has played an instrumental role in medical diagnoses because it allows
us to see bacteria and blood cells. Optical wavelength is more desirable than x-ray or elec-
tron beam because of the less invasiveness and the more convenience. However, the resolu-
tion of a traditional microscope is on the order of half the wavelength due to the diffraction
limit. While the concept of near-field imaging existed in the literature before 1930, it has
been largely forgotten because of the inability in building the structures and controlling their
motion. With the microfabrication and precision-positioning capabilities, near-field scan-
ning optical microscopes (NSOMs, also called SNOMs) were realized in the early 1980s by
different groups and extensively used for biomolecule imaging with a resolution of 20 to 50
nm.45 The principle is to bring the light through an aperture of a tapered fiber of very small
diameter at the end or to bring the light through an aperture of very small diameter. The beam
out from the fiber tip or aperture will diverge quickly if the sample is placed in the far field,
i.e., away from the aperture. However, high resolution can be achieved by placing the sam-
ple in close proximity to the aperture within a distance much less than the wavelength,
i.e., in the near filed, such that the beam size is almost the same as the aperture. An aper-
tureless metallic tip can be integrated with an SPM to guide the electromagnetic wave via
surface plasmon resonance with a spatial resolution as high as 10 nm, for high-resolution
imaging and processing. There have since been extensive studies on near-field interactions
between electromagnetic waves and nanostructured materials, from semiconductor QDs,
metallic nanoaperture and nanohole arrays, to DNA and RNA structures.

Nanoparticles are among the earliest known nanostructures that have been used for cen-
turies in making stained glass with gold or other metallic nanoparticles as well as photo-
graphic films with silver nanoparticles. A QD has a spherical core encapsulated in a shell
made of another semiconductor material, such as a CdSe core in a ZnS shell. The outer shell
is only several monolayers thick, and the diameters of QDs range from 2 to 10 nm. The mate-
rial for the inner core has a smaller bandgap. Quantum confinement in the core results in size-
dependent fluorescent properties. Compared with molecular dyes conventionally used for
fluorescent labeling in cellular imaging, the emission from QD fluorophores is brighter with
a narrower spectral width. QDs also allow excitation at shorter wavelengths, making it easier
to separate the fluorescent signal from the scattered one, and are resistive to photobleaching
that causes dyes to lose fluorescence. Furthermore, the emission wavelength can be selected
by varying the core size of QDs to provide multicolor labeling. It was first demonstrated in
1998 that QDs could be conjugated to biomolecules such as antibodies, peptides, and DNAs,
enabling surface passivation and water solubility. In recent years, significant development has
been made to employ QDs for in vivo and in vitro imaging, labeling, and sensing.46,47

CMOS technology is a top-down semiconductor fabrication process, in which patterns
are created by first making a mask and then printing the desired features onto the surface
of the wafer via lithography. Integrated circuits have dominated the technological and eco-
nomic progress in the past 30 years, and complex and high-density devices have been man-
ufactured on silicon wafers. However, this technology is going to reach a limit in 10 to 15
years, when the smallest feature size is less than 10 nm. Molecular electronics is considered
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as a promising alternative.48 A 3-D assembly with short interconnect distances would
greatly increase the information storage density and transfer speed with reduced power
consumption and amount of heat dissipated. Self-assembly means naturally occurring
processes, from biological growth to the galaxy formation. In materials synthesis, self-
assembly implies that the end products or structures are formed under favorable conditions
and environments. An example is the growth of bulk crystals from a seed. Fullerenes and
nanotubes are formed by self-assembling, not by slicing a graphite piece and then rolling
and bending it to the shape of a tube or a shell. Self-assembly is referred to as a bottom-up
process, like constructing an airplane model with LEGO pieces. Biological systems rely on
self-assembly and self-replication to develop. Since 2000, CNT-based transistors have
been built by several groups and found to be able to outperform Si-based ones. Transistors
have also been created using a single molecule of a transition-metal organic complex
nanobridge between two electrodes.49 Because of the small dimensions, quantum mechan-
ics should govern the electrical and mechanical behaviors. Figure 1.9 illustrates an engineered
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FIGURE 1.9 An engineered DNA strand between
metal-atom contacts that could function as a molecular
electronics device. (Courtesy of NASA Ames Center of

Nanotechnology, http://ipt.arc.nasa.gov.)

DNA strand between metallic atoms, noting that the width of a DNA strand is around 2 nm.
Such a structure could function as a sensor and other electronic components. Molecular
electronics, while at its infancy, is expected to revolutionize electronics industry and to
enable continuous technological progress through the twenty-first century.

http://ipt.arc.nasa.gov


Nano/microscale research and discoveries have been instrumental to the development of
technologies used today in microelectronics, photonics, communication, manufacture, and
biomedicine. However, systematic and large-scale government investment toward nanoscience
and engineering did not start until late 1990s, when the Interagency Working Group on
Nanoscience, Engineering, and Technology (IWGN) was formed under the National Science
and Technology Council (NSTC). The first report was released in fall 1999, entitled
“Nanostructure Science and Technology,” followed by the report, “Nanotechnology Research
Directions.” In July 2000, NSTC published the “National Nanotechnology Initiative (NNI).” A
large number of nanotechnology centers and nanofabrication facilities have been established
since then; see www.nano.gov. In the United States, the government spending on nan-
otechnology R&D exceeded $1 billion in 2005, as compared to $464 million in 2001 and
approximately $116 million in 1997. The total government investment worldwide was over
$4 billion in 2005, and Japan and European countries invested similar amount of money as
the United States did. Recognizing the increasing impact on engineering and science, the
American Society of Mechanical Engineers established the ASME Nanotechnology
Institute in mid-2001 and sponsored a large number of international conferences and work-
shops; see http://nano.asme.org/. Understanding the thermal transport and properties at the
nanoscale is extremely important as mentioned earlier.

Engineers have the responsibility to transfer the basic science findings into technologi-
cal advances, to design and develop better materials with desired functions, to build sys-
tems that integrate from small to large scales, to perform realistic modeling and simulation
that facilitate practical realization of improved performance and continuously reduced cost,
and to conduct quantitative measurements and tests that determine the materials properties
and system performance. Like any other technology, nanotechnology may also have some
adverse effects, such as toxic products and biochemical hazards, which are harmful to
human health and the environment. There are also issues and debates concerning security,
ethics, and religion. Government and industry standard organizations, as well as universi-
ties, have paid great attention to the societal implications and education issues in recent
years. Optimists believe that we can harness nanobiotechnology to improve the quality of
human life and benefit social progress, while overcoming the adverse effects, like we have
done with electricity, chemical plants, and space technology.

1.4 OBJECTIVES AND ORGANIZATION
OF THIS BOOK

Scientists, engineers, entrepreneurs, and lawmakers must work together for the research
outcomes to be transferred into practical products that will advance the technology and ben-
efit society. Nanotechnology is still in the early stage and holds tremendous potential;
therefore, it is important to educate a large number of engineers with a solid background in
nanoscale analysis and design so that they will become tomorrow’s leaders and inventors.
There is a growing demand of educating mechanical engineering students at both the grad-
uate and undergraduate levels with a background in thermal transport at micro/nanoscales.
Micro/nanoscale heat transfer courses have been introduced in a number of universities;
however, most of these courses are limited at the graduate level. While an edited book on
Microscale Energy Transport has been available since 1998,3 it is difficult to use as a text-
book due to the lack of examples, homework problems, and sufficient details on each sub-
ject. Some universities have introduced nanotechnology-related courses to the freshmen
and sophomores, with no in-depth coverage on the fundamentals of physics. A large num-
ber of institutions have introduced joint mechanical-electrical engineering courses on
MEMS/NEMS, with a focus on device-level manufacturing and processing technology. To
understand the thermal transport phenomena and thermophysical properties at small length
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scales, the concepts of quantum mechanics, solid state physics, and electrodynamics are
inevitable. These concepts, however, are difficult to comprehend by engineering students.

The aim of this book is to introduce the much needed physics knowledge without over-
whelming mathematical operators or notions that are unfamiliar to engineering students.
Therefore, this book can be used as the textbook not only in a graduate-level course but also
in a tech elective for senior engineering undergraduates. While the book contains numer-
ous equations, the math requirement mostly does not exceed engineering calculus includ-
ing series, differential and integral equations, and some vector and matrix algebra. The
reason to include such a large number of equations is to provide necessary derivation steps,
so that readers can follow and understand clearly. This is particularly helpful for practicing
engineers who do not have a large number of references at hand. The emphasis of this book
is placed on the fundamental understanding of the phenomena and properties: that is, why
do we need particular equations and how can we apply them to solve thermal transport
problems at the prescribed length and time scales? Selected and refined examples are pro-
vided that are both practical and illustrative. At the end of each of the remaining nine chap-
ters, a large number of exercises are given at various levels of complexity and difficulty.
Numerical methods are not presented in this book. Most of the problems can be solved with
a personal computer using a typical software program or spreadsheet. For course instruc-
tors, the solutions of many homework problems can be obtained from the author. 

The field of micro/nanoscale heat transfer was cultivated and fostered by Professor
Chang-Lin Tien beginning in the late 1980s, along with the rapid development in micro-
electronics, MEMS, and nanotechnology. His long-lasting and legendary contributions to
the thermal science research have been summarized in the recent volume of Annual Review
of Heat Transfer.50 As early as in the 1960s, Professor Tien investigated the fundamentals of
the radiative properties of gas molecules, the size effect on the thermal conductivity of thin
films and wires, and radiation tunneling between closely spaced surfaces. He published (with
John H. Lienhard) a book in 1971, titled Statistical Thermodynamics, which provided inspir-
ing discussions on early quantum mechanics and models of thermal properties of gases, liq-
uids, and crystalline solids. While thermodynamics is a required course for mechanical
engineering students, the principles of thermodynamics cannot be understood without a
detailed background in statistical thermodynamics. Statistical mechanics and kinetic theory
are also critical for understanding thermal properties and transport phenomena. 

Chapter 2 provides an overview of equilibrium thermodynamics, heat transfer, and fluid
mechanics. Built up from the undergraduate mechanical engineering curricula, the materi-
als are introduced in a quite different sequence to emphasize thermal equilibrium, the sec-
ond law of thermodynamics, and thermodynamic relations. The concept of entropy is
rigorously defined and applied to analyze conduction and convection heat transfer prob-
lems in this chapter. It should be noted that, in Chap. 8, an extensive discussion is given on
the entropy of radiation. 

Chapter 3 introduces statistical mechanics and derives the classical (Maxwell-Boltzmann)
statistics and quantum (i.e., Bose-Einstein and Fermi-Dirac) statistics. The first, second, and
third laws of thermodynamics are presented with a microscopic interpretation, leading to the
discussion of Bose-Einstein condensate and laser cooling of atoms. The classical statistics are
extensively used to obtain the ideal gas equation, the velocity distribution, and the specific
heat. A concise presentation of elementary quantum mechanics is then provided. This will
help students gain a deep understanding of the earlier parts of this chapter. For example, the
quantization of energy levels and the energy storage mechanisms by translation, rotation, and
vibration for modeling the specific heat of ideal polyatomic gases. The combined knowledge
of quantum mechanics and statistical thermodynamics is important for subsequent studies.
The concept of photon as an elementary particle and how it interacts with an atom are dis-
cussed according to Einstein’s 1917 paper on the atomic absorption and emission mecha-
nisms. Finally, the special theory of relativity is briefly introduced to help understand the
limitation of mass conservation and the generality of the law of energy conservation.
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Chapter 4 begins with a very basic kinetic theory of dilute gases and provides a micro-
scopic understanding of pressure and shear. With the help of mean free path and average
collision distance, the transport coefficients such as viscosity, thermal conductivity, and
mass diffusion coefficient are described. Following a discussion of intermolecular forces,
the detailed Boltzmann transport equation (BTE) is presented to fully describe hydrody-
namic equations as well as Fourier’s law of heat conduction, under appropriate approxi-
mations. In the next section, the regimes of microflow are described based on the Knudsen
number, and the current methods to deal with microfluidics are summarized. The heat
transfer associated with slip flow and temperature jump is presented in more detail with a
simple planar geometry. Then, gas conduction between two surfaces under free molecular
flow is derived. These examples, while simple, capture some of the basics of microfluidics.
No further discussion is given on properties of liquids or multiphase fluids. It should be
noted that several books on microflow already exist in the literature. 

The next three chapters provide a comprehensive treatment of nano/microscale heat
transfer in solids, with an emphasis on the physical phenomena as well as material proper-
ties. The materials covered in Chap. 5 are based on simple free-electron model, kinetic the-
ory, and BTE without a detailed background of solid state physics, which is discussed
afterward in Chap. 6. This not only helps students comprehend the basic, underlying phys-
ical mechanisms but also allows the instructor to integrate Chap. 5 into a graduate heat
conduction course. For an undergraduate elective, Chap. 6 can be considered as reading
material or reference without spending too much time going through the details in class.
In Chap. 5, the theory of specific heat is presented with a detailed treatment on the quan-
tum size effect. Similarly, the theory of thermal conductivity of metals and dielectric solids
is introduced. Because of the direct relation between electrical and thermal conductivities
and the importance of thermoelectric effects, irreversible thermodynamics and thermo-
electricity are also introduced. The classical size effect on thermal conductivity due to
boundary scattering is elaborated. Finally, the concept of quantum conductance (both elec-
tric and thermal) is introduced. 

Chapter 6 introduces the electronic band structures and phonon dispersion relations in
solids. It helps understand semiconductor physics and some of the difficulties of free-electron
model for metals. Photoemission, thermionic emission, and electron tunneling phenomena
are introduced. The electrical transport in semiconductors is described with applications in
energy conversion and optoelectronic devices. Chapter 7 focuses on nonequilibrium energy
transport in nanostructures, including non-Fourier equations for transient heat conduction.
The equation of phonon radiative transfer is presented and solved for thin-film and multilayer
structures. The phenomenon of thermal boundary resistance is studied microscopically. A
regime map is developed in terms of the length scale and the time scale from macroscale to
microscale to nanoscale heat conduction. Additional reading materials regarding multiscale
modeling, atomistic modeling, and thermal metrology are provided as references.

The last three chapters give comprehensive discussion on nano/microscale radiation
with extensive background on the fundamentals of electromagnetic waves, the optical and
thermal radiative properties of materials and surfaces, and the recent advancement in
nanophotonics and nanoscale radiative transfer. Chapter 8 presents the Maxwell equations
of electromagnetic waves and the derivation of Planck’s law and radiation entropy. The
electric and magnetic properties of the newly developed class of materials, i.e., negative-
refractive-index materials are also discussed. More extensive discussion of the radiative
properties of thin films, gratings, and rough surfaces is given in Chap. 9. The wave inter-
ference, partial coherence, and diffraction phenomena are introduced with detailed formu-
lations. In Chap. 10, attention is given to the evanescent wave, coupling and localization,
surface plasmon polaritons, surface phonon polaritons, and near-field energy transfer. This
chapter contains the most recent developments in near-field optics, nanophotonics, and
nanoscale radiative transfer. These advancements will continue to impact on the energy
conversion devices, sensors, and nanoscale photothermal manufacturing.
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It is noteworthy that the book Nanoscale Energy Transfer and Conversion, by Professor
G. Chen, has recently been published.4 In his book, a parallel treatment is presented to deal
with electron, molecule, phonon, and photon transport processes. Such a parallel treatment
places emphasis on the similarity and analogy between different energy carriers and trans-
port mechanisms. While the approaches are unique and interesting, it is difficult for use as a
textbook at the entry level without some preliminary solid state physics and statistical ther-
modynamics background. The present book places materials within the context of each topic
by presenting statistical thermodynamics, kinetic theory of ideal gases and microfluidics,
electrons and phonons in solids, and electromagnetic waves and their interactions with nano-
materials in separate chapters. In addition to the differences in the organization and presen-
tation, the coverage of the present text differs to some extent from Chen’s book. The present
book contains much more extensive discussion on statistical thermodynamics and nanoscale
thermal radiation, while Chen’s book includes additional chapters on liquids and their inter-
faces as well as molecular dynamics simulation. As a result, the two books complement each
other in terms of the coverage and organization. It is hoped that the present text can be used
either as a whole in a one-semester course, or in part for integration into an existing thermal
science course for several weeks on a particular topic. Examples are graduate-level thermo-
dynamics (Chaps. 2 and 3), convection heat transfer (Chap. 4), conduction heat transfer
(Chaps. 5 and 7), and radiation heat transfer (Chaps. 8 and 9). Selected materials may also
be used to introduce nanoscale thermal sciences in undergraduate heat transfer and fluid
mechanics courses. Some universities offer a second course on thermodynamics at the
undergraduate level for which statistical thermodynamics and quantum theory can also be
introduced. This text can also be self-studied by researchers or practicing engineers, gradu-
ated from a traditional engineering discipline. A large effort is given to balance the depth
with the breadth so that it is easy to understand and contains sufficient coverage of both the
fundamentals and advanced developments in the field. Readers will gain the background
necessary to understand the contemporary research in nano/microscale thermal engineering
and to solve a variety of practical problems using the approaches presented in the text.
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OVERVIEW OF MACROSCOPIC
THERMAL SCIENCES

This chapter provides a concise description of the basic concepts and theories underlying
classical thermodynamics and heat transfer. Different approaches exist in presenting the
subject of thermodynamics. Most engineering textbooks first introduce temperature, then
discuss energy, work, and heat, and define entropy afterward. Callen developed an
axiomatic structure using a simple set of abstract postulates to combine the physical infor-
mation that is included in the laws of thermodynamics.1 Continuing the effort pioneered
by Keenan and Hatsopoulos,2 Gyftopoulos and Beretta3 developed a logical sequence to
introduce the basic concepts with a rigorous definition of each thermodynamic term. Their
book has been a great inspiration to the present author in comprehending and teaching
thermodynamics. Here, an overview of classical thermodynamics is provided that is some-
what beyond typical undergraduate textbooks.4,5 Details on the historic development of
classical thermodynamics can be found from Bejan6 and Kestin7, and references therein.
The basic phenomena and governing equations in energy, mass, and momentum transfer
will be presented subsequently in a self-consistent manner without invoking microscopic
theories.

2.1 FUNDAMENTALS OF THERMODYNAMICS

A system is a collection of constituents (whose amounts may be fixed or varied within a
specified range) in a defined space (e.g., a container whose volume may be fixed or varied
within a specified range), subject to other external forces (such as gravitational and mag-
netic forces) and constraints. External forces are characterized by parameters. An example
is the volume of a container, which is a parameter associated with the forces that confine
the constituents within a specified space. Everything that is not included in the system is
called the environment or surroundings of the system.

Quantities that characterize the behavior of a system at any instant of time are called
properties of the system. Properties must be measurable and their values are independent
of the measuring devices. Properties supplement constituents and parameters to fully
characterize a system. At any given time, the system is said to be in a state, which is fully
characterized by the types and amount of constituents, a set of parameters associated with
various types of external forces, and a set of properties. Two states are identical if the
amount of each type of constituents and values of all the parameters and properties are
the same. A system may experience a spontaneous change of state, when the change of
state does not involve any interaction between the system and its environment. If the
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system changes its state through interactions with other systems in the environment, it is
said to experience an induced change of state. If a system can experience only spontaneous
changes of state, it is said to be an isolated system, that is, the change of state of the system
does not affect the environment of the system. The study of the possible and allowed states
of a system is called kinematics, and the study of the time evolution of the state is called
dynamics.

The relation that describes the change of state of a system as a function of time is the
equation of motion. In practice, the complete equations of motion are often not known.
Therefore, in thermodynamics the description of the change of state is usually given in
terms of the end states (i.e., the initial and final states) and the modes of interaction (for
example, work and heat, which are discussed later). The end states and the modes of inter-
action specify a process. A spontaneous change of state is also called a spontaneous
process. A process is reversible if there is at least one way to restore both the system and
its environment to their initial states. Otherwise, the process is irreversible, i.e., it is not
possible to restore both the system and its environment to their initial states. A steady state
is one that does not change as a function of time despite interactions between the system
and other systems in the environment. 

2.1.1 The First Law of Thermodynamics

Energy is a property of every system in any state. The first law of thermodynamics states
that energy can be transferred to or from a system but can be neither created nor destroyed.
The energy balance for a system can be expressed as

(2.1a)

where denotes a finite change, subscripts 1 and 2 refer to the initial and final states,
respectively, and Enet,in � Ein � Eout is the net amount of energy transferred into the system.
For an infinitesimal change, the differential form of the energy balance is

(2.1b)

Here, d is used to signify a differential change of the property of a system, and is used
to specify a differentially small quantity that is not a property of any system. Clearly, the
energy of an isolated system is conserved. Energy is an additive property, i.e., the energy
of a composite system is the sum of the energies of all individual subsystems. Examples
are kinetic energy and potential energy, as defined in classical mechanics, and internal
energy, which will be discussed later. A similar expression for mass balance can also be
written.

The term mechanical effect is used for the kind of processes described in mechanics,
such as the change of the height of a weight in a gravitational field, the change of the rela-
tive positions of two charged particles, the change of the velocity of a point mass, the
change of the length of a spring, or a combination of such changes. All mechanical effects
are equivalent in the sense that it is always possible to arrange forces and processes that
annul all the mechanical effects except one that we choose. It is common to choose the rise
and fall of a weight in a gravity field to represent this kind of processes.

A cyclic process (also called a cycle) is one with identical initial and final states. A
perpetual-motion machine of the first kind (PMM1) is any device (or system) undergoing
a cyclic process that produces no external effects but the rise or fall of a weight in a grav-
ity field. A PMM1 violates the first law of thermodynamics, and hence, it is impossible to
build a PMM1. Perpetual motion, however, may exist as long as it produces zero net exter-
nal effect. Examples of perpetual motion are a lossless oscillating pendulum, an electric
current through a superconducting coil, and so forth.

d

dE � dEnet,in



E � E2 � E1 � Enet,in
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2.1.2 Thermodynamic Equilibrium and the Second Law

An equilibrium state is a state that cannot change spontaneously with time. There are dif-
ferent types of equilibrium: unstable, stable, and metastable. A stable-equilibrium state is
a state that cannot be altered to a different state without leaving any net effect on the envi-
ronment. In the following, a stable-equilibrium state is frequently referred to as a state at
thermodynamic equilibrium.

The stable-equilibrium-state principle, or state principle, can be phrased as follows:
Among all states of a system with a given set of values of energy, parameters, and con-
stituents, there exists one and only one stable-equilibrium state. That is to say that, in a stable-
equilibrium state, all properties are uniquely determined by the amount of energy, the value
of each parameter, and the amount of each type of constituents. This principle is an integral
part of the second law of thermodynamics.2,3,7 It is important for the thermodynamic defi-
nition of temperature and the derivation of thermodynamic relations in stable-equilibrium
states. Another aspect of the second law of thermodynamics is the definition of an impor-
tant property, called entropy, as discussed next.

Entropy is an additive property of every system in any state. The second law of ther-
modynamics asserts that, in an isolated system, entropy cannot be destroyed but can either
be created (in an irreversible process) or remain the same (in a reversible process). The
entropy produced as time evolves during an irreversible process is called the entropy gen-
eration ( ) of the process due to irreversibility. Like energy, entropy can be transferred
from one system to another. One can write the entropy balance as follows (keeping in mind
that entropy generation must not be negative):

with (2.2a)

or

with (2.2b)

Here again, is used to indicate an infinitesimal quantity that is not a property of any system.
For a system with fixed values of energy (E), parameters, and constituents, the entropy of the
system is the largest in the stable-equilibrium state. This is the highest entropy principle.
Applying this principle to an isolated system for which the energy is conserved, the entropy
of the system will increase until a thermodynamic equilibrium is reached. Spontaneous
changes of state are usually irreversible and accompanied by entropy generation.

The second law of thermodynamics can be summarized with the following three state-
ments: (1) There exists a unique stable-equilibrium state for any system with given values
of energy, parameters, and constituents. (2) Entropy is an additive property, and for an iso-
lated system, the entropy change must be nonnegative. (3) Among all states with the same
values of energy, parameters, and constituents, the entropy of the stable-equilibrium state
is the maximum.

The energy of a system with volume (V) as its only parameter (neglecting other exter-
nal forces) is called the internal energy (U). The state principle implies that there are r 
 2
(where r is the number of different constituents) independent variables that fully charac-
terize a stable-equilibrium state of such a system. Therefore in a stable-equilibrium state,
all properties are functions of r 
 2 independent variables. Since entropy is a property of
the system, we have

(2.3)S � S(U,V,N1,N2,c,Nr)

d

dSgen � 0

dS � dSnet,in 
 dSgen

Sgen � 0

S � S2 � S1 � Snet,in 
 Sgen

Sgen
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where Ni is the number of particles of the ith species (or type of constituents). This function
is continuous and differentiable, and furthermore, it is a monotonically increasing function of
energy for fixed values of V and Nj’s.

1,3,6 Equation (2.3) can be uniquely solved for U so that

(2.4)

which is also continuous and admits partial derivatives of all orders. Each first order par-
tial derivative of Eq. (2.3) or (2.4) represents a property of the stable-equilibrium state. For
example, temperature and pressure are properties of a system at thermodynamic equilib-
rium. The (absolute) temperature is defined by

(2.5a)

and the pressure is defined by

(2.5b)

The partial derivative with respect to the ith type of constituents defines its chemical poten-
tial of that species, 

(2.5c)

Equation (2.3) or (2.4) is called the fundamental relation for states at thermodynamic equi-
librium. The differential form of Eq. (2.4) is the Gibbs relation:

(2.6)

where Eq. (2.5) has been used. The above equation may be rearranged into the form

(2.7)

Therefore,

(2.8)

An interaction between two systems that results in a transfer of energy without net
exchanges of entropy and constituents is called a work interaction. The amount of energy
transferred in such an interaction is called work (W). An interaction that has only mechan-
ical effects is a work interaction, but a work interaction may involve nonmechanical effects.
A process that involves only work interaction is called an adiabatic process. Another kind
of a typical interaction is heat interaction, in which both energy and entropy are transferred
without net exchanges of constituents and parameters between two systems. The amount of
energy transferred in a heat interaction is called heat (Q). Furthermore, the amount of
entropy transferred is equal to the amount of energy transferred divided by the tem-
perature TQ at which the heat interaction happens, i.e., . If a system cannot
exchange constituents with other systems, it is said to be a closed system; otherwise, it is
an open system.

Reversible processes are considered as the limiting cases of real processes, which are
always accompanied by a certain amount of irreversibility. Such an ideal process is called

dS � dQ/TQ
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a quasi-equilibrium (or quasi-static) process, in which each stage can be made as close to
thermodynamic equilibrium as possible if the movement is frictionless and very slow. In an
ideal process, a finite amount of heat can be transferred reversibly from one system to
another at a constant temperature. In practice, heat transfer can only happen when there is
a temperature difference, and the process is always irreversible.

A perpetual-motion machine of the second kind (PMM2) is a cyclic device that interacts
with a system at thermodynamic equilibrium and produces no external effect other than the
rise of a weight in a gravity field, without changing the values of parameters and the amounts
of constituents of the system. Historically, there exist different statements of the second law
of thermodynamics: The Kelvin-Planck statement of the second law is that it is impossible
to build a PMM2. The Clausius statement of the second law is that it is not possible to con-
struct a cyclic machine that will produce no effect other than the transfer of heat from a
system at lower temperature to a system at higher temperature. These statements can be
proved using the three statements of the second law of thermodynamics given earlier in this
chapter.

Example 2-1. Criteria for thermodynamic equilibrium. Consider a moveable piston (adiabatic
and impermeable to matter) that separates a cylinder into two compartments (systems A and B), as
shown in Fig. 2.1. We learned from mechanics that a mechanical equilibrium requires a balance of
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FIGURE 2.1 Illustration of two systems that may exchange work,
heat, and species.

A B

forces on both sides of the piston, that is to say the pressure of system A must be the same as that of
system B (i.e., PA � PB). If the piston wall is made of materials that are diathermal (allowing heat
transfer) and permeable to all species, under what conditions will the composite system C consist-
ing of systems A and B be at stable equilibrium?

Solution. Assume system C is isolated from other systems, and each of the subsystems A and B
is at a thermodynamic equilibrium state, whose properties are solely determined by its internal
energy, volume, and amount of constituents:UA, VA, Nj’s,A and UB, VB, Nj’s,B, respectively. There
exist neighboring states for both subsystems with small differences in U, V, and Nj’s, but the values
of the composite system must be conserved, i.e., dUA � �dUB, dVA � �dVB, and dNi,A � �dNi,B
(i � 1, 2, . . . r). The differential entropy of system C can be expressed as:

(2.9)
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If system C is in a stable-equilibrium state, its entropy is maximum and dSC � 0. Since the values
of dUA, dVA, and dNi,A are arbitrary, we must have

,   , and

or , and (2.10)

These conditions correspond to thermal equilibrium, mechanical equilibrium, and chemical equi-
librium, respectively. The combination forms the criteria for thermodynamic equilibrium.

Discussion. In the case when the piston is diathermal but rigid and impermeable to matter, the
entropy change of system C must be nonnegative, i.e.,

(2.11)

The above expression implies that for , and for . Spontaneous
heat transfer can occur only from regions of higher temperature to regions of lower temperature.
This essentially proves the Clausius statement of the second law of thermodynamics.

The concept of thermal equilibrium provides the physical foundation for thermometry,
which is the science of temperature measurement. The temperature of a system at a ther-
modynamic equilibrium state is measured through changes in resistance, length, volume,
or other physical parameters of the sensing element used in the thermometer, which is
brought to thermal equilibrium with the system. Based on the inclusive statement of the
second law of thermodynamics given previously, it can be inferred that two systems are in
thermal equilibrium with each other if they are separately in thermal equilibrium with a
third system. This is sometimes referred to as the zeroth law of thermodynamics.6

The International Temperature Scale of 1990 (ITS-90) was adopted by the International
Committee of Weights and Measures in 1989.8 The unit of thermodynamic temperature is
kelvin (K), which is defined as 1/273.16 of the thermodynamic temperature of the triple
point of water. The Celsius temperature is defined as the difference of the thermodynamic
temperature and 273.15 K (the ice point). A difference of temperature may be expressed in
either kelvins or degrees Celsius (°C). Although earlier attempts were made to define a tem-
perature scale consistent with the original Celsius temperature scale (i.e., 0°C for the ice
point and 100°C for the steam point), a 0.026°C departure arose from more accurate mea-
surements of the steam point, as shown in Table 2.1.9 The steam point is therefore no longer
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TABLE 2.1 Two-Phase Points and the Triple
Point of Water

Temperature

(K) (°C)

Ice point* 273.15 0
Triple point† 273.16 0.01
Steam point‡ 373.124 99.974

* Solid and liquid phases are in equilibrium at a pressure
of 1 atm (101.325 kPa).

† Solid, liquid, and vapor phases are in equilibrium.
‡ Liquid and vapor phases are in equilibrium at 1 atm.



used as a defining fixed point in the ITS-90. More accurate steam tables were developed in
the 1990s.

The ITS-90 defines 17 fixed points, which are determined by primary thermometry with
standard uncertainties less than 0.002 K below 303 K and up to 0.05 K at the freezing point
of copper (<1358 K). Cryogenic thermometry is essentially based on ideal gas thermome-
ters (up to about 20 K). Platinum resistance thermometers, calibrated at specified sets of
fixed points, are used to define the temperature scale from the triple point of hydrogen
(<13.8 K) to the freezing point of silver (<1235 K). Platinum resistance thermometers
have been chosen because of their excellent reproducibility, even though they are not pri-
mary thermometers. Radiation thermometers based on Planck’s law of thermal radiation
are used to define the temperature scale above 1235 K.

2.1.3 The Third Law of Thermodynamics

For each given set of values of constituents and parameters, there exists a unique stable-
equilibrium state with zero absolute temperature (though not physically attainable).
Furthermore, the entropy of any pure substance (in the form of a crystalline solid) vanishes
at this state (zero absolute entropy). This is the third law of thermodynamics, also called the
Nernst theorem after Walther Nernst who received the Nobel Prize in chemistry in 1920.3,6

The energy is the lowest at this state, which is called the ground-state energy (Eg � 0). The
ground-state energy of a system consisting of independent particles may be related to its
mass using the relativistic theory, i.e., Eg � mc2, where c is the speed of light. Although
absolute energy and entropy can be defined according to the third law of thermodynamics,
in practice, reference states are often chosen so that the relative values of energy and
entropy can be tabulated with respect to those of the reference states.

After reviewing the laws of thermodynamics, it is instructive to give a pictorial presen-
tation to illustrate some of the fundamental concepts in thermodynamics, as done by
Gyftopoulos and Beretta.3 For a system that contains a single type of constituents (i.e., pure
substance) with fixed values of parameters and amount of constituents, the stable-equilibrium
states can be represented as a convex E-S curve, whose slope defines the tem-
perature of each state on the curve, as shown in Fig. 2.2. The stable-equilibrium-state curve

T � 'E/'S

m
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FIGURE 2.2 The E-S graph for a pure substance with fixed
values of parameters and amount of constituents.



intersects the vertical axis at the ground state, whose energy is the ground-state energy 
and whose absolute entropy is zero. Furthermore, the temperature at the ground state is 0 K.
This provides a graphical illustration of the third law of thermodynamics. Along the stable-
equilibrium-state curve, temperature increases with increasing energy or entropy. The ver-
tical axis above represents zero-entropy states, which are not at stable equilibrium
(except when ). These are states defined in mechanics, where entropy is not a con-
cern. A spontaneous change of state can be illustrated with this graph as a horizontal line,
e.g., from to , where corresponds to the stable-equilibrium state that has the
same values of energy, parameters, and constituents as those of . No states exist below
the stable-equilibrium-state curve because this would violate the highest entropy principle.
Each point in the shaded area corresponds to one or more state(s) that is or are not at ther-
modynamic equilibrium, for which temperature may not be defined. Such a state in general
cannot be uniquely determined by the values of its energy (or entropy) and parameters and
the amount of constituents. The lowest energy principle is expressed as follows: Among all
states with the same values of entropy and parameters and the amount of constituents, there
exists a stable-equilibrium state whose energy is the lowest. Starting with any state that is
not at stable equilibrium, there exists a reversible adiabatic process, in which work can be
done by the system until it reaches a stable-equilibrium state. This process is illustrated in
the E-S graph by a vertical line from to . The corresponding work, which is equal to
the energy difference between and , is called the adiabatic availability.3 It defines
the largest amount of work that can be extracted from a system without any other net effect
on the environment of the system.

2.2 THERMODYNAMIC FUNCTIONS
AND PROPERTIES

Several additional properties defined in this section are important in the study of states at
thermodynamic equilibrium. The functional relations are derived based on the fundamen-
tal relation and are useful under specific circumstances. The phase equilibrium is summa-
rized with an emphasis on pure substances. The concepts of specific heat and latent heat are
then introduced. Combining the specific heat and the equation of state, we can evaluate the
internal energy and entropy for ideal gases and incompressible solids and liquids. 

2.2.1 Thermodynamic Relations

When dealing with substances within the container, the volume is a parameter that charac-
terizes external forces, i.e., the interaction between the system and the wall of the container.
If the constituents are confined within a surface, then the surface area will be a parameter
instead of the volume. Parameters associated with other external forces (such as gravita-
tional and magnetic forces) can also be included, if necessary. For simplicity, we assume that
volume is the only parameter of the systems under investigation, unless otherwise specified.

Enthalpy is defined as H � U 
 PV, thus we have dH � dU 
 PdV 
 VdP. From Eq. (2.6),
we obtain

(2.12a)

The significance of Eq. (2.12a) is that enthalpy can be expressed as a function of S, P,
and Nj’s,

(2.12b)H � H(S,P,N1,N2,c,Nr)
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Furthermore,

(2.12c)

Note that the subscripts in Eq. (2.12c) are different from those in Eq. (2.5). Enthalpy
H(S,P,Nj’s) is said to be a characteristic function, since it allows us to find out all the infor-
mation about a stable-equilibrium state. There are a large number of characteristic func-
tions. Depending on the particular situation and measurements available, it is advantageous
to choose the most convenient one. Two other characteristic functions are now introduced.
The first one is called Helmholtz free energy A(T,V,Nj’s), defined as A � U � TS. It
follows that

(2.13a)

and (2.13b)

The second is Gibbs free energy G(T,P,Nj’s): G � U 
 PV � TS � H � TS � A 
 PV. It
follows that

(2.14a)

and (2.14b)

Characteristic functions supplement the fundamental relation and are very useful in evalu-
ation of the properties of systems under thermodynamic equilibrium.

In a stable-equilibrium state, T, P, and must be uniform everywhere in
the system. If the system is divided into k equal-volume subsystems, the energy, entropy, and
the amount of each type of constituents of the system are the sums of these quantities in all sub-
systems. If the energy and the amount of each type of constituents in every subsystem are the
same, then all subsystems are exactly identical to each other. If this is the case, the system is
said to be in a homogeneous state; otherwise, it is heterogeneous. Examples of homogeneous
states are air (which is a mixture of many different kinds of gases) and a well-mixed solution.
Examples of heterogeneous states are ice water, and water and steam mixture in a boiler.

A system that experiences only homogeneous states is called a simple system. In a sim-
ple system, T, P, and �j’s of each subsystem are the same as the system itself and indepen-
dent of k; hence, they are called intensive properties. Taking T as an example, we have

(2.15)

In the above equation, the left-hand side is the temperature of the subsystem, and the right-
hand side is the temperature of the whole system. Unlike temperature and pressure, the
properties such as U, S, V, and N of each subsystem are inversely proportional to k, e.g.,
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Properties whose values are proportional to the total amount of constituents are called
extensive properties. Therefore, U, V, S, and H are extensive properties. Notice that k can-
not be arbitrarily large because of the continuum requirement. 

The ratio or derivative of two extensive properties is an intensive property, e.g., the den-
sity (the ratio of mass to volume) is an intensive property and uniform in a simple system.
Note that temperature, pressure, and chemical potentials are derivatives of two extensive
properties. The properties T, P, and �j’s distinguish themselves from other intensive prop-
erties in that they are uniform in both homogeneous and heterogeneous states, whereas oth-
ers may or may not be uniform in a heterogeneous state. A specific property is the ratio of
an extensive property to the total amount of constituents (expressed as mass, mole, or num-
ber). For example, the mass-specific enthalpy is the enthalpy per kilogram of the substance.
Specific properties are intensive properties.

For simple systems, the Gibbs relation given in Eq. (2.6) can be integrated to obtain 

(2.17)

which is the Euler relation. By differentiating Eq. (2.17) and then subtracting Eq. (2.6)
from it, we obtain the Gibbs-Duhem relation:

(2.18)

The Euler relation for a system containing only one type of constituents ( ) is 

or (2.19)

Hence, the chemical potential of a pure substance is nothing but the specific Gibbs free
energy. For a system containing two or more types of constituents, Eq. (2.14b) relates the
chemical potential to the partial derivative of the Gibbs free energy with respect to for
fixed T and P, which is called the partial Gibbs free energy of the ith type of constituents.

2.2.2 The Gibbs Phase Rule

In a heterogeneous state, we consider a subdivision of the system into subsystems, each
being a simple system. The collection of all subsystems that have the same values of all
intensive properties is called a phase. Solid, liquid, and gas (or vapor) are the three distinct
phases. The boundary between subsystems of different phases is called an interface.
Different phases may appear to be clearly separated or well mixed. In space, liquid water
droplets could be dispersed throughout water vapor, whereas on the earth, the liquid would
occupy the lower part of the container due to gravity.

Assume that there are q coexisting phases, called a q-phase heterogeneous state. We can
write the Gibbs-Duhem relation for each phase, and thus reduce the independent variables
for by q. The number of independent variables among T, P, �j’s is
determined by the Gibbs phase rule:

(2.20)

For a pure substance, Eq. (2.20) implies that, for a single-phase state, there are only two
independent variables among the three intensive properties T, P, and . If T and P are chosenm
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as the independent variables, then all other intensive properties are functions of T and P, e.g.,
specific internal energy specific enthalpy and specific entropy

Extensive properties can be determined from the specific properties if the total
mass or volume is specified. For a two-phase mixture, such as ice and water or water and
steam, only one of is independent. If T is chosen as the variable, then P and � can
be expressed as functions of T, i.e., and . In order to completely describe
the state, however, we will also need to know the amount of constituents in each phase
(which may be expressed by the total mass and a mass fraction x of one phase). For exam-
ple, the specific entropy of a mixture can be expressed as or . In a
three-phase mixture, are all fixed. For a pure substance, the solid, liquid, and
vapor phases can only coexist at fixed temperature and pressure, which are called triple point
properties. Taking water as an example, we have Tt.p. � 0.01°C and Pt.p. � 0.61 kPa. One
needs to know the amount of constituents in each phase to completely characterize the state.
No more than three phases can coexist for any pure substance. It should be noticed that a
substance can have different solid phases, e.g., diamond and graphite are allotropes of car-
bon but with distinct differences in their physical and chemical properties; silicon dioxide
can exist in the forms of crystalline quartz or fused silica (glass).

Figure 2.3 shows regions of solid, liquid, and vapor in a P-T diagram. The S-L, S-V, and
L-V lines indicate the coexistence of solid-liquid, solid-vapor, and liquid-vapor phases in

T,P, and m
s � s(P,x)s � s(T,x)

m � m(T)P � P(T)
T,P, and m

s � s(T,P).
h � h(T,P),u � u(T,P),
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FIGURE 2.3 Schematic of a P-T diagram for a pure substance.

thermodynamic equilibrium. The three lines merge to the triple point where all three phases
can coexist in thermodynamic equilibrium. There are two S-L lines: the solid line repre-
sents a material that expands upon melting, and the dashed line represents a material that
contracts upon melting (such as water). There exists a critical point or a critical state; the
temperature and the pressure at the critical state are called critical temperature (Tc) and
critical pressure (Pc). The distinction between liquid and vapor phases disappears beyond
the critical point. This can be seen clearer in the T-v diagram shown in Fig. 2.4. The S-L
line in Fig. 2.3 becomes an S-L region in Fig. 2.4; the L-V line becomes a dome, called the
saturation dome. Starting from a solid state, in a constant-pressure (isobaric) heating
process with Pt.p. � P � Pc, the temperature increases until melting starts. As more energy
is added to the system, the fraction of solid decreases whereas the fraction of liquid
increases, at a constant temperature. The amount of heat needed to completely melt a unit
mass of solid to liquid is called the specific latent heat of melting. Once all the substance is
in the liquid phase, the temperature rises again with increasing energy until a saturated liq-
uid state is reached. Hereafter, vaporization occurs at constant temperature (saturation



temperature) until reaching the right side of the saturation dome, which is a saturated vapor
state. The amount of energy needed to vaporize a unit mass of a substance is called the spe-
cific latent heat of vaporization. When the pressure is higher than the critical pressure, how-
ever, no vaporization can happen. The liquid and gas forms of aggregation differ in degree
rather than in kind. At a pressure lower than the triple point pressure, the change from solid
to vapor can occur without passing through a liquid phase. Such a process is called subli-
mation. An example is the sublimation of dry ice into CO2 gas at room temperature and
atmospheric pressure, creating cooling or some theatrical effects.

2.2.3 Specific Heats

Specific heats are properties of a system (at stable equilibrium). The specific heat at con-
stant volume (cv) and the specific heat at constant pressure (cp) are defined as

(2.21a)

and (2.21b)

where subscripts V and P signify fixed volume and  fixed pressure, respectively. The heat
capacity is the product of the corresponding specific heat and the mass of the system.
Note that only in a reversible process, the amount of heat transferred to a system is

. The heat capacity at constant volume of a closed system can be measured in
terms of the total amount of energy supplied to it divided by its temperature rise in a con-
stant-volume process. On the other hand, the heat capacity at constant pressure of a
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FIGURE 2.4 Schematic of a T-v diagram for a material that expands upon
melting.



closed system (such as in a piston-cylinder arrangement) can be measured in terms of the
amount of energy per unit mass supplied to the system, excluding the volume work done
by the system (�W � pdV ), divided by the temperature rise in an isobaric process. For
example, in a reversible isobaric process, and . Therefore,
cp � (1/m)(dH/dT ) � (1/m)(dQ/dT ).

Specific heats are not defined for all equilibrium states. For example, in a two-phase
state, temperature and pressure are not independent, and enthalpy can be varied without
changing the temperature at a constant pressure. This means that the specific heat approaches
infinity in these states. In fact, the discontinuity in cp-T curve suggests some kind of phase
transformation.

A heat reservoir is an idealized system that experiences only reversible heat interac-
tions. For any finite amount of energy transfer, its temperature remains unchanged.
Therefore, the heat capacity of a reservoir is infinitely large. For a reservoir at temperature
TR, the energy-entropy relation is a straight line in the E-S graph, i.e.,

(2.22a)

Furthermore, the amount of heat transferred to the reservoir from state 1 to state 2 is given by

(2.22b)

For a pure substance in a single phase, temperature and pressure are independent, and all
other properties can be expressed as functions of T and P. The relation among temperature,
pressure, and specific volume, i.e.,

or   (2.23)

is called the equation of state. This equation does not contain information about the
internal energy or the entropy. However, we can use the function cp � cp(T,P), in addi-
tion to the equation of state, to fully determine all intensive properties. For example, ds �
('s/'T)PdT 
 ('s/'P)T dP. Using ('s/'T)P � cp(T, P)/T, from the definition of specific
heat, and ('s/'P)T � �('v/'T)P, which is a Maxwell relation, see Problem 2.11, we obtain

(2.24)

Furthermore, (2.25)

Under certain circumstances, the equation of state is rather simple and the specific heats can
be assumed as functions of the temperature only, i.e., independent of the pressure. These
ideal behaviors will be discussed in the next section.

Example 2-2. Specific heat and latent heat. A system consists of 10 kg of H2O in a closed con-
tainer maintained at a constant pressure of 100 kPa. Initially, the temperature is at –40°C (ice) and
it is heated to 130°C (vapor). How much energy must be provided to the system? What is the entropy
change of the system? The specific heats of H2O in the solid, liquid, and vapor states are

, , and , respectively. The specific latent
heats of melting and evaporation are and .

Solution. From the first law of the closed system in an isobaric process, U � Q � W. Since
P � 0, W � PV. Hence, Q � H � H2 � H1. Let T1 � 233 K and T2 � 403 K be the initial and

hfg � 2257 kJ/kghsf � 334 kJ/kg
cp,g � 2 kJ/(kg # K)cp,f � 4.2 kJ/(kg # K)cp,s � 2 kJ/(kg # K)

dh � cp(T,P)dT 
 cv(T,P) � a 'v
'T
b

P

ddP

ds �
cp(T,P)

T
dT � a 'v
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dP

v � v(T,P)f(T,P,v) � 0

Q � ER,2 � ER,1

ER,2 � ER,1 � TR(SR,2 � SR,1)

dH � dQdU � dQ � pdV
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final temperatures, respectively, and be the saturation tempera-
tures. Based on the definition of specific heats, we obtain

Q � H2 � H1 � m[cp,s(Tsat,m � T1) 
 hsf 
 cp,f(Tsat � Tsat,m)


 hfg 
 cp,g(T2 � Tsat)] � 31.51 MJ

In the single-phase regions, entropy difference can be evaluated by integrating Eq. (2.21b) or Eq. (2.24)
since P is fixed. During the phase change, S � H/T since the temperature is a constant.

� 90.6 kJ/K

Discussion. From the Steam Table or software accompanied with common thermodynamics
text,4,5 we can find the specific properties of water as follows: h1 � �411.7 kJ/kg; s1 � �1.532
kJ/(kg � K); h2 � 2737 kJ/kg; s2 � 7.517 kJ/(kg � K). Therefore, Q � H � m(h2 � h1) � 31.49 MJ;
S � m(s2 � s1) � 90.5 kJ/K. The negligibly small difference is caused by the assumption of con-
stant specific heat in each phase.

2.3 IDEAL GAS AND IDEAL
INCOMPRESSIBLE MODELS

The amount of constituents is commonly expressed in terms of the amount of matter in
mole. The mole is the amount of substance of a system that contains as many elementary
entities as there are atoms in 0.012 kg of carbon 12. One mole of substance contains

molecules, atoms, or other particles. This value is called the Avogadro’s con-
stant, i.e., . Quantities like molecules and particles do not
appear in the units. The mass , where is the amount of constituents in kmol and
M is called the molecular weight. For example, M � 18.012 kg/kmol for water.

2.3.1 The Ideal Gas

At relatively high temperature and sufficiently low pressure, most substances behave as a
single-phase fluid, in which the interactions between its molecules are generally negligible.
The equation of state can be expressed as

(2.26a)

where is the molar specific volume in m3/kmol, � 8314 J/(kmol � K) is the
universal gas constant. Equation (2.26a) is called the ideal gas equation since it can be
considered as the definition of an ideal gas. Under standard conditions (temperature of
25°C and pressure of 1 atm), 1 kmol of an ideal gas occupies a volume of 22.5 m3. Dry
air can be treated as an ideal gas with an average molecular weight of M � 29 kg/kmol.
The ideal gas equation of state can be written in terms of the mass quantities for a given
substance, i.e.,

(2.26b)Pv � RT     or PV � mRT

Rv � V/n

Pv � RT     or PV � nRT

nm � nM
NA � 6.022 � 1026 kmol�1

6.022 � 1023

cp,f lna Tsat

Tsat,m
b 


hfg

Tsat

 cp,g lna

T2

Tsat
b d

S2 � S1 � m ccp,s lna
Tsat,m

T1
b 


hsf

Tsat,m



Tsat,m � 273 K and Tsat � 373 K
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In the above equation, is the specific volume, and is called the gas con-
stant of the particular substance. The Boltzmann constant is defined as 

. It can be considered as the universal gas constant in terms of particles.
Furthermore, if we denote the number density (number of particles per unit volume) as n,
then the ideal gas equation can be written as since .

For ideal gases, both cp and cv are independent of the pressure, as will be shown from
statistical thermodynamics in Sec. 3.3, but are generally dependent on temperature. The
specific internal energy and enthalpy are functions of temperature only, i.e.,

and    (2.27)

The specific heats cp and cv are related by the Mayer relation as

or     (2.28)

If , which is sometimes referred to as perfect gas behavior, then Eq. (2.27)
can be integrated to yield

(2.29a)

and (2.29b)

where subscripts 1 and 2 can be any two (thermodynamic equilibrium) states. The specific
entropy depends on both the temperature and the pressure, i.e.,

(2.30a)

Integrating the above equation from state 1 to state 2 yields

(2.30b)

In an isentropic process (ds � 0) of a perfect gas, it can be shown that ,
where is the specific heat ratio. Note that Pv � const. in an isothermal
process.

Example 2-3. A cylinder contains 0.01 kmol of N2 gas (0.28 kg), which may be modeled as an
ideal diatomic gas with cv � 2.5R. A piston maintains the gas at constant pressure, P0 � 100 kPa.
The cylinder interacts with a cyclic machine, which in turn interacts with a reservoir at TR � 1000 K.
The cylinder, the reservoir, and the machinery cannot interact with any other systems. The cyclic
machine may produce work W (which cannot be negative). A process brings the volume of the cylin-
der from V1 � 0.224 m3 to V2 � 0.448 m3.

(a) What is the least amount of energy that must be transferred out from the reservoir? In such a
case, how much work does the cyclic machine produce? How much entropy is generated in
the process?

(b) Find the maximum work that the cyclic machine can produce.

Analysis. A schematic drawing is made first as shown in Fig. 2.5. From the ideal gas equation,
and T2 � 538.8 K. The initial and final states of the cylinder are fully pre-

scribed. The work done by the cylinder is WB � 1PdV � P(V2 � V1) � 22.4 kJ, which is also fixed.
T1 � P1V1/nR � 269.4 K

g � cp/cv

Pvg � const.

s2 � s1 � 3
2

1
 
cp(T)

T
 dT � R ln aP2

P1
b

ds � cp 
dT

T
� R 

dP

P

h2 � h1 � cp(T2 � T1)

u2 � u1 � cv(T2 � T1)

cv(T) � const.

cp � cv � Rcp � cv � R

dh � cp(T)dTdu � cv(T)dT

n � NA n/VP � nkBT

1.381 � 10�23 J/K
kB � R/NA �

R � R/Mv � V/m
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By applying the first law to the cylinder in an isobaric process, mcp(T2 � T1) �
3.5 � P(V2 � V1) � 78.4 kJ. The work done by the cyclic machine is W � QR � QB. Because QB is
prescribed and , the least amount of energy that must be transferred from the reservoir is when
W � 0 and QR � QB.

Solution. (a) QR � QB � 78.4 kJ and W � 0. We can evaluate the entropy change of the com-
bined system by the following:

S � m(s2 � s1) 
 SCM 
 (�QR/TR) � m[cp ln(T2/T1) � R ln(P2/P1)] � 78.4/1000

� (0.2017 � 0.0784) kJ/K � 123.3 J/K

Since the system does not have any interactions with any other systems, the entropy change is
caused solely by entropy generation.

(b) The maximum work that can be produced is through a reversible process (not a Carnot

cycle since the temperature of the cylinder is not constant). By setting S � m(s2 � s1) � QR/TR � 0,
we find QR � TRmcp ln(T2/T1) � 201.7 kJ. The maximum amount of work is therefore Wmax �
QR � QB � 123.3 kJ.

2.3.2 Incompressible Solids and Liquids

The assumption for ideal incompressible behavior is v � const., which is the equation of
state for incompressible solids and liquids. It can be shown that in this case cp � cv and, to
a good approximation, the specific heat depends on temperature only. It is common to use
cp for the specific heat of solids and liquids. Using Eq. (2.24) and Eq. (2.25), we obtain the
specific internal energy, enthalpy, and entropy for an ideal incompressible solid or liquid
as follows:

(2.31)

(2.32)

and (2.33)

Notice that the internal energy and the entropy are functions of temperature only, but the
enthalpy depends also on the pressure, though the second term on the right-hand side of Eq.
(2.33) is relatively small unless the pressure is high.

Example 2-4. In a Rankine cycle, water at 15°C, 100 kPa is compressed through a pump to
10 MPa before entering the boiler. Model the water as an incompressible liquid with a constant

dh � cp(T)dT 
 vdP

ds � cp(T)
dT

T

du � cp(T)dT

W � 0

QB � m(h2 � h1) �
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specific heat cp � 4.2 kJ/(kg � K). What is the least amount of work required to pump 1 kg of
water? What is the exit temperature of the water? If the pump efficiency is hp � 80%, what is the
actual specific work and exit temperature of the pump?

Solution. Take as an approximation. The least amount of work is needed in a
reversible process. It has been shown that the reversible work done by the system between bulk flow
states is . Hence, the work needed in a reversible process is 

kJ/kg � 9.9 kJ/kg

Because it is an adiabatic and reversible process, it must be isentropic, i.e., s2s � s1 � cp ln (T2s/T1) �
0. Hence, T2s � T1 � 15�C. Actual work w � wrev/�p � 12.375 kJ/kg. Since w � h2 � h1 � cp(T2 �
T1) 
 v(P2 � P1),

� 15.59�C

which is less than 1 K higher. The entropy generation is sgen � cp ln(T2/T1) � 8.6 J/(kg � K).

Discussion. We can use the Steam Table and notice that all states are compressed liquid. The
properties at state 1 can be evaluated at T1 � 15�C and P1 � 100 kPa, at state 2s (reversible) can be
evaluated at P2s � 10 MPa and , and at state 2 can be evaluated at P2 � 10 MPa and

. Hence, 

wrev � 9.88 kJ/kg; T2s � 15.11�C; w � 12.35 kJ/kg;

T2 � 15.67�C; sgen � 8.2 J/(kg � K)

The differences are negligibly small compared with those obtained from the incompressible
assumption. Note that the temperature change in the pump is usually very small. On a T-s diagram,
it is difficult to distinguish states 1, 2s, and 2. In fact, state 2 crosses the saturated-liquid line to over-
lap with a two-phase-mixture state at T2 and s2. This is because T and s together cannot uniquely
determine a stable equilibrium state.

2.4 HEAT TRANSFER BASICS

Classical thermodynamics deals with the changes of mass, energy, and entropy of a system
between equilibrium states, and establishes the required balance equations between end
states during a given process. For example, we have learned that spontaneous transfer of
energy can occur only from a higher temperature to a lower temperature. In thermodynam-
ics, heat interaction is defined as the transfer of energy at the mutual (interface) tempera-
ture between two systems. Heat transfer is a subject that extends the thermodynamic
principles to detailed energy transport processes that occur as a consequence of tempera-
ture differences. Heat transfer phenomena are abundant in our everyday life and play an
important role in many industrial, environmental, and biological processes. Examples
include energy conversion and storage, electrical power generation, combustion processes,
heat exchangers, building-temperature regulation, thermal insulation, refrigeration, micro-
electronic cooling, materials processing, manufacturing, global thermal budget, agriculture,
food industry, and biological systems. Based on the local-equilibrium assumption, heat
transfer analysis deals with the rate of heat transfer and/or the temperature distributions
(steady state or transient) for given geometries, materials, and initial and boundary condi-
tions. Thermal design, on the other hand, determines the necessary geometric structure and

h2 � h1 
 w

s2s � s1

T2 � T1 

h2 � h1

cp
�

v
cp

(P2 � P1) � T1 

w � wrev

cp

wrev � h2s � h1 � 0.001(10,000 � 100)

dw � �vdP

v � 0.001 m3/kg

OVERVIEW OF MACROSCOPIC THERMAL SCIENCES 41



materials for use to achieve optimum performance for a specific task, such as a heat
exchanger.

Heat conduction refers to the transfer of heat in a stationary (from the macroscopic point
of view) medium, which may be a solid, a liquid, or a gas. Energy can also be transferred
between objects by the emission and absorption of electromagnetic waves without any
intervening medium; this is called thermal radiation, such as the radiation from the sun.
When the transfer of heat involves fluid motion, we call it convection heat transfer, or sim-
ply, convection. Examples of convection are the cooling of a cup of tea, hot water flowing
in a pipe, and cold air blowing outside the wall of a building. The basic macroscopic formu-
lations of conduction, convection, and radiation heat transfer are summarized in this sec-
tion. The microscopic understanding of the underlying mechanisms, as well as the effect of
small dimensions and short time duration on the transfer processes, will be the subject of
the remaining chapters. Some historic aspects and an integrated approach of heat transfer
processes can be found in Kaviany.10

2.4.1 Conduction

In a stationary medium, heat transfer occurs if the medium is not at thermal equilibrium.
The assumption of local equilibrium allows us to define the temperature at each location.
Fourier’s law states that the heat flux (or heat transfer rate per unit area) is proportional
to the temperature gradient , i.e.,

(2.34)

where is called thermal conductivity, which is a material property that may depend on
temperature. Notice that is a vector and its direction is always perpendicular to the
isotherms and opposite to the temperature gradient. In an anisotropic medium, such as a
thin film or a thin wire, the thermal conductivity depends on the direction along which it is
measured.

By doing a control volume analysis using energy balance, a differential equation can be
obtained for the transient temperature distribution in a homogeneous isotropic
medium; that is10–12

(2.35)

where is the divergence operator, is the volumetric thermal energy generation rate,
and �cp can be considered as volumetric heat capacity. Equation (2.35) is called the heat
diffusion equation or heat equation. Note that the concept of thermal energy generation is
very different from the concept of entropy generation. Thermal energy generation refers to
the conversion of other types of energy (such as electrical, chemical, or nuclear energies)
to the internal energy of the system, while the total energy is always conserved. Entropy
need not be conserved, and entropy generation refers to the creation of entropy by an irre-
versible process. If there is no thermal energy generation and the thermal conductivity can
be assumed to be independent of temperature, Eq. (2.35) reduces to =2 T � 0 at steady state,

where in the Cartesian coordinates. With the prescribed initial tem-

perature distribution and boundary conditions, the heat equation can be solved analytically
for simple cases and numerically for more complex geometries as well as initial and bound-
ary conditions. Typical boundary conditions include (a) constant temperature, (b) constant
heat flux, (c) convection, and (d) radiation. 
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Generally speaking, metals with high electrical conductivities and some crystalline
solids have very high thermal conductivities [100 to 1000 W/(m � K)]; alloys and metals with
low electric conductivities have slightly lower thermal conductivities [10 to 100 W/(m � K)];
water, soil, glass, and rock have thermal conductivities from 0.5 to 5 W/(m � K); thermal
insulation materials usually have a thermal conductivity on the order of 0.1 W/(m � K); and
gases have the lowest thermal conductivity, e.g., the thermal conductivity of air at 300 K is
0.026 W/(m � K). Notice that thermal conductivity generally depends on temperature. A
comprehensive collection of thermal-property data can be found in Touloukian and Ho.13 At
room temperature, Diamond IIa has the highest thermal conductivity, � � 2300 W/(m � K)
among all natural materials. Researchers have shown that single-walled carbon nanotubes
can have even higher thermal conductivity at room temperature. More detailed discussion
about the mechanisms of thermal conduction and thermal properties of nanostructures will
be provided in subsequent chapters.

Example 2-5. Consider the steady-state heat conduction through a solid rod, whose sides are
insulated, between a constant-temperature source at T1 � 600 K and a constant-temperature sink at
T2 � 300 K. Assume the thermal conductivity of the rod is independent of temperature, k � 150
W/(m � K). The rod has a length L � 0.2 m and cross-sectional area A � 0.001 m2. Show that the
temperature distribution along the rod is linear. What is the heat transfer rate? What is the volumet-
ric entropy generation rate? What is the total entropy generation rate?

Solution. This is a 1-D heat conduction problem with no thermal energy generation, as shown in
Fig. 2.6. Fourier’s law can be written as . Note that at steady state, the heat transferQ

.
x � �kA(dT/dx)
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FIGURE 2.6 Illustration of the control volume for energy and
entropy balances in a solid rod with heat conduction.

rate is independent of x because there is no thermal energy generation. Because both � and A are
constant, dT/dx must not be a function of x, i.e., the temperature distribution is linear. From the
boundary conditions T(0) � T1 and T(L) � T2, we have T(x) � T1 
 (T2 � T1)(x/L). Furthermore,

� �A(T1 � T2)/L � 225 W. To evaluate the entropy generation rate, we can apply Eq. (2.2b) to
the control volume Adx to obtain sgen(x)Adx. The net entropy transferred to the control volume is

�d(Q̇x/T ). The sum of the entropy generation and entropy transferred is equal to
the entropy change, which is zero at steady state. Therefore, ṡgen(x) � q �xd(1/T )/dx �
(k/T 2)(dT/dx)2, where q�x � Q̇x /A is the heat flux. To calculate the total entropy generation rate,
we can integrate ṡgen(x) over the whole rod. Alternatively, we can perform an entropy balance for
the rod as a whole, which gives the rate of entropy generation for a heat transfer rate Q̇x from
T1 to T2 as Ṡgen � Q̇x(1/T2 � 1/T1) � 0.375 W/K.

S
.

x � S
.

x
dx �

Q
.
x

Q
.
x



This example shows that the entropy generation occurs in a finite volume while the entropy flows
through the interface. The amount of entropy flux increases with x as more and more entropy is gen-
erated through the irreversible process. More discussion on the entropy generation in heat transfer and
fluid flow processes can be found in Bejan.14

Contact resistance is important in microelectronics thermal management and cryogenic
heat transfer. A large thermal resistance may exist due to imperfect contact, such as surface
roughness. The result is a large temperature difference across the interface. The value of
contact resistance depends on the surface conditions, adjacent materials, and contact pres-
sure. As an example, assume a contact resistance between two stainless steel plates to be
R�c � 0.001 m2 � K/W and the thermal conductivity of the stainless steel � � 50 W/(m � K).
If the thickness of each plate is L � 5 mm and the area of the plate is A � 0.01 m2, the total
thermal resistance is then Rt � L/kA 
 R�c /A 
 L/kA � (0.01 
 0.1 
 0.01) K/W � 0.12 K/W,
which is mostly due to the contact resistance. Interfacial fluids and interstitial (filler) mate-
rials can be applied to reduce the contact resistance in some cases. Even with a perfect con-
tact, thermal resistance exists between dissimilar materials due to acoustic mismatch,
which is especially important at low temperatures.15

2.4.2 Convection

Convection heat transfer refers to the heat transfer from solid to fluid near the boundary
when the fluid is in bulk motion relative to the solid. The combination of the bulk motion,
known as advection, with the random motion of the fluid molecules (i.e., diffusion) is the
key for convection heat transfer. Examples are flows over an object or inside a tube, a spray
leaving a nozzle that is impinged on a microelectronic component for cooling purposes, and
boiling in a pan. The velocity and temperature distributions for a fluid flowing over a heated
flat plate are illustrated in Fig. 2.7. A hydrodynamic or velocity boundary layer is formed

44 CHAPTER 2

FIGURE 2.7 Illustration of the velocity boundary layer (VBL) and the thermal boundary
layer (TBL).

w

w

near the surface, and the fluid moves at the free-stream velocity outside the boundary layer.
Similarly, a thermal boundary layer is developed near the surface of the plate where a tem-
perature gradient exists. When the flow speed is not very high and the density of the fluid
not too low, the average velocity of the fluid is zero, and the fluid temperature equals the
wall temperature in the vicinity of the wall, i.e., and . For
Newtonian fluids, a linear relationship exists between the stress components and the

T(y � 0) � Twvx(y � 0) � 0



velocity gradients. Many common fluids like air, water, and oil belong to this catalog. The
shear stress in the fluid is

(2.36)

where is the viscosity. Throughout this book, we will use vx,vy, and vz (or vi with i � 1,
2, and 3) for the velocity components in the x, y and z directions, respectively. When Eq. (2.36)
is evaluated at the boundary y � 0, it gives the force per unit area exerted to the fluids by
the wall and is used to calculate the friction factor in fluid mechanics.16

The heat flux between the solid and the fluid can be predicted by applying Fourier’s law
to the fluid at the boundary; thus,

(2.37)

where is the thermal conductivity of the fluid. Equation (2.37) shows that the basic heat
transfer mechanism for convection is the same as that for conduction, i.e., both are caused
by heat diffusion and governed by the same equation. Without bulk motion, however, the
temperature gradient at the boundary would be smaller. Therefore, advection generally
increases the heat transfer rate. Newton’s law of cooling is a phenomenological equation
for convection. It states that the convective heat flux is proportional to the temperature dif-
ference, therefore,

(2.38)

where h is called the convection heat transfer coefficient or convection coefficient. is the
surface temperature, and is the fluid temperature. From Eq. (2.37) and Eq. (2.38), we have

(2.39)

Although h depends on the location, the average convection coefficient is often used in heat
transfer calculations. The convection coefficient depends on the fluid thermal conductivity,
velocity, and flow conditions (laminar versus turbulent flow, internal versus external flow,
and forced versus free convection). Convection can also happen with phase change, such
as boiling, which usually causes vigorous fluid motion and enhanced heat transfer.
Convection correlations are recommended in most heat transfer textbooks to determine the
convection coefficient. For laminar flow over a flat plate of length L with a free-stream
velocity , the following equation correlates the average Nusselt number to the Reynolds
number at x � L and the Prandtl number:11

, for and (2.40)

The Reynolds number, defined as , is key to the study of hydrodynamics.
The Prandtl number is the ratio of kinematic viscosity n � m/r, which is also
known as the momentum diffusivity, to the thermal diffusivity a � k/(rcp) of the fluid. A
detailed understanding of the fluid flow and convection heat transfer requires the solution
of the conservation equations, as summarized in the following:

The differential form of the continuity equation or mass conservation is

(2.41)
Dr

Dt

 r= # v � 0

Pr � n/a
ReL � rv

`
L/m

ReL � 5 � 105Pr � 0.6NuL �
hLL

k � 0.664Re1/2
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where D/Dt � ('/'t 
 v � =) is called the substantial derivative or material derivative.
Notice that for an incompressible fluid, the continuity equation reduces to .

Using Stokes’ hypothesis that relates the second coefficient of viscosity to the viscosity
for Newtonian fluids, the Navier-Stokes equation that describes the momentum conserva-
tion can be expressed as follows:16

(2.42)

where a is the body force per unit mass exerted on the fluid, i.e., the acceleration vector.

Energy equation for constant thermal conductivity without thermal energy generation
for a moving fluid can be expressed as

(2.43a)

where u is the specific internal energy ( ) and the last term accounts for the vis-
cous dissipation, which is 

(2.43b)

in the Cartesian coordinates. Equations (2.41) through (2.43) are usually simplified for
specific conditions and solved analytically or numerically using computation fluid
dynamics software. In Chap. 4, we will show that the conservation equations can also be
derived from the microscopic theories, which are also applicable for rarefied flows and
microfluidics.

2.4.3 Radiation

Thermal radiation refers to the electromagnetic radiation in a broad wavelength range
from approximately 100 nm to 1000 �m. It includes a portion of the ultraviolet region, the
entire visible (400 to 760 nm) region, and the infrared region. Monochromatic radiation
refers to radiation at a single wavelength (or a very narrow spectral band), such as lasers
and some atomic emission lines. Radiation emitted from a thermal source, such as the sun,
an oven, or a blackbody cavity, covers a broad spectral region and can be considered as
the spectral integration of monochromatic radiation. In contrast to conduction or convec-
tion heat transfer, radiative energy propagates in the form of electromagnetic waves that
do not require an intervening medium. Regardless of its wavelength, an electromagnetic
wave travels in vacuum at the speed of light, . Radiation can also be
viewed as a collection of particles, called photons, whose energy is proportional to the
frequency of radiation. Starting with the definition of intensity and its linkage to the radia-
tive energy flux, radiative transfer between surfaces and in participating media will be
briefly described later in this section. More detailed treatment of the mechanism of ther-
mal radiation, radiative properties, and radiative transfer at small length scales will be
given in Chaps. 8, 9, and 10.

c0 � 2.998 � 108 m/s
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The spectral intensity or radiance is defined as the radiative power received within a
solid angle, a unit projected area, and a unit wavelength interval; hence,11

(2.44)

where is the direction of propagation, measured with respect to the surface normal,
is therefore the projected area, and is an element solid angle. It is convenient

to describe the relationship between intensity and radiative power using the spherical
coordinates, as shown in Fig. 2.8, where an element area dA whose surface normal is in

d�dA cos u
(u, f)

Il(l,u,f) �
dQ

.

dA cos u d� dl
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FIGURE 2.8 Illustration of the solid angle in spherical coordinates.
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the z direction is placed at the origin. Note that r � (x2 
 y2 
 z2)1/2, � � cos�1(z/r), and
� � tan�1(y/x). The solid angle, defined as d� � dAn/r

2, can be expressed as d� �
(rd�)(r sin�d�)/r 2 � sin�d�d�.

The spectral heat flux from an element surface dA to the upper hemisphere can be
obtained by integrating Eq. (2.44), i.e., 

(2.45)

The total heat flux is equal to the heat flux integrated over all wavelengths:

(2.46)

We can also define the total intensity as the integral of the spectral intensity over all wave-
lengths, . An equation similar to Eq. (2.45) holds between the total
heat flux and the total intensity. If the radiation is emitted from a surface, the radiative heat
flux is termed as the (hemispherical) emissive power. When the intensity is same in allqsrad
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directions, the surface is said to be diffuse, and Eq. (2.45) can be integrated to obtain the
relation, . Similarly, we can obtain .

The maximum power that can be emitted by a thermal source at a given temperature is
from a blackbody. A blackbody is an ideal surface which absorbs all incoming radiation
and gives out the maximum emissive power. Radiation inside an isothermal enclosure
behaves like a blackbody. In practice, a blackbody cavity is made with a small aperture on
an isothermal cavity. The emissive power of a blackbody is given by the Stefan-Boltzmann
law, also proportional to the absolute temperature to the fourth power, viz.,

(2.47)

where is the Stefan-Boltzmann constant. A blackbody is
also a diffuse emitter, i.e., its intensity is independent of the direction. The spectral distrib-
ution of blackbody emission is described by Planck’s law, which gives the spectral inten-
sity as a function of temperature and wavelength as follows:

(2.48)

where is the Planck constant, c is the speed of light, and is the
Boltzmann constant. The derivation of Planck’s law will be given in Chap. 8. 

The ratio of the emissive power of a real material to that of the blackbody defines
the (total-hemispherical) emissivity, �(T ) � e(T)/�SBT 4. The spectral-directional emissiv-
ity is defined as the spectral intensity emitted by the surface to Ib,l, i.e., ��l(	,�,�,T) �


I	(	,�,�,T)/eb, 	(	,T). Using , we have

(2.49)

This equation suggests that the relationship between the total-hemispherical emissivity and
the spectral-directional emissivity is rather complicated in general. For a gray surface, the
spectral emissivity is not a function of the wavelength. For a diffuse surface, the intensity
emitted by the surface is independent of the direction. For a diffuse-gray surface, Eq. (2.49)
reduces to a simple form � � ��l, because the emissivity is independent of wavelength and
the direction.

Real materials also reflect radiation in contrast to a blackbody. The reflection may be
specular for mirrorlike surfaces and more diffuse for rough surfaces. Some window mate-
rial and thin films are semitransparent. Generally speaking, reflection and transmission are
highly dependent on the wavelength, angle of incidence, and polarization status of the
incoming electromagnetic wave. The absorptance, reflectance, and transmittance of a
material can be defined as the fraction of the absorbed, reflected, and transmitted radiation.
The spectral-directional absorptance, spectral-directional-hemispherical reflectance, and
spectral-directional-hemispherical transmittance are related by

A�l 
 R�l 
 T �l � 1 (2.50)

For an opaque material, the transmittance T�l � 0. Very often, we use absorptivity ��	 and
reflectivity ��	 for opaque materials; hence, ��l
 ��l� 1. However, the distinction between
words ending with “-tivity” and “-tance” is not always clear. Both endings are used inter-
changeably in the literature. The complete nomenclature of radiative quantities and prop-
erties can be found in Siegel and Howell.17 Further discussion about the mechanisms and
applications of radiation heat transfer will be provided in Chap. 8.
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Kirchhoff’s law states that the spectral-directional emissivity is always the same as the
spectral-directional absorptivity, i.e., . For diffuse-gray surfaces, it can also be
shown that , which may not be generally true for surfaces that are not diffuse-gray,
unless they are in thermal equilibrium with the environment.

Example 2-6. Find the net radiative heat flux between two, large parallel surfaces. Surface 1 at
T1 � 600�C has an emissivity e1 � 0.8, and surface 2 at T2 � 27�C has an emissivity e2 � 0.5.

Solution. Assume that the medium in between is transparent, and both surfaces are opaque and
diffuse-gray. Note that radiation from one surface to another will be partially absorbed and partially
reflected back. Furthermore, the reflected radiation will continue to experience the absorption/reflec-
tion processes between the two surfaces. Surface 1 emits e1sSBT 4

1 radiation toward surface 2. The
fraction of this emitted radiation that is absorbed by surface 2 can be calculated by tracing the rays
between the two surfaces, which is �2 
 (1 � �2)(1 � �1)�2 
 (1 � �2)

2(1 � �1)
2�2 
 . . . since the

reflectivity is one minus the emissivity. The radiative heat flux from surface 1 to surface 2 is
q �1S2 � e1e2sSBT 4

1 [1 � (1 � e1)(1 � e2)] � sSBT 4
1 [1/e1 
 1 e2 � 1], and that from surface 2

to surface 1 is q �2S1 � sSBT 4
2 [1/e1 
 1/e2 � 1]. Subsequently, the net radiative flux from surface 1

to surface 2 is

(2.51)

Plugging in T1 � 873 K, T2 � 300 K, and other numerical values, we obtain q �12 � 14,433 W/m2.

Gas emission, absorption, and scattering are important for atmospheric radiation and
combustion. When radiation travels through a cloud of gas, some of the energy may be
absorbed. The absorption of photons raises the energy levels of individual molecules. At
sufficiently high temperatures, gas molecules may spontaneously lower their energy levels
and emit photons. These changes in energy levels are called radiative transitions, which
include bound-bound transitions (between nondissociated molecular states), bound-free
transitions (between nondissociated and dissociated states), and free-free transitions
(between dissociated states). Bound-free and free-free transitions usually occur at very high
temperatures (greater than about 5000 K) and emit in the ultraviolet and visible regions.
The most important transitions for radiative heat transfer are bound-bound transitions
between vibrational energy levels coupled with rotational transitions. The photon energy
(or frequency) must be exactly the same as the difference between two energy levels in
order for the photon to be absorbed or emitted; therefore, the quantization of the energy lev-
els results in discrete spectral lines for absorption and emission. The rotational lines super-
imposed on a vibrational line give a band of closely spaced spectral lines, called the
vibration-rotation spectrum. Additional discussion will be given in Chap. 3 about quantized
transitions in atoms and molecules.

Particles can also scatter electromagnetic waves or photons, causing a change in the
direction of propagation. In the early twentieth century, Gustav Mie developed a solu-
tion of Maxwell’s equations for scattering of electromagnetic waves by spherical parti-
cles, known as the Mie scattering theory which can be used to predict the scattering
phase function. In the case when the particle sizes are small compared with the wave-
length, the formulation reduces to the simple expression obtained earlier by Lord
Rayleigh; and the phenomenon is called Rayleigh scattering, in which the scattering
efficiency is inversely proportional to the wavelength to the fourth power. The wave-
length-dependent characteristic of light scattering by small particles helps explain why
the sky is blue and why the sun appears red at sunset. For spheres whose diameters are
much greater than the wavelength, geometric optics can be applied by treating the sur-
face as specular or diffuse.

qs12 � qs1S2 � qs2S1 �
sSB(T 4

1 � T 4
2)

1/e1 
 1/e2 � 1

> >>>

e � a
erl ; arl
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The spectral intensity in a participating medium, , depends on the location
(the coordinate ), its direction (the solid angle �), and time t. In a time interval dt, the beam
travels from  to  
 d (d � cdt), and the intensity is attenuated by absorption and out-
scattering, but enhanced by emission and in-scattering. The macroscopic description of the
radiation intensity is known as the equation of radiative transfer (ERT).17

(2.52)

where a	 and �	 are the absorption and scattering coefficients, respectively, � is the solid angle
and direction of Il, and �� is the in-scattering solid angle and direction of Il(j,��,t). Here,
�	(��,�) is the scattering phase function (�	 � 1 for isotropic scattering), which satisfies the
equation: . The right-hand side of Eq. (2.52) is composed of three
terms: the first accounts for the contribution of emission (which depends on the local gas tem-
perature T); the second is the attenuation by absorption and out-scattering; and the third is the
contribution of in-scattering from all directions (solid angle 4
) to the direction �.

Unless ultrafast laser pulses are involved, the transient term is negligible. The ERT for
the steady state can be simplified as 

(2.53)

where is the optical path length, and is called the
scattering albedo. This is an integro-differential equation, and its right-hand side is called
the source function. The integration of the spectral intensity over all wavelengths and all
directions gives the radiative heat flux. Unless the temperature field is prescribed, Eq. (2.53)
is coupled with the heat conduction equation in a macroscopically stationary medium and
the energy conservation equation in a fluid with convection. 

Analytical solutions of the ERT rarely exist for applications with multidimensional and
nonhomogeneous media. Approximate models have been developed to deal with special
types of problems, including Hottel’s zonal method, the differential and moment methods
(often using the spherical harmonics approximation), and the discrete ordinates method. The
statistical model using the Monte Carlo method is often used for complicated geometries and
radiative properties.17 Analytical solutions can be obtained only for limited simple cases.

Example 2-7. A gray, isothermal gas at a temperature occupies the space between
two, large parallel blackbody surfaces. Surface 1 is heated to a temperature , while sur-
face 2 is maintained at a relatively low temperature by water cooling. It is desired to know the amount
of heat that must be removed from surface 2. If the scattering is negligible, calculate the heat flux at
surface 2 for � 0.01, 0.1, 1, and 10, where L is the distance between the two surfaces.

Solution. For a gray medium without scattering, Eq. (2.53) becomes (1/al)dI/dj 
 I(j,�) �
Ib(Tg), where u is the angle between j and x. With and I(0) � Ib(T1) � �SBT 4

1/
,
the ERT can be integrated from x � 0 to x � L. The result is I(L,u) � (sSB/p)T 4

1 exp(�alL/cosu) 

(sSB/p)T 4

g [1 � exp(�alL/cosu)]. The radiative flux at x � L can be obtained by integrating the
intensity over the hemisphere, i.e.,

� sSBT 4
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where is called the third exponential integral and can be numerically eval-
uated. The final results are tabulated as follows:

a	L 0.01 0.1 1 10
E3(a	L) 0.49 0.416 0.11 3.48 � 10�6

q� (W/m2) 1.474 � 105 8.187 � 105 3.595 � 106 4.593 � 106

Discussion. In the optically thick limit ( ), , and all radiation leaving surface 1
will be absorbed by the gas before reaching surface 2. On the other hand, the heat flux is much greater
than at . The gas absorption can be neglected in the optically thin
limit; however, its emission contributes significantly to the radiative flux at surface 2. This is because
the gas temperature is much higher than that of surface 1 and can be much longer than L for
large u values.

2.5 SUMMARY

This chapter provided an overview of classical or equilibrium thermodynamics, derived
following logical steps and on a general basis, as well as the functional relations and thermo-
dynamic properties of simple systems and ideal pure substances. Built upon the foundations
of thermodynamics, the basic heat transfer modes were elaborated in a coherent way.
Entropy generation is inevitably associated with any heat transfer process. The connection
between heat transfer and entropy generation, which has been omitted by most heat trans-
fer textbooks, was also discussed. The introduction of thermal radiation not only covered
most of the undergraduate-level materials but also presented some basic graduate-level
materials. This chapter should serve as a bridge or a reference to the rest of the book, dealing
with energy transfer processes in micro/nanosystems and/or from a microscopic viewpoint
of macroscopic phenomena.

REFERENCES

1. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed., Wiley, New
York, 1985.

2. G. N. Hatsopoulos and J. H. Keenan, Principles of General Thermodynamics, Wiley, New York,
1965; J. H. Keenan, Thermodynamics, Wiley, New York, 1941.

3. E. P. Gyftopoulos and G. P. Beretta, Thermodynamics: Foundations and Applications, Macmillan,
New York, 1991; Also see the augmented edition, Dover Publications, New York, 2005.

4. R. E. Sonntag, C. Borgnakke, and G. J. van Wylen, Fundamentals of Thermodynamics, 5th ed.,
Wiley, New York, 1998.

5. M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 4th ed., Wiley,
New York, 2000.

6. A. Bejan, Advanced Engineering Thermodynamics, 2nd ed., Wiley, New York, 1997.
7. J. Kestin (ed.), The Second Law of Thermodynamics, Dowden, Hutchinson & Ross, Inc.,

Stroudsburg, PA, 1976.
8. H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia, 27,

3–10, 1990.
9. Z. M. Zhang, “Surface temperature measurement using optical techniques,” Annu. Rev. Heat

Transfer, 11, 351–411, 2000.
10. M. Kaviany, Principles of Heat Transfer, Wiley, New York, 2002.
11. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed., Wiley, New

York, 2002.
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PROBLEMS

2.1. Give examples of steady state. Give examples of thermodynamic equilibrium state. Give an
example of spontaneous process. Is the growth of a plant a spontaneous process? Give an example of
adiabatic process.

2.2. What is work? Describe an experiment that can measure the amount of work. What is heat?
Describe an apparatus that can be used to measure heat. Are work and heat properties of a system?

2.3. Expand Eq. (2.1) and Eq. (2.2) in terms of the rate of energy and entropy change of an open sys-
tem, which is subjected to work output, heat interactions, and multiple inlets and outlets of steady flow.

2.4. Discuss the remarks of Rudolf Clausius in 1867: 
(a) The energy of the universe is constant. 
(b) The entropy of the universe strives to attain a maximum value.

2.5. For a cyclic device experiencing heat interactions with reservoirs at T1,T2, . . ., the Clausius

inequality can be expressed as or , regardless of whether the device pro

duces or consumes work. Note that �Q is positive when heat is received by the device. Prove the
Clausius inequality by applying the second law to a closed system. 

2.6. In the stable-equilibrium states, the energy and the entropy of a solid are related by E �
3 � 105 exp[(S � S0)/1000], where E is in J, S is in J/K, and S0 is the entropy of the solid at a refer-
ence temperature of 300 K. Plot this relation in an E-S graph. Find expressions for E and S in terms
of its temperature T and S0.

2.7. For an isolated system, give the mathematical expressions of the first and second laws of ther-
modynamics. Give graphic illustrations using E-S graph.

2.8. Place two identical metal blocks A and B, initially at different temperatures, in contact with each
other but without interactions with any other systems. A thermal equilibrium is reached quickly. System
C represents the combined system of both A and B. 
(a) Is the process reversible or not? Which system has experienced a spontaneous change of state?

Which systems have experienced an induced change of state? 
(b) Assume that the specific heat of the metal is independent of temperature, cp � 240 J/(kg � K), the

initial temperatures are K and K, and the mass of each block is 5 kg. What
is the final temperature? What is the total entropy generation in this process? 

(c) Show the initial and final states of systems A, B, and C in a u-s diagram, and indicate which state
is not an equilibrium state. Determine the adiabatic availability of system C in the initial state.

2.9. Two blocks made of the same material with the same mass are allowed to interact with each
other but isolated from the surroundings. Initially, block A is at 800 K and block B at 200 K.
Assuming that the specific heat is independent of temperature, show that the final equilibrium tem-
perature is 500 K. Determine the maximum and minimum entropies that may be transferred from
block A to block B.

2.10. A cyclic machine receives 325 kJ heat from a 1000 K reservoir and rejects 125 kJ heat to a 400 K
reservoir in a cycle that produces 200 kJ work. Is this cycle reversible, irreversible, or impossible?

2.11. If z � z(x,y), then dz � fdx 
 gdy, where f(x,y) � �z/�x, g(x,y) � �z/�y. Therefore,
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The second-order derivatives of the fundamental equation and each of the characteristic function yield a
Maxwell relation. Maxwell’s relations are very useful for evaluating the properties of a system in the sta-
ble-equilibrium states. For a closed system without chemical reactions, we have Show that

2.12. The isobaric volume expansion coefficient is defined as bP � (1/v)('v/'T)P, the isothermal
compressibility is kT � �(1/v)('v/'P)T, and the speed of sound is va � For an ideal gas,
show that �P � 1/T, �T � 1/P, and .

2.13. For a system with single type of constituents, the fundamental relation obtained by experiments
gives , where � is a positive constant, and N, V, S, and U are the number of molecules,
the volume, the entropy, and the internal energy of the system, respectively. Obtain expressions of the
temperature and the pressure in terms of N, V, U, and �. Show that S � 0 at zero temperature for con-
stant N and V.

2.14. For blackbody radiation in an evacuated enclosure of uniform wall temperature T, the energy den-
sity can be expressed as uv � U/V � (4/c)sSBT 4, where U is the internal energy, V the volume, c the speed
of light, and �SB the Stefan-Boltzmann constant. Determine the entropy and the pressure 
which is called the radiation pressure. Show that the radiation pressure is a function of temperature only
and negligibly small at moderate temperatures. Hint:

and

2.15. A cyclic machine can only interact with two reservoirs at temperatures TA � 298 K and TB �
77.3 K, respectively. 
(a) If heat is extracted from reservoir A at a rate of � 1000 W, what is the maximum rate of work

that can be generated ( )? 
(b) If no work is produced, what is the rate of entropy generation (Ṡgen) of the cyclic machine? 
(c) Plot Ṡgen versus Ẇ (the power produced).

2.16. An engineer claimed that it requires much more work to remove 0.1 J of heat from a cryogenic
chamber at an absolute temperature of 0.1 K than to remove 270 J of heat from a refrigerator at 270 K.
Assuming that the environment is at 300 K, justify this claim by calculating the minimum work
required for each refrigeration task.

2.17. A solid block [m � 10 kg and cp � 0.5 kJ/(kg � K)], initially at room temperature (TA,1 � 300 K)
is cooled with a large tank of liquid-gas mixture of nitrogen at TB � 77.3 K and atmospheric pressure. 
(a) After the block reaches the liquid-nitrogen temperature, what is the total entropy generation (Sgen)?
(b) Given the specific enthalpy of evaporation of nitrogen, hfg � 198.8 kJ/kg, what must be its spe-

cific entropy of evaporation sfg in kJ/(kg � K), in order for the nitrogen tank to be modeled as a
reservoir? Does always hold?

2.18. Two same-size solid blocks of the same material are isolated from other systems [specific heat
cp � 2 kJ/(kg � K); mass m � 5 kg].  Initially block A is at a temperature TA1 � 300 K and block B at
TB1 � 1000 K. 
(a) If the two blocks are put together, what will be the equilibrium temperature (T2) and how much

entropy will be generated (Sgen)?
(b) If the two blocks are connected with a cyclic machine, what is the maximum work that can be

obtained (Wmax)? What would be the final temperature of the blocks (T3) if the maximum work
were obtained?

2.19. A rock [density � � 2800 kg/m3 and specific heat cp � 900 J/(kg � K)] of 0.8 m3 is heated to
500 K using solar energy. A heat engine (cyclic machine) receives heat from the rock and rejects heat
to the ambient at 290 K. The rock therefore cools down. 
(a) Find the maximum energy (heat) that the rock can give out. 
(b) Find the maximum work that can be done by the heat engine, Wmax.
(c) In an actual process, the final temperature of the rock is 330 K and the work output from the engine

is only half of Wmax. Determine the entropy generation of the actual process.
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2.20. Consider three identical solid blocks with a mass of 5 kg each, initially at 300, 600, and 900 K,
respectively. The specific heat of the material is cp � 2000 J/(kg � K). A cyclic machine is available
that can interact only with the three blocks. 
(a) What is the maximum work that can be produced? What are the final temperatures of each block?

Is the final state in equilibrium?
(b) If no work is produced, i.e., simply putting the three blocks together, what will be the maximum

entropy generation? What will be the final temperature? 
(c) If the three blocks are allowed to interact via cyclic machine but not with any other systems in the

environment, what is the highest temperature that can be reached by one of the blocks? 
(d) If the three blocks are allowed to interact via cyclic machine but not with any other systems in the

environment, what is the lowest temperature that can be reached by one of the blocks?

2.21. Electrical power is used to raise the temperature of a 500 kg rock from 25 to 500�C. The spe-
cific heat of the rock material is kJ/(kg � K).
(a) If the rock is heated directly through resistive (Joule) heating, how much electrical energy is

needed? Is this process reversible? If not, how much entropy is generated in this process? 
(b) By using cyclic devices that can interact with both the rock and the environment at 25�C, what is

the minimum electrical energy required?

2.22. An insulated cylinder of 2 m3 is divided into two parts of equal volume by an initially locked
piston. Side A contains air at 300 K and 200 kPa; side B contains air at 1500 K and 1 MPa. The piston
is now unlocked so that it is free to move and it conducts heat. An equilibrium state is reached between
the two sides after a while. 
(a) Find the masses in both A and B. 
(b) Find the final temperatures, pressures, and volumes for both A and B. 
(c) Find the entropy generation in this process.

2.23. A piston-cylinder contains 0.56 kg of N2 gas, initially at 600 K. A cyclic machine receives heat
from the cylinder and releases heat to the environment at 300 K. Assume that the specific heat of N2
is cp � 1.06 kJ/(kg � K) and the pressure inside the cylinder is maintained at 100 kPa by the environ-
ment. What is the maximum work that can be produced by the machine? What is the thermal efficiency
(defined as the ratio of the work output to the heat received)? The thermodynamic efficiency can be
defined as the ratio of the actual work produced to the maximum work. Plot the thermodynamic effi-
ciency as a function of the entropy generation. What is the maximum entropy generation?

2.24. An air stream [cp � 1 kJ/(kg � K) and M � 29.1 kg/kmol] flows through a power plant. The
stream enters a turbine at T1 � 750 K and P1 � 6 MPa, and exits at P2 � 1.2 MPa into a recovery unit,
which can exchange heat with the environment at 25�C and 100 kPa. The stream then exits the recov-
ery unit to the environment. The turbine is thermally insulated and has an efficiency �t � 0.85.
(a) Find the power per unit mass flow rate produced by the turbine. 
(b) Calculate the entropy generation rate in the turbine.
(c) Determine the largest power that can be produced by the recovery unit.

2.25. Water flows in a perfectly insulated, steady state, horizontal duct of variable cross-sectional
area. Measurements were taken at two ports and the data were recorded in a notebook as follows. For
port 1, speed , pressure , and temperature ; for port 2, 
and . Some information was accidentally left out by the student taking the notes. Can you
determine T2 and the direction of the flow based on the available information? Hint: Model the water
as an ideal incompressible liquid with cp � 4.2 kJ/(kg � K) and specific volume v � 10�3 m3/kg.

2.26. An insulated rigid vessel contains 0.4 kmol of oxygen at 200 kPa separated by a membrane
from 0.6 kmol of carbon dioxide at 400 kPa; both sides are initially at 300 K. The membrane is sud-
denly broken and, after a while, the mixture comes to a uniform state (equilibrium). 
(a) Find the final temperature and pressure of the mixture. 
(b) Determine the entropy generation due to irreversibility.

2.27. Pure N2 and air (21% O2 and 79% N2 by volume), both at 298 K and 120 kPa, enter a chamber
at a flow rate of 0.1 and 0.3 kmol/s, respectively. The new mixture leaves the chamber at the same tem-
perature and pressure as the incoming streams. 
(a) What are the mole fractions and the mass fractions of N2 and O2 at the exit? 
(b) Find the enthalpy change in the mixing process. Find the entropy generation rate of the mixing process. 
(c) Consider a process in which the flow directions are reversed. The chamber now contains neces-

sary devices for the separation, and it may transfer heat to the environment at 298 K. What is the
minimum amount of work per unit time needed to operate the separation devices?

P2 � 45 kPa
j2 � 5 m/sT1 � 40�CP1 � 50 kPaj1 � 3 m/s

cp � 0.85
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2.28. A Carnot engine receives energy from a reservoir at TH and rejects heat to the environment at
T0 via a heat exchanger. The engine works reversibly between TH and TL, where TL is the temperature
of the higher-temperature side of the heat exchanger. The product of the area and the heat transfer coef-
ficient of the heat exchanger is �. Therefore, the heat that must be rejected to the environment through the
heat exchanger is . Given K, K, and W/K. Determine
the value of TL so that the heat engine will produce maximum work, and calculate the power produc-
tion and the entropy generation in such a case.

2.29. To measure the thermal conductivity, a thin-film electric heater is sandwiched between two
plates whose sides are well insulated. Each plate has an area of 0.1 m2 and a thickness of 0.05 m. The
outside of the plates are exposed to air at with a convection coefficient of h � 40 W/(m2 � K).
The electric power of the heat is 400 W and a thermocouple inserted between the two plates measures
a temperature of at steady state. Determine the thermal conductivity of the plate material.
Find the total entropy generation rate. Comment on the fraction of entropy generation due to conduc-
tion and convection.

2.30. An electric current, I � 2 A, passes through a resistive wire of diameter D � 3 mm with a resis-
tivity . The cable is placed in ambient air at with a convection coefficient
h � 20 W/(m2 � K). Assume a steady state has been reached and neglect radiation. Determine the radial
temperature distribution inside the wire. Determine the volumetric entropy generation rate ṡgen as a
function of radius. Determine the total entropy generation rate per unit length of the cable. Hint: For
steady-state conduction, .

2.31. Find the thermal conductivity of intrinsic (undoped) silicon, heavily doped silicon, quartz,
glass, diamond, graphite, and carbon from 100 to 1000 K from Touloukian and Ho.13 Discuss the vari-
ations between different materials, crystalline structures, and doping concentrations.

2.32. Find the thermal conductivity of copper from 1 to 1000 K from Touloukian and Ho.13 Discuss
the general trend in terms of temperature dependence, and comment on the effect of impurities.

2.33. For laminar flow over a flat plate, the velocity and thermal boundary layer thicknesses can be
calculated by and , respectively. Use room temperature data to
calculate and plot the boundary layer thicknesses for air, water, engine oil, and mercury for different
values of . Discuss the main features. Hint: Property data can be found from Incropera and
DeWitt.11

2.34. Air at 14�C and atmospheric pressure is in parallel flow over a flat plate of . The air
velocity is 3 m/s and the surface is maintained at 140�C. Determine the average convection coefficient
and the rate of heat transfer from the plate to air. (For air at 350 K, which is the average temperature
between the surface and fluid, , , and .)

2.35. Plot the blackbody intensity (Planck’s law) as a function of wavelength for several tempera-
tures. Discuss the main features of this function. Show that in the long-wavelength limit, the blackbody
function can be approximated by , which is the Rayleigh-Jeans formula.

2.36. Calculate the net radiative heat flux from the human body at a surface temperature of
, with an emissivity , to the room walls at 298 K. Assume air at 298 K has a nat-

ural convection coefficient of 5 W/(m2 � K). Neglect evaporation, calculate the natural convection heat
flux from the person to air. Comment on the significance of thermal radiation.

2.37. A combustion fired in a spherical enclosure of diameter D � 50 cm with a constant wall tem-
perature of 600 K. The temperature of the combustion gas may be approximated as uniform at 2300 K.
The absorption coefficient of the gas , which is independent of wavelength.
Assuming that the wall is black and neglecting the scattering effect, determine the net heat transfer rate
between the gas and the inner wall of the sphere.

al � 0.01 cm�1

e � 0.9Ts � 308 K

eb,l(l,T) < pckBT>l4

Pr � 0.7n � 20.9 � 10�6 m2/sk � 0.03 W/(m # K)

2 � 2 m2

U
`

dt(x) � 5xRe�1/2
x Pr�1/3d(x) � 5xRe�1/2

x

s
.
gen � (1/T )= # qs � (1/T 2) (qs # =T )

27�Cre � 1.5 � 10�4 � # m

T1 � 175�C

T
`

� 25�C

a � 2300T0 � 300TH � 800Q
.

L � a(TL � T0)
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Classical statistical mechanics is based on the assumption that all matters are composed of
a myriad of small discrete particles, such as molecules and atoms, in any given macroscopic
volume.1–5 There are about molecules per cubic millimeter of air at stan-
dard conditions (25°C and 1 atm). These particles are in continuous random motion, which
generally obeys the laws of classical mechanics. A complete microscopic description of a
system requires the identification of the position and velocity of each particle
(here, subscript i indicates the ith particle) at any time. For a simple system of N molecules
in a box of volume V, one can write Newton’s law of motion for each molecule as

, (3.1)

where is the intermolecular force that the jth molecule exerts on the ith molecule, and 
is the mass of the ith molecule. The initial position and velocity, as well as the nature of col-
lisions among particles and that between particles and the walls of the box, must be specified
in order to solve the N equations. Although this approach is straightforward, there are two
major barriers. First, the intermolecular forces or potentials are often complicated and diffi-
cult to determine. Second, the solution of Eq. (3.1) requires significant computer resources
even for rather simple problems. Statistical methods are often used instead to obtain micro-
scopic descriptions that are related to macroscopic behaviors. Statistical mechanics aims at
finding the equilibrium distribution of certain types of particles in the velocity space. It pro-
vides a linkage between macroscopic thermodynamic properties and the microscopic behav-
ior and a means to evaluate some thermodynamic properties. Kinetic theory, on the other
hand, deals with nonequilibrium processes. It gives a microscopic description of transport
phenomena and helps predict some important transport properties, as will be seen in Chap. 4.

Along with the rapid development in computing speed and memory, molecular dynamics
(MD) simulation has become a powerful tool for the investigation of phenomena occurring
in nanostructures and/or at very short time scales. In the MD method, the location and the
velocity of every particle are calculated at each time step by applying Eq. (3.1) with a suit-
able potential function.6,7 Thermodynamic properties are then evaluated using statistical
mechanics formulation. Further discussion about the application of MD simulation to predict
the thermal properties of nanostructures will be given in Chap. 7.

This chapter starts with a statistical model of independent particles and a brief introduc-
tion to the basic principles of quantum mechanics. The necessary mathematical background
is summarized in Appendix B. It is highly recommended that one review the materials covered
in the appendix before studying this chapter. The three important distributions are derived

miFij

i � 1, 2, c, Na
j

Fij(ri,rj,t) � mi

dvi

dt

vi(t)ri(t)

N � 2.5 � 1016
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based on the statistics for different types of particles. The microscopic descriptions and
results are then linked to macroscopic quantities and the laws of thermodynamics. The appli-
cation to ideal gases is presented at the end of this chapter, while discussions of blackbody
radiation, lattice vibrations, and free electron gas will be deferred to later chapters.

3.1 STATISTICAL MECHANICS
OF INDEPENDENT PARTICLES

We say particles are independent when their energies are independent of each other and the
total energy is the sum of the energies of individual particles. Consider a system that has N
independent particles of the same type confined in a volume V. The total internal energy of
the system is U, which is the sum of the energies of all particles. Particles may have dif-
ferent energies and can be grouped according to their energies. It is of interest to know how
many particles are there within certain energy intervals. We can subdivide energy into a
large number of discretized energy levels. As illustrated in Fig. 3.1, there are particles
on the ith energy level, each with energy exactly equal to .ei

Ni
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FIGURE 3.1 Illustration of (a) a simple system of independent particles and
(b) energy levels.

From the classical mechanics point of view, it appears that the increment between adja-
cent energy levels can be indefinitely small. The particles are distinguishable, and there is
no limit on the number of particles on each energy level. Quantum mechanics predicts that
the energy levels are indeed discretized with finite increments between adjacent energy lev-
els, and the particles are unidentifiable (indistinguishable). An introduction to the basic
principles of quantum mechanics is given in Sec. 3.1.3 and a more detailed introduction of
the quantum theory is given near the end of this chapter. The conservation equations for the
system shown in Fig. 3.1 are

(3.2)

and (3.3)a
`

i�0
eiNi � U

a
`

i�0
Ni � N



3.1.1 Macrostates versus Microstates

The thermodynamic state may be viewed in terms of the gross behavior that ignores any
differences at the molecular or atomic level, or in terms of the individual particles. A
macrostate is determined by the values of for a given volume (which some-
how confines the quantized energy levels) though two different macrostates can have the
same energy. Each macrostate may be made up of a number of microscopic arrangements;
each microscopic arrangement is called a microstate. In statistical mechanics, all microstates
are assumed equally probable. There may be a large number of microstates that correspond
to the same macrostate. The number of microstates for each macrostate is termed the ther-
modynamic probability � of that macrostate. Unlike the stochastic probability that lies
between 0 and 1, the thermodynamic probability � is usually a very large number. One of
the principles underlying statistical mechanics is that the stable-equilibrium state corre-
sponds to the most probable macrostate. Therefore, for given values of U, N, and V, the
thermodynamic probability is the largest in the stable-equilibrium state. We will use the
following example to illustrate the concepts of microstate and macrostate.

Example 3-1. There are four distinguishable particles in a confined space, and there are two
energy levels. How many macrostates are there? How many microstates are there for the macrostate
with two particles on each energy level?

Solution. There are five macrostates in total with ( ) � (0, 4), (1, 3), (2, 2), (3, 1), and (4, 0),
respectively. Because the particles are distinguishable, the microstates will be different only if the par-
ticles from different energy levels are interchanged. Using the combination theory, we can figure out
that � (N1,N2) � N!/(N1! N2!) � 4!/(2!2!) � 6, i.e., there are six microstates for the macrostate with
two particles on each energy level. It can be shown that this is also the most probable macrostate.

3.1.2 Phase Space

The phase space is a six-dimensional space formed by three coordinates for the position r
and three coordinates for the momentum p � mv or velocity v. Each point in the phase
space defines the exact location and momentum of an individual particle. If both the space
and the momentum are described with the Cartesian system, then a volume element in the
phase space is dxdydzdpxdpydpz. Figure 3.2 shows a phase space projected to the x-px plane.

N1, N2

N0, N1, N2, c
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FIGURE 3.2 Phase space projected to the plane, where
is an area element.xpx

x-px



The three coordinates (px,py,pz) form a momentum space. One may choose to use (vx,vy,vz)
to form a velocity space. If the momentum space is described in spherical coordinates, the
volume element is dpxdpydpz � p2 sin �dpd�d�. The volume contained in a spherical shell
from to is . Figure 3.3 illustrates the momentum space projected to the
px-py plane, with a spherical shell.

4pp2dpp 
 dpp
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FIGURE 3.3 The plane of the momentum space, show-
ing a spherical shell.

px-py

3.1.3 Quantum Mechanics Considerations

The origin of quantum theory can be traced back to about 100 years ago when Planck first
used a discrete set of energies to describe the electromagnetic radiation, and thus obtained
Planck’s distribution (details to be presented in Sec. 8.1). For any given frequency of radi-
ation , the smallest energy increment is given by , where is
called Planck’s constant. Radiation can be alternatively viewed as electromagnetic waves
or traveling energy quanta. The corpuscular theory treats radiation as a collection of energy
quanta, called photons. The energy of a photon is given by

(3.4)

From the wave theory, the speed of light c is related to the wavelength l and the frequency by

(3.5)

In a medium with a refractive index of n, c � c0 /n and l� l0 /n, where subscript 0 is used
to indicate quantities in vacuum with n � 1. The speed of light in vacuum is c0 �
299, 792, 458 m/s, which is a defined quantity as given in Appendix A. Note that frequency
does not change from one medium to another. Based on the relativistic theory, the rest
energy E0 of a particle with mass m is

(3.6)E0 � mc2

c � ln

e � hn

h � 6.626 � 10�34 J # shnn



The momentum of the particle traveling with speed v is . Since the energy of a pho-
ton is and its speed is c, the momentum of a (massless) photon is (see Sec. 3.7)

(3.7)

Another hypothesis of quantum theory is that the motion of matter may be wavelike, with
characteristic wavelength and frequency. Therefore, for a particle moving with velocity
v V c,

and (3.8)

which are called de Broglie wavelength and de Broglie frequency, respectively. In 1923,
Louis de Broglie postulated that matter may also possess wave characteristics and there-
after resolved the controversy as per the nature of radiation. Note that the phase speed of
the wave defined by Eq. (3.8) is , which is greater than the speed of light. The discov-
ery of electron diffraction confirmed de Broglie’s hypothesis. For this prediction, de
Broglie received the Nobel Prize in physics in 1929. Seven years later, the 1937 Nobel
Prize in physics was shared by Clinton J. Davisson and George P. Thomson for their inde-
pendent experiments that demonstrated diffraction of electrons by crystals.

Example 3-2. Calculate the frequency in Hz and photon energy in eV of an ultraviolet (UV) laser
beam at a wavelength of l� 248 nm and a microwave at l�10 cm. Calculate the de Broglie wave-
length of an He atom at 200�C, using the average speed of 1717 m/s, and an electron traveling with
a speed of 106 m/s.

Solution. The equations are � � c/	 and � � hc�	. Assume the refractive index is 1. For the UV
beam at 	 � 248 nm, � � 1.2 � 1015 Hz and � � 8.01 � 10�19 J � 5 eV. For 	 � 10 cm, � �
3 � 109 Hz � 3 GHz and � � 2 � 10�24 J � 1.24 � 10�5 eV � 124 meV. The mass of an He atom
is m � M/NA � 6.64 � 10�27 kg. Hence, 	DB � h/mv � 5.8 � 10�11 m � 58 pm. From Appendix
A, me � 9.11 � 10�31 kg, therefore, lDB � 7.3 � 10�10 m � 0.73 nm, which is in the x-ray region.

The foundation of quantum mechanics is the Schrödinger equation, which is a partial-
differential equation of the time-space dependent complex probability density function.
More details can be found from Tien and Lienhard,1 Carey,5 and Griffiths.8 The solutions
of the Schrödinger equation support the dual nature of wave and matter, and result in dis-
crete quantized energy levels. Furthermore, there are usually more than one distinguishable
quantum state at each energy level, i.e., the energy levels may be degenerate. The number
of quantum states for a given energy level is called the degeneracy, denoted by for the
ith energy level, as shown in Fig. 3.4. 

gi

c2/v

nDB �
mc2

h
lDB �

h
p �

h
mv

p �
hn
c �

h

l

hn
p � mv
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FIGURE 3.4 The degeneracy of the ith energy level.

The uncertainty principle states that the position and momentum of a given particle can-
not be measured simultaneously with arbitrary precision. The limit is given by

(3.9)xpx � h/4p



This result implies that we cannot locate the exact position of a particle in the phase space;
all we can say is that the particle is somewhere in a domain whose volume is around . The
uncertainty principle is one of the cornerstones of quantum mechanics and was formulated
in 1927 by Werner Heisenberg, a Nobel Laureate in Physics. 

In quantum theory, independent particles of the same type are indistinguishable. For cer-
tain particles, such as electrons, each quantum state cannot be occupied by more than one par-
ticle. This is the Pauli exclusion principle, discovered by Nobel Laureate Wolfgang Pauli in
1925. The result, as we will see, is the Fermi-Dirac statistics that can be used to describe the
behavior of free electrons. The collection of free electrons in metals is sometimes called the
free electron gas, which exhibits very different characteristics from ideal molecular gases.

3.1.4 Equilibrium Distributions for Different Statistics

The characteristics of various types of particles can be described by different statistics. In
this section, we will first introduce three statistics and then apply them to obtain the distri-
bution functions, i.e., the number of particles on each energy level. The application of the
distribution functions to the study of thermodynamic properties of ideal molecular gases
will be discussed later in this chapter. The applications of statistical thermodynamics to
blackbody radiation, lattice vibration, free electrons in metals, and electrons and holes in
semiconductors will be discussed in subsequent chapters.

• The Maxwell-Boltzmann (MB) statistics: Particles are distinguishable and there is no
limit for the number of particles on each energy level. From Eq. (B.22) in Appendix B,
the thermodynamic probability for the distribution shown in Fig. 3.1b is

If degeneracy is included as shown in Fig. 3.4, then

(3.10)

• The Bose-Einstein (BE) statistics: Particles are indistinguishable and there is no limit for
the number of particles in each quantum state; there are gi quantum states on the ith
energy level. From Eq. (B.23), the number of ways of placing Ni indistinguishable objects

to gi distinguishable boxes is . Therefore, the thermodynamic probability

for BE statistics is

(3.11)

• The Fermi-Dirac (FD) statistics: Particles are indistinguishable and the energy levels are
degenerate. There are quantum states on the ith energy level, and each quantum state
can be occupied by no more than one particle. Using Eq. (B.21), we obtain the thermo-
dynamic probability for FD statistics as

(3.12)�FD � q
`

i�0

gi!

(gi � Ni)!Ni!

gi

�BE � q
`

i�0

(gi 
 Ni � 1)!

(gi � 1)!Ni!

(gi 
 Ni � 1)!

(gi � 1)!Ni!

�MB � N!q
`

i�0

gNi
i

Ni!

� �
N!

N0!N1!N2! c
�

N!

q
`

i�0

Ni!

h3
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The three statistics are very important for understanding the molecular, electronic, crys-
talline, and radiative behaviors that are essential for energy transport processes in both
small and large scales. MB statistics can be considered as the limiting case of BE or FD sta-
tistics. The thermodynamic relations and the velocity distribution of ideal molecular gases
can be understood from MB statistics. BE statistics is important for the study of photons,
phonons in solids, and atoms at low temperatures. It is the basis of Planck’s law of black-
body radiation, the Debye theory for the specific heat of solids, and the Bose-Einstein con-
densation, which is important for superconductivity, superfluidity, and laser cooling of
atoms. FD statistics can be used to model the electron gas and the electron contribution to
the specific heat of solids. It is important for understanding the electronic and thermal prop-
erties of metals and semiconductors.

Example 3-3. Four indistinguishable particles are to be placed in two energy levels, each with a
degeneracy of 3. Evaluate the thermodynamic probability of all arrangements, considering BE and
FD statistics separately. What are the most probable arrangements?

Solution. There are two energy levels, and the total number of particles .
The thermodynamic probability is , which depends on and (N0 
 N1 � 4).
Figure 3.5 shows specific cases of the BE and FD distributions. 

N1N0� � �0 � �1

N � 4g0 � g1 � 3
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FIGURE 3.5 Illustration of the arrangement for four
particles on two energy levels, each with a degeneracy of 3.
(a) Bose-Einstein statistics. (b) Fermi-Dirac statistics.

For BE statistics, we have

For FD statistics, we must have ; therefore, , and

The results are summarized in the following table. Clearly, the most probable arrangement for both
statistics in this case is .

N0
0 1 2 3 4

N1
4 3 2 1 0

�BE
15 30 36 30 15

�FD
– 3 9 3 –

For a given simple thermodynamics system of volume V, internal energy U, and total
number of particles N, we wish to find the state (identified by the distribution )
that maximizes or , under the constrains given by Eq. (3.2) and Eq. (3.3), based onln ��

N0,N1,N2, c

N0 � N1 � 2

�FD �
g0!

(g0 � N0)! N0!
�

g1!

(g1 � N1)! N1!
�

6
(3 � N0)! N0!

�
6

(N0 � 1)! (4 � N0)!

1 � N0 � 3Ni � gi

�
(N0 
 2)(N0 
 1)

2
�

(6 � N0)(5 � N0)

2

�BE �
(N0 
 g0 � 1)!

(g0 � 1)!N0!
�

(N1 
 g1 � 1)!

(g1 � 1)! N1!



the method of Lagrange multipliers (Appendix B). For MB statistics with degeneracy,
from Eq. (3.10),

For a large number of particles, the Stirling formula gives ln N! < N ln N � N from Eq. (B.11).
The above equation can be approximated as

Notice that N and gi’s are fixed and only Ni’s are variables, therefore, 

(3.13)

From the constraint equations, Eq. (3.2) and Eq. (3.3), we have

(3.14a)

and (3.14b)

where � and � are Lagrangian multipliers and ’s are treated as constants. Conventionally,
negative signs are chosen because and are generally nonnegative for molecular gases.
By adding Eq. (3.14a) and Eq. (3.14b) to Eq. (3.13), we obtain

Because dNi can be arbitrary, the above equation requires that .
Hence,

(3.15a)

or (3.15b)

This is the MB distribution. The physical meanings of a and b will be discussed later.
Using the same procedure described above, we can obtain the following for BE statistics,

(3.16)Ni �
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which is the BE distribution. For FD statistics, we can obtain the FD distribution as follows

(3.17)

The results for all the three statistics are summarized in Table 3.1. 

Example 3-4. Derive the BE distribution step by step. Under which condition can it be approxi-
mated by the MB distribution?

Solution. Using the thermodynamic probability of BE statistics in Eq. (3.11), we have

Hence,

To maximize �, we set d(ln �) � 0, i.e.,

By adding Lagrangian multipliers, Eq. (3.14a) and Eq. (3.14b), we have [ln (gi /Ni 
 1) � � � ��i]

dNi � 0. Hence, , which is the BE distribution given in Eq. (3.16) and Table 3.1.

If exp(� 
 ��i)W 1, Eq. (3.16) and Eq. (3.17) reduce to the MB distribution, Eq. (3.15a). Under
the limiting case of gi W Ni W 1, we have 

and

That is to say that the thermodynamic probability for both the BE and FD statistics reduces to the MB
statistics divided by N!, which is caused by the assumption of indistinguishable particles. Therefore, 
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TABLE 3.1 Summary of the Three Statistics

Statistics Maxwell-Boltzmann (MB) Bose-Einstein (BE) Fermi-Dirac (FD)

Name of particles Boltzons Bosons Fermions
Examples Ideal gas molecules & in the Photons & phonons Electrons & protons

limit of bosons and fermions
Distinguishability Distinguishable Indistinguishable Indistinguishable

Degeneracy Degenerate Degenerate Degenerate
Particles per quantum state Unlimited Unlimited One

Thermodynamic probability �

In the limit of gi W Ni �MB (given above) �MB/N! �MB/N!

ln � N ln N � N

� Ni ln Ni � (gi � 1) ln(gi � 1)] � (gi � Ni) ln (gi � Ni)]

d(ln �)

Distribution function Ni

Applications Ideal gases; Maxwell’s velocity Planck’s law; Bose-Einstein Electron gas; Fermi level; 
distribution; limiting cases of condensation; specific heat of solids electron specific heat in metals

BE and FD statistics
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is called the “corrected” MB statistics. For ideal molecular gases at reasonably high temperatures,
. For this reason, the MB distribution may be considered as the limiting case of the BE or

FD distribution (see Table 3.1).

3.2 THERMODYNAMIC RELATIONS

The thermodynamic properties and relations can be understood from the microscopic
point of view. This includes the concept of heat and work, entropy, and the third law of
thermodynamics. The partition function is key to the evaluation of thermodynamic
properties.

3.2.1 Heat and Work

From Eq. (3.3), we have

(3.19a)

The first term on the right is due to a redistribution of particles among the energy levels
(which is related to a change in entropy), while the second is due to a shift in the energy
levels associated with, e.g., a volume change. Consider a reversible quasi-equilibrium
process for a closed system (such as a piston/cylinder arrangement). The work is associated
to the volume change that does not change the entropy of the system, while heat transfer
changes entropy of the system without affecting the energy levels. Therefore,

(3.19b)

In writing the above equation, is positive for heat transferred to the system, and �W
is positive for work done by the system. They are related to macroscopic quantities for
simple systems by and . Hence, we obtain the expression of the
first law for a closed system, . If the system is an open system, then

.

3.2.2 Entropy

The macroscopic property entropy is related to the thermodynamic probability by

(3.20)

where is the Boltzmann constant. Consider two separate systems A and B, and their com-
bination as a system C. At a certain time, both A and B are individually in thermodynamic
equilibrium. Denote the states as A1 and B1, and the combined system as state C1. The ther-
modynamic probability of system C at state C1 is related to those of A1 and B1 by
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The entropy of C1 is then

Therefore, this definition of entropy meets the additive requirement. 
The highest entropy principle states that the entropy of an isolated system will increase

until it reaches a stable-equilibrium state (thermodynamic equilibrium), i.e., .
The microscopic understanding is that entropy is related to the probability of occurrence of
a certain macrostate. For a system with specified U, N, and V, the macrostate that corre-
sponds to the thermodynamic equilibrium is the most probable state and, hence, its entropy
is the largest. Any states, including those that deviate very slightly from the stable-equilibrium
state, will have a much smaller thermodynamic probability. After the equilibrium state is
reached, it is not possible for any macrostate, whose thermodynamic probability is much
less than that of the equilibrium state, to occur within an observable amount of time.

3.2.3 The Lagrangian Multipliers

For all three types of statistics, , where the first term

is the change in the total number of particles and the second can be related to the net heat
transfer for a closed system; therefore, . In a reversible process in
which the total number of particles do not change (closed system), dN � 0, d(ln �) � dS/kB,
and dQ � TdS. Hence, we have for all three statistics

(3.21)

To evaluate �, we must allow the system to change its composition. In this case,

or

Substituting the above equation into the definition of the Helmholtz function, dA �
d(U � TS) � dU � TdS � SdT, we have

Noting that the chemical potential , we obtain

(3.22)

where � is expressed in molecular quantity, and if m is expressed in molar
quantity.

3.2.4 Entropy at Absolute Zero Temperature

The third law of thermodynamics states that the entropy of any pure substance vanishes at
the ground state (with absolute zero temperature); see Sec. 2.1.3. For BE statistics, we have
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At very low temperatures ( ), . Since ,

as for (3.23)

Hence, ; that is, all particles will be at the lowest energy level (ground state). If
, as it is the case for a pure substance, then and as ;

this is consistent with the third law of thermodynamics. The occurrence for particles that
obey BE statistics (bosons) to collapse to the ground state at sufficiently low temperatures
is called the Bose-Einstein condensation. Such a state of matter is called the Bose-Einstein
condensate, in which quantum effects dominate the macroscopic behavior.

Some important applications of the Bose-Einstein condensation are superfluidity and
superconductivity. Liquid helium (4He) becomes a superfluid with no viscosity at tempera-
tures below the 	-transition ( ). The specific heat of helium at this temperature
becomes infinitely large, suggesting that a phase transition occurs. Bose-Einstein condensate
of atoms has been observed with laser cooling and trapping techniques.9 Photons from the
laser collide with the atoms. The absorption can be tuned using the Doppler shift so that only
atoms traveling toward the laser can absorb the photons, resulting in reduced momentums in
these atoms. Furthermore, the excited atoms will emit photons spontaneously in all directions.
The net effect is a decrease in the velocity of the atoms, resulting in a kinetic temperature
down to the nanokelvin range. In the last decade, the Nobel Prize in Physics was awarded for
works related to the Bose-Einstein condensation four times: 1996, 1997, 2001, and 2003.

Although electrons are fermions (particles that obey FD statistics) that generally do not
condense at zero temperature, they can form pairs at sufficiently low temperatures that behave
like bosons. Below the critical temperature, pairs of electrons, called the Cooper pairs can
travel freely without any resistance. This is the phenomenon called superconductivity, which
was discovered at the beginning of the twentieth century. A large number of elements and
compounds can be made superconducting at very low temperatures. Furthermore, some
oxides become superconducting at temperatures above 90 K.10 Superconductors have impor-
tant applications in magnetic resonance imaging, high-speed and low-noise electronic devices,
infrared sensors, and so forth. A similar phenomenon is the superfluidity in helium isotope
3He, which undergoes a phase transition at very low temperatures. The fermionic 3He atoms
pair up to form bosonic entities that experience Bose-Einstein condensation at 3 mK.

For FD statistics, from Eq. (3.17), Eq. (3.21), and Eq. (3.22), we have

(3.24)

As , it is found that for all energy levels with ei � m and Ni /gi � 0 for
energy levels with ei � m. That is, all quantum states are filled for (with
�j � �), and all quantum states are empty for (with �j
1 � �), as
schematically shown in Fig. 3.6. More discussions will be given in Chap. 5 on the behav-
ior of free electrons. For now, it is sufficient to say that the thermodynamic probability

for FD statistics at absolute zero temperature. Therefore, the entropy at
K for both the BE and FD statistics. However, MB statistics does not satisfy the third

law and is not applicable to very low temperatures.

3.2.5 Macroscopic Properties in Terms of the Partition Function

The partition function is an important quantity in statistical thermodynamics. Unlike the
characteristics functions (such as the Helmholtz free energy and the Gibbs free energy
defined in Chap. 2) used in macroscopic thermodynamics, the physical meaning of the par-
tition function is not immediately clear. However, the introduction of the partition function
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allows the calculation of macroscopic thermodynamic properties from the microscopic rep-
resentation. There are different types of partition functions. For MB statistics, the partition
function is defined as

(3.25)

Therefore, (3.26)

Since

we have (3.27)

Using the corrected MB statistics given in Eq. (3.18), we can express the entropy as
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FIGURE 3.6 Schematic of the Fermi-Dirac distribution at 0 K.



Had we not divided �MB by N!, we would get , which is different
from Eq. (3.28a) by a constant. After substituting � and U into Eq. (3.28a), we obtain

(3.28b)

The Helmholtz free energy is

(3.29)

The pressure is

(3.30)

The enthalpy H and the Gibbs free energy G can also be obtained. The partition function is
now related to the macroscopic thermodynamic properties of interest for simple substances.

3.3 IDEAL MOLECULAR GASES

An important application of statistical mechanics is to model and predict the thermal prop-
erties of materials. In this section, the application of MB statistics to obtain the equation
of state and the velocity distributions for ideal molecular gases is presented. The micro-
scopic theories of the specific heat for ideal monatomic and polyatomic gases are given
subsequently.

3.3.1 Monatomic Ideal Gases

For a monatomic ideal gas at moderate temperatures, MB statistics can be applied, and the
translational energies are

(3.31)

Consider a volume element in the phase space, , where is the
momentum of a molecule. The accuracy of specifying the momentum and the displacement
is limited by xpx , h, given by the uncertainty principle. The degeneracy, which is the
number of quantum states (boxes of size h3) in a volume element of the phase space, is
given by

(3.32)

Many useful results were obtained before quantum mechanics by assuming that is some
constant. A more rigorous proof of Eq. (3.32) will be given in Sec. 3.5. When the space
between energy levels are sufficiently close, the partition function can be expressed in
terms of an integral as or
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The space integration yields the volume V, and the velocity integration can be individually
performed, i.e., 

(3.34)

Hence,

(3.35)

Therefore,

(3.36)

which is indeed much greater than unity at normal temperatures for most substances, sug-
gesting that the MB statistics is applicable for ideal molecular gases. At extremely low tem-
peratures, intermolecular forces cannot be neglected and the molecules are not independent
anymore.

From Eq. (3.30), we have ; i.e., 

or (3.37)

where is the number density. The Boltzmann constant is the ideal (universal) gas
constant on the molecular basis, i.e., . The internal energy, the specific heats,
and the absolute entropy can also be evaluated.

(3.38)

which is not a function of pressure. The molar specific internal energy is , and the
molar specific heats are

(3.39)

and (3.40)

The above equations show that the specific heats of monatomic gases are independent of
temperature, except at very high temperatures when electronic contributions become
important. The molar specific heats do not depend on the type of molecules, but the same
is not true for mass specific heats. Using Eq. (3.28b), the absolute entropy can be expressed as 
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Therefore, the molar specific entropy is a function of T and P, i.e.,

(3.41)

This is the Sackur-Tetrode equation.

3.3.2 Maxwell’s Velocity Distribution

Rewrite as . In a volume V and from to (i.e.,
to , to , and to ), the number of molecules dN per unit vol-

ume may be expressed as

(3.42)

or

(3.43)

where is the Maxwell velocity distribution in a unit volume. Notice that

(3.44)

which is a Gaussian distribution. Notice that v2 � v � v � v2 � v2
x 
 v2

y 
 v2
z. The distribu-

tion of velocity component is also Gaussian, such that 

F(v) � F(vx)F(vy)F(vz) (3.45)

Taking the x component as an example, we can write

(3.46)

The speed distribution may be obtained from the following by integrating the velocity dis-
tribution in a spherical shell (i.e., over the solid angle of 4p).

Therefore,

(3.47)

Figure 3.7 plots the speed distribution of He gas at 0, 300, and 800°C. When evaluating ,
we must convert T to absolute temperature. It can be seen that more molecules will be at
higher speeds as the temperature increases. It should be noted that but F(v)
is maximum at v � 0. In the speed coordinate, an interval between v and v 
 dv corre-
sponds to a spherical shell in the velocity space. Even though F(v) is maximum at v � 0,
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the probability of finding a molecule per unit speed interval decreases to 0 as , which
is caused by the associated decrease in the volume of the spherical shell.

Example 3-5. Find the average speed and the root-mean-square speed for a He gas at 200°C at
100 kPa. What if the pressure is changed to 200 kPa? What are the most probable velocity and the
most probable speed?

Solution. The average speed may be obtained from either the velocity distribution or the speed
distribution. That is

(3.48)

The average of v2 is (see Appendix B.5)

(3.49a)

Therefore the root-mean-square speed is 

(3.49b)

Plugging in the numerical values, we have � 1582 m/s and � 1717 m/s for He gas at 200°C.
We also notice that the pressure has no effect on the speed distribution, unless it is so high that inter-
molecular forces cannot be neglected.

The most probable velocity vmp � 0 because of the symmetry in the Gaussian distribution. We
can obtain the most probable speed by setting F�(v) � 0, i.e.,
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FIGURE 3.7 Speed distribution for helium gas at different temperatures.



The solution gives the most probable speed as . For He gas at 200°C, it gives vmp �

1402 m/s. Note that vmp : v̄ : vrms � < 1.4 : 1.6 : 1.7.

Comment. An important consequence for Eq. (3.49a) is that temperature is related to the mean
kinetic energy of the molecule, i.e., 

(3.50)

The internal energy of a monatomic gas given in Eq. (3.38) is the sum of the kinetic energies of all
molecules.

3.3.3 Diatomic and Polyatomic Ideal Gases 

Additional degrees of freedom or energy storage modes must be considered for diatomic
and polyatomic molecules, besides translation. The molecule may rotate about its center of
gravity, and atoms may vibrate with respect to each other. For a molecule consisting of q
atoms, each atom may move in all three directions, and there will be a total of 3q modes.
Consider the translation of the molecule as a whole; there are three translational degrees of
freedom or modes, i.e., . For diatomic molecules or polyatomic molecules whose
atoms are arranged in a line (such as CO2), as shown in Fig. 3.8, there are two rotational
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FIGURE 3.8 (a) A diatomic molecule, showing two rotational and one vibrational
degrees of freedom. (b) CO2 molecule, where the atoms are aligned.

degrees of freedom or modes, i.e., . Therefore, there are vibrational
modes, each consisting of two degrees of freedom corresponding to the kinetic energy and
the potential energy. For polyatomic molecules whose atoms are not aligned (such as H2O
and CH4, see Fig. 3.9), there are three rotational degrees of freedom, i.e., . The vibra-
tional modes are thus .

The total energy of a molecule may be expressed as the sum of translational, rotational,
and vibrational energies, i.e., . For simplicity, we have neglected contri-
butions from the electronic ground state and chemical dissociation, which can be included
as additional terms in evaluating the internal energy and the entropy.1 At high temperatures,
the vibration mode can be coupled with the rotation mode. Here, however, it is assumed
that these modes are independent. The partition function can be written as
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For polyatomic atoms, Eq. (3.31) through Eq. (3.36) hold for the translational modes. Zr
and Zv are internal contributions that do not depend on volume; therefore, Eq. (3.37) also
holds. Since the degrees of freedom are independent of each other, Maxwell’s velocity and
speed distributions discussed in Sec. 3.3.2 still hold for polyatomic gases. The problem now
is to determine the rotational and vibrational energy levels and degeneracies. Generally
speaking, there exists a certain characteristic temperature associated with each degree of free-
dom. The characteristic temperature for translation is very low for molecular gases. On the
other hand, the characteristic temperature for rotation is slightly higher, and that for vibration
is usually very high, as can be seen from Table 3.2 for selected diatomic molecules. If the tem-
perature is much less than the characteristic temperature of a certain mode, then the contri-
bution of that mode to the energy storage is negligible. For the temperature much higher than
the characteristic temperature, however, there often exist some asymptotic approximations.

Rotation. A quantum mechanical analysis of a rigid rod, to be derived in Sec. 3.5.3,
shows that the rotational energy levels are given by

(3.52)
el

kBT
� l(l 
 1)

�r

T

76 CHAPTER 3

FIGURE 3.9 (a) A H2O molecule in which the atoms are not aligned. (b) The tetrahedral
methane (CH4) molecule.

TABLE 3.2 Characteristic Temperatures of Rotation and Vibration
for Some Diatomic Molecules

Substance Symbol �r (K) �v (K)

Hydrogen H2 87.5 6320
Deuterium D2 43.8 4490
Hydrogen chloride HCl 15.2 4330
Nitrogen N2 2.86 3390
Carbon monoxide CO 2.78 3120
Nitric oxide NO 2.45 2745
Oxygen O2 2.08 2278
Chloride Cl2 0.35 814
Sodium vapor Na2 0.08 140



Here, �r is the characteristic temperature for rotation and is given by ,
where I is the moment of inertia of the molecule about the center of mass. The larger the
value of I, the smaller the characteristic temperature will be. This is clearly shown in
Table 3.2. The degeneracy of rotational energy levels is

(3.53)

where is a symmetry number that arises from molecular symmetry: if the atoms
are of different types (such as in a NO or CO molecule), and if the atoms are the
same (such as in a O2 or N2 molecule).

(3.54)

This series converges very fast for , since

For , Eq. (3.54) may be expanded to give (see Problem 3.26)

(3.55)

At temperatures much higher than the characteristic temperature of rotation, T/�r W 1, the
above equation reduces to

(3.56)

Under this limit, the contribution of the rotational energy to the internal energy becomes

(3.57)

The contribution to the molar specific heat by the two rotational degrees of freedom is

(3.58)

Vibration. The vibration in a molecule can be treated as a harmonic oscillator. For each
vibration mode, the quantized energy levels are given in Sec. 3.5.5 as

, i � 0, 1, 2, . . . (3.59)

where is the natural frequency of vibration, and the ground-state energy is . The vibra-
tional energy levels are not degenerated, i.e., . Therefore, we can write
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where is a characteristic temperature for vibration and is listed in Table 3.2 for
several diatomic molecules. The vibrational partition function becomes

(3.60)

Its contribution to the internal energy and the specific heat can be written as

(3.61)

and (3.62)

At T V �v, the vibrational mode contributes to the internal energy but not to the specific
heat. At , almost linearly depends on T and . In classical statistical
mechanics, it is believed that each degree of freedom contributes to the stored thermal
energy with an amount of and results in a specific heat of on the particle base. This
is called the equipartition principle. The contribution of each vibrational mode is not ,
due to the fact that each vibrational mode includes a kinetic component and a potential
component for energy storage and is generally considered as two degrees of freedom. It
should be noted that the equipartition principle is only applicable at sufficiently high tem-
peratures and for particles that obey MB statistics or, in some limiting cases, BE statistics.
Because energy is additive, as is the specific heat, we can write

(3.63)

The result is schematically shown in Fig. 3.10. One can see that for a diatomic ideal gas,
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FIGURE 3.10 Typical specific heat curve of a diatomic ideal gas.



which happens to be near room temperature for many gases such as nitrogen and carbon
monoxide; see Table 3.2. Figure 3.11 plots the specific heat for several real gases at sufficiently
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FIGURE 3.11 Specific heat at constant volume for several ideal gases.

low pressure so that the ideal gas model is applicable. It should be noted that, for hydrogen,
nuclear spin is important and Eq. (3.54) needs to be modified to account for the spin degen-
eracy.1,2 However, Eq. (3.57) and Eq. (3.58) predict the right trend and are applicable at
temperatures much higher than �r. At extremely high temperatures (say 3000 K), elec-
tronic contributions and the coupling between rotation and vibration become important.
Although Eq. (3.63) is the correct expression for the specific heat at moderate temperatures,
two additional partition functions must be included to correctly evaluate the internal energy
and the entropy (see Problem 3.22). We limit the derivations to the specific heat, which is
closely related to heat transfer calculations.

The characteristic temperature for rotation is usually very small for polyatomic mole-
cules because of their large moments of inertia. Therefore, the rotational degrees of free-
dom can be assumed as fully excited in almost any practical situation. Each rotational
degree of freedom will contribute to the molar specific heat. For molecules whose
atoms are aligned (such as CO2), the rotational contribution to the specific heat is , and 

, (3.65)

If TW�v,i, then . For molecules such as H2O and CH4 whose atoms are
not aligned, we have,

(3.66)cv � 3R 
 R a
3q�6

i�1

z2
i e
zi

(ezi � 1)2

cv S R(3q � 2.5)

zi � �v,i /Tcv �
5
2

R 
 R a
3q�5

i�1

z2
i e
zi

(ezi � 1)2

R
R/2



In this case, at TW �v,i. Again, electronic contribution may be significant
at very high temperatures. Table 3.3 lists the vibrational frequencies for several commonly
encountered gases. The unit of frequency is given in inverse centimeter (cm�1), which is often
used in spectroscopic analyses. Note that , where is the wavenum-
ber in cm�1 if we take c0 � 3 � 1010 cm/s. That is . One can use this
table to estimate the specific heat of these gases based on Eq. (3.65) or Eq. (3.66). 

In reality, vibration-rotation interactions result in multiple absorption lines around each
vibration mode, which can be observed through infrared absorption spectroscopy. Figure 3.12

�v (K) � 1.44 n (cm�1)
n�v � hn�kB � hc0n�kB

cv S R(3q � 3)
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FIGURE 3.12 Infrared absorption spectrum of ambient air obtained with a Fourier-transform
infrared spectrometer.

shows the molecular absorption spectra of CO2 and H2O measured with a Fourier-transform
infrared spectrometer. The absorption spectra were obtained by comparing the spectrum
when the measurement chamber is open with that when the chamber is purged with a nitro-
gen gas, which does not absorb in the mid-infrared region. The concentrations of H2O and
CO2 in the experiments were not controlled since the purpose is to demonstrate the infrared
absorption frequencies only. While the resolution of 1 cm�1 is not high enough to resolve
very fine features, the absorption bands near 670 cm�1 due to degenerate bending modes
and near 2350 cm�1 due to asymmetric stretching mode in CO2 can be clearly seen. Note
that the symmetric vibration mode of CO2 at 1343 cm�1 is infrared inactive, i.e., it does not
show up in the absorption spectrum but can be observed with Raman spectroscopy.
Furthermore, the vibration-rotation interactions cause multiple lines in the water vapor
absorption bands from 1300 to 2000 cm�1 and from 3500 to 4000 cm�1.

TABLE 3.3 Vibrational Modes of Several Gases, Where the Integer in the Parentheses Indicates
the Number of Degenerate Modes

Type cm�1 cm�1 cm�1 cm�1 Total fv

CO2 667 (2) 1343 2349 – 4
H2O 1595 3657 3756 – 3
CH4 1306 (3) 1534 (2) 2916 3019 (3) 9



Example 3-6. How many rotational degrees of freedom are there in a silane (SiH4) molecule? If
a low-pressure silane gas is raised to a temperature high enough to completely excite its rotational
and vibrational modes, find its specific heats.

Solution. For SiH4, there will be three translational degrees of freedom, i.e., �t � 3, three rotational
degrees of freedom, i.e., �r � 3, and fv � 3q � 6 � 9 vibrational degrees of freedom. If all the modes
are excited, the specific heat for constant volume will be cv � 1.5R 
 1.5R 
 9R � 12R. Given that
M � 32, we find cv � 3.12 kJ/(kg � K), cp � 3.38 kJ/(kg � K), and g� 13R/12R � 1.083. The actual
specific heats would be much smaller at moderate temperatures.

3.4 STATISTICAL ENSEMBLES
AND FLUCTUATIONS

We have finished the discussion about statistical thermodynamics of independent parti-
cles without mentioning ensembles. In a system of independent particles, there is no
energy associated with particle-particle interactions or the configuration of the particles.
For dependent particles or dense fluids, the previous analysis can be extended by using
statistical ensembles, which was pioneered by J. Willard Gibbs (1839–1903) in the late
nineteenth century in his 1902 book, Elementary Principles of Statistical Mechanics.
Statistical ensembles are a large set of macroscopically similar systems. When the prop-
erties are averaged over a properly chosen ensemble, the macroscopic properties can be
considered as the same as the time-averaged quantity of the same system. There are three
basic types of ensembles: microcanonical ensemble, canonical ensemble, and grand
canonical ensemble.1,5

A microcanonical ensemble is composed of a large set of identical systems. Each sys-
tem in the ensemble is isolated from others by rigid, adiabatic, and impermeable walls. The
energy, volume, and number of particles in each system are constant. The results obtained
using the microcanonical ensemble for independent particles are essentially the same as
what we have obtained in previous sections. It is natural to ask the question as to what
extent the statistical mechanics theory presented in previous sections will be valid for
nanosystems. If the equilibrium properties are defined based on a large set of microcanan-
ical ensembles and considered as the time-averaging properties of the system, there will be
sufficiently large number of particles in the whole ensemble to guarantee the basic types of
statistics, and the thermodynamics relations derived in Secs. 3.1 and 3.2 are still applica-
ble. On the other hand, the difference between the energy levels due to quantization may
be large enough to invalidate the substitution of summation with integration. We will dis-
cuss the energy level quantization further in Sec. 3.5. In deriving the properties of ideal
gases in Sec. 3.3, the consideration of the translational, rotational, and vibrational degrees
of freedom is on the basis of individual molecules. Therefore, the conclusions should be
applicable to systems under thermodynamic equilibrium.

In a canonical ensemble, each system is separated from others by rigid and imperme-
able walls, which are diathermal. All systems have the same volume and number of parti-
cles. However, the systems can exchange energy. At equlibrium, the temperature T will be
the same for all systems. An important result of applying the canonical ensemble is that the
energy fluctuation (i.e., the standard deviation of energy of the system) is proportional
to , where N is the total number of independent particles. 

In a grand canonical ensemble, each system is separated from others by rigid, diather-
mal, and permeable walls. While the volume is fixed and is the same for each system, the
number of particles as well as the energy of each system can vary. The temperature and the
chemical potential must be the same for all systems at equilibrium. This allows the study
of density fluctuations for each system. The result for monatomic molecules yields that the
density fluctuation is also proportional to . 1/!N

1/!N
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The canonical and grand canonical ensembles are essential for the study of complex
thermodynamic systems, such as mixtures, chemical equilibria, dense gases, and liquids,
which will not be further discussed in this text. Interested readers can find more details from
Tien and Lienhard1 and Carey.5 A simple theory based on independent particles of phonons
and electrons will be discussed in Chap. 5. While the partition function can also be used to
study the thermodynamic relations of solids, the approach used in solid state physics will
be adopted in a detailed study of the properties of solids presented in Chap. 7.

3.5 BASIC QUANTUM MECHANICS

So far we have largely avoided the derivations and equations involving quantum mechan-
ics, by using the conclusions from quantum theory on a need basis without proof. In this
section, we shall present the basics of quantum mechanics to enhance the understanding of
the materials already presented and to provide some background for future chapters.

In classical mechanics, the state of a system is completely described by giving the posi-
tion and the momentum of each particle in the system at any given time. The equation of
motion is given in Eq. (3.1), which is also the basis for molecular dynamics. The position
and the momentum of each particle are precisely determined using the initial values and the
forces exerted on it afterward. According to the wave-particle duality, particles also have
wave characteristics. The results are described in quantum mechanics by the Schrödinger
wave equation. The solution of the Schrödinger equation is given in the form of a wave-
function, which describes the probabilities of the possible outcome rather than the exact
position and momentum of the particle. Another important aspect in quantum mechanics is
the use of operators in mathematical manipulations. 

3.5.1 The Schrödinger Equation

Consider the following equation that describes a wave in the x direction (see Appendices
B.6 and B.7):

(3.67)

where is a complex constant, is the wavelength, and is the frequency.
One can take the real part of , i.e., 

which is a cosine function of x for any given t. The complex notation is convenient for
obtaining derivatives. If Eq. (3.67) is used to describe a moving particle, with a mass m and
a momentum p, it can be shown that 

(3.68a)

(3.68b)

and (3.68c)

where , which is the Planck constant divided by 2p, is the kinetic energy of
the particle, and is the total energy of the particle. In writing Eq. (3.68), we have appliede
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iU
'

't
� � hn� � e�

�
U2

2m

'2

'x2� �
p2

2m
� � EK�

�iU 
'

'x
� �

h

l
� � p�

Re(�) � Arcos(2px/l � 2pnt) � Assin(2px/l � 2pnt)

�
nlA

~
� Ar 
 iAs

�(x,t) � A
~ei(2px/l�2pnt)

82 CHAPTER 3



the concept of wave-particle duality to relate and . If the particle possesses
only the kinetic and potential energies, we have 

(3.69a)

where is the potential function that depends on the position of the particle.
Define the Hamiltonian operator in the 3-D case as

(3.69b)

It can be seen that . Hence,

(3.70)

which is the time-dependent Schrödinger equation.8 From , one can obtain

(3.71a)

The general time dependence for different energy eigenvalues can be written as a summation:

(3.71b)

Therefore, the key to solve the Schrödinger equation becomes how to obtain the initial
wavefunctions. For this reason, Eq. (3.70) can be rewritten as follows:

(3.72)

which is called the time-independent Schrödinger equation. The solution gives the wave-
function , which is often expressed in terms of a set of eigenfunctions, ,
each with an eigenvalue energy, , respectively. The solution, or the wave-
function, must satisfy

(3.73)

where the superscript * denotes the complex conjugate since the wavefunction is in general
complex, and the integration is over the whole volume. The physical significance is that the
probability of finding the particle in the volume must be 1. The wavefunction is also called
a state function because it describes the quantum state of the particle, and is called
the probability density function. The average or expectation value of any physical quantity
h is calculated by 

(3.74)

where signifies an operator of . For example, the average energy of the particle is

(3.75)kel � 3
V

�*H
^

 �dV

��^

k�l � 3
V

�*�^�dV

��*

3
V

��*dV � 1

e1,e2,e3, c
�1,�2,�3, c�(r)

�
U2

2m
=2� 
 �(r)� � e�

�(r,t) � A1�01(r)e�ie1t/U 
 A2�02(r)e�ie2t/U 
 c

�(r,t) � �0(r)e�iet/U

e� � iU'�
't

�
U2

2m
=2� 
 �(r)� � iU

'�
't

H
^

� � e�

H
^

� �
U2

2m
=2 
 �(r)

�(r) � �(x,y,z)

e � EK 
 EP �
p2

2m

 �(r)

e � hnp � h/l

ELEMENTS OF STATISTICAL THERMODYNAMICS AND QUANTUM THEORY 83



Several examples are discussed in the following sections to show how to obtain the wave-
functions and the physical significance of the solutions.

3.5.2 A Particle in a Potential Well or a Box

The1-D potential well is illustrated in Fig. 3.13a, where a particle is confined within a phys-
ical space between and the particle can move parallel to the x axis only. This is0 � x � L
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FIGURE 3.13 Illustration of (a) a 1-D potential well and (b) the eigenfunctions.

equivalent of saying that the potential energy is zero inside and infinite outside the poten-
tial well, i.e.,

(3.76)

The Schrödinger equation becomes 

(3.77)

whose solutions are , where . Because the
particle is confined inside the well, the wavefunction must be zero outside the potential
well. Another requirement for the wavefunction is that it must be continuous. Thus, we
must have . This requires that and, by taking only the positive k
values, we have

(3.78)

The eigenfunctions are therefore , which can be normalized by letting

to get
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Therefore, the solution requires the particle to possess discretized energy values, i.e., its
energy cannot be increased continuously but with finite differences between neighboring
states. It can easily be seen that 

(3.80)

The quantized energy eigenvalues are called energy levels for each quantum state, and the
index n is called a quantum number. The eigenfunctions are standing waves as shown in
Fig. 3.13b for the first four quantum states. For molecules, the difference between energy
levels is very small and the energy distribution can often be approximated as a continuous
distribution. For electrons at very small distances, for example, quantization
may be important. The effects of quantum confinement take place when the quantum well
thickness becomes comparable to the de Broglie wavelength of the particle, such as elec-
trons or holes in a semiconductor. Quantum wells can be formed by a sandwiched structure
of heterogeneous layers, such as AlGaAs/GaAs/AlGaAs. The bandgap of the outer layers
is larger than that of the inner layers to form an effective potential well. These structures
are used for optoelectronic applications such as lasers and radiation detectors. The thick-
ness of the active region can be a few nanometers. In some cases, multiple quantum wells
are formed with periodic layered structures, called superlattices, which have unique opti-
cal, electrical, and themal properties.

Example 3-7. Derive the uncertainty principle. Suppose the wavefunction is given by Eq. (3.79)
for a particle with energy �n given in Eq. (3.80). 

Solution. To find the average position of the particle, we use 

The variance of x, . With 

we obtain the standard deviation of x as

For the momentum, we use the operator . Hence,

and

We have and obtain the following expression:

(3.81)
sxsp �

U

2
ap

2n2

3
� 2b

1/2

sp � npU /L

kp2l � 3
L

0
�*(�U2)

d2�

dx2
dx � anpU

L
b

2

k pl � 3
L

0
�*a�iU

d�

dx
bdx � �iU

2np

L2 3
L

0
sin anpx

L
bcosanpx

L
bdx � 0

p S � iU('/'x)

sx � La 1
12

�
1

2n2p2
b

1/2

kx2l �
2
L 3

L

0
x2 sin 2anpx

L
bdx �

L2

3
�

L2

2n2p2

kx2l � kxl2s2
x � kx � kxll2 � kx2l � 2kxl2 
 kxl2 �

kxl � 3
L

0
�*x�dx �

2
L 3

L

0
x sin 2anpx

L
bdx �

L

2

L S 10 nm

en �
h2n2

8mL2

ELEMENTS OF STATISTICAL THERMODYNAMICS AND QUANTUM THEORY 85



Taking the smallest quantum number, n � 1, we get , which is a proof of the
uncertainty principle given in Eq. (3.9).

Next, consider a free particle in a 3-D box, . It can
be shown that the (normalized) eigenfunctions are 

(3.82)

with the energy eigenvalues:

(3.83)

where When , Eq. (3.83) can be simplified as

(3.84)

Let , then we can evaluate the number of quantum states between
, which is nothing but the degeneracy. For sufficiently large V, the quantum

states are so close to each other that the volume within the spherical shell between h and
h 
 dh is equal to the number of quantum states. Only one-octant of the sphere is consid-
ered in Eq. (3.84) because . The total volume is therefore one-eighth
of the spherical shell; hence, 

(3.85)

With and , we obtain 

(3.86)

This equation is essentially the same as Eq. (3.32), with dxdydz � V and dvxdvydvz �
4pv2dv. Equation (3.86) provides a rigid proof of Eq. (3.32), which is the translational
degeneracy. It should be noted that the classical statistical mechanics results in the same
expression for U and p, as well as the Maxwell velocity distribution for ideal gases.
However, the constant h must be included to correctly express S as in Eq. (3.41). Equation
(3.86) will also be used in Chap. 5 to study the free electron gas in metals. When using the
momentum as the variable, we have

(3.87)

Because Eq. (3.87) does not involve mass, it is also applicable to phonons and photons as
will be discussed in Chaps. 5 and 8.

3.5.3 A Rigid Rotor

The rigid rotor model can be used to study the rotational movement of diatomic molecules
as well as the movement of an electron in a hydrogen atom. Consider two particles sepa-
rated by a fixed distance as shown in Fig. 3.14. The masses of the particles arer0 � r1 
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and , respectively. Since the center of mass is at the origin, we have . The
moment of inertia is

(3.88)

where is the reduced mass. We can study the rotational movement
of the particles by considering a particle with a mass of that rotates around at a fixed dis-
tance from the origin in the and directions. In the spherical coordinates, 

(3.89)

Because , the derivative with respect to r vanishes. The potential energy is zero for
free rotation. By setting the mass to be and in Eq. (3.72) and noticing that

, we obtain

(3.90)

This partial differential equation can be solved by separation of variables. We get two
ordinary differential equations by letting , i.e.,

(3.91)

and (3.92)

Here, m is a new eigenvalue, and the periodic boundary conditions shall be applied to
, respectively. The solution of Eq. (3.91) is readily obtained as
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FIGURE 3.14 Schematic of a rotor consisting of two particles.



with , to satisfy the periodic boundary conditions: .
A transformation, , can be used so that Eq. (3.92) becomes

(3.94)

Because is defined from 0 and , we have �1 � x � 1. In order for Eq. (3.94) to have
solutions that are bounded at , , where l is an integer that is greater
than or at least equal to the absolute value of m. Therefore, the energy eigenvalues are 

, (3.95)

Equation (3.94) is called the associated Legendre differential equation. The solutions are
the associated Legendre polynomials given as

(3.96)

Finally, after normalization, the standing wavefunctions can be expressed as 

(3.97)

Discussion. It can be seen that Eq. (3.95) is identical to Eq. (3.52). The energy level is
determined by the principal quantum number l. On the other hand, for each l, there are

quantum states corresponding to each individual m, because m can take 0, �1, �2
up to �l. This means that the degeneracy . When the two atoms are identical,
such as in a nitrogen molecule, the atoms are indistinguishable when they switch positions.
The degeneracy is reduced by a symmetry number, as given in the expression of Eq. (3.53).
It should be noted that the nuclear spin degeneracy is important for hydrogen (see
Problem 3.27).1

3.5.4 Atomic Emission and the Bohr Radius

A hydrogen atom is composed of a proton and an electron. Since the mass of the proton is
much greater than that of the electron, it can be modeled as the electron moving around the
nucleus. The mass of the electron is , and the position of the elec-
tron can be described in the spherical coordinates as . The force exerted on the
electron is Coulomb’s force, which gives a potential field

(3.98)

where , with the electron charge e � 1.602 � 10�19 C
and the dielectric constant . Let . In
doing the separation of variables, we notice that the potential is independent of ,
and the total energy is equal to the sum of the rotational energy and the energy associated
with r. The eigenvalues for the rotational energy are given in Eq. (3.95). Using Eq. (3.72)
and Eq. (3.89), we can write the equation for as follows: 
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which is the associated Laguerre equation, and its solutions are the associated Laguerre
polynomials. The solutions give the energy eigenvalues as5,8

(3.100)

where the negative values are used for convenience to show that the energy increases with
the principal quantum number n. For n � 1, , as shown in Fig. 3.15.� meC

2
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FIGURE 3.15 Electron orbits (left) and energy levels (right) in a hydrogen atom. The ionization

energy is the energy required for an electron to escape the orbit.

Note that 1 eV � . When the electron is in a higher energy state, it has a
tendency of relaxing to a lower energy state by spontaneously emitting a photon, with pre-
cisely the same energy as given by the energy difference between the two energy levels:

(3.101)

The emission or absorption of photons by electrons is called electronic transitions. When
i � 3 and j � 1, we have , corresponding to the wavelength of 102.6 nm
(ultraviolet), which is the second line in the Lyman series. When i � 3 and j � 2, we have

, corresponding to the wavelength of 656.4 nm (red), which is the first line in
the Balmer series. A more detailed description of the atomic emission lines can be found
from Sonntag and van Wylen.2

The next question is: What is the radius of a particular electron orbit? This is an impor-
tant question because it gives us a sense of how small an atom is. When a particle is in an
orbit, the classical force balance gives that

(3.102)

which is to say that , and the sum of the kinetic and potential energies is

(3.103)

Equations (3.100) and (3.103) can be combined to give discrete values of the radius of each
orbit in the following:
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When the electron is in the innermost orbit, the radius is given by a0 � e0h
2/(pme e2) �

0.0529 nm, which is called the Bohr radius. Therefore, the hydrogen atom in its ground
state can be considered as having a diameter of approximately 1 Å (Angstrom), or 0.1 nm.
Niels Bohr (1885–1962) was a Danish physicist who received the Nobel Prize in Physics
in 1922 for his contributions to the understanding of the structure of atoms and quantum
physics. One should accept the quantum interpretation of the electron radius as a charac-
teristic length, not the exact distance that the electron would rotate around the nucleus in
the same manner a planet rotates around a star. 

3.5.5 A Harmonic Oscillator

The last example of quantum mechanics is the linear spring as shown in Fig. 3.16. Consider
a 1-D oscillator with a mass m and the spring force . The origin can be selected
such that . It can be shown that the potential is
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FIGURE 3.16 A linear spring.

From classical mechanics, we can solve Newton’s equation to obtain the
solution

(3.106)

where constant A is the amplitude, constant is the initial phase, and parameter
is the angular resonance frequency.

It can be shown that the total energy is a constant and the maximum
displacement is A. The velocity is the largest at and zero at .

The Schrödinger wave equation can be written as

(3.107)

with the boundary condition being . The constants can be grouped by
using and . Then Eq. (3.107) can be transformed by using

and to

(3.108)

This is the Hermite equation, and the solutions are Hermite polynomials given by

(3.109)Hn(j) � (�1)nej2 dn

djn  ae�j2b

d2Q

dj2 � 2j
dQ

dj

 aa
b

� 1bQ � 0

�(x) � Q(j) exp (� j2/2)j � !bx
b � !Km/Ua � 2me/U2

�(x) � 0 at x S � `

U2

2m

d2�

dx2 
 ae �
Kx2

2
b� � 0

x � �Ax � 0
e � EK 
 EP � KA2/2

v � !K/m
f0

x � A sin (vt 
 f0)

mx
$


 Kx � 0



when and must satisfy the eigenvalue equation:

(3.110)

The normalized wavefunctions can be written as

(3.111)

The energy eigenvalues can be obtained from Eq. (3.110) as

(3.112)

The above equation was used to study the vibrational contributions in diatomic molecules;
see Eq. (3.59). The 1/2 term was not included in Planck’s original derivation of the black-
body radiation function. The significance lies in that if the ground-state energy is zero,
both its kinetic energy and potential energy must be zero, suggesting that both the posi-
tion and the momentum must be zero. This would violate the uncertainty principle. As
mentioned earlier, in classical mechanics, the particle is limited to the region �A � x � A,
where A is the amplitude given in Eq. (3.106). This is not the case in the quantum theory,
as shown in Fig. 3.17, for the first few energy levels and the associated wavefunctions.
Notice that probability density function is nonzero even though the absolute value of
x exceeds . !2e/K

�2

en � an 

1
2
bU2K/m � an 


1
2
bUv

�n(x) � a2b/p
n!2n b

1/2

Hn(b
1/2x) exp a�bx2

2
b

a

b
� 1 � 2n, n � 0, 1, 2, c
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FIGURE 3.17 Wavefunctions and probability density functions for vibration energy levels.

The application of quantum theory allows us to predict the specific heat of ideal gases.
In deriving the equations shown in Sec. 3.3.3, we have largely neglected nonlinear and
anharmonic vibration, electronic contribution, and dissociation. These factors may become
important at very high temperatures. The degeneracy due to the coupling of rotation and
vibration can cause multiple absorption/emission lines in the infrared in polyatomic mole-
cular gases, as shown in Fig. 3.12.



3.6 EMISSION AND ABSORPTION OF PHOTONS
BY MOLECULES OR ATOMS

We have learned that the emission of photons is associated with transitions from a higher
energy level to a lower energy level that reduces the total energy of the molecular system.
The reverse process is the absorption of photons that increases the energy of the system
through transitions from lower energy levels to higher energy levels. As discussed earlier,
an electronic transition requires a large amount of energy, and the emitted or absorbed pho-
tons are at frequencies from deep ultraviolet (l < 100 nm) to slightly beyond the red end
of the visible region (l< 1 mm). On the other hand, vibration or rotation-vibration modes
lie in the mid-infrared (2.5 mm � l � 25 mm), while their overtones or higher-order har-
monics lie in the near-infrared region (0.8 mm � l� 2.5 mm). Rotational modes alone may
be active in the far-infrared and microwave regions (l� 25 mm). Transitions between dif-
ferent energy levels of the molecules or atoms are called bound-bound transitions, because
these energy states are called bound states. Bound-bound transitions happen at discrete fre-
quencies due to quantization of energy levels. Dissociation or ionization can also occur at
high temperatures. The difference between adjacent energy levels is very small because the
electrons can move freely (i.e., not bound to the atom or the molecule). Therefore, free-free
or bound-free transitions happen in a broadband of frequencies. In gases, these broader
transitions occur only at extremely high temperatures.

If a molecule at elevated energy states were placed in a surrounding at zero absolute
temperature (i.e., empty space), it would lower its energy states by emitting photons in all
directions until reaching its ground state. However, the emission processes should occur
spontaneously regardless of the surroundings. Suppose the molecule is placed inside an
isothermal enclosure, after a long time, the energy absorbed must be equal to that emitted
to establish a thermal equilibrium with its surroundings. The thermal fluctuation of oscil-
lators is responsible for the equilibrium distribution, i.e., Planck’s law developed in 1990.
Einstein examined how matter and radiation can achieve thermal equilibrium in a funda-
mental way and published a remarkable paper, “On the quantum theory of radiation” in
1917.11 The interaction of radiation with matter is essentially through emission or absorp-
tion at the atomistic dimension, although solids or liquids can reflect radiation and small
particles can scatter radiation. Einstein noticed that spontaneous emission and pure absorp-
tion (i.e., transition from a lower level to a higher level by absorbing the energy from the
incoming radiation) alone would not allow an equilibrium state of an atom to be established
with the radiation field. He then hypothesized the concept of stimulated or induced emis-
sion, which became the underlying principle of lasers. In a stimulated emission process, an
incoming photon interacts with the atom. The interaction results in a transition from a higher
energy state to a lower energy state by the emission of another photon of the same energy
toward the same direction as the incoming photon. Saying in other words, the stimulated
photon is a clone of the stimulating photon with the same energy and momentum. Whether
an incoming photon will be absorbed, will stimulate another, or will pass by without any
effect on the atom is characterized by the probabilities of these events. Understanding the
emission and absorption processes is important not only for coherent emission but also for
thermal radiation.12 While more detailed treatments will be given in later chapters, it is
important to gain a basic understanding of the quantum theory of radiative transitions and
microscopic description of the radiative properties.

Consider a canonical ensemble of single molecules or atoms, with two nondegenerate
energy levels, e1 and e2 ( ), in thermal equilibrium with an enclosure or cavity at
temperature T. Suppose the total number of particles is N, and let N1 and N2 be the number
of particles at the energy level corresponding to e1 and e2, respectively. These particles do not
interact with each other at all. The concept of canonical ensemble can be understood as if each
cavity has only one atom, but there are N single-atom cavities with one atom in each cavity.
As shown in Fig. 3.18, there are three possible interaction mechanisms, i.e., spontaneous

e2 � e1
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emission, stimulated emission, and stimulated or induced absorption. Here, stimulated
absorption refers to the process that the energy of the photon is absorbed, and consequently,
the transition occurs from the lower energy level to the higher energy level. In a stimulated
absorption process, the number of photons before the process is 1 and after the process is

. In a stimulated emission process, the number of photons beforehand is 1 and
afterward is . Therefore, stimulated emission is regarded also as negative
absorption. Each of the photons involved in this process will have an energy equal to

and a momentum . 
Transition from the higher energy level to the lower energy level cannot take place if

the population of atoms on the higher energy level, , and vice versa. Einstein fur-
ther assumed that the probability of transition is proportional to the population at the initial
energy level, and spontaneous transition should be independent of the radiation field.
Hence, the rate of transition from to due to spontaneous emission can be written as

(3.113)

where A is Einstein’s coefficient of spontaneous emission. On the other hand, the transition
rate due to stimulated emission should also be proportional to the energy density of the radi-
ation field . Thus,

(3.114)

Stimulated absorption will cause a transition rate that is proportional to and :

(3.115)

In Eq. (3.114) and Eq. (3.115), constants B and C are Einstein’s coefficients of stimulated
emission and absorption, respectively. The combination of these processes must maintain
a zero net change of the populations at equilibrium. Thus,

(3.116)

Atoms or molecules in a thermal equilibrium are described by the Maxwell-Boltzmann
statistics of molecular gases given by Eq. (3.26): . Therefore,
Eq. (3.116) can be rewritten as 

(3.117)u(n,T) �
A/B

(C/B)ehn/kBT � 1

N1/N2 � e(e2�e1)/kBT � ehn/kBT
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adN1

dt
b
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adN1
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b

A
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dt
b
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� AN2
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FIGURE 3.18 Illustration of the emission and absorption processes. (a) Spontaneous emission.
(b) Stimulated emission. (c) Stimulated absorption.



Comparing this equation with Planck’s distribution, Eq. (8.41) in Chap. 8, we see that B �
C and . The two-level system can easily be generalized to arbitrary energy
levels to describe the fundamental emission and absorption processes. The emission and
absorption processes not only exchange energy between the field and the atom but also
transfer momentum. How will an atom move inside a cavity? The phenomenon of a mole-
cule or atom in a radiation field is like the Brownian motion, in which the radiation quanta
exert forces on the molecule or the atom as a result of momentum transfer during each emis-
sion or absorption process. Consequently, the molecule or the atom will move randomly
following Maxwell’s velocity distribution at the same temperature as the radiation field. The
equilibrium radiation field, which obeys the quantum statistics (i.e., BE statistics) that was
not realized until 1924, and the motion of a molecular gas, which obeys classical statistics,
can be coupled to each other to become mutual equilibrium. Einstein also asserted that each
spontaneously emitted photon must be directional, while the probability of spontaneous
emission should be the same in all directions. In fact, Einstein’s 1917 paper complemented
Planck’s 1900 paper on radiation energy quanta and his own 1905 paper on photoelectric
emission and, thus, provided a complete description of the quantum nature of photons,
although the name “photon” was not coined until 1928.

At moderate temperatures, the population at higher energy states is too small for stim-
ulated emission to be of significance for optical and thermal radiation. Thus, the absorption
comes solely from induced absorption. When stimulated emission is important, the contri-
butions of stimulated emission and stimulated absorption cannot be separated by experi-
ments. The effect is combined to give an effective absorption coefficient by taking
stimulated emission as negative absorption, whereas the emission of radiation includes
solely the spontaneous emission.12 The effective absorption coefficient is proportional to
the population difference, . On the other hand, if a population inversion can be cre-
ated and maintained such that , the material is called a gain medium or active
medium. In an active medium, stimulated emission dominates stimulated absorption so that
more and more photons will be cloned and the radiation field be amplified coherently. The
principle of stimulated emission was applied in 1950s and early 1960s for the development
of maser, which stands for microwave amplification by stimulated emission of radiation,
and laser, which stands for light amplification by stimulated emission of radiation.13 Lasers
have become indispensable to modern technologies and daily life.

3.7 ENERGY, MASS, AND MOMENTUM
IN TERMS OF RELATIVITY

Special theory of relativity or special relativity predicts that energy and mass can be converted
to each other. If we retain the definition of mass as in the classical theory, only energy con-
servation is the fundamental law of physics. The mass does not have to be conserved. On the
other hand, for processes that do not involve changes below the atomic level or inside the
nuclei, the mass can indeed be considered as conserved. According to the special relativity,
the rest energy of a free particle is related to its mass and the speed of light by

(3.118)

The rest energy is simply the energy when the particle is not moving relative to the refer-
ence frame. Suppose the free particle is moving at a velocity v in a given reference frame,
then its momentum is given by14

(3.119)p �
mv

21 � v2/c2

E0 � mc2

N2 � N1

N1 � N2

A/B � 8phn3/c3
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When v V c, Eq. (3.119) reduces to the classical limit, i.e., . It can be seen that
for a particle with nonzero mass, its momentum would increase as without any
bound. There is no way we could accelerate a particle to the speed of light. If there is any-
thing that travels with the speed of light, it has to be massless, i.e., m � 0. An example of
massless particles is the light quanta or photons. The kinetic energy can be evaluated
by integrating the work needed to accelerate a particle, i.e.,

Using Eq. (3.119), we find that

(3.120)

When v V c, we have so that in the
low-speed limit. In the relativistic limit, however, EK will be on the order of . Because
energy is additive, the total energy of a moving free particle is 

(3.121)

Obviously, the energy of a particle would become infinite if its speed approaches the
speed of light, unless its mass goes to zero. It can be shown that E2 � E 2

0 � m2c4/(1 �
v2/c2) � m2c4 � p2c2, where p is given in Eq. (3.119). This gives another expression of
energy in terms of the rest energy, the momentum, and the speed of light as follows:

(3.122)

It should be noted that, in general, is not equal to the kinetic energy. For v V c, the
total energy is approximately the same as the rest energy. Comparing Eq. (3.119) and
Eq. (3.121), we notice that . Therefore, when , we see that 
(which is unbounded unless ). For a photon that travels at the speed of light, in order
for the above equations to be meaningful, we must set its mass to zero. From Eq. (3.122),
we have for photons that

(3.123)

which is the same as Eq. (3.7) in Sec. 3.1.3. By noting that , we obtain

(3.124)

The kinetic energy of a photon is or since its rest energy is zero. One should not
attempt to calculate the kinetic energy of a photon by , because photons are not only
massless but also relativistic particles, for which the energy and momentum must be
evaluated according to the above mentioned equations. While photons do not have mass,
it has been observed that photons can be used to create particles with nonzero mass or
vice versa, as in creation or annihilation reactions. High energy physics has proven that
mass is not always conserved. Furthermore, energy and mass can be interconverted. A
small amount of mass can be converted into a large amount of energy, as in a nuclear
reaction.
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3.8 SUMMARY

This chapter started with very basic independent particle systems to derive the three major
statistics, i.e., the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. The clas-
sical and quantum statistics were then applied to thermodynamic systems, providing micro-
scopic interpretations of the first, second, and third laws of thermodynamics, as well as
Bose-Einstein condensate. The velocity distribution and specific heat of ideal gases were
explained based on the semi-classical statistics, followed by a brief description of quantum
mechanics to understand the quantization of translational, rotational, and vibrational modes.
The fundamental emission and absorption processes of molecules or atoms were discussed
along with the concept of stimulated emission. Finally, matter-energy conversion was
described within the framework of the relativistic theory. While most of the explanations
in this chapter are semi-classical and somewhat oversimplified, it should provide a solid
background to those who did not have a formal education in statistical mechanics and quan-
tum physics. These materials will be frequently referenced in the rest of the book.
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PROBLEMS

3.1. For a rectangular prism (i.e., a cuboid) whose three sides are x, y, and z if , find
the values of x, y, and z so that the volume of the prism is maximum.

x 
 y 
 z � 9
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3.2. Make a simple computer program to evaluate the relative error of Stirling’s formula: ln x! <
x ln x � x for x � 10, 100, and 1000.

3.3. For each of the following cases, determine the number of ways to place 25 books on 5 shelves
(distinguishable by their levels). The order of books within an individual shelf is not considered.
(a) The books are distinguishable, and there is no limit on how many books can be put on each shelf.
(b) Same as (a), except that all the books are the same (indistinguishable).
(c) The books are distinguishable, and there are 5 books on each shelf.
(d) The books are distinguishable, and there are 3 books on the 1st shelf, 4 on the 2nd, 5 on the 3rd,

6 on the 4th, and 7 on the 5th.

3.4. For each of the following cases, determine the number of ways to put 4 books on 10 shelves (dis-
tinguishable by their levels). Disregard their order on each shelf.
(a) The books are distinguishable, and there is no limit on how many books you can place on each shelf.
(b) Same as (a), but there is a maximum of 1 book on any shelf.
(c) Same as (a), except that the books are identical (indistinguishable).
(d) Same as (b), except that the books are identical.

3.5. A box contains 5 red balls and 3 black balls. Two balls are picked up randomly. Determine the
following:
(a) What’s the probability that the second ball is red?
(b) What’s the probability that both are red?
(c) If the first one is black, what is the probability that the second is red?

3.6. Suppose you toss two dice, what’s the probability of getting a total number (a) equal to 5 and
(b) greater than 5?

3.7. Draw 5 cards from a deck of 52 cards. 
(a) What is the probability of getting a royal flush? 
(b) What is the probability of getting a full house? [A royal flush is a hand with A, K, Q, J, and 10 of

the same suit. A full house is a hand with three of one kind and two of another (a pair).]

3.8. For a Gaussian distribution function, f (x) � a exp[�(x �m)2], where a andm are positive constants. 
(a) Find the normalized distribution function F(x).
(b) Show that the mean value . 
(c) Determine the variance uvar and the standard deviation s.

3.9. The speed distribution function for N particles in a fixed volume is given by 
where V (� 0) is the particle speed, and A and B are positive constants. Determine: 
(a) The probability density function F(V).
(b) The number of particles N in the volume. 
(c) The minimum speed Vmin and maximum speed Vmax.
(d) The most probable speed where the probability density function is the largest. 
(e) The average speed and the root-mean-square average speed .

3.10. Six bosons are to be placed in two energy levels, each with a degeneracy of two. Evaluate the
thermodynamic probability of all arrangements. What is the most probable arrangement? 

3.11. Four fermions are to be placed in two energy levels, each with a degeneracy of four. Evaluate
the thermodynamic probability of each arrangement. What is the most probable arrangement?

3.12. Derive the Fermi-Dirac distribution step by step. Clearly state all assumptions. Under which
condition, can it be approximated by the Maxwell-Boltzmann distribution?

3.13. What is the Boltzmann constant and how is it related to the universal gas constant? Show that
the ideal gas equation can be written as . What is the number density of air at standard con-
ditions (1 atm and 25�C)?

3.14. How many molecules are there per unit volume (number density) for a nitrogen gas at 200 K
and 20 kPa? How would you estimate the molecular spacing (average distance between two adjacent
molecules)?

3.15. Use Eq. (3.28a) and to show that .

3.16. Show that and for all the three statistics. [Hint: Follow the discussion
in Sec. 3.2 with a few more steps.]

3.17. Consider 10 indistinguishable particles in a fixed volume that obey the Bose-Einstein statistics.
There are three energy levels with , where “eu” refers to a
certain energy unit. The degeneracies are , respectively.g0 � 1, g1 � 3, and g2 � 5

e1 � 1.5 eu, and e2 � 2.5 eue0 � 0.5 eu,

a � �m/kBTb � 1/kBT

b � 1/kBT1/T � ('S/'U)V,N

P � nkBT

Vrms � 2V 2V

f (V) � AV(B � V)/B3,

x � m
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(a) If the degeneracy were not considered, in how many possible ways could you arrange the particles
on the three energy levels?

(b) You may notice that different arrangements may result in the same energy. For example, both the
arrangement with and the arrangement with 
yield an internal energy U � 7 eu. How many arrangements are there with U � 9 eu? Calculate
the thermodynamic probability for all macrostates with U � 9 eu. 

(c) The ground state refers to the state corresponding to the lowest possible energy of the system.
Determine the ground-state energy and entropy. What is the temperature of this system at the
ground state?

(d) How many microstates are there for the macrostate with U � 25 eu?

3.18. Consider a system of a single type of constituents, with N particles (distinguishable from the
statistical point of view) and only two energy levels e0 � 0 and e1 � e (nondegenerate).
(a) What is the total number of microstates in terms of N. How many microstates are there for the

macrostate that has energy U � (N � 1)e? Show that the energy of the most probable macrostate
is Ne/2.

(b) What are the entropies of the states with U � 0 and U � (N � 1)e. Sketch S as a function of U.
Comment on the negative temperature, . Is it possible to have a system with
a negative absolute temperature?

3.19. A system consists of six indistinguishable particles that obey Bose-Einstein statistics with two
energy levels. The associated energies are e0 � 0 and e1 � e, and the associated degeneracies are g0 � 1
and g1 � 3. Answer the following questions:
(a) How many possible macrostates are there? How many microstates corresponding to the macrostate

with three particles on each energy level?
(b) What is the most probable macrostate, and what are its corresponding energy U and thermody-

namic probability �?
(c) Show that at 0 K, both the energy and the entropy of this system are zero. Also, show that for this

system the entropy increases as the energy increases.

3.20. From the Sackur-Tetrode equation, show that .

3.21. Write U, p, A, and S in terms of the partition function Z. Express H and G in terms of the par-
tition function Z. For an ideal monatomic gas, express H and G in terms of T and P.

3.22. For an ideal diatomic gas, the partition function can be written as Z � Zt Zr Zv Ze ZD, where
Ze � ge0 is the degeneracy of the ground electronic level, and ZD � exp (�D0/kBT) is the chemical par-
tition function that is associated with the reaction of formation. Here, ge0 and D0 can be regarded as
constants for a given material. Contributions to the partition function beside the translation are due to
internal energy storage and thus are called the internal contribution, i.e., Zint = ZrZvZeZD. Find the
expressions of U, P, A, S, H, and G in terms of N, T, and P (or V) with appropriate constants, assum-
ing that the temperature TW �r and is comparable with �v.

3.23. For an ideal molecular gas, derive the distribution function in terms of the kinetic energy e �
mv2/2, i.e., f(e).

3.24. Prove Eq. (3.48), Eq. (3.49a) and Eq. (3.50).

3.25. Evaluate and plot the Maxwell speed distribution for Ar gas at 100, 300, and 900 K. Tabulate
the average speed, the most probable speed, and the rms speed at these temperatures.

3.26. A special form of the Euler-Maclaurin summation formula is

Consider the rotational partition function,

and show that

which is Eq. (3.55) for s� 1.
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3.27. Because of the nuclear spin degeneracy, hydrogen H2 gas is consistent of two different types:
ortho-hydrogen and para-hydrogen. The rotational partition functions can be written, respectively, as

and

so that .

Evaluate the temperature-dependent specific heat of each of the two types of hydrogen, which can be
separated and stay separated for a long time before the equilibrium distribution is restored. Calculate
the specific heat of hydrogen in the equilibrium distribution as a function of temperature. The ratio
Zr,ortho/Zr,para is the same as the equilibrium ratio of the two types and varies from 0 at very low tem-
peratures to 3 near room temperature.

3.28. Calculate the specific heat and the specific heat ratio for nitrogen N2 at 30, 70, 300,
and 1500 K. Assume the pressure is sufficiently low for it to be an ideal gas.

3.29. Calculate the specific heat and the specific heat ratio for oxygen O2 at 50, 100, 300,
and 2000 K. Assume the pressure is sufficiently low for it to be an ideal gas.

3.30. Estimate the mole and mass specific heats of CO gas at 100, 300, and 3000 K. Show in a spe-
cific heat versus temperature graph the contributions from different modes.

3.31. (a) How many rotational degrees of freedom are there in a CO2 molecule and in a H2O molecule?
(b) If the temperature of a low-pressure CO2 gas is raised high enough to completely excite its rota-

tional and vibrational modes, what will be its specific heats cv and cp? Express your answer in both
kJ/(kg � K) and kJ/(kmol � K).

3.32. Compute and plot the temperature-dependent specific heat for the following ideal gases and
compare your results with tabulated data or graphs: (a) CO2, (b) H2O, and (c) CH4.

3.33. Do a literature search to discuss the following topics: (a) the significance of partition functions,
(b) the different types of statistical ensembles, and (c) statistical fluctuations.

3.34. We have discussed the translational degeneracy dg in a 3-D space with a volume V, as given in
Eq. (3.85). Consider the situation when the particle is confined in a 2-D square potential well. Find the
proper wavefunctions and the energy eigenvalues. Assuming the area A is very large, find the transla-
tional degeneracy dg in terms of A, m, e, and de.

3.35. Estimate the speed an electron needs in order to escape from the ground state of a hydrogen
atom. What is the de Broglie wavelength of the electron at the initial speed? If a photon is used to knock
out the electron in the ground state, what would be the wavelength of the photon? Why is it inappropri-
ate to consider the electron movement in an atom as an analogy to the movement of Mars in the solar
system?

3.36. For the harmonic oscillator problem discussed in Sec. 3.5.5. Show that Eq. (3.111) is a solu-
tion for Eq. (3.107) for n � 0, 1, and 2. Plot to discuss the differences between classi-
cal mechanics and quantum mechanics.
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KINETIC THEORY AND
MICRO/NANOFLUIDICS

Statistical mechanics involves determination of the most probable state and equilibrium
distributions, as well as evaluation of the thermodynamic properties in the equilibrium
states. Kinetic theory deals with the local average of particle properties and can be applied
to nonequilibrium conditions to derive transport equations.1–7 Kinetic theory, statistical
mechanics, and molecular dynamics are based on the same hypotheses; they are closely
related and overlap each other in some aspects. Knowledge of kinetic theory is important
to understanding gas dynamics, as well as electronic and thermal transport phenomena in
solid materials.

In this chapter, we first introduce the simple kinetic theory of ideal gases based on
the mean-free-path approximation. While it can help us obtain the microscopic formu-
lation of several familiar transport equations and properties, the simple kinetic theory is
limited to local equilibrium and, hence, is good only for time durations much longer
than the mechanistic timescale, called the relaxation time. The advanced kinetic theory
is based on the Boltzmann transport equation (BTE), which will also be presented in this
chapter. The BTE is an integro-differential equation of the distribution function in terms
of space, velocity, and time. It takes into account changes in the distribution function
caused by external forces and collisions between particles. Many macroscopic phenom-
enological equations, such as Fourier’s law of heat conduction, the Navier-Stokes equa-
tion for viscous flow, and the equation of radiative transfer for photons and phonons,
can be derived from the BTE, under the assumption of local equilibrium. Finally, in the
last section of this chapter, we present the application of kinetic theory to the flow of
dilute gases in micro/nanostructures and the associated heat transfer. The application of
kinetic theory to heat conduction in metals and dielectrics will be discussed in forth-
coming chapters.

4.1 KINETIC DESCRIPTION OF DILUTE GASES

In this section, we will introduce the simple kinetic theory of ideal molecular gases. The
purpose is to provide a step-by-step learning experience leading to more advanced topics.
There are several hypotheses and assumptions in kinetic theory of molecules.

• Molecular hypothesis: Matter is composed of small discrete particles (molecules or
atoms); any macroscopic volume contains a large number of particles. At 25°C and 1 atm,
1-�m3 space of an ideal gas contains 27 million molecules.

CHAPTER 4
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• Statistic hypothesis: Time average is often used since any macroscopic observation takes
much longer than the characteristic timescale of molecular motion (such as the average
time lapse between two subsequent collisions of a given molecule).

• Kinetic hypothesis: Particles obey the laws of classical mechanics.

• Molecular chaos: The velocity and position of a particle are uncorrelated. The velocities
of any two particles are not correlated.

• Ideal gas assumptions: Molecules are rigid spheres resembling billiard balls. Each mole-
cule has a diameter d and a mass m. All collisions are elastic and conserve both energy and
momentum. Molecules are widely separated in space (i.e., a dilute gas). Intermolecular
forces are negligible except during molecular collisions. The duration of collision is neg-
ligible compared with the time between collisions. No collision can occur with more than
two particles.

The general molecular distribution function is f(r, v, t), which is a function of space,
velocity, and time. The distribution function gives the particle (number) density in the phase
space at any time. Therefore, the number of particles in a volume element of the phase space is

dN � f(r, v, t)dxdydzdvxdvydvz � f(r, v, t)dVdv (4.1)

where we have used v for the velocity space (dv � dvxdvydvz). Integrating Eq. (4.1) over
the velocity space gives the number of particles per unit volume, or the number density, as 

(4.2)

Note that the density is r(r, t) � m ⋅ n (r, t), where m is the mass of a particle. The total
number of particles inside the volume V as a function of time is then

(4.3)

In a thermodynamic equilibrium state,

f(r, v, t) � f(v) (4.4)

which is independent of space and time. Any intensive property will be the same everywhere.

4.1.1 Local Average and Flux

Let � (r, v, t) be any additive property of a single molecule, such as kinetic energy
and momentum. Note that may be a scalar or a vector. The local average or simply the
average of the property is defined as

(4.5)

which is a function of r and t. The ensemble average is the average over the phase space, i.e.,

(4.6)

For a uniform gas, the local average and the ensemble average are the same.
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The transfer of across an area element dA per unit time per unit area is called the flux
of . As shown in Fig. 4.1, particles having velocities between v and v 
 dv that will passc

c
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FIGURE 4.1 Illustration of the flux of particles and quantities
through a surface.

through the area dA in the time interval dt must be contained in the inclined cylinder, whose
volume is dV � vdt cosu dA � v ⋅ n dAdt. It is assumed that dt is sufficiently small such
that particle-particle collisions can be neglected. The number of particles with velocities
between v and v 
 dv within the inclined cylinder can be calculated by

(4.7)

The flux of the property is then

Integrating over all velocities yields the total flux of :

(4.8)

Equation (4.8) gives the net flux since it is evaluated for all , or over a solid angle of
in the spherical coordinates. Very often the integration is performed over the hemi-

sphere with v � n � v cosu � 0 for positive flux or v ⋅ n � v cosu � 0 for negative flux.
When , Eq. (4.8) gives the particle flux:

(4.9)

In an equilibrium state, this integration can be evaluated using the spherical coordinates.
Noting that v ⋅ n � v cosu and f � f(v), which is independent of the direction (isotropic),
we can obtain the particle flux in the positive z direction by integrating over the hemisphere
in the velocity space, i.e.,

(4.10)J
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In writing Eq. (4.10), we have kept the vector variable in f(v) to signify that it is a
velocity distribution. One should bear in mind that the last expression is based on the
fact that f(v) is not a function of u and f. For an ideal molecular gas, f(v) is given by
the Maxwell velocity distribution, i.e., Eq. (3.43) in Chap. 3. If the integration in Eq. (4.10)
is performed over the whole sphere with u from 0 to p, we would obtain the net flux of
particles, which is zero in the equilibrium case. The average speed can be evaluated
using Eq. (4.5); hence,

(4.11)

Here, we have assumed an isotropic distribution function to obtain the last expression. The
above equation is evaluated over the solid angle of to obtain the average of all veloci-
ties. Comparing Eq. (4.10) and Eq. (4.11), we can see that

(4.12a)

For an ideal gas, since f(v) is given by the Maxwell velocity distribution, Eq. (3.44), we
obtain

(4.12b)

Because each particle has the same mass, the mass flux is given by

(4.13)

Substituting into Eq. (4.8), one obtains the kinetic energy flux . In an equi-
librium state with an isotropic distribution, the kinetic energy flux in the positive z direction
is , whereas the net kinetic energy flux is zero. Note that Eq. (4.8) is
a general equation that is also applicable to nonequilibrium and anisotropic distributions.

When , the momentum flux is a vector, which is often handled by considering
individual components. Note that the rate of transfer of momentum across a unit area is
equal to the force that the area must exert upon the gas to sustain the equilibrium.
Furthermore, the surface may be projected to three orientations, yielding a nine-component
tensor in the momentum flux:

, (4.14a)

Here, and are used interchangeably. Let , which is always posi-

tive, and for i � j and 0 for i � j. We can rewrite the above equation as

(4.14b)

where is the Kronecker delta, which is equal to 1 when and 0 when . It can be
seen that P is the normal stress or static pressure and is the shear stress, which is zero
in a uniform, stationary gas (without bulk motion). Notice that the velocity distribution in the
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vicinity of the wall is the same as that away from the wall because of the reflection by the wall.

The pressure is now related to the momentum flux, i.e., , or

(4.15)

which is Boyle’s law. Compared with the ideal gas equation, the right-hand side must be
related to temperature. In kinetic theory, temperature is associated to the mean translational
kinetic energy of the molecule, i.e.,

(4.16)

We have derived this equation from statistical mechanics in Chap. 3. The temperature
defined based on the kinetic energy of the particles is sometimes referred to as the kinetic
temperature. Combining Eq. (4.15) and Eq. (4.16), we get the ideal gas equation, ,
as expected. From the above discussion, one can see clearly how the macroscopic proper-
ties such as pressure and temperature are related to the particle distribution function. For
ideal gases at equilibrium, we have derived the Maxwell velocity and speed distributions
in Chap. 3.

Example 4-1. Show that , where is the velocity component normal to the wall, and
for equilibrium distribution.

Solution. Consider the horizontal plane shown in Fig. 4.1 as the wall, below which is a gas in
equilibrium. Multiplying Eq. (4.7) by gives the momentum of the particles with velocities
between , impinging on the wall: , which of course is equal to the
impulse on the wall: dFdt. The normal component contributes to an
impulse on the wall: , that is always positive regardless of the sign of .
However, the contributions of all parallel components cancel out due to isotropy. The pressure
can be evaluated by integrating over all velocities, i.e., . We
have used the definition of local average given by Eq. (4.5). If the distribution is isotropic, then

since . Compared

with , we obtain .
The distribution function is uniform inside the container; hence, the wall may be a physical wall or merely
an imaginary one since pressure exists everywhere in the fluid.

4.1.2 The Mean Free Path

The mean free path, defined as the average distance the particle travels between two sub-
sequent collisions, is a very important concept. It is often used to determine whether a given
phenomenon belongs to the macroscale (continuum) regime or otherwise falls in the
microscale regime when the governing equations derived under the assumption of local
equilibrium break down. One of the applications is in microfluidics, to be discussed later
in this chapter, and another is in the electrical and heat conduction in solids, which will be
studied in Chap. 6.

Consider the case in Fig. 4.2: a particle of diameter d moving at an average velocity 
(assuming all other particles are at rest). During a time interval dt, the volume swept by the
particle within d from the centerline is . The ndV particles, whose centers are
inside this volume element, will collide with the moving particle. Therefore, the frequency
of collisions, i.e., number of collisions per unit time is . The time between two sub-
sequent collisions, , is the inverse of the frequency of collision. The mean free path � ist
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the average distance that a particle travels between two subsequent collisions and is equal
to the ratio of the average velocity to the frequency of collision. Therefore, 

(4.17)

and depends only on the particle size and the number density. The average time between
two subsequent collisions is termed the relaxation time, and the average frequency of col-
lision is the scattering rate or collision rate. The scattering rate is the average number
of collisions an individual particle experiences per unit time.

For electrons whose diameters are negligible compared with that of the other particles
that scatter them, the mean free path is

(4.18)

where Ac is the scattering cross-sectional area and n is the number density of the scatter,
such as phonons or defects. Equation (4.18) also applies for the case of photons that can be
scattered by particles, such as molecules in the atmosphere. The photon mean free path is
also called the radiation penetration depth, as will be discussed in Chap. 8.

When the relative movement of particles is considered based on the Maxwell velocity
distribution, Eq. (4.17) is modified slightly for an ideal gas as follows:

(4.19)

The scattering rate, or the collision frequency, is

(4.20)

Notice that the relaxation time is an important characteristic time. It tells how quickly the
system will restore to equilibrium (at least locally), if disturbed. Table 4.1 lists the diame-
ters for typical molecules. 

Example 4-2. Calculate the mean free path for air at 25°C and 1 atm. How does it compare with
the average spacing between molecules? Find the relaxation time and the number of collisions a
molecule experiences per second. What is the speed of sound in the air? Explain why we can smell
odor far away from its source quickly.

Solution. The aver-
age spacing between molecules can be calculated from . The mean free pathL0 � n�1/3 � 3.4 nm

n � P/(kBT) � 1.0133 � 105/1.381 � 10�23/298.15 � 2.46 � 1025 m�3.
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FIGURE 4.2 Schematic used for a simple derivation of the mean free path.



calculated from Eq. (4.19) is from Table 4.1), which
is about 20 times longer than the molecular spacing. The speed of sound can be calculated

from using and . The average speed is

. Therefore, the relaxation time is . On the average,
each molecule experiences collisions, i.e., more than 7 billion collisions per second. Although
the mean free path is very small, molecules may travel for a long (absolute) distance because of the
high average speed. It does not take many molecules for the nose to detect an odor. The odor source
usually contains numerous individual molecules.

Let be the probability that a molecule travels at least between collisions. The
probability for the particle to collide within an element distance is . Thus, the prob-
ability for a free path greater than is less than by the probability of collision
between and , i.e.,

(4.21)

Therefore, . Since , integrating from 0 to yields

(4.22)

The probability density function (PDF) for the free path is given by

(4.23)

One can verify that and . Therefore, Eq. (4.23) is indeed
the free-path PDF. The probability for molecules to have a free path less than is given as 

(4.24)

Figure 4.3 shows the free-path distribution functions. It is an exponential function. In deal-
ing with radiation or photons, the mean free path is called the radiation penetration depth.
Radiation will decay exponentially with distance in an absorbing medium. The fraction of
photons that will transmit through a distance equal to the penetration depth is 1/e 37%.<
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TABLE 4.1 Molecular Diameter for Selected Molecules1

Molecular weight, M Diameter, d

Gas type (kg/kmol) (10−10 m, or Å)

H2 2 2.74
He 4 2.19
O2 32 3.64
N2 28 3.78
Air 29 3.72
CH4 16 4.14
NH3 17 4.43
H2O 18 4.58
CO2 44 4.64



4.2 TRANSPORT EQUATIONS AND PROPERTIES
OF IDEAL GASES

Consider a molecular gas at steady state but not at equilibrium, with a 1-D gradient of some
macroscopic properties. Under the assumption of local equilibrium, 

f(r, v, t) � f(, v) (4.25)

where  is the coordinate along which the gradient occurs. The average collision distance 

is defined as the separation of the planes at which particles, on the average, across a plane
located at will experience the next collision, as shown in Fig. 4.4a. It may be assumed that
particles that will cross the plane before the next collision are located in a hemisphere of
radius equal to the mean free path . The problem is how to obtain the average projected
length ( ) in the -coordinate, as shown in Fig. 4.4b. A simple calculation yields
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FIGURE 4.3 Free-path distribution functions.

FIGURE 4.4 Illustration of the concepts of (a) average planes of collision and (b) average
collision distance , with respect to the mean free path.�a



Note that the projected area is used to account for the particle flux. One can
consider the free-path distribution and integrate over all free paths. The resulting 
is the same.12

4.2.1 Shear Force and Viscosity 

Consider a gas flowing in the x direction with a velocity gradient in the y direction, as
shown in Fig. 4.5. Here, is the average or bulk velocity, which has a nonzero componentvB

�a/�
dA cos u
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FIGURE 4.5 Schematic of a fluid moving with a bulk
velocity that varies in the y direction.vB(y)

only in the x direction. The velocity due to random motion is sometimes called thermal
velocity, which follows certain equilibrium distribution with an average equal to zero. The
fact that the equilibrium distribution is followed everywhere is based on the assumption of
local equilibrium. Molecular random motion will cause an exchange of momentum
between the upper layer and the lower layer. The net effect is a tendency to accelerate the
flow in the lower layer and decelerate the flow in the upper layer. In other words, the flow
below the plane will exert a shear force to the flow above the plane and vice
versa. The average momentum of the particles is a function of y only, i.e., .
The momentum flux across the plane can be evaluated using the concept of mean
planes above and below . It may be assumed that all the molecules going upward
across the plane are from the plane. Therefore, the momentum flux
in the positive y direction is

(4.27a)

where is the molecular flux, with as the average speed without considering bulk
motion, and . Similarly, the momentum flux downward is 
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The net momentum flux, which is equal to the shear force , is
therefore

(4.28)

Comparing Eq. (4.28) with the Newton’s law of shear stress in Eq. (2.36), i.e., 
dynamic viscosity is obtained from the simple kinetic theory as

(4.29)

The above equation provides an order-of-magnitude estimate. While the density is pro-
portional to pressure, the mean free path is inversely proportional to the number density,
or density. The average velocity is a function of temperature only. Therefore, the vis-
cosity depends only on temperature and the type of molecules, but not on pressure. The
result from more detailed calculations and experiments suggests that Eq. (4.29) be mul-
tiplied by 3/2, i.e.,

(4.30)

Equation (4.30) is recommended for use in the exercises to estimate the viscosity. It should
be noted that the above discussion is based on the simple ideal gas model that each mole-
cule is a rigid (or hard) sphere and all collisions are elastic. Additional modifications have
been made to correctly account for the temperature dependence. These models will not be
discussed here, and interested readers can find them in the literature.1–7

4.2.2 Heat Diffusion

Heat conduction is due to the temperature gradient inside the medium. In an ideal molecular
gas, the random motion of molecules transports thermal energy from place to place.
Sometimes we call the particles that are responsible for thermal energy transport heat car-
riers. Similar to the argument for momentum transfer, it is straightforward to illustrate heat
diffusion in a 1-D temperature-gradient system at steady state and under local equilibrium,
using Fig. 4.6. The net energy flux across the plane is given by 

(4.31)

where is the average thermal energy per molecule and, hence, is a function of tempera-
ture. Based on the definition of specific heat

The heat flux is related to the temperature gradient as

(4.32)

which is Fourier’s law with the thermal conductivity:
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Because are functions of temperature only and is inversely proportional to , the
thermal conductivity of a given ideal gas is a function of temperature and independent of
pressure.

Comparing Eq. (4.30) with Eq. (4.33), we have . The calculated results
are consistently lower than the tabulated values for real gases. The reason is the assump-
tion that the average collision distance is the same for both momentum transport and energy
transfer. Generally speaking, molecules with a larger speed travel farther than those with a
smaller speed. Once the molecules pass the mean plane, they will persist a little while
before collision. The persistence effect is larger for energy transfer because the transla-
tional kinetic energy of a molecule is proportional to the square of the speed, while that of
momentum is proportional to the velocity components. In gases, the average collision dis-
tance is greater for energy transfer and depends on the type of gas. Extensive studies of the
similarity between have resulted in a more accurate expression for calculating the
thermal conductivity of ideal gases than the one given in Eq. (4.33). Eucken’s formula
relates the Prandtl number to the specific heat ratio as follows:6

(4.34)

Based on Eucken’s formula, the following equation is recommended to replace Eq. (4.33)
in predicting the thermal conductivity of ideal gases:

(4.35)

where can be calculated from Eq. (4.30). For a monatomic gas, and 

(4.36a)

For a diatomic gas at intermediate temperatures when the translational and rotational
modes are fully excited but no vibrational modes have been excited, we have and

(4.36b)k � 1.9mcv � 0.95rcv�v

g � 1.4

k � 2.5mcv � 1.25rcv�v

g � 5/3m

k �
9g � 5

4
cvm

Pr �
4g

9g � 5

Pr ; n/a � cpm/k

m and k

k � 0.667mcv

r�cv and v
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FIGURE 4.6 One-dimensional heat diffusion.



The results calculated from Eq. (4.35) agree reasonably well with the tabulated thermal
conductivity values of typical gases. Additional corrections are required when the temper-
ature deviates significantly from the room temperature. More complicated formulations are
needed to better account for the temperature dependence.4

Example 4-3. Calculate the viscosity and the thermal conductivity of air at 300 K and 100 kPa.
How will your answers change if the temperature is increased to 306 K and the pressure is decreased
to 50 kPa?

Solution. From Eq. (4.30), we have

It is within 1% of the measured value. From Eq. (4.36b) and ,
. This is within 5% of the measured value. Notice that 

depend on temperature only. If the change in specific heat is neglected, then . When
the temperature is increased by 2% to 306 K, both will increase by 1% regardless of the
pressure.

4.2.3 Mass Diffusion

Consider a small duct linking two gas tanks containing different types of ideal gases at
the same temperature and pressure, as shown in Fig. 4.7a. The total number density of
the mixture will be the same as that in either tank, i.e., , as illustrated
in Fig. 4.7b. Therefore,

(4.37)

Fick’s law states that 

(4.38a)

or (4.38b)

where in is called the binary diffusion coefficient or diffusion coefficient between
A and B. Notice that the molecular transfer rate and the mass transfer rate

. Similarly, we can write Fick’s law for type B molecules as

(4.39a)

or (4.39b)

Because the flux of type B molecules must balance that of type A molecules to maintain a
uniform pressure, we have 

(4.40)

Equations (4.37) through (4.40) imply that .DBA � DAB

JNA
� �JNB
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dnB

dx

m
.
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Using the microscopic descriptions of mass diffusion, one can write the positive and neg-
ative flux at a certain location using the average distance concept discussed earlier. Hence,

The result is

(4.41)

Comparing Eq. (4.41) with Eq. (4.38a), we have

(4.42)

In the case of similar molecules (such as isotopes), , which
is often called the self-diffusion coefficient. The calculation for the mean free path and the
average velocity for a mixture of dissimilar molecules is certainly more involved.
However, a simple expression can be obtained using the central distance 
and the reduced mass mr � mAmB/(mA 
 mB); that is 

(4.43)DAB �
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FIGURE 4.7 Schematic of binary diffusion between ideal gases. (a) Two reservoirs of dif-
ferent types of gas molecules connected through a duct. (b) Concentration distributions in terms
of the number densities.



Equation (4.43) is recommended for calculation of the binary diffusion coefficient.
Recall that the Schmidt number is the ratio of the momentum diffusivity to the mass dif-
fusivity, i.e.,

(4.44)

The Lewis number is defined as the ratio of the mass diffusivity to the thermal diffusivity
as follows:

(4.45)

Heat and mass transfer analogy provides a convenient way to calculate convective mass
transfer in a boundary layer. The mass transfer rate is related to the convective mass trans-
fer coefficient by

(4.46)

where is the surface area, is the density of species B, and subscripts s and signify
that the quantity is at the surface and in the free stream, respectively. Heat and mass trans-
fer analogy gives

(4.47)

Equations (4.46) and (4.47) are very useful for calculating the heat transfer during evapo-
ration demonstrated in the following example:

Example 4-4. Dry air at 30°C flows at a speed of 2 m/s over a flat plate, with an area of 3 � 3 m2,
which is maintained at 24°C. A thin layer of water is formed on the top surface where convection
occurs. Determine the heat transfer rate from the plate to the air. For water at 24°C, the saturation
pressure Psat � 3 kPa and the heat of evaporation hfg � 2445 kJ/kg.

Solution. Neglect the temperature gradient inside the water layer and radiative heat transfer. We first
evaluate air properties at 300 K and 100 kPa, as in Examples 4-2 and 4-3. The results are r� P/RT �
1.163 kg/m3, , , Pr � 0.737, and 

Hence, . From Eq. (2.40), and
. The negative sign indicates that the convection heat transfer is

from the air to the surface.

To calculate the mass transfer rate, we assume that (dry air) and 
(saturated water vapor). Using Eq. (4.43)

with T = 300 K, we can estimate the binary diffusion coefficient between air and water to be
, which is about two-thirds of the measured value:  .

Considering the simplifications made in deriving the diffusion coefficient, the agreement is rea-
sonable. Using the measured , we find and from Eq. (4.47).
The mass transfer rate , and the heat transfer rate by evaporation is

. The total heat transfer rate is the sum of evaporation and convection,
i.e., . This example suggests that evaporative cooling
is an important mechanism of heat transfer at wetted surfaces.
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4.2.4 Intermolecular Forces

Although the mean-free-path method is simple and can predict the temperature and pres-
sure dependence of the transport coefficient correctly, the rigid-elastic-sphere model does
not represent the actual collision process. Collision between molecules does not necessar-
ily occur by contact, as in the case with billiard balls. It is a force field described by the
intermolecular potential that governs the collision process between molecules. For a pair of
molecules, there exists an attractive force (i.e., the van der Waals force) between them as a
result of the fluctuating dipoles in the two molecules. This force generally varies with 1/r7

for sufficiently large r, where r is the center-to-center distance between the two molecules.
On the other hand, when the distance between the molecules becomes very small, a strong
repulsive internuclear force arises because of the overlap of electronic orbits in the atoms.
The combination of these potentials is modeled by some semi-empirical function, such as
the Lennard-Jones �6,12� potential, expressed as follows:

(4.48)

where is the intermolecular potential, is the distance between the ith and jth particles,
is a constant, and is a characteristic length. Notice that the potential has a minimum

at , where the attractive and repulsive forces balance each other. For
typical gas molecules, ranges from 0.25 to 0.4 nm. The potential function is illustrated in
Fig. 4.8. The force between the molecules is the negative gradient of the potential, i.e.,
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FIGURE 4.8 Illustration of the intermolecular potential
as a function of the distance r between two molecules.

The subscripts i and j used in Eq. (4.48) and Eq. (4.49) are
dropped for simplicity.

f(r)

The combination of Eq. (4.49) with Eq. (3.1) allows computer simulation of the tra-
jectory of each molecule when the initial position and velocity are prescribed. Although
molecular dynamics is a powerful tool for dense phases and for the study of phase change
problems, it is not very effective in dealing with dilute gases. The direct simulation



Monte Carlo (DSMC) method is an alternative to the deterministic method and has been
used extensively in gas dynamics. Additional discussions about these numerical techniques
will be given in Sec. 4.4 on microfluidics. In the next section, a more sophisticated kinetic
theory based on the Boltzmann transport equation will be presented.

4.3 THE BOLTZMANN TRANSPORT EQUATION

In addition to the rigid-sphere assumption, the simple kinetic theory is based on local equi-
librium and cannot be used to study nonequilibrium processes that happen at a timescale
much less than the relaxation time or at a length scale less than the mean free path. The
Boltzmann transport equation (BTE) is the basis of classical transport theories of molecu-
lar and atomic systems. It is not limited to local equilibrium and can be applied to small
length scales and small timescales. The equation formulated by Ludwig Boltzmann in his
original investigation of the dynamics of gases over 130 years ago has been extended to the
study of electron and phonon transport in solids, as well as radiative transfer in gases.
Macroscopic conservation and rate equations can be derived from the BTE under appro-
priate assumptions. A brief introduction of the BTE is given in this section. More detailed
coverage of the history, formulation, and solution techniques of the BTE can be found from
Chapman and Cowling,5 Tien and Lienhard,6 and Cercignani.7

Suppose at time t, a particle at the spatial location r moves with a velocity v. At ,
without collision, the particle will move to r 
 dr � r 
 vdt and its velocity becomes

. Here, is the acceleration in a body force field. Therefore, in
the absence of collision, the probability of finding a particle in the phase space does not
change with time. Therefore,

(4.50a)

where

is the gradient, and

can be considered as the gradient defined in the velocity space. Equation (4.50a) is the
Liouville equation in classical mechanics. In the absence of both body force and collision,
the substantial derivative of the distribution function is

(4.50b)

Generally speaking, particles in random motion collide with each other at very high fre-
quencies unless the density is extremely low. A major advance in the kinetic theory of gases
is the introduction of the collision term proposed by Boltzmann in the 1870s. The BTE can
be written as

(4.51)
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where the collision term can be separated into a source term and a sink term such that

(4.52)

Here, W(v, v′) is called the scattering probability, which can be understood as the fraction
of particles with a velocity v′ that will change their velocity to v per unit time due to colli-
sion. The function W depends on the nature of the scatters and is usually a complicated non-
linear function of the velocities.

The BTE is a nonlinear integro-differential equation that cannot be solved exactly.
Approximations are usually used to facilitate the solution for given applications. The relax-
ation time approximation provides an easier way to solve the BTE under conditions not too
far away from the equilibrium. It gives a linear collision term:

(4.53)

where is the equilibrium distribution and the relaxation time is often treated as independent
of the velocity. The solution of Eq. (4.53) gives ,
where is the initial time when the system deviates somewhat from the equilibrium. This sug-
gests that an equilibrium will be reached at a timescale on the order of .
Furthermore, it is collision that restores a system from a nonequilibrium state to an equilibrium
state. David Enskog proposed a successive approximation method to include higher-order scat-
tering term by introducing a small perturbation to the equilibrium distribution. This is the well-
known Chapman-Enskog method.5–7

4.3.1 Hydrodynamic Equations

The continuity, momentum, and energy equations can be derived from the BTE. Multiplying
the BTE by a molecular quantity and integrating it over all velocities, we have

(4.54)

Using the definition of local average from Eq. (4.5), the first term in the
above equation becomes

(4.55a)

Note that since the velocity components are inde-
pendent variables in the phase space. For the second term, we have

(4.55b)
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Substituting Eq. (4.55) into Eq. (4.54), we obtain

(4.56)

where the right-hand side contains a source term and a sink term. When is proportional
to the velocity to the jth power ( j � 0, 1, 2), or the jth moment, the source and sink terms
in Eq. (4.56) cancel out when reaction is not considered, and the gas particles can be treated
as rigid spheres.

We can substitute , the zeroth moment, into Eq. (4.56) to get the mass balance as

or (4.57a)

where is the bulk velocity. This is exactly the same as Eq. (2.41). One can extend
the above derivation to a system of multiple gas species involving chemical reaction. For
the ith species, it can be shown that

(4.57b)

where represents the net rate of creation due to reaction.
To derive the momentum equation, substitute the first moment into Eq. (4.56).

The first term becomes . The second term is more complicated. We can separate
the velocity as , where is due to the random motion and is called thermal
velocity, whose average is zero. Therefore, , where

is a dyadic whose array is a second-order tensor. In fact, is nothing but the stress
tensor given in Eq. (4.14a). Because and the velocity is an independent variable, both

and vanish. The last term is simply . The combination of all the terms gives

Applying the mass balance equation, we can simplify the momentum equation as

(4.58)

The stress tensor can be obtained from Eq. (4.14b). When Stokes’ hypothesis is used to sim-
plify the constitutive relations between the stresses and the velocity gradients of a viscous
fluid, we have

(4.59)

where , and is the velocity component of the
bulk velocity . Substituting Eq. (4.59) into Eq. (4.58), one obtains exactly the same result
as Eq. (2.42). The derivation is left as an exercise (see Problem 4.12).

Next, we derive the energy equation for viscous flow of a monatomic gas, using the sec-
ond moment. because only the random motion contributes to the internal 
energy. The first term in Eq. (4.46) becomes , where u is the mass specific internal
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where JE � n fvRed is the energy flux vector to be discussed further in Sec. 4.3.2. Notice

that and 
, which can be considered the product of the momentum flux and the bulk velocity

gradient. This tensor product can be calculated according to . For

the force term, we have . The energy conservation equation
can be expressed as

After it is simplified using the continuity equation, we have

(4.60)

The left-hand side consists the transient term and the advection term. Among the two terms
on the right-hand side, the first one corresponds to the energy transfer by heat diffusion, and
the second one includes the pressure effect as well as the viscous dissipation. It can be
shown that Eq. (4.60) is the same as Eq. (2.43) (see Problem 4.13). In a stationary medium
with , Eq. (4.60) reduces to the heat diffusion equation, (see
Problem 4.14). In the earlier derivations, the velocity is taken as an independent variable
in the distribution function. Another way of deriving the macroscopic conservation equa-
tions is to take the random velocity as the independent variable and modify the distrib-
ution function to a new one, .5

In deriving the macroscopic conservation equations, it is assumed that obeys
certain equilibrium distribution at any given location. This is the local-equilibrium
assumption, which is only valid when the mean free path is much smaller than the char-
acteristic length. For systems with dimensions comparable to or smaller than the mean
free path, the local-equilibrium assumption breaks down, as will be discussed in Sec. 4.4
and forthcoming chapters.

4.3.2 Fourier’s Law and Thermal Conductivity

The transport equations and coefficients can be obtained based on the BTE. Here, as an
example, the 1-D Fourier’s law will be derived. When the characteristic time tc is much
greater than the relaxation time and the length scale is much greater than the mean free path,
we write the BTE under the relaxation time approximation Eq. (4.53) as

Assume that the temperature gradient is in the x direction and the medium is stationary. If the
medium moves with a bulk velocity, we can set the coordinate to move at the bulk velocity
so that the local average velocity is zero. The distribution function will vary with x only, and
at steady state, we have . We further assume that f is not very far
away from equilibrium so that , which is the condition of local equilib-

rium. Therefore,
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The heat flux in the x direction is

(4.62a)

Some explanation is needed about the equilibrium distribution. Let us use Maxwell’s
velocity distribution Eq. (3.43) as an example. The distribution function can be viewed
as a function of for a given T and other parameters when integrating over
the velocity space. On the other hand, it can be viewed as a function of T only by fix-
ing , and all other parameters. This allows us to obtain , which in turn,
can be viewed as a function of in order to carry out the integration. Note

that because is the equilibrium distribution. It should also be noted
that the integration over is the same as the integration over or . Hence, the inte-
gration over equals 1/3 of the integration over . After some manipulations, we can
write

(4.62b)

which is Fourier’s law with the thermal conductivity expressed as

(4.63a)

The above integral is often converted to integration over the energy, which gives

(4.63b)

where is the density of states, which can be considered as the volume in the velocity
space per unit energy interval. If we take both the relaxation time and the velocity as their

average values that can be moved out of the integral, we have ,

which is identical to Eq. (4.33). If we assume only is independent of frequency, we can use

Maxwell’s velocity distribution Eq. (3.43) to evaluate for a

monatomic gas (see Problem 4.15). The result is in good agree-

ment with Eq. (4.36a), considering the assumption of a constant relaxation time.
Under local-equilibrium assumption and by applying the relaxation time approxima-

tion, we can write the 3-D Fourier’s law as 

(4.64)

where is already given in Eq. (4.63a) and is the thermal velocity. Equation (4.64)
proves that the first term on the right-hand side of Eq. (4.60) is indeed associated with
heat diffusion.
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4.4 MICRO/NANOFLUIDICS 
AND HEAT TRANSFER

A large number of microdevices involving fluid flow in microstructures have been
designed and built since the late 1980s. Examples are microsensors, actuators, valves, heat
pipes, and microducts used in heat engines and heat exchangers.8-10 Micro/nanofluidics
research is an active area with applications in biomedical diagnosis (lab-on-a-chip) and
drug delivery, MEMS/NEMS sensors and actuators, micropumps for ink-jet printing,
and microchannel heat sinks for electronic cooling. Many researchers are also studying
fluid flow inside nanostructures, such as nanotubes, and developing unique devices,
such as nanojets.

Under the continuum assumption, matter is continuous and indefinitely divisible.
Properties are defined as the average over elements much larger than the microscopic struc-
ture of the fluid but much smaller than the macroscopic device scale. For flow inside
micro/nanostructures, the mean free path of the fluid molecules may be comparable to or
smaller than the characteristic dimensions. The continuum assumption is often not valid
since the interaction between the molecules and the solid surfaces becomes important. In
his seminal paper in 1946, Tsien drew the attention of aerodynamicists to the study of non-
continuous fluid mechanics, for applications in high-altitude flights and vacuum systems,
which subsequently formed the field of rarefied gas dynamics.11 In the same paper, he
delineated the realms from conventional gas dynamics (i.e., continuum regime): slip flow,
“blank” (which was later called transition flow), and free molecule flow based on the ratio
of the mean free path to the characteristic length, i.e., the Knudsen number as will be dis-
cussed in the next section. 

Some of the earlier studies are still valid and can help understand fluid flow in
microstructures.12,13 On the other hand, there are several aspects that are unique to microflu-
idics, making it distinctly different from the rarefied fluid dynamics. In microstructures,
surface-to-volume ratio is much greater than that in macrostructures, and hence, surface
forces become dominant over body forces. One of the direct impacts is a significant pres-
sure drop and a greater mass flow rate than that predicted with the continuum theory.9,10

Because of the large pressure drop, the velocity is usually not very high. The Reynolds
number is significantly smaller due to the small dimensions and relatively low velocity.
The axial heat conduction, which is negligible for macroflow, may become important for
micro/nanoflow. Due to the large pressure drop, compressibility is another issue that needs
to be considered even though the speed is much less than the speed of sound. A change in
the density further complicates the pressure distribution, making it nonlinear along the
streamline. Liquid is also used in many applications such as microchannel cooling.
Furthermore, the phase change by evaporation and condensation is another important
aspect in a number of microdevices, such as micro-heat pipes. 

Although measurements in micro/nanoflow are challenging, a large number of minia-
turized flow and temperature sensors have been developed and integrated into the
microdevices to perform measurements with a high spatial resolution. Submicron polysilicon
hot-wire anemometers, hot-film shear-stress sensors, piezoresistive and diaphragm-type
pressure sensors, and submicron thermocouples are some examples.9 For flow visualiza-
tion, both x-ray and caged-dye techniques have been used to image the flow field. Micro-
particle image velocimetry (PIV) is a powerful technique for flow visualization and
sometimes for thermal measurements. In micro-PIV, small particles imbedded into the
fluid scatter pulsed laser light. A microscopic system allows the illumination and col-
lection of the scattered light into a CCD camera. The flow is illuminated at two times,
and the velocity vectors are determined based on the displacement of particles. The tem-
perature field can be determined based on the Brownian motion, i.e., random fluctuation of
the particles.14
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The next section focuses on gas flow, which can be categorized into different regimes
based on the range of the Knudsen number. Examples of slip flow and free molecule con-
duction are provided to illustrate the effect of rarefaction. More detailed research on microflu-
idics and microflow devices can be found from the monographs.14,15 Reviews of recent
studies on the heat transfer in microstructures involving liquids, evaporation, and condensa-
tion can be found from Peterson et al.16, Garimella and Sobhan17, and Poulikakos et al.18

4.4.1 The Knudsen Number and Flow Regimes

The continuum model is no longer valid when one of the geometric dimensions, called the
characteristic dimension Lc, is comparable to the mechanistic length, such as the mean free
path . This can happen when the gas is at very low pressure (rarefied) or when the char-
acteristic dimension is extremely small: from a few micrometers down to several nanome-
ters in micro- and nanochannels. As a result, boundary scattering becomes significant and
the gas molecules have a large chance to collide with the wall as compared to the collision
between molecules.

The ratio of the mean free path to the characteristic length defines an important dimen-
sionless parameter, called the Knudsen number:

(4.65)

Recall the definition of the Reynolds number and the Mach number, which are
and , where is free stream velocity and is the

speed of sound in the gas. When internal flow is considered, should be replaced by the
bulk velocity . From Eq. (4.30), . Therefore,

(4.66)

An example is in the boundary layer for flow over a flat plate at length x. The charac-
teristic length here is the boundary layer thickness d rather than x. For a laminar flow,

, or ; hence in the boundary layer,

(4.67)

The physics of fluid flow depends much on the magnitude of Kn. The local Kn determines
the degree of rarefaction and the degree of deviation from the continuum assumption. The
regimes are divided based on Kn in Table 4.2. The regime boundaries are instructive rather
than exact because they depend on more parameters about the fluid conditions. A small Kn
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TABLE 4.2 Flow Regimes Based on the Knudsen Number10

Regime Method of calculation Kn range

Continuum Navier-Stokes and energy equations with no-slip/ Kn � 0.001
no-jump boundary conditions

Slip flow Navier-Stokes and energy equations with slip/ 0.001 � Kn � 0.1
jump boundary conditions, DSMC

Transition BTE, DSMC 0.1 � Kn � 10
Free molecule BTE, DSMC Kn � 10



generally corresponds to a continuum flow (Kn � 0.001). In this regime, the Navier-Stokes
equations are applicable, the velocity of the fluid at the boundary is the same as that of the
wall, and the temperature of the fluid adjacent to the wall is the same as the surface tem-
perature. Care must be taken in regard to the compressibility. Conventionally, the flow can
be assumed incompressible if Ma � 0.3. However, in some microdevices where pressure
changes drastically, density change can be significant and thus compressibility must be
taken into consideration.

When Kn is increased from about 0.001 to 0.1, noncontinuum (slip) boundary condi-
tions must be applied. Slip flow refers to the situation when the velocity of the fluid at the
wall is not the same as the wall velocity, as shown in Fig. 4.9. In the heat transfer problem,
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FIGURE 4.9 Illustration of the velocity and temperature profiles for internal flow, in the
three regimes: 1: continuum, 2: velocity slip and temperature jump, and 3: free molecule.

the temperature of the fluid adjacent to the wall is different from that of the wall, as shown
on the right of Fig. 4.9. This is called temperature jump. In the slip/jump regime, the
Navier-Stokes equations can still be used for the flow with modified boundary conditions,
as will be discussed in the next section.

If Kn � 10, the flow is called free molecule flow that is dominated by ballistic scatter-
ing between the molecules and the surfaces. The continuum assumption breaks down com-
pletely. No local velocity or temperature of the gas can be defined for the fluid. The “slip”
velocity is the same as the velocity of the mainstream, i.e., the fluid velocity will be the
same regardless of the distance from the wall, as shown clearly in Fig. 4.9. The same is true
for the fluid temperature: no gradient exists near the wall even through there is heat trans-
fer between the wall and the gas. Molecular-based models, such as the BTE or the DSMC,
are the best to solve problems in this regime, as well as in the transition regime between
slip flow and the free molecule flow.19

In the continuum regime, numerical solution techniques include finite element method,
finite difference method, boundary element method, and so forth. In recently years, flexi-
ble mesh schemes, such as the unstructured grids or mesh-free technique, have become
popular. Commercial computational fluid dynamics (CFD) software is often available and
can be applied to complex geometries. For numerical solutions of the Boltzmann equations
and modeling fluid flow at the molecular level, both deterministic and stochastic methods
have been developed. The challenge lies in how to handle the collision terms. Relaxation
time approximation and higher-order approximations with nonlinear terms have been
applied. Lattice Boltzmann (LB) method based on mesoscopic kinetic equations has
emerged as a promising numerical technique for simulating single-phase and multiphase
flows involving complex interfacial dynamics and geometries.20 In the LB method, each
grid is a volume element that consists of a collection of particles described by the



Boltzmann distribution function. The fluid particles collide with each other as they move
under the applied force at each discrete time step. By developing a simplified version of the
kinetic equation, the LB method avoids solving the full BTE and thus reduces computa-
tional time and memory. Direct simulation of the molecular movements can be carried out
in two ways, as discussed in the following.

Molecular Dynamics (MD) considers the position and the velocity of each particle at any
time by using a deterministic approach. The molecules are assumed to obey Newton’s laws
of motion in Eq. (3.1), and their interactions are governed by the intermolecular potentials.
An example is the Lennard-Jones <6,12> potential given in Eq. (4.48) that is commonly used
directly or with some modifications. In the MD simulation, the first step is called initializa-
tion, which randomly assigns N molecules in a region of space and sets their velocities
according to some equilibrium distribution. After the initial statistical assignment, all the
remaining steps are deterministic. The time evolution of the position and the velocity of each
particle is found by integrating Newton’s equations of motion, numerically, using a small
time step. Periodic boundary conditions are often used to simulate the inlet and the outlet of
the flow. Statistical averaging, called ensemble averaging, is used to calculate the internal
energy, effective temperature, pressure, and other properties at a given time. The internal
energy is the sum of the total kinetic and potential energies. The temperature is based on the
average kinetic energy (for monatomic gases). The pressure is calculated using the virial the-
orem.18 Usually the simulation time step is on the order of femtoseconds, and it requires
thousands of time steps to simulate a process for a few picoseconds in real time. The required
computational time is proportional to the square of the number of particles N in the simula-
tion. Therefore, the MD method provides complete information of the trajectories of all par-
ticles at a great computational expense. This method is best suited for dense gases, liquids,
and solids for which a large number of particles are confined within a small volume. The MD
method is particularly useful at the nanoscale as the number of particles becomes reasonably
small and the total time steps are manageable. It can also be used to simulate boiling and
vaporization, as well as the ablation process. Note that the MD method is often the only
method available for the study of some nanoscale phenomena because no experiments could
be conducted at that time.

Considering the inefficiency in modeling dilute gases using the MD method, Bird in the
1960s established a statistical technique to model rarefied gas flow and transport processes.19

This method is called the direct simulation Monte Carlo (DSMC) method that has matured as
a powerful simulation tool, especially for transition flow and free molecule flow. Some have
combined it with continuum models to form a hybrid method for multiscale simulation.15

The principle of the DSMC method is the same as that of the MD method; however, inter-
molecular interactions are dealt with entirely on a probabilistic basis rather than the deter-
ministic basis. In the DSMC method, the space is divided into cells, each with a large number
of molecules that mimic but do not follow exactly the motion of real molecules. The motion
of particles and collisions between them are simulated via a probabilistic process using a
time step smaller than the relaxation time. The interaction between the molecules and the
boundary is also simulated according to certain statistical models. Since only a small portion
of particles are actually simulated at each time step to represent the actual molecules, the com-
putational time is proportional to N rather than N2 as in the MD method. This greatly reduces
the required computational resources, although the DSMC method is not so efficient for low
Kn flow, where continuum theory or direct solution of the BTE is more effective.

4.4.2 Velocity Slip and Temperature Jump

The interaction between the gas molecules and the wall plays a critical role when the gas
becomes rarefied. However, a fundamental understanding of such interaction is often not
available. When a molecule impinges on the wall, it will be reflected (or reemitted) after
collision with the molecules near the surface of the wall (if adsorption is neglected). If the
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reflection is specular, the tangential momentum (or velocity) will remain the same whereas
the normal momentum will be reversed. If all the molecules are specularly reflected, there
will not be any shear force or friction between the gas and the wall. However, this is not the
case for most engineering applications. Another extreme is the diffuse reflection case, in
which the molecule will acquire mutual equilibrium with the wall and be reemitted ran-
domly into the hemisphere. For a stream of molecules, the effect is such that the reflected
molecules will follow the Maxwell velocity distribution at the wall temperature. The
momentum accommodation coefficients can be defined as

(4.68)

and (4.69)

where p � mv is the momentum, the subscripts i and r represent the incident and the
reflected, and the subscript w refers to the Maxwell velocity distribution corresponding to
the surface temperature Tw.2,3 Clearly, av � av′ � 0 for specular reflection, and av � av′ �
1 for diffuse reflection. Similarly, the thermal accommodation coefficient can be defined
based on the ratio of energy differences as

(4.70a)

where e is the average energy of a molecule and ew is the energy when the molecules are in
thermal equilibrium with the wall. For diffuse reflection, the molecule is completely
accommodated by the wall, and er � ew, i.e., aT � 1. On the other hand, if the reflection is
specular, the molecule is not accommodated at all and the reflected energy will be the same
as the incident energy, i.e., aT � 0. For monatomic molecules, thermal accommodation
coefficient involves translational kinetic energy only, and the kinetic energy is proportional
to the absolute temperature. Hence, we can write the thermal accommodation coefficient in
terms of temperatures as

(4.70b)

For polyatomic molecules, it is reasonable to think that the accommodation coefficients for
translational, rotational, and vibrational degrees of freedom may be different. However, due
to the lack of information on the nature of interaction between the gas molecules and the wall,
usually no distinction is made between the accommodation coefficients for different degrees
of freedom. In addition, Eq. (4.70b) is often extended to polyatomic molecules with the
assumption that the temperature difference is sufficiently small for the specific heat to be
independent of temperature. The thermal accommodation coefficient depends on the nature
of the molecules, the molecular structure of the solid wall, the surface roughness and clean-
ness, the temperature, and the degree of rarefaction. Saxena and Joshi provide a comprehen-
sive review and data compilation of earlier works.21 The values of aT for air-aluminum and
air-steel systems range from 0.87 to 0.97. However, aT can be less than 0.02 between pure He
gas and clean metallic surfaces. Earlier measurements showed that for most engineering sur-
faces, av ranges from 0.87 to 1 for air. Arkilic et al. measured tangential momentum accom-
modation coefficients for N2, Ar, and CO2 in silicon microchannels and found that av is
between 0.75 and 0.85.22 This is possibly due to the relatively smooth crystalline silicon sur-
faces. Generally speaking, av′ is not very important and can be assumed the same as av.

Slip flow is an important regime for microchannel flows and MEMS devices. The
velocity slip and temperature-jump boundary conditions are presented in this section,
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together with some analytical solutions for simple cases. If the wall is not moving, the slip
boundary condition based on the geometry shown in Fig. 4.9 reads

(4.71)

All the derivatives and the fluid properties are evaluated at y � yb. The first term on the
right is proportional to the velocity gradient perpendicular to the flow direction, and the
second term is known as thermal creep due to the temperature gradient along the flow
direction. It should be noted that the net mass transfer (creep) is from cold region to hot
region. It can be shown that the first term goes with Kn and the second term goes with the
square of Kn. Higher-order terms can be included by expressing them as Kn raised to higher
powers and higher-order derivatives.14 The temperature-jump boundary condition reads

(4.72)

Equation (4.72) suggests that the temperature of the fluid at the wall will not be the same
as the wall temperature, as shown in Fig. 4.9. The second term on the right is due to vis-
cous dissipation caused by the slip velocity and is usually negligibly small.

Let us consider the fluid flow through a channel between two fixed parallel plates, i.e.,
the Poiseuille flow, as shown in Fig. 4.10. It is assumed that and the edge effectW � 2H
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FIGURE 4.10 Micro/nanoscale Poiseuille flow with heat transfer.

can be neglected. When is less than 0.1 or so, slip flow with temperature-jump
boundaries can be applied together with the Navier-Stokes equation and the energy equa-
tion to obtain the velocity and temperature distributions. For simplicity, assume the fluid is
incompressible and fully developed with constant properties. The momentum equation can
be written as 

(4.73)

where The symmetry requires  . The slip condition given by Eq.
(4.71) can be simplified by neglecting thermal creep and higher-order terms, i.e.,

(4.74)
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The solution gives the fully developed velocity distribution as

(4.76)

where vm is the bulk velocity, which can be expressed as

(4.77)

Define the velocity slip ratio , which is the ratio of the
velocity of the fluid at the wall to the bulk velocity. The velocity distribution can be rewritten as

(4.78)

The energy equation is simplified based on Eq. (2.43) without dissipation as follows:

(4.79a)

Let’s consider the case with a uniform wall heat flux at both plates. For thermally full
development, must not depend on x and y; hence, the term can be dropped out.
Applying the energy balance for an elementary control volume inside the fluids, we can
rewrite Eq. (4.79a) after some tedious derivations as follows:

(4.79b)

where is a dimensionless temperature. Integrating Eq. (4.79b)
yields

(4.80)

The symmetry at requires that . When the second term in Eq. (4.72)
due to viscous dissipation is neglected, the nondimensional boundary condition becomes

(4.81)

where (4.82)

Applying the boundary conditions, we obtain and . From
Eq. (4.81) and Fig. 4.10, the heat flux from the surface to the fluid can be expressed as

(4.83)

Here, is called the temperature-jump distance, which can be thought as an effective
length for heat conduction between the wall and the fluid. With the assumption of constant
properties, the dimensionless bulk temperature can be calculated by 
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The Nusselt number is defined based on the hydraulic diameter for parallel
plates, i.e., 

Substituting the integration of Eq. (4.84), one obtains after some manipulations23

(4.85)

The above equation approaches to when both z and bT become negligibly
small, i.e., in the continuum limit. Furthermore, the Nusselt number decreases monotoni-
cally as bT increases. Note that bT will be increased if the mean free path increases or if aT

decreases. On the other hand, the Nusselt number increases slightly as z increases, e.g.,
with a smaller av. In any case, both z and bT should be much smaller than unity for the slip-
jump conditions to hold. If one of the plates is insulated, while the other plate is maintained
at a uniform heat flux , the velocity distribution is the same, and the Nusselt number can
be calculated from Inman as23

(4.86)

with one insulated wall. Because there is no heat transfer, temperature jump does not occur
at the insulated surface. For a circular tube of inner diameter D, Sparrow and Lin derived
the Nusselt number for constant heat flux, which can be expressed as

(4.87)

where .24 The expressions for and are the same as in the case with

parallel plates, i.e., Eq. (4.75) and Eq. (4.82), except that for a circular tube.
Figure 4.11 illustrates the variation of the Nusselt number as the Knudsen number

changes, for air at near room temperature with a uniform heat flux, assuming different
accommodation coefficients. Note that for Poiseuille flow, and for
a circular tube. The change in the Knudsen number can be considered as the combined
effect of the pressure and the channel dimension. It should be noted that the slip-jump con-
ditions impose an upper limit on the velocity or the temperature gradient near the bound-
ary. In the continuum limit, the shear stress and the Nusselt number are infinite at the
entrance and decrease with x until the flow is fully developed. Assume that the velocity and
the temperature are uniform at the entrance. From Eq. (4.74) and Eq. (4.81), we obtain cor-
respondingly and , which
are the values at the entrance. For a circular tube, it can be shown that at the
entrance (see Problem 4.22).

Yu and Ameel presented analytical solutions for a rectangular channel with constant
wall heat flux on all surfaces using an integral transform method.25 Hadjiconstantinou and
Simek provided an extensive review of the literature dealing with slip channel flow with
constant wall temperature.26 Most of the works did not consider the effect of axial conduc-
tion. This assumption is good only for large values of the Peclet number, defined as the
product of the Reynolds number and the Prandtl number (Pe � RePr). As the channel
dimensions become very small, Re will decrease but Kn will increase. It is possible for Kn
to be large enough for slip and jump to occur at a relatively small Re. Axial conduction
enhances the heat transfer between the fluid and the wall, and thus increases Nu especially
when Kn is small. In the no-slip case when Kn � 0, it is well-known that Nu � 7.54 for par-
allel plates and Nu � 3.66 for circular tubes without axial conduction, i.e., . In thePe S `
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extreme when , Nu becomes 8.12 (7.7% increase) and 4.18 (14.2% increase),
respectively. These values are much closer to the case of constant heat flux, i.e., Nu � 8.23
for parallel plates and 4.36 for a circular tube as shown in Fig. 4.11. When both av and aT

are unity, it can be shown that the Nusselt number is reduced to about 50% of the value
when Kn is varied from 0 to about 0.16, similar to the constant heat flux case. The Nusselt
number goes down significantly with decreasing aT and goes up somewhat with decreas-
ing av. The lack of sufficient knowledge of the actual behavior of fluids near the wall makes
it difficult to precisely determine the accommodation coefficients. Many of the surfaces
used in earlier systems are quite different from those used in MEMS and NEMS, where
highly pure crystalline dielectric surfaces are commonly used. 

4.4.3 Gas Conduction—from the Continuum to the Free Molecule Regime

Free molecule flow is important for flight at high altitudes and often associated with chemical
reactions and shock waves. The heat transfer aspects of high-speed flow can be found from
Rohsenow and Choi,12 or Eckert and Drake.13 In this section, we use a simple case to illustrate
the heat transfer regimes for gas conduction. Consider the conduction by gas between two large
plates at temperatures T1 and T2, respectively. The plates are separated at a distance L, and the
space in between is filled with an ideal gas, as shown in Fig. 4.12. Neglect radiative and con-
vective heat transfer (bulk motion). The heat conduction of a gas is dominated by diffusion,
when , where is obtained at some effective mean temperature between T1
and T2. In this case, the heat flux can be calculated by applying Fourier’s law,

(4.88)qsDF � k
T1 � T2
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FIGURE 4.11 Calculated Nusselt number as a function of the Knudsen number
for air ( and ) with different accommodation coefficients.Pr � 0.7g � 1.4



where k can be evaluated using Eq. (4.35) at an effective mean temperature defined as

(4.89)

The above equation takes into consideration the fact that , with the assumption that
the specific heat is a constant at temperatures between T1 and T2. As long as the density is
sufficiently low for the ideal gas model to be valid, the thermal conductivity does not
depend on the pressure. The temperature distribution can be obtained by integrating

, i.e,

(4.90)

which deviates somewhat from a linear relationship. When , however, the
chance for molecules to collide with the wall is much larger than for them to collide with
each other. The actual distance a molecule can travel will be less than the mean free path
due to collision with the boundary. In the extreme case, one can completely neglect the col-
lisions between molecules and analyze the heat transfer by the molecules, bouncing back
and forth between the two plates. The molecules can be sorted into a forward flux and a
backward flux, each at a certain equilibrium temperature, determined by the thermal
accommodation coefficients. Assume that the thermal accommodation coefficients aT are
the same at both walls. The flux temperatures are

(4.91)

The effective mean temperature of the gas in the free molecule regime is defined as

(4.92)

The net heat flux between the two plates can be expressed as2
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FIGURE 4.12 Heat conduction between two large parallel surfaces filled with an ideal
gas. (a) Schematic of the gas molecules. (b) Illustration of the temperature distributions.



In the free molecule regime, the heat flux is proportional to the pressure P but indepen-
dent of L for the given boundary temperatures. This is because the heat transfer rate is pro-
portional to the number density of particles. For intermediate values of Kn, the two
equations derived under the extreme cases can be combined by adding the thermal resis-
tances such that

(4.94)

In writing the above equation, we have applied Eq. (4.35) with 
from Eq. (4.30). The mean free path used in and Kn should be evaluated at Tm, DF. When
the temperature difference between the surfaces is smaller than the absolute temperature of
the cooler surface, . The physical interpretation of Eq. (4.94)
is a temperature jump near the surfaces, due to ballistic interaction of the particles with each
surface, and a diffusive middle layer, due to particle-particle collisions. For this reason,
Eq. (4.94) is called the temperature-jump approximation, which approaches the diffusion
limit when and the free molecule limit when . In the transition region,
when is on the same order as L, Eq. (4.94) may be considered a reduction in the mean
free path due to boundary scattering that yields a decrease in the thermal conductivity 
from the bulk or diffusion value. This approach will be further explored in the study of the
size effect on the thermal conductivity of thin solid films in the next chapter.

Example 4-5. Calculate the heat flux per 1 K temperature difference near room temperature
between two large parallel plates filled with air, assuming . Plot the results as a function of
distance L and pressure P. How will you determine the effective thermal conductivity?

Solution. Let and . The effective temperatures calculated from
Eq. (4.89) and Eq. (4.92) are very close to the arithmetic mean temperature of 300 K. Note that g�
1.4 for air at room temperature. Because k is independent of pressure, we have k� 0.025 W/m2 . K
from Example 4-3. The mean free path obtained from Eq. (4.19) is , where

at 300 K and the atmospheric pressure P0 � 1 atm. The effective thermal conductivity can be defined
as ; hence
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FIGURE 4.13 Distance dependence of the effective thermal conductivity (left) and the heat flux (right).



It can be seen that keff depends on the product LP (which is proportional to ). However, the
same cannot be said for the heat flux. The calculated results are shown in Fig. 4.13 for the effective
thermal conductivity and heat flux as a function of the separation distance. In the diffusion limit, keff
is independent of the distance and the pressure, whereas increases as L is reduced (proportional
to 1/L). At 1 atm, microscale heat transfer becomes important when L � 1.5 �m (or ), as
keff starts to drop, and the dependence of on 1/L becomes nonlinear. In the free molecule limit,
keff decreases linearly with both L and P (i.e., the Kn), whereas is independent of L but depends
linearly on P. Note that there exists an upper limit of for any given pressure. These trends are
clearly demonstrated by Fig. 4.13.

The heat transfer calculation mentioned above is important to cryogenic and low-pres-
sure applications. In recent years, atomic force microscopy has become a versatile tool for
probing and manipulating, lithography, and thermal manufacturing and measurements at the
nanoscales. The heat transfer between the tip and the surface at several nanometers may be
governed by free molecule flow even at ambient conditions (see Problem 4.27). Radiation
heat transfer may increase tremendously when the spacing is less than the characteristic
wavelength, which is about 10 �m at 300 K. Hence, radiative heat transfer may be a domi-
nating effect. More details on the nanoscale radiative heat transfer will be given in Chap. 10.

4.5 SUMMARY 

The simple kinetic theory was introduced based on the ideal gas model, providing a micro-
scopic description of the transport coefficients, such as viscosity, thermal conductivity, and
mass diffusion coefficient. This allows one to gain an intuitive understanding of the macro-
scopic phenomenological or semi-empirical equations, which are important for heat con-
duction and convection. The complete Boltzmann transport equation (BTE) was then
presented from the microscopic point of view. It was shown that the classical transport
equations, such as the Fourier law and Navier-Stokes equations can be derived from the
BTE under appropriate assumptions. Similar derivations also apply to electron and phonon
systems, which will be studied in Chap. 5. The effect of the Knudsen number on the
microchannel flow with ideal gases was discussed. The equations for slip flow were solved
for simple geometries to provide modified convection heat transfer correlations. Finally,
ballistic heat conduction in free molecule flow was described, and a simplified equation
was presented that links the continuum region to free molecule flow in the case of conduc-
tion between solid walls filled with an ideal gas. The pressure and distance effects on the
thermal conductivity and heat flux were clearly demonstrated. The principles discussed in
this chapter not only have applications to microfluidics and convection heat transfer appli-
cations but also are important to the subsequent chapters on heat transfer in solid
micro/nanostructures.
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PROBLEMS

4.1. (a) Determine the mean free path , average molecular spacing , and the frequency of colli-
sion for air at sea level (15°C and 1 atm).
(b) Determine the root-mean-square free path. 
(c) What is the probability of finding a free path greater than ? 
(d) Calculate �, L0, and t−1 for air at 200 miles above sea level with M � 17.3, ,

and , where the subscript 0 signifies properties at sea level. 
(e) What is the kinetic temperature at this altitude? Explain the reason why M changes with the altitude.

4.2. Use the mean-free-path distribution to answer the following questions:
(a) What is the root-mean-square free path in terms of the mean free path ?�

r/r0 � 10�11
P/P0 � 5.9 � 10�11

4�

t�1
L0�
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(b) What is the most probable free path? 
(c) What is the probability of finding a free path greater than ?

4.3. Air is pumped to a pressure P � 10 Pa at 25°C. Calculate the following quantities: the average
distance between adjacent molecules , the molecular mean free path , the number of collisions that
a molecule experiences every second, the molecule flux JN on any surface, the most probable speed of
the molecules, the most probable velocity of the molecules, and the average kinetic energy of each
molecule.

4.4. Hydrogen gas is cooled to 100 K, while the pressure is reduced to 0.1 Pa. Determine the mean
free path and the average frequency of collision. What are the rms speed and the average kinetic
energy of a molecule? What is the momentum flux of the gas on the container? What are the most prob-
able free path, the most probable speed, and the most probable velocity?

4.5. What is the dependence of and on pressure and temperature? How does depend on
pressure? For water vapor and air, at 298 K and 100 kPa. Plot as a func-
tion of temperature at P � 10, 20, 50, and 100 kPa.

4.6. Calculate , cv, , and Pr for oxygen and nitrogen at 100, 300, and 1000 K, and 1 atm. Compare
your calculated results with the values tabulated in most heat transfer textbooks to estimate the rela-
tive differences.

4.7. A chamber containing O2 at 100 K and 10−3 atm is placed in the outer space. The oxygen leaks
to the outer space through a small hole, 1 µm diameter, in the chamber wall.
(a) Estimate the number of molecules that escape from the container per unit time.
(b) What is the mass flux? What is the mass flow rate? 
(c) Evaluate the flux of kinetic energy, using Eq. (4.8). How is your answer compared with

?  Why are the results different?
(d) If the diameter of the hole is increased to 1 cm, is the basis of your calculation still valid?

4.8. A tube connects a CH4 line to the air. Assuming both ends of the tube are at 1 atm and 25°C,
calculate the binary diffusion coefficient between CH4 and air. Find the mass flow rate of CH4 to the
air and that of air to the CH4 line, given the tube has an inner diameter of 5 mm and a length of 7 m.
Sketch the concentration distributions in the tube line.

4.9. A tube connects an O2 container to a N2 container. Assume that the temperature is 200°C and
the pressure is 2 atm inside the containers and the tube. Calculate the mass exchange rates of O2 and
N2 from one container to the other, assuming that the tube has an inner diameter of 5 mm and a length
of 3 m.

4.10. Dry air at 34°C flows over a flat plate of length L � 0.1 m with a velocity of 15 m/s. The width
of the plate is 1 m. The surface of the plate is covered with a thin soaked fabric, and electric power is
applied to the plate to maintain its surface temperature at 20°C.
(a) Assuming that the bottom of the plate is insulated, determine the required electric power. 
(b) After a long period of operation, the fabric is completely dry. Neglect the changes in the convec-

tion coefficient and the electric power. What will be the steady-state surface temperature? 
(c) Is it a good assumption to neglect the radiative heat transfer?

4.11. Use and for He to calculate and plot the Lennard-
Jones potential. Set one molecule at a fixed (pinned) position on the x-axis, say at . The other
molecule starts at the origin with an initial velocity , where is a small angle
between and the x-axis. Develop a computer program to calculate the trajectory of the moving par-
ticle in the x-y plane, for various and , based on (a) the rigid-elastic-sphere assumption and (b) the
intermolecular force field. Comment on the differences between the results obtained from the two
models.

4.12. Using Eq. (4.59), show that Eq. (4.58) is identical to Eq. (2.42). Hint:

4.13. Derive the viscous dissipation term in Eq. (2.43) based on Eq. (4.60).

4.14. From Eq. (4.60), derive the heat diffusion equation: .k=2T � rcp('T/'t)

= # 5Pij6 � a'Pxx
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4.15. Assuming is independent of the frequency, use the Maxwell velocity distribution, Eq. (3.43),

to evaluate for a monatomic gas, where .

4.16. Consider an isothermal gas flow in the x direction with
a bulk velocity distribution as shown in Fig. 4.5. The velocity distribution is not very
far from the equilibrium so that . Find an expression of the dynamic vis-

cosity . Hint: according to Eq. (4.14a); the answer is .

4.17. What is the continuum assumption, and when does the continuum assumption break down?
Define the Knudsen number, and what is its physical significance? What are the unique issues related
to microfluidics? What are the applications of microfluidics?

4.18. What happens at the boundary layer for a fluid moving over a large plate during slip flow?
Describe both the velocity distribution and the temperature distribution near the wall. Write the slip-
flow boundary conditions, and discuss the significance of each term.

4.19. Integrate Eq. (4.84) to find the dimensionless bulk temperature ; and then use the definition
of Nusselt number to prove Eq. (4.85).

4.20. Find the temperature distribution for slip flow between two parallel plates when the bottom
plate is insulated and the top plate is heated at a uniform heat flux. Continue on to verify Eq. (4.86).

4.21. Find the velocity and temperature distributions for slip flow through a circular tube with a uni-
form wall heat flux. Continue on to verify Eq. (4.87).

4.22. For slip flow with temperature jump in a circular tube, show that there exists a maximum
Nusselt number at the entrance, given by .

4.23. For Poiseuille flow with velocity slip, calculate the friction coefficient at the
entrance and for fully developed gas flow.

4.24. For fully developed gas flow in a circular tube, develop an expression for the ratio of the
required pump powers with slip and without slip.

4.25. A heat sink contains 100 microchannels, each 1 mm long with a 1 �m � 30 �m cross section.
Cold air at 22°C flows in at 2 atm with a velocity of 4 m/s. The sides of the channel are well insulated,
and a constant wall flux is removed by the flow. Neglecting the entry region, what will
be the exit temperature of the air? What will be the wall temperature at the exit? (Assume that

.)

4.26. For the same fluid, entrance conditions, and wall heat flux as in Problem 4.24, estimate the con-
vection coefficient for fully developed flow in a circular tube as a function of the tube diameter. Take
D � 300 nm, 3 µm, and 300 µm.

4.27. Model the cantilever tip of an atomic force microscope (AFM) as a flat disk, with a diameter
of 100 nm, that is above a flat surface at 300 K. If the tip is heated to 400 K, calculate the heat flux
from the tip to the surface when the distance varies from 10 to 1 nm, assuming that the tip and the sam-
ple surface are surrounded by dry air at ambient pressure. How will your calculation change if the pres-
sure is reduced to 1 torr? [1 torr � 1 mmHg � 133.3 Pa.]

4.28. Team Project 1: Derive the Nusselt number for constant wall temperature for a laminar slip
flow either in a circular tube or between two parallel plates.

4.29. Team Project 2: Develop a computer program to evaluate the Nusselt number in the entry
region for uniform wall heat flux in a circular flow.

4.30. Team Project 3: Perform a simulation using the DSMC method for gas conduction between two
plates, with different Knudsen numbers. Compare your results with Eq. (4.94).

av � aT � 0.8

qsw � 40 W/m2

Cf � ts/(rv
2
m/2)

Numax� 1/bT

�m

(mkBT/p)1/2/(4d2)tyx � 3
.

(mvx)vy fd.m

f � f0� tvy(df0 /dvB) (dvB/dy)
vB(y) � vx(y)
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1
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THERMAL PROPERTIES OF
SOLIDS AND THE SIZE EFFECT

CHAPTER 5

137

One of the thrust areas of research in micro/nanoscale heat transfer is related to transport
processes in solid state devices. In the early 1990s, much research had been done to iden-
tify the regimes when the microscale effect must be considered in dealing with problems
occurring at small length scales and/or timescales.1,2 Cahill et al. provided a more recent
survey on the thermal phenomena and measurement techniques associated with solid state
devices.3 The critical dimensions of integrated circuits have continued to shrink during the
past few decades, with printing features currently already below 100 nm; some are
approaching the 10-nm limit of most available fabrication technologies. Overheating
caused by thermal energy generation is a major source of device failure, and it often occurs
in very small regions, known as hot spots. A remarkable number of micro/nanostructured
materials and systems have temperature-dependent figures of merit. Therefore, under-
standing the thermophysical properties, thermal transport physics, and thermal metrology
from the micrometer down to the nanometer length scales is critically important for future
development of microelectronic devices and nanobiotechnology. 

This chapter focuses on simple phonon theory and electronic theory of the specific heat,
thermal conductivity, and thermoelectricity of metals and insulators. The Boltzmann transport
equation (BTE) has been used to facilitate the understanding of microscopic behavior, together
with the quantum statistics of phonons and electrons. The quantum size effect on phonon spe-
cific heat is extensively covered. Examples are given to analyze direct thermoelectric conver-
sion for temperature measurement, power generation, and refrigeration. Furthermore, a
detailed treatment of classical size effect on the thermal conductivity is presented. Finally, the
concepts of quantum electrical conductance and thermal conductance are introduced.

5.1 SPECIFIC HEAT OF SOLIDS

In this section, simple models of the specific heat of bulk solids are described considering
the contribution by lattice vibrations and for metals the additional contribution by free elec-
trons. The purpose is to understand the macroscopic behavior from the microscopic point
of view and to prepare students for further study on the quantum size effect to be discussed
in subsequent sections.

5.1.1 Lattice Vibration in Solids: The Phonon Gas

The atoms in solids are close to each other, and interatomic forces keep them in position.
Atoms cannot move around except for vibrations near their equilibrium positions. In

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



crystalline solids, atoms are organized into periodical arrays, and each identical structural
unit is called a lattice. Lattice vibrations contribute to thermal energy storage and heat con-
duction. In metals, electrons are responsible for electrical transport and heat conduction but
are less important for storing thermal energy except at very low temperatures. 

The simple oscillator model treats each atom as a harmonic oscillator, which vibrates
along all three axes (see Fig. 5.1). If the vibrational degrees of freedom were completely
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FIGURE 5.1 The harmonic oscillator model of an atom
in a solid.

excited, we would expect the high-temperature limit of the specific heat of elementary
(monatomic) solids to be

(5.1)

which is called the Dulong-Petit law, named after Pierre-Louis Dulong and Alexis-Thérèse
Petit in 1819. The Dulong-Petit law can be understood in terms of the equipartition princi-
ple in classical statistics. However, it cannot predict low-temperature behavior, and even
above the room temperature, this model significantly overpredicts the specific heats for dia-
mond, graphite, and boron.

Einstein in 1907 proposed a simple harmonic oscillator model and its quantized energy
levels , i � 1, 2, . . ., to obtain the specific heat as a function of temperature. Here,
the frequency is a characteristic vibration frequency of the solid material. The procedure
is similar to the analysis of vibration energies for diatomic gas molecules, e.g., Eq. (3.59)
to Eq. (3.62). The resulting specific heat for a monatomic solid is

(5.2)

where the factor 3 accounts for oscillation in all three directions and is called
the Einstein temperature. 4,5 It can be shown that as and at .
In the intermediate temperature range, however, the Einstein specific heat is significantly
lower than the experimental data. This can be seen from Fig. 5.2, where the experimental
results of the constant-pressure specific heat are taken from Ashcroft and Mermin.5 It
should be noted that for a solid under the incompressible assumption. The reducedcp � cv
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temperature is the ratio of the temperature to the characteristic temperature. The experi-
mental data were plotted using the Debye temperature given in Table 5.1. The reason that
the specific heat of diamond is far from near room temperature is because of its very
high characteristic temperature (or frequency of vibration). 

In the Einstein model, each atom is treated as an independent oscillator and all atoms
are assumed to vibrate at the same frequency. In 1912, Max Born and Theodore von
Kármán first realized that the bonding in a solid prevents independent vibrations.
Therefore, a collection of vibrations must be considered under the force-spring interactions
of the nearby atoms. To avoid the complicated calculations, Peter Debye in 1912 simpli-
fied the model by assuming that the velocity of sound is the same in all crystalline direc-
tions and for all frequencies. In addition, there is a high-frequency cutoff and no vibration
can occur beyond this frequency. As will be seen from subsequent sections, the Debye
model is a great success and has been prevailing even though more advanced and realistic
theories have been developed.

5.1.2 The Debye Specific Heat Model

The Debye model for the specific heat of solids includes a large number of closely spaced
frequencies of vibration up to a certain upper bound nm, which is determined by the total
number of vibration modes 3N, where N is the number of atoms. The high-frequency limit
is indeed plausible because the shortest wavelength of the lattice wave should be on the
order of the interatomic distances, or the lattice constants. Rather than treating each atom
as an individual oscillator, the Debye model assumes that vibrations are inside the whole
crystal just like standing waves. For elastic vibrations, there are longitudinal waves (e.g.,
sound waves) and transverse waves (with two polarizations) in a crystal. In analogy to elec-
tromagnetic waves and photons, the quanta of lattice waves are called phonons. The energy
of a phonon is , where n is the vibration frequency. The momentum of a phonon ise � hn

3R
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FIGURE 5.2 Comparison of model predictions with experimental data of the
specific heat for several crystalline solids.



, where is the propagation speed for the given phonon mode, or
frequency, and is the phonon wavelength. It should be noticed that the propagation speeds
of longitudinal and transverse waves are different. So far, we have related lattice vibrations
to lattice waves and to the translational movement of the phonon gas, which follows the
Bose-Einstein statistics. However, the total number of phonons is not conserved since it
depends on temperature. Thus, we do not need to apply the constraint given in Eq. (3.2) and
can simply set in Eq. (3.16). The result is

(5.3)

Suppose the energy levels are closely spaced; we can write Eq. (5.3) in terms of a continu-
ous function called the Bose-Einstein distribution function:

(5.4)

The degeneracy for phonons is the number of quantum states per unit volume in the
phase space. For a given volume V and within a spherical shell in the momentum space
(from to ), we have from Eq. (3.87) that .
Hence,

(5.5)
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TABLE 5.1 The Debye Temperature, Melting Temperature, and Other Properties for Selected
Solids. The Data are Mainly Taken from Kittel4 and Ashcroft and Mermin.5 The Reported Densities
are for 22�C Except for Ar

Element/ Symbol/ M

compound formula (kg/kmol) (K) (K) (103 kg/m3)

Argon Ar 40 92 84 2.66 (4 K) 1.77 (4 K)
Mercury Hg 200.6 72 234 4.26 14.26
Sodium Na 23 158 371 2.65 1.013
Lithium Li 6.9 344 454 4.7 0.542
Lead Pb 207 105 601 3.3 11.34
Zinc Zn 65.4 327 692 6.55 7.13
Magnesium Mg 24.3 400 922 4.30 1.74
Aluminum Al 27 428 934 6.03 2.7
Calcium Ca 40 230 1113 2.30 1.53
Silver Ag 108 225 1235 5.85 10.5
Copper Cu 63.5 340 1358 8.45 8.93
Gold Au 197 165 1338 5.90 19.3
Iron Fe 56 470 1811 8.50 7.87
Silicon Si 28 645 1687 5.0 2.33
Diamond C 12 2000 3620 17.6 3.52
Potassium bromide KBr 119 177 1007 2.75
Sodium chloride NaCl 58.5 281 1074 2.17
Gallium arsenide GaAs 144.6 360 1511 5.32
Calcium fluoride CaF2 78 474 1696 3.18

(1028 m�3)
rnaTmelt�D



Here, we have introduced the density of states of phonons, , which is the number of
quantum states per unit volume per unit frequency or energy ( ) interval. The number den-
sity in terms of the density of states can be expressed as

(5.6)

Because there exist one longitudinal and two transverse waves, the phonon density of
states in a large spherical shell of the momentum space can be written as

(5.7)

where is the speed of the longitudinal wave, is the speed of the transverse wave, and 
is a weighted average defined in the above equation. The total number of quantum states
must be equal to 3N. Using integration in place of summation, we have

(5.8)

where nm is an upper limit of the frequency that can be obtained from Eq. (5.8) as

(5.9)

Here, is the number density of atoms. 
The Debye temperature is defined as 

(5.10)

The Debye temperature and the number density for various solids are listed in Table 5.1
together with some other properties. The listed values of the Debye temperature were based
on the experimentally measured specific heat at very low temperatures, rather than that cal-
culated from the speed of sound. The result of the Debye specific heat theory agrees fairly
well with the experimental data for several crystalline solids in a large temperature range,
as can be seen from Fig. 5.2. The high-temperature limit of the specific heat is for GaAs
and for CaF2, because the number of atoms in a unit cell of the lattice is 2 and 3,
respectively.

Example 5-1. The average speed of the longitudinal waves is m/s and that of the trans-
verse waves is m/s in silicon. Find the average propagation speed, the maximum fre-
quency, the Debye temperature, and the minimum wavelength . How does compare with the
average distance between atoms?

Solution. Since , we have . Given , we
obtain nm � 1.36 � 1013 Hz � 13.6 THz from Eq. (5.9) and from Eq. (5.10), which is
a little bit higher than the experimental value of 645 K listed in Table 5.1. The experimental value
was obtained by fitting the low-temperature specific heat with the Debye model. The minimum
wavelength is estimated by Å. The average spacing between atoms
can be estimated by Å, suggesting that . The maximum
wavelength of the lattice wave will be twice the extension of the solid. For a cubic solid with each
side L, we have The lattice waves are illustrated in Fig. 5.3 in a 1-D case.lmax < 2L.

lmin < 2L0L0 � n�1/3
a � 0.27 nm or 2.7
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The distribution function for phonons can now be written as

, (5.11)

The vibration contribution to the internal energy can be written as

(5.12a)

where is the internal energy at 0 K when no vibration modes are excited. The result after
some manipulation becomes

(5.12b)

where . The molar specific heat is then

(5.13)

The specific heat predicted by the Debye theory agrees very well with experimental
data of many solids. Notice that .
When , and . Thus, , and the Debye spe-
cific heat approaches in the high-temperature limit. The relative difference is about3R
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FIGURE 5.3 Illustration of the minimum wavelength
and the maximum wavelength associ-

ated with lattice vibrations in a solid with a dimension L and
with a periodic array of atoms (dots).

lmax � 2Llmin � 2L0



5% at T � �D. Using Eq. (B.9), it can be shown that at , Eq. (5.13) can be
approximated by

(5.14)

which is known as the T 3 law, and it agrees with experiments within a few percents for
.

In essence, the Einstein specific heat theory assumed that all oscillations are at the same
frequency, and it implied that the density of states has a sharp peak at that frequency and is
zero at all other frequencies. On the other hand, the Debye theory is based on a parabolic
density of states function, . More detailed studies have revealed that the actual
phonon density of states is a complicated function of the frequency,5,7 as illustrated in Fig. 5.4

D(v)~ v2

T/�D � 0.1

cv < 12p4

5
 R a T

�D
b

3

~T 3

T V �D
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FIGURE 5.4 Illustration of the phonon density of states in the Einstein
model and the Debye model as compared with the actual behavior of metals.

for aluminum and copper according to neutron scattering measurements. There are differ-
ent phonon branches in a real crystal that affect the density of states in different frequency
regions. A detailed discussion will be deferred to Chap. 6 when we take a deeper look into
the crystalline structures and phonon dispersion relations. In general, the Debye theory pre-
dicts correctly the low-temperature behavior when only the low-frequency phonon modes
are excited; this is probably the most significant contribution of the Debye model. At higher
temperatures, the Debye model can be considered as a first-order approximation, as shown
in Fig. 5.2.

5.1.3 Free Electron Gas in Metals

The translational motion of free electrons within the solid is largely responsible to the electri-
cal and thermal conductivities of metals. Sometimes, the free electrons are called electron
gas that draws an analogy between electrons and monatomic molecules. However, there
are distinct differences between electrons in a solid and molecules in an ideal gas. The num-
ber of free electrons is on the order of the number of atoms. For Au, Cu, and Ag, we shall
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FIGURE 5.5 (a) The Fermi function and (b) the distribution function of free electrons in a metal.

assume there is 1 free electron per atom but there are 3 electrons per atom for Al and 4 elec-
trons per atom for Pb (see Table 5.2). Electrons obey the Fermi-Dirac distribution given in
Eq. (3.24). A continuous function called the Fermi function can be defined as

(5.15)

The Fermi function is plotted in Fig. 5.5a, where is called the Fermi
energy. It will be shown later that changes little when the temperature is not very high.m

mF � m at T � 0 K

fFD(e) �
dN

dg
�

1
e(e�m)/kBT 
 1

TABLE 5.2 Electronic Properties of Selected Metals; Data Mainly from Kittel4

Li Na K Cu Ag Au Mg Ca Zn Al Pb

mF (eV) 4.72 3.23 2.12 7.0 5.51 5.5 7.13 4.68 9.39 11.6 9.37
4.7 2.65 1.4 8.45 5.85 5.90 8.60 4.60 13.1 18.1 13.2

Electrons/atom (1) (1) (1) (1) (1) (1) (2) (2) (2) (3) (4)
( ) 9.32 4.75 7.19 1.70 1.61 2.20 4.30 3.60 5.92 2.74 21.0
at 22�C
m� # cmre

ne (1028 m�3)

At the absolute temperature of 0 K, when , and when . As
the temperature increases, the function falls less sharply.

The degeneracy for electrons is further increased by 2, due to the existence of positive
and negative spins. In a volume V of a spherical shell in the momentum space, we have

from Eq. (3.86) by considering the spin degeneracy. Hence, the dis-
tribution function in terms of the electron speed is

(5.16)

Using and , we obtain the distribution function in terms of the
kinetic energy of the electrons as
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3 v2
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dg � 8pV(me /h)3v2dv

e � mFfFD � 0e � mFfFD � 1



This equation is plotted in Fig. 5.5b. Note that , where is the density
of states for free electrons and is expressed as 

(5.18)

Now, we are ready to evaluate the Fermi energy mF. At , the number density of elec-
trons becomes

(5.19)

which gives (5.20)

Typical values of mF range from 2 to 12 eV. Table 5.2 lists the Fermi energy, the electron
number density, the number of electrons per atom, and the electrical resistivity of various
metals. The temperature dependence of for electrons is given by the Sommerfeld
expansion:5

(5.21a)

It can be seen that at moderate temperatures. Arnold Sommerfeld (1868–1951)
was a German physicist and one of the founders of quantum mechanics. As a professor at
the University of Munich, he advised a large number of doctorate students who became
famous in their own right, including Peter Debye, Wolfgang Pauli, Werner Heisenberg,
among others. Sommerfeld applied the FD statistics to study free electrons in metals and
resolved the difficulty in the classical theory for electron specific heat. As discussed in
Chap. 3, electrons tend to fill all the quantum states up to a certain energy level. In many
texts, is called the Fermi level or the Fermi energy, which is temperature dependent.
As the temperature increases, only those electrons near the Fermi level will be redistributed.
Because of the importance of the Sommerfeld expansion for the integration involving the FD
function, some useful equations are summarized in Appendix B.8. By noticing that the
difference between and mF is small, we can use Eq. (B.74) and Eq. (B.78) to derive
the electron number density as follows:

where the first term is the same as the right-hand side of Eq. (5.19). Since the number den-
sity is independent of temperature, we must have 

(5.21b)

which proves Eq. (5.21a) since .

Example 5-2. Calculate at 300 K and 3000 K for copper using eV. Find the maximum
speed (Fermi velocity) and the average speed of electrons for copper at 0 K.  How will the Fermi
velocity change if the temperature is changed to T � 300 K?
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Solution: Note that From Eq. (5.21a),
we have

which is about 0.0011% at 300 K and 1.2% at 10,000 K. The change in m is indeed very small. At
, . Hence, 

(5.22a)

(5.22b)

(5.22c)

Electrons are constantly moving even at absolute zero temperature. For copper, we get
m/s and m/s, which is about three quarters of . The classical

model based on the equipartition principle or the Maxwell-Boltzmann distribution would give
or at absolute zero temperature. Because changes little from

0 to 300 K, the Fermi velocity at 300 K is essentially the same as that obtained at 0 K.

Discussion: If we use the rms velocity to calculate the de Broglie wavelength as in Example 3-2,
we obtain lDB � 0.6 nm. If an electron is accelerated in vacuum to 50 keV, the velocity will be
greater than one-third of that of light, and the de Broglie wavelength will be extremely small
( nm). The resolutions in conventional optical microscopy and photolithography are
usually limited by (the diffraction limit), which is on the order of 200 nm for visible light.
Electron microscopy can have a much higher resolution (down to 0.1 nm), and e-beam nanolithography
allows the manufacturing of features just a few nanometers.

In order to find out the specific heat of electrons, we first calculate the internal energy:

(5.23)

Because the distribution function does not vary significantly except near , the
Sommerfeld expansion can be used to express the integration [see Eq. (B.78) in Appendix B].
Hence,

One can see from Eq. (5.21b) that the two middle terms on the right side cancel out. It
should also be noted that . Therefore, 

(5.24)

The specific heat of free electrons can then be obtained as
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which is much smaller than as we would obtain if electrons were behaving as an ideal
monatomic molecular gas. Another way of obtaining Eq. (5.25) is to use integration, which
is left as an exercise (see Problem 5.6). Electronic contribution to the specific heat of solids
is negligible except at very low temperatures (a few kelvins or less). The specific heat of
metals at very low temperatures can thus be expressed as

(5.26)

where the linear term is the electronic contribution and the cubic term is the lattice contri-
bution for which B can be obtained from Eq. (5.14). The coefficient gs is known as the
Sommerfeld constant, which can be obtained from Eq. (5.25). The experimental values of
gs generally agree with those predicted by the free-electron model given in Eq. (5.25) for
most alkali metals (e.g., Na, K) and noble metals (e.g., Cu, Ag, Au). For transition metals
with magnetic properties, such as Fe and Mn, the measured gs value can be an order of mag-
nitude greater than the predicted. On the other hand, for semimetals like Bi, the measured gs
value can be an order of magnitude smaller than the predicted. Further discussions can be
found from the text of Ashcroft and Mermin.5

Example 5-3. Calculate and plot the specific heat of copper, and compare with the data in
Touloukian and Buyco.6 Discuss the contribution of electrons and lattice vibrations.

Solution: From Table 5.1, the Debye temperature for Cu is . At T � 30 K, we can
apply the T3 law given in Eq. (5.14) to find the coefficient B in Eq. (5.26) to be .
Using from Table 5.2, the Sommerfeld coefficient can be calculated from Eq. (5.25) as

. Therefore the two contributions will be equal at T � 3.2 K. The results
are plotted in Fig. 5.6a at temperatures below 10 K. At higher temperatures, as shown in Fig. 5.6b,
gs � 6.08 � 10�5 R [K�1]

mF � 7 eV
5.95 � 10�6 R [K�3]

�D � 340 K

cv(T) � gsT 
 BT 3

3
2 R
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FIGURE 5.6 Electron and lattice contributions to the specific heat of Cu (a) at low temperatures and
(b) from 10 to 1000 K.

the electronic contribution is much smaller compared with the lattice specific heat: about 0.3% at
100 K, 0.6% at 300 K, and 2% at 1000 K. The data show much higher specific heat values than those
predicted by the Debye model. The addition of the electronic contributions cannot fully account for
the difference. Noting that at 1000 K, the specific heat calculated from
the Debye model of is 99.5% of given by the Dulong-Petit law. There are
several reasons that may be responsible to the deviation between the Debye model and measure-
ments at high temperatures. The first is the anharmonic vibration that was not considered in the sim-
ple models with harmonic vibrations. The contribution of anharmonic vibrations becomes more
important at higher temperatures since the amplitude of vibration increases with temperature.
Secondly, thermal expansion cannot be ignored at high temperatures. The variation of the distance
between atoms may change the potential function and thus increase the specific heat. Additionally,
when thermal expansion is not negligibly small, the specific heat at constant pressure may be greater
than that at constant volume. Interested readers are referred to the literature for further discussions.8,9

3Rcv � 390.6 J/(kg # K)
R � R/M � 130.9 J/(kg # K)



5.2 QUANTUM SIZE EFFECT
ON THE SPECIFIC HEAT

The above discussion assumes that the physical dimensions are much larger than the lattice
constant. In nanoscale devices and structures, such as 2-D thin films and superlattices, 1-D
nanowires and nanotubes, or 0-D quantum dots and nanocrystals, substitution of summa-
tion by integration is no longer appropriate. Note that a 2-D thin film is confined in one
dimension, a 1-D wire is confined in two dimensions, and a 0-D quantum dot is confined
in all three dimensions. In nanostructures, it is necessary to consider quantization of the
energy levels. The specific heat becomes a function of the actual dimensions. Experimental
demonstrations of quantum size effect on specific heat have been made on Pb particles,10

carbon nanotubes,11 and titanium dioxide nanotubes,12 to name a few. To analyze the quan-
tum size effect on the lattice specific heat, we begin with a wavelike treatment of the vibra-
tional modes in this section.

5.2.1 Periodic Boundary Conditions

Consider a 1-D chain of atoms as sketched in Fig. 5.3, where the end nodes are fixed
in position. The solution should be a standing wave with the following eigenfunctions:

where , which is the total number of vibration modes within a length of L.
Another approach is based on the Born–von Kármán periodic boundary conditions.5

Instead of treating the solid as a bounded specimen whose atoms are fixed at each bound-
ary, the Born–von Kármán lattice model takes the medium as an infinite extension with
periodic boundary conditions. For a solid whose dimensions are Lx, Ly, and Lz, in the
Cartesian coordinates, the standing wave solutions are

(5.27)

where is called the lattice wavevector with . The allowed
discretized values are

(5.28a)

(5.28b)

(5.28c)

where the last term has “
” term only and should be included only if the number of atoms
along each direction is an even number. The central distance between adjacent
atoms is in the given direction. The individual components of the lat-
tice wavevector may be negative or zero in this case. In the 1-D case, it can be seen that the
total number of modes is the same as the total number of atoms along the 1-D chain.
However, the infinite medium representation with periodic boundary conditions is advan-
tageous not only in mathematical derivations but also for the physical interpretation of lat-
tice dynamics.

Lx /Nx, Ly /Ny, or Lz /Nz

Nx, Ny, or Nz

kz � 0, �
2p
Lz

, �
4p
Lz

, �
6p
Lz

, c, �
(Nz � 1)p

Lz

, 

Nzp

Lz

ky � 0, �
2p
Ly

, �
4p
Ly

, �
6p
Ly

, c, �
(Ny � 1)p

Ly

, 

Nyp

Ly

kx � 0, �
2p
Lx

, �
4p
Lx

, �
6p
Lx

, c, �
(Nx � 1)p

Lx

, 

Nxp

Lx

k2 � k2
x 
 k2

y 
 k2
zk � (kx,ky,kz)

exp(ikxx), exp(ikyy), exp(ikzz)

L/L0 � N

sinapx

L
b , sina2px

L
b, sina3px

L
b, c, sinapx

L0
b

N 
 1

148 CHAPTER 5



5.2.2 General Expressions of Lattice Specific Heat

The general expression of the lattice vibrational energy in a solid is given as

(5.29)

where accounts for the static energy at absolute zero temperature, the first term in the
parenthesis is the Bose-Einstein distribution given in Eq. (5.4), and the second
term in the parenthesis corresponds to the zero-point energy that is associated with the ,
due to quantum fluctuation or vacuum fluctuation, in the vibrational energy levels. We use

and interchangeably whichever is more convenient. The summation is over all phonon
branches in terms of the wavevector index K and the polarization index P. A phonon branch
(sometimes also called a phonon mode) describes the behavior of a type of phonons with a
continuous frequency rather than a discrete frequency. The concept of phonon branches
will be presented in detail in the subsequent chapter. The lattice specific heat can be
expressed as4

(5.30)

Upon introducing the density of states, we can replace the summation over k-space with an
integration as follows:

(5.31)

Since the density of states is expressed as the number of modes per unit volume, Eq. (5.31)
gives the specific heat per unit volume. Neutron scattering and Raman scattering are com-
mon ways of determining the density of states from the relationship between and the lat-
tice wavevector k along selected crystal directions. The function is called a
dispersion relation. If discretized values are expressed using the Delta functions in the
expression of , Eq. (5.31) is equivalent to Eq. (5.30), and both the equations can be
considered as the general expressions of the specific heat due to lattice vibrations. For a
nanostructure with very few atoms in a particular direction, Eq. (5.30) may be more con-
venient to use. On the other hand, in directions with a large number of atoms, Eq. (5.31)
should be the preferable choice.

5.2.3 Dimensionality

The method of periodic boundary conditions allows one to determine the density of states
for simple dispersion relations easily. Figure 5.7 shows the k-space, or the reciprocal lat-
tice space, in the 2-D case. Each individual block of area represents a mode, and
the number of modes up to a certain value of k is equal to the total number of blocks inside
the circle. One can also use this graph to visualize the 3-D case. Each box of volume

represents a mode, and the number of modes for a given upper limit k is equal
to the total number of boxes within a sphere of radius k, i.e.,
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When the dimensions are large enough, the density of states can be expressed as

(5.33)

Assume the dispersion relation is linear, i.e.,

(5.34)

where is the average speed of the longitudinal and transverse waves as in Eq. (5.7). We
can rewrite Eq. (5.33) as

(5.35)

This expression is equivalent to Eq. (5.7) for a single polarization. Equations (5.32) and
(5.34) can be combined to obtain the high-frequency limit by setting N equal to the num-
ber of atoms. The result is the same as Eq. (5.9). When Eq. (5.35) is substituted into Eq. (5.31),
the Debye expression of the specific heat given in Eq. (5.13) is readily obtained.

If the number of atoms is very small in a particular direction, there will be only a few
values for the particular wavevector component. The dimensionality will be reduced, and
the wavevector component can be assumed as zero in that direction. For a 2-D solid (such
as a thin film or a quantum well), the density of states is defined as the number of quantum
states per unit area. By assuming a linear dispersion relation, we obtain

(5.36)
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FIGURE 5.7 Schematic of the reciprocal lattice space, or k-space.



For a 1-D solid (such as a nanowire or a nanotube), by noting that N � 2k/(2p/Lx) � Lk/p,
we find the density of states to be

(5.38)

which is independent of the frequency. It can be shown that, in the low-temperature limit,
the specific heat for a 2-D solid is proportional to T 2 and that for a 1-D solid is proportional
to .13 Experimental evidence of the dimensionality change has been known for a long time
in graphite, which has a layered lattice structure with a strong bonding between atoms
within each layer and a weak interactive force between layers. The specific heat of graphite
is approximately aproportional to T 2 at low temperatures.14 On the other hand, the linear
temperature dependence of specific heat has been observed in carbon nanotubes.11

It can be seen from Eq. (5.31) that when , the integrand approaches zero.
Therefore, the contribution to the specific heat is negligibly small when the phonon energy
is much higher than kBT. The speed of lattice waves ranges from 1000 to 10,000 m/s, the
phonon wavelength corresponding to kBT is called thermal phonon wavelength, which can
be calculated from . At room temperature, lth is approximately 0.3 nm for

and 1 nm for . At 10 K, for , and
for . It is expected that the quantum size effect will become

more significant at low temperatures, because the thermal phonon wavelength may be
greater than the smallest physical length, such as the thickness of the film and the diameter
of the wire.

5.2.4 Thin Films Including Quantum Wells

Thin films, including quantum wells, are important components for microelectronic and
photonic devices. We will use the following example to elucidate the effect of film thick-
ness and temperature on the specific heat of thin films.

Example 5-4. Evaluate the low-temperature behavior of the specific heat of a thin film made of a
monatomic solid. Assume that the film thickness is , which has q monatomic layers, i.e., .
The average acoustic speed may be assumed to be independent of temperature. Values of silicon
given in Example 5-2 may be used in the numerical evaluation.

Solution. The molar specific heat can be expressed as

(5.39)

where the number 3 accounts for the three polarizations. Assume the dimension perpendicular to the
film is the z direction. The allowable modes in the z direction are given by 
In order for the total number of modes in the z direction to be equal to q for all q values, we shall
use the following limits:

(5.40)

Assume that the lattice is infinitely extended in the directions parallel to the film. We can substitute
the summation with an integration in the parallel directions using cylindrical coordinates. Therefore,
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where and . The cutoff value kD is determined by setting the total num-
ber of modes equal to the number of atoms per unit area. Equation (5.36) can be used to evaluate the
number of modes for each and then summed up over all values. Hence,

(5.42a)

Noting that and there are a total of q terms in the summation, we can solve Eq. (5.42a)
for kD as follows:

(5.42b)

In the limit of a single atomic layer, ; when , , a
value close to in the 3-D case. Note that the value of kD normalizes the
specific heat so that it approaches to the high-temperature limit of 3R. At low temperatures, when
the quantum size effect is significant, a slightly different kD does not alter the results much.

Using the linear dispersion relation, , and the transformation relation,
, we can rewrite Eq. (3.41) as follows:

(5.43)

where and xD and xz correspond to kD and kz, respectively. The T 2 dependence at
low temperatures is evident when q � 1 or kz � 0 only. The modes associated with are par-
allel to the interface and are called planar modes. We have carried out a numerical evaluation of
Eq. (5.42a) and Eq. (5.43) for different values of q to see when the departure from bulk behavior
will occur. The results are plotted in Fig. 5.8 as a function of the reduced temperature, defined as
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FIGURE 5.8 Quantum size effect on the specific heat of thin films, where the
reduced temperature is defined as .u � TkBL0/hva
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. Note that is on the same order of the Debye temperature for bulk
materials, �D. When q and T are sufficiently large, the result from Eq. (5.43) is the same as that
predicted by the Debye model for bulk materials. It can be clearly seen that the departure occurs at
low temperatures and especially for small q. Except for very small values of q, the departure occurs
when . qu � L/lth V 1

hva/kBL0u � TkBL0/hva � L0/lth



The procedure used for this example is similar to that used by Prasher and Phelan,15 except
that we have considered the planar modes ( ) in evaluating Eq. (5.43). The result is an
increase in the specific heat in the microscopic regime. By excluding these modes, previous
studies predicted a reduction in the specific heat for small q at low temperatures.15 This exam-
ple clarifies that planar modes are critically important when the thickness is small, especially
at low temperatures. As mentioned earlier, due to the layerlike structures, the specific heat of
graphite exhibits 2-D behavior at low temperatures. More detailed theory on the specific heat
of thin films and graphite can be found from Nicklow et al.16, and Tosic et al.17

5.2.5 Nanocrystals and Carbon Nanotubes

To illustrate the quantum size effect on a nanocrystal, consider a cubic solid whose side is
L � qL0. The total number of vibrational modes are . When q is small, we cannot use the
integration and must use the summation in Eq. (5.30) to calculate the specific heat. The sum-
mation is over a spherical k-space for all allowed components as expressed in Eq. (5.28). We
can estimate an upper bound based on the spherical volume measured by the
volume element to ensure that the total number of modes is equal to , as we did
earlier with the help of Fig. 5.7. For , the volume in the k-space for all allowable kx and
ky can be estimated by the surface area multiplied by the height , or .
The fraction of the planar modes, including all three planes, is approximately equal to

, which is inversely proportional to q. As q decreases or the par-
ticle becomes smaller, there will be more planar modes. The conventional argument is that
when the size gets smaller, the surface to volume ratio becomes larger. Thus, surface modes
will become significant for small-sized particles. However, we prefer to use planar modes fol-
lowing our previous discussion about size effect on the specific heat of thin films because the
phonons with the planar modes do not have to propagate along the surfaces. When there are
more planar modes, a quadratic function of the specific heat is anticipated at low tempera-
tures. At even lower temperatures, the axial modes (i.e., when only one component of the lat-
tice wavevector is nonzero) may also be important. The axial modes correspond to a linear
temperature dependence at low temperatures. Because of the quantization, the specific heat
of quantum dots or nanocrystals is a discontinuous function of temperature, at low tempera-
tures. However, by combining the different contributions, an approximate function that
describes the temperature dependence of specific heat can be expressed as follows:

(5.44a)

where are positive constants. Clearly, the specific heat becomes size depen-
dent and will be enhanced at low temperatures. Transitions to 2-D and 1-D dimensionali-
ties should occur subsequently as the temperature is lowered. The results are the same for
a spherical grain when the length L in Eq. (5.44a) is replaced by the diameter d of the
sphere.18 A recent study of the surface and size effects on the specific heat of nanoparticles
can be found from Wang et al. (Int. J. Thermophys., 27, 139, 2006).

When the temperature is very low, however, only the lowest frequency modes can be
excited and a second quantum size effect will occur. This means that among the q3 modes,
we are left with a few axial modes only, which are , , and

. These modes have the longest phonon wavelength. From Eq. (5.30), the spe-
cific heat can be expressed as

(5.44b)

where a and b are positive constants. Because Eq. (5.44b) converges to zero faster than T3,
the second quantum size effect will reduce the specific heat at extremely low temperatures.18

Experiments were made in the early 1970s on lead particles as small as 2.2 nm diameter.10
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At temperatures below 15 K, the specific heat of these particles is much greater than that for
the bulk material. However, as the temperature is reduced to about 2 K, the difference dimin-
ishes. The combination of Eq. (5.44a) and Eq. (5.44b) provides a physically plausible expla-
nation of the experimental observations.18 The lowest temperature limit in Eq. (5.44b) does
not apply to the thin-film case discussed earlier because there can exist a large number of
modes with very small wavevector components in the directions parallel to the plane. 

Unlike diamond, which contains 3-D tetrahedral structures, graphite crystallizes in the
hexagonal system with sheetlike structures. While diamond and graphite are each a poly-
morph of the element carbon, they exhibit dramatically different properties due to their dif-
ferent crystalline structures. Diamond is hard, transparent, and an electrical insulator. On
the contrary, graphite is quite soft, opaque, and a good electrical conductor. Graphene is a
single atomic layer of carbon atoms packed into a benzene-ring structure. Carbon nan-
otubes may be considered as rolled from a graphene sheet into a hollow cylinder, with one
or both of its ends capped with half a fullerene molecule. The discovery of the C60 and other
fullerenes by Robert Curl, Harold Kroto, and Richard Smalley was recognized through the
1996 Nobel Prize in Chemistry conferred on them. The diameter of single-walled carbon
nanotubes (SWNTs) can be as small as 0.4 nm with a typical diameter 1 to 2 nm and as long
as 100 �m or so. Multi-walled carbon nanotubes (MWNTs) and nanotube ropes can have
a diameter from 10 to 200 nm.

As mentioned earlier, graphite has a 2-D structure and exhibits T 2 dependence at low
temperatures. For an isolated graphene sheet, the in-plane or parallel transverse acoustic
phonon mode or branch has a velocity of and the longitudinal acoustic
phonon mode has a velocity of . On the other hand, the out-of-plane or
perpendicular transverse phonon branch is described by a quadratic dispersion relation,

, which is the dominant mode for the specific heat at low temperatures. According to
the dimensionality and the dispersion relation, the specific heat of a graphene sheet depends
almost linearly on at lower temperatures (see Problem 5.11) and on T 2 as the temperature
is raised above 100 K or so.

The four acoustic phonon modes or branches are expected to be the dominant contribu-
tions to the specific heat of isolated SWNTs at low temperatures. These include two
(degenerate) transverse modes, one longitudinal mode, and a twisting mode or torsional
mode associated with the rigid rotation around the nanotube axis. The dispersion relation
is linear for all four modes at low frequencies.19 Therefore, because of the 1-D structure,
the specific heat is expected to be linearly dependent on temperature. As the temperature is
raised, however, higher frequency modes are excited and the 2-D characteristics of carbon
nanotubes come into play. Watt de Heer has written an elegant article on this topic.20 There
are significant differences between SWNTs, MWNTs, and nanotube ropes or bundles; the
actual temperature dependence can be more complicated and dependent on the diameter.

In nanostructures, the electron density of states is also subject to quantization. The the-
ory for the electronic contribution to the specific heat is more complicated. The electron-
electron and electron-phonon interactions as well as the distribution of energy levels and
the Fermi energy need to be considered in a detailed model.21,22 The electronic specific heat
of small particles is still a linear function of temperature. Generally speaking, the electronic
contribution to the specific heat is negligibly small unless the temperature is below about 1 K.
Therefore, we will not discuss the electronic size effect on the specific heat any further.

5.3 ELECTRICAL AND THERMAL
CONDUCTIVITIES OF SOLIDS

In this section, we use kinetic theory to study the electron and phonon transport properties
of metals and insulators in the bulk form. The coupling between electrical current and heat

T

v ~ k2

vLA � 24,000 m/s
vTA�p � 15,000 m/s
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flux due to electric field and temperature gradient will be studied in the following section,
followed by a discussion of the size effect on the electrical and thermal conductivities.

5.3.1 Electrical Conductivity

We start with the simple kinetic theory approach based on the Drude free-electron model,
also known as the Drude-Lorentz theory. As shown in Fig. 5.9, the electrical resistance of

THERMAL PROPERTIES OF SOLIDS AND THE SIZE EFFECT 155

FIGURE 5.9 Illustration of electrical conduction.

a resistor is , where re is the resistivity; its inverse is the conductivity,
is the length, and Ac is the cross-sectional area. Ohm’s law relates the voltage drop

and the current I by , which can be rearranged as 

(5.45)

Notice that is the current density (charge per unit cross-sectional area per unit
time), and is the electric field (note that the electric field is in the direction of
decreasing voltage). Rewriting it in the vector form, we have

J � sE (5.46)

The above equation may be considered as the microscopic Ohm’s law. An electron of
charge �e is accelerated in an electric field according to Newton’s law as

(5.47)

Due to collisions, electrons cannot move completely freely. The velocity change of an elec-
tron during a relaxation time (the average traveling time between collisions) due to an
external field is called the drift velocity ud. The probability that a traveling particle will col-
lide with another particle or a defect during an infinitesimal time dt is given by dt/t. The
acceleration term in Eq. (5.47) can then be approximated by ud /t. Another way of viewing
is that there exists a damping force that is proportional to the drift velocity, i.e., , where
g is the damping coefficient that happens to be the electron scattering rate 1/t. At steady
state, the damping force must balance the external electrical force, i.e., �eE � meud/t. The
current density is related to the drift velocity by , hence,
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Comparing the above equation with Eq. (5.46), we obtain the Drude-Lorentz expression:

(5.49)

The preceding equation is often used to obtain the relaxation time from the measured
electrical conductivity . At moderate temperatures, it can be assumed that the characteri-
zation velocity of electrons is the Fermi velocity , and the mean free path of electrons can
be written as 

(5.50)

The electron scattering mechanisms are illustrated in Fig. 5.10. Electron-electron scat-
tering is inelastic and usually negligible compared with electron-phonon scattering, which
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FIGURE 5.10 Schematic of various carrier scattering mechanisms.

is also inelastic. Because lattice vibrations are enhanced as temperature increases, electron-
phonon scattering is expected to be dominant at high temperatures. Defect or impurity scat-
tering, on the other hand, is important at low temperatures. For bulk materials that are large
enough, boundary scattering is negligible. According to Matthiessen’s rule, the scattering
rate of independent scattering events can be added to yield the total scattering rate. For a
bulk material, we have

(5.51a)

where the subscripts e-e, e-ph, and e-d are for electron-electron, electron-phonon, and electron-
defect scattering. Using Eq. (5.50), we can write the above equation in terms of the mean
free path as follows: 

(5.51b)

In semiconductors, both electrons and holes can carry currents. The scattering mechanisms
can be considered separately. Boundary scattering becomes important when the character-
istic dimension L is comparable to the mean free path of the bulk material . Here, L can
be the thickness of a thin film or the diameter of a thin wire. An effective mean free path
can be defined for the evaluation of the scattering rate and the conductivity, i.e.,

(5.52)
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where the subscript e-b is for electron-boundary scattering. It can be seen that when bound-
ary scattering is important, the effective mean free path will be suppressed, or the scattering
rate will increase, when Eq. (5.52) is substituted into Eq. (5.50). The electrical conductivity
will be reduced, and the reduction is size dependent. This is similar to the molecular heat
transfer discussed in Chap. 4 when the Kn number, i.e., , is comparable or larger than 1.
Further discussion of the size effect on the conductivities of solids will be given in Sec. 5.5.

The Bloch formula for electrical resistivity due to electron-phonon scattering gives

(5.53)

where is a constant, and is a characteristic temperature that is very close to the Debye
temperature.23 The derivation of the above equation requires a careful treatment of the elec-
tron-phonon interaction within the framework of the electron band theory considering both
the N process and the U process, which will be discussed in Chap. 6. The Bloch formula
predicts that the electrical resistivity approaches zero as the temperature approaches
absolute zero for a pure metal. When , the low-temperature approximation of the
lattice resistivity can be written as

(5.53a)

Because of impurities, electron-defect scattering gives a residual resistivity that is
important at low temperatures and its value is independent of temperature. Adding the scat-
tering rates using Matthiessen’s rule,23 the electrical resistivity is obtained as

(5.54)

Figure 5.11 compares the model with the electrical resistivity data recommended for
high-purity bulk metals after annealing.24 Take the electrical resistivity of gold as an example,

re � re-ph 
 re-d

re-d

re-ph < 500r0T
5/�5

T V �

�r0

re-ph � 4r0a T

�
b

5

3
�/T

0

x5ex

(ex � 1)2 dx

�/L

THERMAL PROPERTIES OF SOLIDS AND THE SIZE EFFECT 157

FIGURE 5.11 Comparison of the measured electrical resistivity data24 of 99.999%
pure copper, gold, and silver with the model considering electron-phonon scattering
and electron-defect scattering.
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it can be seen that phonon scattering dominates the electrical resistivity at high tempera-
tures and results in , which is proportional to T. It should be noted that �D
listed in Table 5.1 can be used to approximate in most cases. The constant can be deter-
mined using the resistivity values at 22�C, or 295 K, given in Table 5.2. At very low tem-
peratures, , which is independent of temperature but depends strongly on the
impurity concentration.

Example 5-5. Consider a large copper specimen of high purity with a very small defect scattering rate
of at the liquid-helium temperature of 4.2 K. Find the electrical resistivity,
the electron scattering time, and the mean free path of this specimen at 1, 295, and 590 K. 

Solution. We first use Eq. (5.49) to evaluate the residual resistivity at 1 K by assuming that the
scattering rate is the same at 4.2 and 1 K. This yields an electrical resistivity re < re-d �

2.1 � 10�5 �� � cm, or an electrical conductivity of . The
electrical resistivity at 295 K is given in Table 5.2 to be �� � cm. Because the
Debye temperature for Cu is 340 K, we can approximate the resistivity at 590 K to be twice that of
the resistivity at 295 K, i.e., 3.4 �� � cm. The scattering time is approximately at 1 K,

at 295 K, and at 590 K since the number density is assumed to be
temperature independent. Using Eq. (5.50) and the Fermi velocity of m/s from
Example 5-2, we have the mean free path 3.14 mm at 1 K, 38.8 nm at 295 K, and 19.4 nm
at  590 K. The conductivity of a copper film with a thickness less than 100 nm may be affected by
boundary scattering. At low temperatures, however, boundary scattering may be dominant for low-
dimensional structures even at the micrometer length scale. For metals, electrons are also responsi-
ble for thermal transport. Knowledge of the electrical transport is critical to the understanding of
thermal properties. The effect of boundary scattering on transport properties is called the classical
size effect.1,2 Quantum size effect can modify the density of states of electrons and hence the elec-
trical and thermal properties, as will be discussed in Sec. 5.5.3.

5.3.2 Thermal Conductivity of Metals

Free electrons are the thermal energy carriers in metals. As discussed in Chap. 4, kinetic
theory predicts that the thermal conductivity is

(5.55a)

where is the mass of electrons per unit volume and is the mass specific heat of
the electrons. Note that is the volumetric specific heat of electrons and can be expressed
as 2mF using the electron specific heat formula given in Eq. (5.24).
Substituting the expression for and into Eq. (5.55a), we obtain
the thermal conductivity of a given metal as follows:

(5.55b)

which is proportional to . The Wiedemann-Franz law can be obtained by comparing this
equation with the expression for the electrical conductivity given in Eq. (5.49), viz.,

(5.56)

where Lz is called the Lorentz number. The measured Lz value for most conductors is
between 2.2 and 2.7 at room temperature. The derivations given above
were based on the simple kinetic theory, which is consistent with the solution of the BTE
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under the assumptions of local equilibrium and the relaxation time approximation. The
actual scattering process may result in some differences in the effectiveness of transferring
momentum and energy during electron-phonon scattering. More detailed theories and
experiments have shown that the thermal conductivity of metals is independent of temper-
ature at moderate and high temperatures.23 The Wiedemann-Franz law is therefore valid
near and above room temperature for most metals. As the temperature is lowered, electron-
phonon scattering yields a thermal resistance (or ) that is proportional to T 2, not T 4 as
one would obtain by combining Eq. (5.53a) and Eq. (5.56). Recall that in the intermediate
region, approximately between 10 and 100 K, the Wiedemann-Franz law is not valid. At
very low temperatures, defect scattering dominates and, because defect scattering is elas-
tic, the Wiedemann-Franz law is valid again so that . Therefore, the thermal conduc-
tivity at cryogenic temperatures can be expressed as 

(5.57)

where A and B are positive constants. The first term on the right dominates at very low tem-
peratures, when the thermal conductivity is proportional to T. As the temperature increases,
the thermal conductivity reaches a peak and then falls down proportional to 1/T 2. As the
temperature approaches the room temperature, the thermal conductivity changes little with
temperature until the melting point is reached. Figure 5.12 plots the thermal conductivity
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FIGURE 5.12 Thermal conductivity of copper with different impurities.25
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of copper with different impurity concentrations.25 The highest purity annealed copper has
a residual resistivity of . Oxygen free high conductivity (OFHC) cop-
per is commonly used in absolute cryogenic radiometers to build the cavity receiver. Even
0.5% impurity concentration will make the conductivity dramatically decrease at lower
temperatures. On the other hand, the thermal conductivity is less sensitive to the impurity
concentration above 100 K and changes little until the melting temperature of 1358 K.
Beyond the melting point, the thermal conductivity values are for liquid copper.
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5.3.3 Derivation of Conductivities from the BTE

So far, we have used simple kinetic theory to discuss the electrical and thermal conductiv-
ities of metals. It is hoped that these discussions have provided some insights into basic
phenomena. To understand the detailed mechanisms, we now present the approaches based
on the BTE under two assumptions: local equilibrium and relaxation time approximation.
Recall from Chap. 4 that the distribution function can be expressed in terms of or

, where for electrons. In describing the phonon specific heat, we have
extensively used the phonon wavevector as well as the k-space. The advanced electronic
theory or band theory, which is to be discussed in Chap. 6, is also based on the k-space.
Using the magnitude relations: and , we have . Therefore, the
distribution function can be written in terms of or . The energy of an electron is
related to its wavevector by . Under the local-equilibrium condi-
tion, the distribution function can be written in terms of temperature and energy 
such that

(5.58)

where is the density of states, and is such that 
and . For the equilibrium distribution of free electrons, is
nothing but the Fermi-Dirac function given in Eq. (5.15). When the distribution function is
isotropic in the k-space, the density of states is given in Eq. (5.18) since 

and . As discussed earlier, free electrons will occupy all the quan-
tum states below the Fermi level. The Fermi level corresponds to a maximum k in all direc-
tions in the k-space, which is a spherical surface. All the electron quantum states are
included in this sphere called the Fermi sphere. The argument is similar to the Debye model
of phonons, where there is an upper bound of the wavevector and the distribution is
assumed to be isotropic. We will see in Chap. 6 that the Fermi surface even for monatomic
solids with the simplest crystalline structures is not exactly spherical. This is because the
electrons in solids are not really independent particles. For simplicity, a spherical Fermi
surface is assumed in this section.

Suppose there is a constant electric field E along with a temperature gradient in the z
direction. The function is a nonequilibrium distribution that depends on z. At steady
state under the relaxation time approximation, we can rewrite Eq. (4.51) as follows:

(5.59)

where corresponds to the equilibrium distribution, which for electrons is the Fermi-
Dirac function . The relaxation time is not taken as a constant; rather, it is assumed to
be dependent on the wavevector or the energy. Note that 

. As discussed in Chap. 4, under local equilibrium, we also assume that 

(5.60)

We will consider the effect of applied field and temperature gradient separately. When
there is no temperature gradient, the current density can be written as 
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The first term is zero; and therefore,

(5.61b)

Because the integration is over the equilibrium distribution, it is one-third of the integration
if is replaced by . The electrical conductivity can be expressed as

(5.62)

Note that , where is the Dirac delta function with a sharp
peak at and essentially zero when . Furthermore, .
Consequently, the only active electrons are those around the Fermi level. This small frac-
tion of electrons, however, is responsible to the conduction of electricity and heat in met-
als. We have by assuming that

(5.63)

which is the same as Eq. (5.49) since according to Eq. (5.18) and
Eq. (5.20). The relaxation time is not the average of all electrons but the average of only
those electrons near the Fermi surface.

To evaluate the thermal conductivity, we set the applied field to be zero. Note that for
an open system of fixed volume, , i.e., the heat flux is equal to the energy
flux minus the product of the chemical potential and the particle flux. Hence, 

(5.64)

It should be noted that the integration of the equilibrium distribution function in Eq. (5.64)
is zero, as noticed earlier. Furthermore, the integration for can be converted to the inte-
gration for . After some manipulations, it can be shown that the thermal con-
ductivity is

(5.65a)

Using Eq. (B.82) from Appendix B.8, i.e., , we obtain after apply-
ing Eq. (B.80) that

(5.65b)

This is essentially the same expression as in Eq. (5.55b) for the electron thermal conduc-
tivity obtained from the simple kinetic theory. The previous discussion based on the Fermi-
Dirac distribution not only confirms the simple kinetic theory but also explains why 
should be used in Eq. (5.50) and Eq. (5.55a) rather than the rms velocity of electrons. A
familiarity with the BTE will help the study of the classical size effect due to boundary scat-
tering and thermoelectricity phenomena to be discussed in subsequent sections.
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The derivation above has confirmed the electrical conductivity and thermal conductivity
expressions, and explained that the scattering rate corresponds to electrons with energy
equal to the Fermi energy. Therefore, the Wiedemann-Franz law is also confirmed since the
scattering rates for the electron (momentum) transport and that for energy transport cancel
each other. Electron-phonon scattering must satisfy the energy and momentum conserva-
tions. When the amount of energy change of electrons before and after collision is compa-
rable with , the scattering is inelastic and the two scattering processes can differ
significantly. This happens at lower temperatures since is small. At very low tempera-
tures, since electron-defect scattering is elastic, the transport of electron momentum is as
effective as the transport of energy. As discussed earlier, the result in the low-temperature
region for electron-phonon scattering is such that the electrical resistivity follows , while
1/k follows . In order for Eq. (5.55a) and Eq. (5.55b) to be valid, it is often thought as if
the relaxation time for thermal conductivity is somewhat different than that for electrical
conductivity. In essence, it is not the scattering time that is different; it is the relaxation time
approximation that is not valid. By using two relaxation times, one can simplify the scatter-
ing process. The relaxation time for momentum transfer retains its meaning of the relaxation
time, as in Eq. (5.49) for the electrical conductivity. On the other hand, the relaxation time
in Eq. (5.55b) is sometimes called the energy relaxation time, which is taken as a weighted
average to approximate the difference in the scattering effectiveness for energy exchange.

5.3.4 Thermal Conductivity of Insulators

Conduction in insulators is dominated by lattice waves or phonons. This class of materials
includes diamond, quartz, glass, as well as semiconductor materials like silicon and GaAs.
Kinetic theory predicts the thermal conductivity of dielectric materials or electrical insula-
tors as follows:

(5.66)

where is the lattice volumetric specific heat, is the average speed of corresponding
acoustic waves or phonons, and is the phonon mean free path and is related to the scat-
tering rate by . When is used, it is often assumed that the dispersion relation is
linear, i.e., . For crystalline solids, the acoustic speed is on the order of 5000 m/s
and depends little on temperature; however, it may depend on the polarization. The density
decreases slightly as temperature increases due to thermal expansion but the change is neg-
ligibly small. The specific heat cv is a function of temperature as predicted by the Debye
theory, and it is nearly constant at temperatures close to or higher than the Debye temper-
ature. The mean free path can be evaluated based on phonon-phonon scattering and
phonon-defect scattering.

Before discussing further the temperature dependence of the scattering rate, we
would like to derive Eq. (5.66) from the relaxation time approximation based on the
Debye theory. The assumption is that the phonon velocity can be taken as a constant that
is averaged over all three modes according to Eq. (5.7), which describes the density of
states. For phonons, the distribution function can be conveniently converted into the fre-
quency domain. Suppose there is a temperature gradient in the z direction; using the
procedure similar to that used in the previous section, the thermal conductivity can be
expressed as
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where is the density of states per unit solid angle. Noting that and the
distribution function is independent of the direction, we can integrate Eq. (5.67) over all
angles first to get . With the upper limit of the frequency 
determined by Eq. (5.9), we can rewrite Eq. (5.67) as in the following:

(5.68)

The integration over the spherical coordinates offers a different way for deriving the 1/3
term in the kinetic expression of thermal conductivity obtained earlier for a molecular gas
and an electron gas. In addition to the assumption that the acoustic velocity is independent
of the frequency, we further assume that the scattering rate is independent of the frequency.
Hence, both and can be taken out of the integrand. The remaining part is the specific
heat per unit volume, defined in Eq. (5.31). It is clear that Eq. (5.66) can be obtained based
on the assumption that phonon speed, relaxation time, and mean free path are independent
of frequency.

Using Matthiessen’s rule, the phonon mean free path can be expressed as 

(5.69)

where ph-ph and ph-d stand for phonon-phonon scattering and phonon-defect scattering,
respectively. The inverse of the mean free path can be added because the number of colli-
sions can be added. The scattering rate due to phonon-phonon scattering is inversely pro-
portional to temperature at relatively high temperatures, i.e., decreases as temperature
increases. This causes a reduction in thermal conductivity as temperature goes up. To the
first-order approximation, we can say that the thermal conductivity is inversely proportional
to temperature in the high-temperature limit. At low temperatures, scattering on defects
dominates and the scattering rate is more or less constant. The thermal conductivity depends
on the specific heat and should also vary with T3. In addition, the size of the sample affects
the mean free path and hence the thermal conductivity. Also, as the temperature is reduced,
phonons with lower frequencies play an important role in the thermal transport and storage.
Thus, boundary scattering is expected to be more important at low temperatures. The effec-
tive mean free path can be defined similar to that for electron scattering as

(5.70)

Figure 5.13 shows the thermal conductivity of silicon with different impurity concentra-
tions. For highly pure single-crystal silicon, the thermal conductivity is comparable with a
good electrical conductor such as aluminum. As the impurity becomes more important, the
scattering rate is increased and the mean free path is reduced, resulting in a reduction in the
thermal conductivity. The contribution of free electrons is less important compared with
lattice conduction.

Example 5-6. Estimate the mean free path and the phonon scattering rate of pure silicon at 5, 10,
20, 100, 300, and 1000 K. Also, calculate the corresponding thermal diffusivity .

Solution. The purpose of this example is to give some quantitative information of the mean free
path and its temperature dependence. The calculation is straightforward using Eq. (5.68) by assum-
ing that the density and the phonon velocity are independent of temperature. From Example 5-1, we
have , and the density is found from Table 5.1 to be 2330 kg/m3. The specific heat can
be calculated from the Debye model, and the thermal conductivity can be found from Fig. 5.12. The
computed results are tabulated in the following table. The mean free path and the thermal diffusiv-
ity increase dramatically as the temperature is lowered. Because the crystal is highly pure, there is
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very little scattering at low temperatures. The decrease in the conductivity is caused by the reduc-
tion in the specific heat. At high temperatures, the specific heat does not change significantly, and
the decrease in the thermal conductivity is due to the increasing phonon-phonon scattering rate. It
should be mentioned that at very high temperatures, thermally activated free electrons or holes will
also increase the impurity scattering.

Temperature
(K) 5 10 20 100 300 1000

Thermal 424 2110 4940 884 148 31.2
conductivity
k [W/(m � K)]

Specific 0.034 0.28 3.43 260 712 921
heat
cp [J/(kg � K)]

Mean free 2.7 � 10�3 1.6 � 10�3 3.1 � 10�4 7.3 � 10�7 4.5 � 10�8 7.3 � 10�9

path

Scattering 2.2 � 106 3.7 � 106 1.9 � 107 8.2 � 109 1.3 � 1011 8.3 � 1011

rate

Thermal 5.4 3.3 0.62 1.5 � 10�3 8.9 � 10�5 1.5 � 10�6

diffusivity
a (m2/s)

1/t (rad/s)

� (m)
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FIGURE 5.13 Data of thermal conductivity of silicon taken from
Touloukian et al.25 The fitted curve is for highly pure silicon with a dopant
concentration less than ; triangles are for p-type single-crystal sil-
icon with an oxygen concentration of ; circles are for a heav-
ily doped n-type silicon with a phosphorus concentration of ;
and squares are for a p-type polycrystalline silicon with a boron concentra-
tion of .3 � 1020 cm�3
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When the phonon mean free path is comparable with the smallest dimension so that
, boundary scattering or classical size effect should be considered, as will

be discussed in Sec. 5.5. When , ballistic or phonon-boundary scattering becomes
dominant compared with phonon-phonon and phonon-defect scattering. As in the case of
free molecule flow, Fourier’s law is applicable only in the diffusion limit. When ballistic
scattering is significant, the temperature at the boundary is discontinuous. Since phonons
obey the same statistics as photons, the transfer process is more radiative than conductive.
Even at the steady state, the 1-D temperature distribution without heat generation is non-
linear. We will study the equation of phonon radiative transfer (EPRT) in Chap. 7 along
with other equations that should be used for small timescales or length scales, where
Fourier’s law of heat conduction breaks down. This is especially important at low temper-
atures, for small structures, and/or in rapid processes such as during a short laser pulse.

So far, we have studied the basics of phonon contributions to the thermal conductivity
under the relaxation time approximation, i.e., by assuming that is independent of the vibra-
tion frequency. Furthermore, we have taken the average acoustic velocity and assumed that it
is also independent of the vibration frequency. A further assumption is made that the phonon
dispersion relations are isotropic and linear up to a maximum frequency. Real crystals behave
very differently from the simple pictures just presented. To understand this, we must study the
phonon dispersion relations for all phonon branches, with different polarizations and along dif-
ferent crystal directions. While the study of crystalline structures and phonon dispersion rela-
tions will be deferred to Chap. 6, we can write the general expression for thermal conductivity
under the local-equilibrium condition in two forms. The summation form reads as

(5.71)

where the summation is over the wavevector index K and the polarization index P,
is the phonon group velocity for the given polarization in the direction along which the
thermal conductivity is to be evaluated. The integration form reads as

(5.72)

where is the density of states for an individual polarization. For isotropic distribution
in the k-space,

where and are the phase and group velocities for the corre-
sponding polarization. It should be noted that when dk is used in the numerator, it is the
elemental volume in the k-space, i.e., dk � dkxdkydkz � k2 sin udkdudf. In some equations,
we place the derivative of a vector in the denominator to obtain the gradient, as in Eq. (4.50)
and Eq. (B.58). If the density of states is properly handled so that it contains information
about a particular microstructure, Eq. (5.72) would be identical to Eq. (5.71). Otherwise, Eq.
(5.72) is the approximation of Eq. (5.71) for large systems. For a large system with isotropic
dispersion, we have

(5.73)

where the upper limit corresponds to the maximum frequency of each phonon polarization
or branch. Equation (5.73) helps us understand low-temperature behavior of thermal con-
ductivity of insulators.
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For the same frequency, while the energy of a phonon is the same as that of a photon
, the acoustic wave has a much shorter wavelength than the electromagnetic wave because

of the small speed compared with the speed of light. Thus, the momentum of a phonon will
be much greater than that of a photon of the same frequency. As an example, our ears sense
sound waves in the frequency range from 20 to 20,000 Hz. Assume ; then, the
wavelength range is 50 m to 5 cm. However, these are not the most important frequencies for
thermal energy transfer in solids. The smallest vibration wavelength is roughly lmin �

. With a typical velocity of in crystalline solids, the highest fre-
quency is on the order of 10 THz. Note that 1 THz (terahertz) � 1012 Hz. Compared with
electromagnetic wave spectrum, this frequency falls in the mid-infrared spectral region.
Therefore, electromagnetic radiation can interact with such phonons, and the resulting absorp-
tion is called lattice absorption or phonon absorption. High-frequency phonons are called opti-
cal phonons. On the other hand, acoustic phonons refer to the frequency range from 0 to 10
THz. By setting , we find that the frequency corresponding to the thermal energy of
translational motion of a particle is on the order of THz at 300 K (where

). The thermal phonon wavelength is therefore on the order of 1 nm with
. On the other hand, low-frequency phonons are responsible for energy storage

and transfer in crystalline solids at cryogenic temperatures. The shift in the dominant frequency
for phonon transport resembles Wien’s displacement law for blackbody radiation because
phonons and photons are governed by the same statistics. The phonon wave effect and quan-
tum size effect are expected to become important when the characteristic dimension is on the
order of the thermal wavelength, as illustrated earlier in the study of specific heat of solids.

5.4 THERMOELECTRICITY

Solid state energy conversion devices are very important, and it is hoped that nanotechnol-
ogy may offer solutions for improving the efficiency of these devices, such as thermoelec-
tric refrigerators and power generators. An understanding of thermoelectricity is useful for
further development of these solid state energy conversion devices. To illustrate the ther-
moelectric effect, assume there are an electric field E and a temperature gradient along
the z direction of a conductor. We can substitute Eq. (5.59) and Eq. (5.60) into Eq. (5.61)
for the electrical current density and into Eq. (5.64) for the heat flux. By dropping the inte-
gration for the equilibrium distribution and using Appendix B.8, we can write the 3-D vector
forms of the current density and the heat flux as (see Problem 5.21) 

(5.74)

and (5.75)

where , , , and (5.76)

Here, the function is defined as

(5.77)

In writing this equation, we have used Eq. (B.81) and converted in order
to consider the spatial dependence of . Let

(5.78)E 

=m
e � �=�

m
(dm/dT )=T � =m

�n �
1
3 3

`

0
(e � m)ntv2

'fFD

'e
D(e)de

�n

L22 � �
1
T

�2L21 � TL12 � e�1L12 �
e
T

�1L11 � �e2�0

qs � L21aE 

=m
e b � L22=T

Je � L11aE 

=m
e b � L12=T

=T

va < 5000 m/s
lthkBT � 26 meV
n � kBT/h � 6

kBT � hn

nm

va � 5000 m/s2L0 < 0.5 nm

va � 1000 m/s

va

hn

166 CHAPTER 5



where is called the electrochemical potential because it is the combination of the elec-
trostatic potential and the chemical potential. For metals at low or intermediate tempera-
tures, the variation in is relatively small, and the terms involving in Eq. (5.74) and
Eq. (5.75) can be dropped out. For semiconductors, changing the dopant or impurity con-
centration as well as the temperature may cause a large gradient of , and thus cannot
be neglected. When there is no temperature gradient, we can easily find the electrical con-
ductivity of metals to be

(5.79)

The thermal conductivity is defined by when no electric current flows. By
setting and combining Eq. (5.74) and Eq. (5.75), we find that the thermal conduc-
tivity is related to the coefficients by

(5.80)

For metals, the second term on the right-hand side is much smaller than the first one so that
we can approximate , as already discussed in Eq. (5.65b).

5.4.1 The Seebeck Effect and Thermoelectric Power

If there is a temperature gradient, Eq. (5.74) suggests that there will be a current flow in the
absence of an external field. On the other hand, if the current flow is set to zero (open cir-
cuit), there will be a voltage across the rod whose ends are held at different temperatures.
The Seebeck effect, as it was first noticed by T. J. Seebeck in 1821, can be used to produce
an electrical power directly from a temperature difference. The Seebeck coefficient, also
called thermopower or thermoelectric power, is defined as the induced thermoelectric volt-
age across the material of unit length per unit temperature difference. Therefore,

(5.81)

which has units of W/K. To calculate for a metal, we can use Eq. (B.79) to evaluate 
in Eq. (5.77). The simplest approach is to assume that t does not change much near the
Fermi surface. The result gives (see Problem 5.22)

(5.82)

For metals, the Seebeck coefficient is negative and its magnitude will increase as tem-
perature goes up. From Table 5.2, for copper. We have from Eq. (5.82) that
�S � �1.6 �V/K at 300 K and �3.2 �V/K at 600 K. However, the experimental values
are positive with 1.83 �V/K at 300 K and 3.33 �V/K at 600 K.26,27 This sign error is due to
the simplification used to evaluate , and it is an indication that the nearly free electron
model may not capture all the fundamental physics of metals. A proper quantum mechan-
ical evaluation based on the actual band structure is rather complicated but has been carried
out in some studies.5,28 Higher values of the Seebeck coefficient can exist in some alloys
and semiconductors. Generally speaking, the Seebeck coefficient is positive for p-type
semiconductors whose majority carriers are holes and negative for n-type semiconductors
whose majority carriers are electrons.

For a wire whose ends are at different temperatures: T1 and T2 in the open circuit shown
in Fig. 5.14a, there will be a voltage difference between 1 and 2 according to the relation 

. For n-type semiconductors, is negative and electrons at
the higher-temperature end tend to diffuse toward the lower-temperature end. An electrostatic
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potential will be built up to balance the diffusion process. Hence, the voltage is higher at
the higher-temperature end. Thermoelectric voltage cannot be measured with the same type
of wires because the electrostatic potentials would cancel each other. To measure the ther-
moelectric power, a junction is formed with two types of wires having different Seebeck
coefficients, type I (
) and type II (�), as shown in Fig. 5.14b. The leads can be a third
type of wire or the same as one of the thermocouple wires. This is of course the familiar
thermocouple arrangement for temperature measurement. A reference temperature (T1) is
needed because a thermocouple can measure only the temperature difference. The voltage
output can be expressed as

(5.83)

In thermocouple practice, the difference �I,II is called the Seebeck coefficient or ther-
mopower, and the potential difference is called the electromotive force (emf). Because
the Seebeck coefficient is zero when a material becomes superconducting ( ), super-
conductors have been used to establish an absolute scale of thermoelectric power.27 In ther-
mometry, a wire with a positive Seebeck coefficient and another with a negative Seebeck
coefficient are combined to form a thermocouple junction. For example, a type E thermo-
couple is made of a nickel-chromium alloy (chromel) and a copper-nickel alloy (constan-
tan); on the other hand, a type J thermocouple is made of copper and constantan. Historically,
galvanometer was used to accurately measure the electric current in a potentiometer. The
DC voltage can now be measured quickly and very accurately with a digital voltmeter/
multimeter (DVM). Detailed discussions about the fundamentals and practice of thermo-
electric thermometry based on metallic and alloy wires can be found in Bentley.26

5.4.2 The Peltier Effect and the Thomson Effect

Equations (5.74 and 5.75) can be combined to eliminate the potential term so that

(5.84)

This equation suggests that there will be a heat flux in the material due to an external elec-
tric current, even without any temperature difference. This phenomenon, first discovered
by Jean Peltier in 1834, is called the Peltier effect, which can be used for refrigeration
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FIGURE 5.14 Illustration of the Seebeck effect. (a) Single wire with a temperature difference
between the two ends. (b) A thermocouple made of two different materials.



(known as thermoelectric cooling) by passing through an electric current. The coefficient
is called the Peltier coefficient. It can be seen from Eq. (5.76) and Eq. (5.81) that

(5.85)

This quantitative relationship between the Seebeck coefficient and the Peltier coefficient
was revealed by William Thomson (Lord Kelvin) in the 1850s. Thomson’s thermodynamic
derivation led him to discover a third thermoelectric effect, known as the Thomson effect,
which states that heat can be released or absorbed when current flows in a material with a
temperature gradient. The energy received by a volume element for prescribed and 
can be expressed as follows:

(5.86)

Notice that the common term in both and cancels out. In
Eq. (5.86), the first term is the heat generated by the Joule heating, the second term is the
heat transferred into the control volume due to the temperature gradient, and the third term
is caused by the Thomson effect. The last term on the right-hand side is nonzero when there
is a current flow with a temperature gradient, unless the Seebeck coefficient is independent
of temperature. It should be noted that, like the Seebeck effect and the Peltier effect, the
Thomson effect is also a reversible process per se. The Thomson coefficient K is defined as
the rate of the absorbed heat divided by the product of the current density and the temper-
ature gradient. Thus,

(5.87)

Equation (5.86) has provided a way to determine , after and are measured at dif-
ferent temperatures. This allows the absolute thermopower to be determined for certain
materials at higher temperatures since superconductivity can occur only at very low tem-
peratures. A systematic study has resulted in the determination of absolute thermoelectric
power for lead and platinum, which can then be used as reference materials to determine the
absolute thermoelectric power for other materials.27 It should be noted that, before the dis-
covery of high-temperature superconductors, the highest temperature that a material could be
made superconducting was 23 K in an alloy. Superconductivity at temperatures above 35 K
was discovered in a ceramic material in 1986 and, shortly afterward, superconductivity
above the boiling temperature of liquid nitrogen (78 K) has been made possible.

Example 5-7. Consider a p-type semiconductor rod of diameter and length .
One end of the rod is in contact with a heat sink at , and the other end is in contact with
a heat source at . What is the open-circuit voltage? If a current is allowed to
flow from the cold end to the hot end, what is the heat transfer rate to the heat sink? Neglect the tem-
perature dependence of the thermal conductivity, the electrical resistivity, and the Seebeck coeffi-
cient by using , re � 19 �� � m, and �S � 220 �V/K, respectively.

Solution. Assume there is no heat transfer via the side of the rod. For an open circuit, the electric
potential is higher at the cold end, and the voltage across the rod is .
The rate of heat transfer to the heat sink by conduction from the heat source is qL,C � (pd2/4)k(T 2 � T1)/
L � 21.6 mW.

When an electric current is running from the cold end to the hot end, the Joule heating is gener-
ated uniformly inside the rod. The dissipated heat must reach both ends equally by conduction. The
additional heat transfer to the heat sink is , where is the
resistance of the rod. On the other hand, the Peltier effect results in cooling, or heat removal from
the heat sink. From Eq. (5.84) we have . The combination of the three
terms gives the heat transfer rate as . The negative sign indi-
cates that heat is removed from the heat sink.
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This example demonstrates the Peltier effect for thermoelectric refrigeration. It can be
seen that a smaller thermal conductivity will decrease the heat transfer between the two
ends, a smaller electrical resistivity will reduce the Joule heating, and a larger Seebeck or
Peltier coefficient will enhance the heat removal. For most metals, the thermal conductiv-
ity is too high and the Seebeck coefficient is too small for refrigeration applications. Some
insulators can have a large Seebeck coefficient but their electrical resistivity is too high for
them to be used in thermoelectric devices. 

5.4.3 Thermoelectric Generation and Refrigeration

With the understanding of the Seebeck effect, the Peltier effect, and the Thomson effect,
we are ready to perform a thermodynamic analysis of the thermoelectric generator or refrig-
erator as illustrated in Fig. 5.15. There are N pairs of junctions that are connected electrically

170 CHAPTER 5

FIGURE 5.15 Illustration of a thermoelectric generator or refrigerator.

in series by metallic interconnects and thermally in parallel between the two heat sinks. The
study of thermoelectric generation and refrigeration has become an active research area
since the 1950s, along with the development of semiconductor materials or p-n junctions.
Heavily doped semiconductors exhibit large Seebeck coefficients. Alternative n-type or p-type
semiconductors (or semimetals) are used as thermoelectric materials or thermoelectric ele-
ments. These include antimony-tellurium (Sb-Te), bismuth-tellurium (Bi-Te), and silicon-
germanium (Si-Ge) compounds. More recently, nanostructured materials are investigated
as candidates to increase the performance of thermoelectric devices. To simplify the analy-
sis, contact resistances are neglected, and it is assumed that all the thermoelectric elements
have the same length L and the same cross-sectional area Ac. Furthermore, heat transfer by
other modes is neglected except conduction by thermoelectric elements. Because contact
electrical resistance is neglected, heat generation by the Joule heating happens due to resis-
tance of the thermoelectric elements only. A load resistance RL is used to evaluate the out-
put electric power in the generator. A further assumption is that the thermal and electrical
conductivities, as well as the Seebeck coefficient, are independent of temperature. This
assumption is reasonable when the temperature difference between the two heat reservoirs
is very small.



Consider a thermoelectric generator. In this case, heat is taken from the high-temperature
reservoir at TH at the rate qH, and some heat is released to the low-temperature reservoir at
TL at the rate qL. The generated thermoelectric power is

(5.88)

The temperature distribution along the thermoelectric element is not linear, i.e., the tem-
perature gradient is not constant. The steady-state temperature distribution along a single
thermoelectric element can be solved by setting Eq. (5.86) to zero. Because of the assump-
tion of constant values of , the Thomson coefficient also becomes zero.
Therefore, we obtain

(5.89)

The resulting heat transfer rates due to temperature gradient are

(5.90a)

and (5.90b)

Clearly, half of the Joule heating goes to the heat source, and the other half goes to the heat
sink, as noticed in Example 5-7. Substituting Eq. (5.90) into Eq. (5.84) and using the sub-
scripts n and p for different thermoelectric elements, we have

(5.91a)

(5.91b)

where , , , and .
The output power is therefore

(5.92)

where is the resistance of all thermoelectric elements. The voltage is
solely caused by the Seebeck effect, i.e., . Assuming the load resistance is
RL, we have 

(5.93)

Substituting Eq. (5.93) into Eq. (5.92), we see that the electric power is indeed .
The thermal efficiency can be calculated as follows:

(5.94)
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is independent of the geometry.29 When and , we have
, which is exactly the Carnot efficiency. Increasing will improve the

efficiency. Hence, minimizing the thermal conduction, reducing the electrical resistance,
and increasing the Seebeck coefficient of the thermoelectric elements are essential for
improving the performance. A similar analysis can be done for thermoelectric cooling,
which is left as an exercise (see Problem 5.25). In general, the figure of merit of thermo-
electricity is defined as

(5.96)

which has units of 1/K, and can be nondimensionalized by multiplying it by temperature T.
The resulting dimensionless parameter ZT (zee-tee) is often quoted as the figure of merit
for thermoelectric materials or devices. This applies to both thermoelectric generation and
refrigeration (see Problems 5.23 and 5.25).

Because of the compromise between a large electrical conductivity and a small thermal
conductivity and the requirement of a large Seebeck coefficient, it has turned out that semi-
conductors are the best choice for thermoelectric applications. After extensive pursuit in the
1950s, materials with ZT values between 0.5 and 1 near room temperature have been devel-
oped using BixSb2-xTe3 and Bi2SeyTe3-y. These materials are essentially doped V-VI semi-
conductors Sb2Te3 or Bi2Te3. In the past 15 years, intensive theoretical and experimental
research has been conducted to increase the thermoelectric device performance by using
nanostructured materials. Mildred Dresselhaus and coworkers predicted that multiple
quantum wells or superlattices may enhance ZT values due to quantum confinement as well
as a reduction in the phonon thermal conductivity. The idea has been extended to
PbTe/PbSe superlattice nanowires.30 Superlattices made of SiGe/Si and GaAs/AlAs have
also been considered. Since 2001, several groups have demonstrated ZT values exceeding
2.31–33 Chen’s group performed an extensive investigation on the phonon and electron
transport in nanostructured materials.34 The reduction in thermal conductivity may come
from a combination of a number of factors including the mean-free-path reduction by
boundary scattering, thermal resistance associated with acoustic mismatch or phonon wave
scattering at the interface of dissimilar materials, as well as quantum confinement of the
phonon density of states. Before moving to the discussion of size effects on thermal con-
ductivity, let us give an overview of irreversible thermodynamics and a brief introduction
to nonequilibrium thermodynamics.

5.4.4 Onsager’s Theorem and Irreversible Thermodynamics

The set of coupling equations given in Eq. (5.74) and Eq. (5.75) is an example of irre-
versible thermodynamics, pioneered by Lars Onsager in the 1930s. Alternatively, it is also
known as the thermodynamics of irreversible processes or Onsager’s theorem. Onsager
described the phenomenological relations of interrelated or coupled transport processes
using the following equation:35

(5.97)

where is the flux of a physical quantity with , aij is called the Onsager
kinetic coefficient, and Fi is the ith generalized driving force or affinity. In an equilibrium
state, all Fi’s are zero. Furthermore, the entropy of a system can be expressed as36
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where fi is a property that is related to Fi such that Fi is proportional to the gradient of fi.
The entropy flux is thus

(5.99)

If an infinitesimal control volume is chosen, the continuity equation can be written as

(5.100)

The entropy balance becomes 

(5.101)

where and . Using the continuity 

equation, we obtain the volumetric entropy generation rate:

(5.102)

Furthermore, the Onsager reciprocity is expressed as follows:35,36

(5.103)

Lars Onsager (1903–1976) received the Nobel Prize in Chemistry in 1968 “for the discov-
ery of the reciprocal relations bearing his name, which are fundamental for the thermody-
namics of irreversible processes.” The Onsager reciprocity was even considered by some
researchers as the fourth law of thermodynamics.

Example 5-8. Determine the Onsager kinetic coefficients and the volumetric entropy generation
rate for a conductor with a constant current and temperature gradients.

Solution. It should be noted that in thermoelectricity, , , , and
. Thus, the Onsager relations are expressed as

(5.104)

(5.105)

Comparing the above expressions with Eq. (5.74) and Eq. (5.75), we find that

and (5.106)

The entropy generation rate can be calculated by using Eq. (5.99). Note that 

(5.107)

In the steady state, the energy equation, Eq. (5.86), becomes
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Therefore, the volumetric entropy generation rate for 3-D and 1-D cases, respectively, are

and (5.109)

These results are consistent with the analysis in Chap. 2 (see Example 2.5 and Problem
2.29). Furthermore, Eq. (5.109) suggests that the Thomson effect is a reversible process
that does not cause any entropy generation. The same can be said for both the Seebeck
effect and the Peltier effect, which are reversible thermoelectric effects. In addition to
thermoelectricity, irreversible thermodynamics has found applications in multicomponent
diffusion, nonisothermal diffusion (when both temperature gradient and concentration gra-
dient exist), and some magnetic processes.36 A further advancement in nonequilibrium
thermodynamics was made by Ilya Prigogine (1917–2003) who was awarded the Nobel
Prize in Chemistry in 1977. Prigogine’s study extended irreversible thermodynamics to
systems that are far away from equilibrium and allowed to exchange energy, mass, and
entropy with their surroundings. Prigogine and colleagues demonstrated that ordered dissi-
pative systems can be formed from disordered systems, when the systems are far from equi-
librium, and dubbed this theory dissipative structure, which led to pioneering research in
self-organization or self-assembly. The formation of ordered structures from disordered
structures has diverse applications in chemical, biological, and social systems.37 It is
beyond the scope of this book to go into details of this theory further.

5.5 CLASSICAL SIZE EFFECT ON CONDUCTIVITIES
AND QUANTUM CONDUCTANCE

When the characteristic length, such as the thickness of a film or the diameter of a wire and
the size of the grains (for polycrystalline solids), is comparable with the mechanistic length,
i.e., the mean free path, boundary or interface scattering becomes important. Subsequently,
the thermal conductivity (as well as other transport coefficients) becomes size dependent,
and can also be anisotropic.38,39 Because the mean free paths of electrons and phonons tend
to increase as temperature goes down, size effects are usually more important at low tem-
peratures. The criteria are also different for different materials. In the following section, we
will study the effect of boundary scattering on electrical and thermal conductivities, along
with some discussion about the quantum limit of conductance in nanostructures.

5.5.1 Classical Size Effect Based on Geometric Consideration

The simple expression of thermal conductivity based on the kinetic theory is 
for either electrons or phonons. Here, is called the bulk mean free path, which is the mean
free path when the material is infinitely extended. While the specific heat and the velocity
are also size dependent, especially for phonons, let us now focus on the size dependence of
the mean free path. The main objective is to illustrate how boundary scattering reduces the
thermal conductivity. The argument is also applicable to the electrical conductivity since it
is also proportional to the mean free path. Shown in Fig. 5.16 are two geometric configura-
tions to be considered here: (a) and (b) are for a thin film, and (c) is for a thin wire or rod.

In the ballistic transport limit when , if we assume that the mean free path in
the film is the same as the thickness d, i.e., , then the conductivity ratio can be
obtained as

(5.110)
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where is the Knudsen number, adopted from the theory of rarefied gas dynam-
ics, for electrons or phonons. In the intermediate region, we can apply Matthiessen’s rule
as suggested in Eq. (5.52) and Eq. (5.70) such that 

(5.111)

Accordingly, (5.112)

The result calculated from Eq. (5.112) is plotted in Fig. 5.17 to illustrate the size depen-
dence of the effective thermal conductivity. It appears that this simple formula overpredicts
the reduction in thermal conductivity, as compared with more realistic models to be dis-
cussed next.
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FIGURE 5.16 Illustration of free-path reduction due to boundary scattering. (a) A thin film for paths orig-
inated from the surface. (b) A thin film for paths originated from the center. (c) A thin wire for paths origi-
nated from the center.

FIGURE 5.17 Reduction in thermal conductivity due to boundary scattering. Note
that Eq. (5.116) was used with different m values for small Kn numbers.
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J. J. Thomson (Proc. Cambridge Phil. Soc., 11, 120, 1901) was the first to consider the
size effect on electrical conductivity of thin films. His argument was extended by Fuchs
(Proc. Cambridge Phil. Soc., 34, 100, 1938) based on the Boltzmann transport equation.
The geometric argument assumes boundary scattering is diffuse and inelastic, i.e., the elec-
trons are fully accommodated after scattering by the boundary. The concept of accommo-
dation is the same as that used for ideal gas particles in the free molecule flow regime,
discussed in Sec. 4.4. However, the distribution of free paths is not taken into consideration
for simplicity. In other words, all paths are assumed to be the same as the mean free path
in the bulk. When , we may assume that all energy carriers originate from the
boundary. From Fig. 5.16a, we see that

(5.113)

The free paths should be averaged over the hemisphere, and the weighted average can be
written and evaluated as follows:

(5.114)

Applying Matthiessen’s rule again, we have

(5.115)

This equation, however, cannot be applied for small values of Kn since becomes
negative. Let us assume Eq. (5.115) is applicable for . When , we may use 

(5.116)

where for thin films.38,39 Equation (5.112) can be considered as a special case of
Eq. (5.116) with m � 1. The results based on Eq. (5.115) and Eq. (5.116) are plotted in
Fig. 5.17 for comparison. Interpolation has been taken in the intermediate region when the
Kn value is between 1 and 5. Equations (5.114) and (5.115) did not consider the direction
of transport and cannot capture the anisotropic feature due to size effect. Flik and Tien
employed a weighted average of the free-path components in the parallel and normal direc-
tions of thin films.39 Their work was extended to different geometries by Richardson and
Nori.40 For the z direction, the projected mean free path is ; hence, the
weighted average becomes

(5.117)
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The use of Matthiessen’s rule allows us to obtain

for (5.118)

For , Eq. (5.116) should be used with m � 3, which can be obtained by integrating
over the film when .39 The result from Eq. (5.118) is also shown in Fig. 5.17. For
the x direction, one may assume that all the electrons originate from the center of the film for
simplicity. The component of the free path is , where is the azimuthal
angle. Due to symmetry, the integration can be carried out in an octant. It can be seen from
Fig. 5.16b that for , and for , where

. Subsequently,

(5.119)

After evaluation of the above integrals, we obtain

(5.120)

In the ballistic limit, i.e., , Eq. (5.120) reduces to . If the
free paths were to originate from the boundary, the result could be obtained by replacing 
with in Eq. (5.120). While it is perfectly logical to assume that all the carriers originate
from the surface for the z component in the ballistic limit. For thermal transport along the film
with a temperature gradient in the x direction, the carriers must originate from a cross section,
i.e., the y-z plane, inside the film. The transport process along the film is essentially diffusion-
like with significant boundary scattering contributions. Anisotropy may arise between kx and
kz due to boundary scattering. A simple argument is that paths with large polar angles are
more important for parallel conduction, whereas paths with smaller polar angles are more
important for normal conduction. Based on the geometry, it can be seen that paths with
smaller polar angles are more likely to be scattered by the boundary. Another reason that
causes kx to be greater than kz is that scattering tends to be more specular for larger incidence
polar angles. Specular reflection or elastic scattering does not reduce the conductivity because
the incident particles change only the direction without any exchange of energy with the sur-
face. Crystal anisotropy is another major reason for anisotropic conduction, sometimes the
dominant reason, as in high-temperature superconducting YBa2Cu3O7 films.39 Grain bound-
aries can strongly influence the thermal conductivity in polycrystalline films.38 For chemical-
vapor–deposited polycrystalline diamond films, kx may be greater or smaller than kz depending
on the crystal orientation; see Graebner et al. (J. Appl. Phys., 71, 5353, 1992). 

For circular wires, considering the conduction along a thin wire, as shown in Fig. 5.16c,
we have , and , where

. Thus,

(5.121)
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Applying Matthiessen’s rule yields

(5.122)

which can be applied for . For , studies have shown that Eq. (5.116) is a good
approximation with .41,42 The reduction in thermal conductivity for thin wires is also
indicated in Fig. 5.17, where the values for are based on a simple interpolation
between the two expressions. Due to the geometric confinement, the reduction in mean free
path is more severe for thin wires than for thin films. The geometric argument is easy to
understand and may help gain a physical intuition of the size effect due to boundary scatter-
ing. In consideration of the classical size effect, it is assumed that Fourier’s law is still applic-
able with a modified thermal conductivity. Derivations based on the BTE are presented next
for the size effect on the electron and phonon transport properties along a thin film or a wire.

5.5.2 Classical Size Effect Based on the BTE

In Sec. 5.3.3, we derived electrical and thermal conductivities based on the BTE for bulk
materials. The relaxation time approximation was adopted, and the distribution function
was assumed to be not too far away from equilibrium, i.e., under the local-equilibrium con-
ditions. To determine the size effect on the conductivities along thin films, the same
assumptions will be applied. Consider the geometry shown in Fig. 5.16a, with a tempera-
ture gradient and an electric field in the x direction only. Because of the finite thickness in
the z direction, the distribution function should also be an explicit function of z, viz.,

(5.123a)

Compared with Eq. (5.59), the last term was added because depends also on z. Here, the
electric field and the temperature gradient are along the x direction rather than the z direc-
tion as in previous sections on the conductivities. In Eq. (5.123a), we have already replaced

with and with . Hence, Eq. (5.123a) can also be written as

(5.123b)

which is nothing but the steady-state BTE under the relaxation time approximation. The
general solution can be expressed as

(5.124a)

and (5.124b)

where �(v) is an arbitrary function that accounts for the accommodation and scattering
characteristics. If perfect accommodation is assumed with inelastic and diffuse scattering,
then �(v) � 1. Let us consider electrical conduction without any temperature gradient. For
diffuse scattering, only with �(v) � 1, it can be shown that
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We must substitute the distribution function to Eq. (5.61a) and integrate over ,
or over or in the spherical coordinate, to obtain along the
film. Therefore,

(5.126)

Putting , the integration over can be carried out independently. The
average current flux can also be obtained. The properties of the Fermi
integral allow the integration over to be carried out and expressed in terms of the proper-
ties at the Fermi surface, i.e., and . Notice that , and let ,
where sf is the effective electrical conductivity of the film. After normalization of the elec-
trical current density based on Eq. (5.61a) and Eq. (5.62), we obtain the following relation:

(5.127)
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(5.127a)

Note that t � 1/cosu in the substitution, and the mth exponential integral is defined
as or Em(x) � , which has the relation Em
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. Equation (5.127a) can also be expressed as
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The asymptotic relations are 
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and for (5.128b)

which is close to Eq. (5.120) for . The derivation using the BTE presented earlier
inherently assumed that the electrons are originated from the film rather than from the
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boundaries. Kumar and Vradis performed an extensive comparison between different expres-
sions and relied on a different method to derive the size effect on conductivities.43

For thermal conductivity, we can substitute Eq. (5.124) with �(v) �1 into Eq. (5.65a) and
follow the similar procedure to obtain , where is given in Eq. (5.127a)
or (5.127b). At very low temperatures or near room temperature, the Wiedemann-Franz law
is applicable and the reduction in electrical and thermal conductivities are essentially the
same. In the intermediate region, one could use different scattering rates or mean free paths
for the bulk thermal and electrical conductivities to determine the size effect individually
based on Eq. (5.127).

According to the discussion of thermoelectricity in Sec. 5.4, we could in principle quan-
tify the size effect on other coefficients. If the same assumptions are used, to the first-order
approximation, and are subject to boundary scattering and will also be reduced
according to Eq. (5.127). Because the thermoelectric power is the ratio of the two coeffi-
cients, the Seebeck coefficient along the film should be expected to remain the same regard-
less of boundary scattering. One should be cautious about this conclusion because the
assumption of a spherical Fermi surface and the free-electron model are questionable when
modeling the thermoelectricity as mentioned previously. The above discussion can be
extended to scattering with a specular component. Let the parameter p, which is called spec-
ularity, represent the probability of scattering being elastic and specular. For specular and
elastic scattering, the carriers will continue to exchange energy and momentum inside the
film after the reflection by the boundary. Therefore, these scattering events do not cause any
reduction in the effective mean free path or conductivities along the film. If p is assumed to
be independent of the incident direction, the function �(v) in Eq. (5.124) becomes 

(5.129)

The function given in Eq. (5.127a) may be modified after some tedious derivations as
follows:

(5.130)

The effects of p and Kn on the effective conductivity are shown in Fig. 5.18. The trends
with respect to Kn are very similar to those in Fig. 5.17 obtained from simple geometric
considerations. For electronic transport, since the wavelength of the electron is less than 1 nm,
usually the boundary scattering can be considered as diffuse, i.e., p � 0. For phonons, the
wavelength may vary from the atomistic scale up to the size of the crystal. Therefore, the
size effect needs to be considered for different phonon frequencies. The parameter p can be
estimated based on the rms surface roughness srms and wavelength l of the carrier by

(5.131)

where at normal incidence. This equation can be derived from the wave scat-
tering theory as detailed by Elson (Appl. Opt., 22, 3207, 1982). Generally speaking, 
when . When , the specular reflection cannot be neglected. In reality,
the specularity p depends on the angle of incidence and tends to increase for carriers with
large incidence polar angle ui since should be multiplied by cos ui. Furthermore, the actual
scattering distribution often consists of a broad specular lobe, and the nonspecular compo-
nent is not perfectly diffuse. This is similar to light scattering by rough surfaces for which
an in-depth discussion will be given in Chap. 9.
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As can be seen from Figs. 5.17 and 5.18, when , i.e., when ,
the size effect may be significant, and boundary scattering dominates when .
Note that Examples 5-5 and 5-6 provide typical numerical values of the bulk mean free
paths of electrons in a noble metal and of phonons in silicon. At room temperature, the elec-
tron mean free path of a metal is on the order of tens of nanometers; one would expect some
size effect when d is less than 300 nm. However, for a highly pure metal at very low tem-
peratures, the electron mean free path could be on the order of millimeters. In thin films
when d is on the order of micrometers, boundary scattering would dominate the scattering
process. For semiconductors, such as silicon, the phonon mean free path is also on the order
of tens of nanometers at room temperature. Thereofore, the size effect can be neglected for
a 1-�m-thick silicon film above room temperature. As temperature is lowered, size effect
becomes more and more significant. Numerical calculations dealing with the conductivity
reduction are left as exercises.

The above discussion can be extended to conduction along a thin wire. For wires with
circular cross sections, the effective conductivity can be expressed as41,42

(5.132)

In particular, the asymptotic approximations with about 1% accuracy are

for  (5.133a)
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FIGURE 5.18 Size effect on thermal conductivity along a film of thickness d, as
predicted by the BTE with different specularities.

0

0.2

0.4

0.6

0.8

1

0.010.1110100

Eq. (5.130)

p = 2.5

p = 0.0

p = 0.50

p = 0.75

Kn = �b/d

10

Reduced thickness, d/�b

10.01 0.1 100
κ

ef
f/κ

b



If the scattering is not completely diffuse, by introducing a specularity parameter p similar
to that for thin films, the expression becomes

(5.134)

where

Again, different mean free paths and Kn numbers should be used for thermal and electrical
conductivities in the region where the Wiedemann-Franz law is not applicable.

For phonons, the distribution function depends on the frequency or the wavevector,
which can be expressed in the spherical coordinate. The group velocity depends on the dis-
persion relation for a given phonon mode or branch. The scattering rate is also frequency
dependent. Nevertheless, the BTE under the relaxation time approximation can be expressed
as follows for a given frequency:

(5.135)

where and are the components of the group velocity that depend on the frequency. The
solution is similar to Eq. (5.124a) and Eq. (5.124b), especially for the z dependence.
Following the discussions in Sec. 5.3.4 on phonon thermal conductivity, in conjunction
with the average heat flux along the film, we can rewrite Eq. (5.73) as follows:

(5.136)

where is a reduced frequency and is a function of x or v. In
this equation, the summation index P accounts for all phonon polarizations, the integration
is within the cutoff frequencies, and the function can be calculated from Eq. (5.130).
If an average Kn that is independent of the frequency can be used, Eq. (5.136) can be sim-
plified as . A similar equation can be developed for thin wires. Size-
dependent thermal conductivities for single-crystal silicon films have been experimentally
observed for film thicknesses from a few micrometers down to 20 nm.44

In the earlier discussion, the Fourier law was assumed to hold under the local-equilibrium
approximation, with reduced thermal conductivities to include the effect of boundary scatter-
ing. More recent works have employed equilibrium and nonequilibrium molecular dynamics
to study thermal transport at nanoscales.45,46 In heterogeneous structures, such as superlat-
tices, the thermal transport is across the multiple layers, and the local-equilibrium assumption
breaks down in the ballistic regime. Further discussion of non-Fourier conduction especially
for transient processes will be deferred to Chap. 7. For superlattice nanowires, both lateral
confinement and longitudinal confinement exist. Each element is like a quantum dot that is
confined in all three dimensions. When the quantum confinement becomes significant, the
relaxation time approximation used to solve the BTE is not applicable. Next, we will intro-
duce the quantum size effect on electrical and thermal transport processes, with an emphasis
on the concept of quantum conductance and its implications.

5.5.3 Quantum Conductance

Quantum size effect on the lattice specific heat was discussed in Sec. 5.2. Here, attention is
paid to the electrical conductance of metallic materials and thermal conductance of dielectric
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materials. For bulk solids, the density of states for electrons is proportional to , as
given in Eq. (5.18) and illustrated in Fig. 5.19a. Note that for phonons or photons, the
energy is proportional to the frequency and the density of states is propor-
tional to when the dispersion is linear [see Eq. (5.35) and Fig. 5.4]. For electrons or holes,

, where k is the wavevector and is an effective mass. For elec-
tron gas in a 2-D solid, the density of states , which can
be derived from Eq. (5.37) considering the spin degeneracy. In a quantum well of thickness
L, the energy levels are quantized in the normal or z direction according to Eq. (3.80), i.e.,

, where n is a positive integer. The combined energies can be expressed as

(5.137)

and the resulting density of states is given by

(5.138)

which is a staircase function as depicted in Fig. 5.19a. The reason that the density of states
for the nth subband is multiplied by n is because , where . Before
applying Eq. (5.36) and Eq. (5.37), we must multiply the total number of modes N by
For 1-D quantum wires confined in both y and z directions (assuming a rectangular shape
of ), the energy levels are given by

(5.139)

For each subband , the density of states becomes 

(5.140)

which has an inverse square-root dependence upon energy and a singularity at el,n, as shown
in Fig. 5.19b. For 3-D confined quantum dots, the energy levels are completely discrete;
subsequently, the density of states becomes isolated delta functions.

The quantization of energy levels of electrons or frequencies for phonons in small struc-
tures suggests that the resulting transport properties may also be quantized. For example,
the electrical conductance may depend on the applied current or force for the nanocontact
in a stepwise manner. The thermal conductance of insulators can also be quantized due to
limited available phonon modes in small structures and at low temperatures. In this section,
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FIGURE 5.19 Electron density of states due to quantum confinement.
(a) 2-D quantum wells versus 3-D bulk solids. (b) 1-D quantum wires.



we use conductance rather than conductivity for reasons to be explained soon. Long before
the quantization of conductance was experimentally observed, physicists have formulated
different theories to understand the transport phenomena in the quantum or ballistic regimes.
Landauer and collaborators have developed a formula to treat electrical current flow as
transmission probability when carriers are scattered coherently and the resulting ballistic
transport behaves quantum mechanically.47 Landauer’s formulation can be easily applied
to the 1-D case for conductance through a narrow channel, as illustrated in Fig. 5.20a.

184 CHAPTER 5

FIGURE 5.20 Illustration of quantum conductance. (a) Electrical current flow through a nar-
row metallic channel due to different electrochemical potentials. (b) Heat transfer between two
heat reservoirs through a narrow dielectric channel.

Suppose ballistic transmission exists in the channel connecting two reservoirs of different
electrochemical potentials; there will be a current flow from 1 to 2 and reversely from 2 to 1.
In the absence of losses by scattering and reflection, the net current flow can be expressed as

(5.141)

wherem is the chemical potential. The derivation can be easily generalized to include the elec-
trostatic potential. Note that the density of states in the 1-D case is , consid-
ering the electronic spin degeneracy. Because the voltage drop ,
the electrical conductance for complete transmission becomes

(5.142)

which gives a universal constant with a value of or a resistance value of
. This is the quantum conductance for an ideal 1-D conductor, in which there is

no resistance or voltage drop associated with the channel itself. The voltage drops are asso-
ciated with the perturbation at each end of the channel as it interacts with the reservoir.47 In
the above derivation, we also assumed that the Fermi function or the distribution function
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can be approximated as a step function (i.e., at absolute zero temperature). By introducting
a transmission coefficient and the actual distribution function, Eq. (5.141) can be mod-
ified as follows:47,48

(5.143)

For small potential differences, using the following approximation:

we obtain the expression of the electrical conductance:

(5.144a)

which reduces to Eq. (5.142), at absolute zero temperature, when is taken to 1. The
transmission coefficient is given by a scattering matrix (the S-matrix) based on the solution
of Schrödinger’s equation. The solution is in the form of eigenvalues called eigenchannels,
each with a transmission coefficient ti between 0 and 1. Thus, the expression of conduc-
tance is reduced to

(5.144b)

Depending on how many propagation modes at the Fermi level are excited, the conduc-
tance varies in a discontinuous manner. Conductance quantization has been realized in
metallic nanocontacts, nanowires, and carbon nanotubes,48–51 even at room temperature,
and has also been predicted by molecular dynamics simulations.49 These discoveries are
very important for the development of single-electron transistors, nanoelectromechanical
systems, nanotribology, and quantum computing. 

The ballistic thermal transport process resembles electromagnetic radiation between
two blackbodies separated by a vacuum. For a 1-D photon gas, the Stefan-Boltzmann law
reads rather than . In a solid nanostructure (channel) that links two heat reser-
voirs, as illustrated in Fig. 5.20b, the ballistic heat conduction can be treated in a similar
way so that 

(5.145a)

and (5.145b)

where is the transmission coefficient of the polarization branch P, and it accounts for
both scattering in the channel and reflection from the junctions. Here, the upper bound vD
approaches infinity at very low temperatures, and the lower bound is a cutoff frequency for
the phonon mode P. This cutoff frequency is determined by the width of the channel and
the order of the propagating phonon modes, like in a waveguide to be discussed in Chap. 10.
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More specifically, if a rectangular cross section is considered whose dimensions are Lx and
Ly, the cutoff frequency for the (m,n) mode is given by

(5.146)

Apparently, a narrow channel enables a large-cutoff wavenumber. Note that the zeroth-order
mode always exists because it has a zero cutoff frequency. If the integration in Eq. (5.145)
is expressed in terms of wavevector, there will be a group velocity term. In writing
Eq. (5.145), we have assumed that or a linear dispersion relation. The net heat
transfer is calculated by , which is commonly done in radiation heat trans-
fer. Assuming that the temperature difference is small, we obtain the thermal conductance as

(5.147a)

or (5.147b)

Note that represents the average temperature. At sufficiently low temperatures, only the
lowest phonon branches with zero cutoff frequency may contribute to the conductance. If
the transmission coefficient is assumed to be unity, each of the lowest phonon modes will
contribute to the thermal conductance by

(5.148)

which has a value and is another universal constant that can be viewed
as the Stefan-Boltzmann constant in a 1-D space for each mode. If the preceding derivation
is repeated to obtain electron thermal conductance, we will end up with due to the elec-
tronic spin degeneracy. Therefore, the Lorentz number in the ballistic
regime remains the same as given in Eq. (5.56) for the diffusive regime.52 Roukes Group has
demonstrated experimentally quantum thermal conductance using a 60-nm-thick silicon
nitride membrane.53 They reported a behavior at temperatures below 0.6 K since the
structure was suspended by four narrow bridges (channels). Each bridge or channel acts like
a wire with four phonon modes (two transversal, one longitudinal, and one torsional).

Carbon nanotubes, with very large thermal conductivities, have been known for a
while.54–58 Single-walled carbon nanotubes can be made essentially free from defect scat-
tering and boundary scattering due to atomistic smoothness. The diameter can be made as
small as a few nanometers with a length of several micrometers. Thermal conductivities of
single-walled and multi-walled nanotubes have been measured with suspended MEMS
bridges and are found to exceed that of diamond at room temperature.57 The thermal con-
ductivity can be calculated from the measured thermal conductance based on an effective
cross-sectional area. Above the room temperature, phonon-phonon anharmonic interac-
tions may provide a mean for diffusive-conduction behavior. Nanotube bundles on the
other hand are subject to various scattering mechanisms and thus possess a lower thermal
conductivity. Furthermore, the contact may be attributed to the reduction in conductance.
The contact and interface scattering needs to be further addressed in order to realize the
potential of nanotubes for use in heat transfer enhancement. Mingo and Broido calculated
the thermal conductance of carbon nanotubes in the ballistic limit.58 For semiconductor
nanotubes at sufficiently low temperatures, the thermal conductance becomes due
to the four lowest phonon modes regardless of the length and the cross-sectional area. The
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thermal conductivity of carbon nanotubes depends on the length and the cross-sectional
area, and will increase with temperature. On the other hand, as the length or temperature
increases, scattering becomes important and the conductance reduces. In the diffusion
limit, the conductivity is independent of the length and diminishes as temperature further
increases. For nanotubes whose band structures are metal-like, such as with (6,0) and (18,0)
chiral numbers, electronic ballistic transport may be important; however, electron-phonon
scattering will dominate at high enough temperatures.

5.6 SUMMARY

This chapter began with lattice vibrations (i.e., phonons) in solids and discussed the dimen-
sionality and the quantum size effect on the lattice specific heat. The free-electron theory
was applied, assuming a spherical Fermi surface, to predict the electronic specific heat, as
well as electrical and thermal conductivities of solids. The Boltzmann transport equation,
under the relaxation time approximation and the local-equilibrium assumption, was used to
derive the conductivities and thermoelectric coefficients under the framework of irre-
versible thermodynamics. A brief discussion of the efficiency of thermoelectric power and
refrigeration systems was then provided. The classical size effect on electrical and thermal
conductivities was presented, followed by the introduction to the concept of conductance
quantization for both electrical current and heat flow. The properties were discussed with
examples of representative materials, such as noble metals, semiconductors, quantum
wells, superlattices, nanowires, and carbon nanotubes. The band theory for electrons and
phonons will be introduced in the next chapter as an advanced topic of the transport theory
of solids.
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PROBLEMS

5.1. Calculate the specific heat of lead, using both the Einstein model and the Debye model, for tem-
peratures equal to 2, 10, 20, 50, 100, 200, 300, 600, and 800 K. Use �D � 88 K and �E � 65 K since
the specific heats calculated with these values agree with the data well for the whole temperature range.
Compare your answer with the values from Touloukian and Buyco.6 Explain the low-temperature and
high-temperature behavior.

5.2. In the first stage of designing a refrigeration system that will cool 1 kg of Pb from 300 to 2 K.
Assume the Debye model can be used to calculate the temperature-dependent specific heat of lead
(with �D � 88 K). Answer the following questions:
(a) How much energy must be removed from Pb?
(b) How much entropy must be transferred out from Pb?
(c) Assuming that the environment is at 300 K, what is the least amount of work necessary to perform

this refrigeration task?
(d) Consider the refrigeration in three temperature ranges: (1) from 300 to 100 K; (2) from 100 to 20 K;

and (3) from 20 to 2. What is the least amount of work needed in each temperature range?

5.3. Plot the Fermi function fFD versus e for T � 0, 500, and 5000 K. Plot the distribution function
of free electrons in metal f(e) as a function of e. Discuss the main features of these plots. (Use eV as
the unit for energy.)

5.4. The Fermi energy (at 0 K) of copper is mF � 7.07 eV. What is m(T) of Cu at 1000 and 10,000
K? Determine the maximum and root-mean-square free-electron speeds in copper at 0 K. Plot the elec-
tron distribution functions in terms of the speed and the kinetic energy for T � 0, 300, and 4000 K.

5.5. The Fermi energy of silver is mF � 5.51 eV. Calculate m(T) of Ag at T � 400 and 4000 K. What
is the rms speed of electrons at 0 K? What is the Fermi velocity? Plot the Fermi function at 0 and 4000 K
in one graph and discuss the differences.

5.6. For , the specific heat of free electron gas in metal may be expressed as 

. Evaluate this integration to obtain Eq. (5.25) by referring to Appendix B.8.

5.7. Calculate the Fermi energy of silver using the molecular weight and density. Estimate the spac-
ing between the adjacent atoms of Ag. Calculate and plot the electron specific heat and the lattice specific

(R/nekB)1`0 ('fFD/'T )D(e)ede

cv,e �kBT V mF
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heat of Ag at temperatures from 0 to 1000 K. Show in a separate graph the low-temperature behavior.
How do your calculated values agree with experimental data found in a heat transfer text?

5.8. Calculate the Fermi energy mF for copper based on the molecular weight and density. What is
the rms speed of free electrons in Cu at 0 and 300 K? Find the electronic specific heat and the lattice
specific heat in J/(kg � K) of Cu at 0.1, 1, 10, 30, and 500 K. When can you apply the T 3 law, and when
can you use the Delong-Petit law?

5.9. Calculate the electronic specific heat and the lattice specific heat of gold at 1, 10, 100, 300 and 1000
K. Sketch their temperature dependence. At what temperature will the electronic and lattice contributions
be the same? How does your calculated result compare with the value given in a heat transfer text?
5.10. The Mayer relation for the specific heat can be written as , where

is the isobaric volume expansion coefficient, is the isother-
mal compressibility, and r is the density. Noting that the sound speed va is defined according to

, we can write . A simple estimate of the relative
difference between the specific heats is readily obtained by assuming that va is independent of tem-
perature, cp on the right-hand side is approximately , and , where a is the linear thermal
expansion coefficient. For silicon, at 1000 K and . For copper,

and . Estimate the relative difference between cp and cv at 1000 K
for silicon and copper.

5.11. Graphene is a single sheet of carbon atoms that forms carbon nanotubes by rolling and con-
necting the ends to form a seamless cylinder. The phonon mode with the lowest speed is the out-of-
plane transverse acoustic mode, when the atoms vibrate perpendicular to the plane. It has a dispersion
relation , with . It is expected that this mode is the dominate mode for
the lattice specific heat at low temperatures (below 100 K). Using the 2-D solid model with the qua-
dratic dispersion to show that at low temperatures, i.e., .

5.12. Evaluate the specific heat of a thin GaAs film of two different thicknesses: L � 2 and 10 nm.
Plot the calculated specific heat with and without planar modes. Compare your results with that pre-
dicted by the Debye model for the bulk GaAs at .

5.13. Develop a computer program to calculate the lattice specific heat of CdS or ZnO2 cubic
nanocrystals with different sizes: L � 2, 10, and 20 nm. Discuss the low-temperature behavior in terms
of Eq. (5.44a) and Eq. (5.44b). 

5.14. For a nanowire of diameter , show that at low temperatures for a linear dis-
persion. If the length of the nanowire is , what is the lowest temperature asymptote of the spe-
cific heat due to the second quantum effect?

5.15. Calculate the electron scattering rate and the mean free path of copper at 295 K. Use the linear
relations for the electrical resistivity and the Wiedemann-Franz law to calculate the thermal conductiv-
ity at 200, 400, 600, and 800 K. Compare the calculated results with data from a heat transfer textbook.

5.16. Calculate the electron scattering rate 1/t, the mean free path , the electrical conductivity s,
and the thermal conductivity k of aluminum near room temperature. If the temperature is increased by
5%, how will 1/t, , s, and k change? Express the scattering rate in both rad/s and Hz. Discuss why
one should multiply it by to express 1/t in Hz.

5.17. Sketch the thermal conductivity versus temperature from 0 to 1000 K for silver. What is the
dependence of k on T, as the temperature approaches absolute zero? How does the thermal conductivity
change above 300 K?

5.18. Find the data for the electrical and thermal conductivities of a good conductor in a large tem-
perature range, and evaluate when the Wiedemann-Franz law is valid. Show the low-temperature and
high-temperature asymptotes for both s and k.

5.19. In the text, we stated that is a Dirac delta function and used it to obtain the electrical
conductivity in Eq. (5.63). Prove that when , the integral ,
where is an analytical function of x. Then, derive Eq. (5.49) from Eq. (5.63).

5.20. Sketch the thermal conductivity of germanium (relatively pure) as a function of temperature.24

Explain the trend of thermal conductivity at very low temperatures and at above room temperature.
Can you assume that the thermal conductivity is independent of temperature near room temperature?

5.21. Derive Eq. (5.74) through Eq. (5.80). Show that in Eq. (5.80), the second term is much smaller
than the first term for metals.

G(x)
1`0 G(e)('fFD /'e)de < �G(mF)kBT V mF

'fFD/'e
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5.22. Prove Eq. (5.82), and calculate the Seebeck coefficient for Ag at 300 and 600 K. The measured
Seebeck coefficient of Ag is 1.51 �V/K at 300 K and 3.72 �V/K at 600 K. On the other hand, the
Seebeck coefficient for Pt is �5.28 �V/K at 300 K and �11.66 �V/K at 600 K. If an Ag-Pt thermo-
couple is formed with a junction temperature � 600 K and a reference temperature � 300 K, find
the output voltage (see Fig. 5.14b).

5.23. For given values of TL, TH and Z*, there exists an optimal ratio RL/R0 for achieving the maximum

efficiency of the thermoelectric generator given in Eq. (5.94). Show that

where . Calculate the maximum efficiency, normalized to the Carnot efficiency, for
TL � 300 K and TH � 800 K as a function of the dimensionless parameter . Plot it for from
0.3 to 3. Discuss the significance of ZT in thermoelectric devices.

5.24. Consider a thermoelectric generator made of two semiconductors working between 
and . The p-type material is made of Bi0.5Sb1.5Te3, and the n-type material is made of
Bi2Se0.75Te2.25, with the following average properties: , , re,p �
15 �� � m, re,n � 13 �� � m, �p � 210 �V/K, and �n � �190 �V/K. Assume that the length L � 0.8 cm
and the cross section for both materials. A generator with a diameter of 10 cm contains 100
pairs (N � 100). Find the power output at the maximum efficiency (see Problem 5.23).

5.25. Perform a thermodynamic analysis of the thermoelectric cooling using the same configura-
tion as in Fig. 5.15. By noting that no load resistance is needed and the voltage supplied

, show that the coefficient of performance of a thermoelectric refrigeration is

The maximum C.O.P. can be obtained by setting the derivative with respect to I equal to zero. Show that

where TM � (TH 
 TL)/2.

5.26. Estimate the thermal conductivity along a copper film with various thicknesses: d � 400, 100,
and 50 nm at 300 K. What if the temperature is reduced to 1 K? 

5.27. Estimate the thermal conductivity along a copper wire with various diameters: d � 400, 100,
and 50 nm at 1 and 300 K, respectively. Compare simple geometric averaging of free paths with the
BTE. What are the electron de Broglie wavelengths at these temperatures? If the surface roughness
parameter , will the scattering be mostly diffuse or specular at each temperature?

5.28. At 5 K, calculate the thermal conductivity, perpendicular ( ) and parallel ( ) to the plane,
for a 200-nm-thick gold film. Calculate the effective thermal conductivity of a gold wire of 5-�m
thickness. Hint: use the bulk resistivity value from Fig. 5.11.

5.29. In Example 5-6, we have calculated the properties of a single-crystal silicon at various tem-
peratures. Use simple relations with p � 0 to estimate the thermal conductivities of silicon at temper-
atures ranging from 5 to 1000 K along a 50-nm-thick thin film and a 100-nm-thick thin wire. Assume
the surface roughness . Will the diffuse model be a good assumption? For the thin film,
redo the calculation using the specularity p estimated based on the thermal phonon wavelength .

5.30. The diameter of a carbon nanotube is determined by its chiral numbers according to
. What is the diameter of (10,10) single-walled nanotubes? Assume that

the wall thickness (unit atomic layer) is 0.34 nm. What is the cross-sectional area? Calculate the
phonon thermal conductivity k in the ballistic limit considering the four phonon modes at 100 K for
(10,10) nanotubes with length L � 100 nm, 1 �m, and 10 �m. Will the ballistic limit of thermal con-
duction hold at room temperature and above?
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ELECTRON AND PHONON
TRANSPORT

CHAPTER 6

193

In the preceding chapter on solid properties, we relied on the Drude-Sommerfeld model,
which assumes that electrons are completely free and the Fermi surface is spherical and
isotropic in all directions of the wavevector. While the concepts of electronic band struc-
tures and phonon dispersion in real solids were often mentioned, we have deliberately
avoided any details. It is hoped that the free-electron model will help readers gain an intu-
itive picture of electrons without a deep knowledge of solid state physics. Note that the free-
electron model is applicable only for metals, usually good conductors, and cannot be
applied to semiconductors. The Sommerfeld theory, albeit successful in quantitatively
describing electronic transport for certain metals, does not touch on the fundamental mech-
anisms of electron scattering and the shape of the Fermi surface. The free-electron model
also fails to explain certain phenomena including thermoelectricity. The Hall effect and
magnetoresistance, to be discussed in the following section, provide further evidence of the
inadequacy of the free-electron model.

This chapter introduces electronic band theory after a brief discussion of electronic
structures in atoms, binding in crystals, and crystal lattices. The phonon dispersion relations
are presented subsequently and explained in terms of different branches of acoustic and
optical phonons. Subsequently, the electron and phonon scattering mechanisms are explored.
The next section addresses electronic emission and tunneling phenomena, including pho-
toelectric effect, thermionic emission, field emission, as well as electron tunneling through
a potential. A significant portion of this chapter is then devoted to semiconductor materials
and devices, with an emphasis on optoelectronic applications such as solar cells, ther-
mophotovoltaic systems, light-emitting diodes (LEDs), and semiconductor lasers including
quantum well lasers.

6.1 THE HALL EFFECT

When a conductor carrying electric current is placed in a magnetic field perpendicular
to the current flow, there is a Lorentz force acting on the conductor according to

, where q is the charge of each carrier, ud is the drift velocity of
the carrier, B is the magnetic induction, I is the current in the conductor, and l is the length
of the conductor. This principle was used in the electromagnetic motor invented by Michael
Faraday in 1821. Because electric current is always defined in the direction of the applied
electric field , the force acting on the conductor is independent of the nature of
the carriers (electrons or holes). Microscopically, however, there is a subtle difference that
can be distinguished by the experiment first performed by Edwin Hall in 1878 when he was
a graduate student at Johns Hopkins University. As shown in Fig. 6.1, an electric current

E � �=V

F � gqud � B � lI � B

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



194 CHAPTER 6

FIGURE 6.1 Illustration of the Hall effect experiment.

passes through a metal foil in the x direction, while the electrons are drifted opposite to the
x direction. When a uniform magnetic field B is applied in the z direction, the electrons are
subjected to a force toward the negative y direction. Gradually, an electric field is built up
across the foil as manifested by a nonzero voltage VH, which is called the Hall voltage. The
electric potential in the y direction eventually balances the magnetic force such that the
electrons drift in the x direction only. This effect is called the Hall effect. By setting the y
component of the Lorentz force to zero, one obtains

(6.1)

where n is the number density of the carrier and d is the thickness of the conductor.1,2 The
Hall coefficient is defined as follows: 

(6.2)

The Hall resistance can be defined as , and its inverse is called the
Hall conductance. Similarly, the Hall resistivity is given by , where is
the electric field in the y direction and is the current density. For metals, and

, the number density of free electrons, and one would expect a negative Hall resistance.

Example 6-1. Find the Hall coefficient and the Hall voltage for a copper foil of 2 × 2 cm2 area,
with a thickness of 10 µm. Given the electrical current I � 0.5 A and the magnetic induction B �
1.0 T (tesla) � 1.0 Wb/m2, what is the voltage drop along the current flow direction?

Solution. Based on the previous chapter, the number density of electrons in copper is
. From Eq. (6.2), we obtain , and from Eq. (6.1)

we find VH � 23.7 �V, which is a very small voltage but can be measured accurately. Using the
resistivity of copper , we see that V � 850 �V, which is much larger than the
Hall voltage. The Hall coefficient is much larger for semiconductors because of their usually much
lower carrier densities.

Before the discovery of the Hall effect, many people, including James Clerk Maxwell,
believed that the force acted only on the conductor but not on the current carriers.3

Measurement of the Hall coefficient allows the determination of the sign of the charge car-
riers as well as the carrier concentration. This is important especially for semiconductor
materials. The Hall coefficient is positive for p-type semiconductors, but negative for n-type

re � 1.7 � 10�8 � # m

�H � �7.4 � 10�5 cm3/Cne � 8.45 � 1028 m�3

n � ne

q � �eJx

EyrH � B�H � Ey /Jx

RH � VH/I � B�H/d

�H �
VHd

IB
�

1
nq
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nqd
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semiconductors. In reality, the Hall coefficient depends also on the applied magnetic field
although such a dependence cannot be predicted by the Drude free-electron model. For
some common metals like Al, Be, Cd, In, and Zn, the Hall coefficient can even become pos-
itive. Therefore, the Hall effect cannot be fully accounted by the free-electron model. It is
necessary to understand the electronic structures. 

Magnetoresistance is the change in resistance of a material under an applied magnetic
field. The magnetoresistance may be transverse, when the applied magnetic field is per-
pendicular to the current flow, and longitudinal, when the applied magnetic field is paral-
lel to the current flow. In the free-electron theory, resistance is expected to be independent
of the strength of the applied transverse magnetic field. In reality, most materials exhibit
transverse magnetoresistance that depends on the magnetic field strength. In the late 1980s,
researchers observed a giant magnetoresistive (GMR) effect, also called giant magnetore-
sistance, with extremely thin films of ferromagnetic and metallic layers. The GMR effect
has been applied to read heads for magnetic hard disk drives.4

Klaus von Klitzing and coworkers in 1980 measured the Hall voltage of a 2-D electron
gas using a metal-oxide-semiconductor field-effect transistor (MOSFET), at very low tem-
peratures (T < 1.5 K) with a high magnetic field (B � 15 T), at the Grenoble High Magnetic
Field Laboratory in France.5 They found that the Hall conductance is quantized and
increases with the applied magnetic field by steps in a staircase sequence. The Hall con-
ductance is a multiple of a fundamental constant, 1/RK, where

(6.3)

is called the von Klitzing constant. Note that is proportional to the fine-structure con-
stant, which is related to the strength of light-matter interaction in quantum electrodynamics.
For this work, von Klitzing was awarded the Nobel Prize in Physics in 1985. The remark-
able precision and gauge invariance of quantized conductance allowed the definition of a
resistance standard used worldwide since 1990.6 As discussed in Chap. 5, quantized con-
ductance has also been observed between nanocontacts and nanostructures with an incre-
ment of . The discovery of the fractional quantum Hall effect in 1982, on the other
hand, rendered three physicists (Robert Laughlin, Horst Störmer, and Daniel Tsui) the 1998
Nobel Prize. This has led to a breakthrough in our fundamental understanding of the phys-
ical world. For example, in a 2-D system, electrons may switch between Fermi-Dirac sta-
tistics and Bose-Einstein statistics, continuously.7 More recently, Strohm et al. reported the
Hall effect for phonons by applying a magnetic field perpendicular to the heat flow in a
paramagnetic dielectric material at low temperatures.8 A transverse temperature difference
was measured, which reverses sign when the magnetic field is inversed. 

6.2 GENERAL CLASSIFICATIONS OF SOLIDS

There are several ways to classify solids. Based on their electrical conductivities, solids
may be classified as insulators, semiconductors, or conductors. They may exist in different
forms, such as amorphous or crystalline phases, depending on how the atoms in the solids
are arranged. A general introduction is given in this section considering chemical bonds
and electrical properties of solids. Let us first take a look at the electron configuration in
atoms because it is directly related to physical and chemical properties.

6.2.1 Electrons in Atoms

The periodic table of elements is arranged sequentially according to atomic number, which
is determined by the number of protons inside the nucleus and equal to the number of

2/RK

e2/h

RK � h/e2 � 25,812.807449 � 0.000086 �
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electrons orbiting the nucleus, since an atom itself is charge neutral. The electrons occupy
different quantum states, which are fully described by the Schrödinger wave equation as
discussed in Chap. 3. By solving the wave equation in spherical coordinates, the number of
quantum states can be determined and identified using indices n, l, and m.9,10 The first or
principal quantum number n � 1, 2, 3, 4, . . . corresponds to different shells, denoted as K,
L, M, N, O, . . . In each shell, there are n subshells defined by the orbital number l � 0, 1,
2, . . ., . The corresponding symbols are s, p, d, f, g, h, and so forth. For each l, the
magnetic quantum number m � 0, �1, �2, . . ., �l, which gives a total of orbits for
each subshell. Hence, there are a total of orbits in the nth shell. When spin degeneracy is
considered, the total allowable quantum states are in the nth shell. In other words, there
are 2, 8, 18, and 32 quantum states in the first (K), second (L), third (M), and fourth (N)
shells, respectively. On the other hand, there are quantum states in the lth (l � n)
subshell. For example, the s, p, d, or f subshell contains correspondingly 2, 6, 10, or 14 quan-
tum states. According to Pauli’s exclusion principle, each quantum state can have no more
than one electron; i.e., at most only two electrons (one with and the other with spin)
can share the same orbit. According to the Aufbau principle, electrons will fill the lowest
energy states first. The electron configuration of an atom is expressed by the numbers in each
subshell. For example, we can write for aluminum and calcium, respectively, 

and

Note that the 4s orbits are filled before the 3d orbits because the associated energy level of
a 3d orbit is higher than that of a 4s orbit. However, the electron configuration for is

rather than

This is due to the fact that a half-filled or filled d subshell is more stable than the s shell of
the next level.10 Similarly, the outermost shells for chromium (24Cr) are 4s13d5 not 4s23d4,
and those for gold (79Au) are 6s14f 145d10 not 6s24f 145d 9. The properties of an element
depend largely on the filled state of the outermost orbits. Alkali metals, such as , ,
and , have one electron in the outermost orbit and can easily lose it, especially when
interacting with halogens whose outermost orbits can be filled by adding only one electron
each. The result is the formation of chemically stable compounds such as NaCl and CsF.
The outermost electrons are called valence electrons. The 4s1 electron in copper is largely
responsible for its high electrical conductivity because it can leave the atom relatively eas-
ily. When the outermost orbits are completely filled, as in noble gases like He and Ne, the
atoms are very stable and reluctant to react with others. Noble gases are also called inert
gases since they are monatomic gases at ambient conditions. At the atmospheric pressure,
helium must be cooled to 4.2 K for it to condense into liquid. The general sequence of elec-
tron configuration in order of increasing energy is

For convenience, each dashed line indicates the electron configuration of an inert gas listed
underneath that line. Each noble gas contains a completely filled p subshell (with the excep-
tion of He which has a filled K shell) before the next s subshell. In atomic physics, ioniza-
tion energy is the energy required to separate an electron from the atomic nucleus. The
ionization energy varies periodically according to the atomic number: Alkali metals have
the lowest ionization energy because of the single electron in the outermost s orbits. On the
other hand, inert gases have the highest ionization energy. Helium is the most stable element
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with an ionization energy of 24.6 eV. The ionization energy of lithium is only 5.4 eV. For
a hydrogen atom, the ionization energy is 13.6 eV as discussed in Chap. 3.

6.2.2 Insulators, Conductors, and Semiconductors

The picture of free electron gas depicted in Chap. 5 is an oversimplified version in which
the electron energies are limited to a nearly continuous band from the zero energy level up
to the Fermi energy or Fermi level. Only those near the Fermi surface contribute to elec-
tronic transport properties. Electrons in a single atom are in various discrete energy lev-
els, which are well predicted by quantum mechanics. In real solids, atoms are arranged in
close proximity; hence, electrons interact strongly with one another as well as with the
crystal lattices, resulting in complex wavefunctions as manifested by their band structures.
There exists a large number of allowable bands that may be occupied by electrons.
Between two consecutive allowable bands, there exists a forbidden band that cannot be
occupied by any electron. Electrons occupy broad bands with allowable energy states up
to the Fermi level. The distinction between insulators and metals can be understood by
looking at the electronic states near the Fermi surface as illustrated in Fig. 6.2. A brief
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FIGURE 6.2 Schematic of the energy band for different materials, where is the bandgap energy and
is the Fermi energy. (a) An insulator has a completely filled valance band and a completely empty con-

duction band, with a wide bandgap between the two. (b) A metal has a partially filled conduction band and
the Fermi level lies in this band. (c) A semimetal, also called a metal, has a conduction band that overlaps
the filled valence band. (d) A semiconductor is like an insulator but with a much smaller bandgap and may
conduct electricity at elevated temperatures due to thermally excited electrons and holes. Doping or impu-
rities in a semiconductor can result in a large electrical conductance.

EF

Eg

qualitative description is given here, whereas more detailed theories are deferred to sub-
sequent sections.

For insulators, the highest occupied band is completely filled as shown in Fig. 6.2a. This
is called a valence band due to the contribution of valence electrons. The next higher band
is a conduction band which is completely empty. There exists a large energy gap between
the valance band and the conduction band, usually between 5 and 15 eV. Examples are

for fused silica (SiO2) and for LiF. The Fermi level lies in the mid-
dle of the forbidden band. Because the valence band is completely filled, electrons are not
free to move around (i.e., change from one quantum state to another) under the influence

Eg < 14 eVEg < 8 eV



of an electric field. An electrical insulator is also called a dielectric. Pure crystalline
dielectrics are transparent to visible light because their valence electrons cannot be excited
unless the incoming radiation frequency is high enough that the photon energy exceeds the
bandgap energy. Note that a photon energy of hn � 2 eV corresponds to a visible wave-
length l � 620 nm, and that of 10 eV corresponds to l � 124 nm, which lies in the deep
ultraviolet. On the other hand, lattice vibrations or phonons in dielectric materials often
yield absorption of radiation in the mid-infrared.

A metal has a partially filled conduction band, which is the highest occupied band, as
shown in Fig. 6.2b. The Fermi level lies inside this allowable band. For some metals like
Bi and Sn, the conduction band overlaps the valence band as illustrated in Fig. 6.2c. These
metals are sometimes called semimetals since their electrical conductivities are not as high as
the alkali or noble metals. Because the energy states within the conduction band are continu-
ous, the uppermost electrons in the partially filled conduction band or the top of the valence
band can be excited to a higher unoccupied energy level by an arbitrary applied field. Over
80% of the elements in the periodic table are metals (or semimetals). All group Ia (alkali,
excluding hydrogen), group IIa (alkaline earth), group IIIa (except boron), and transition (all
b groups from columns 3 to 12 of the periodic table) elements are metals. The interaction
between electromagnetic radiation and a material is much like applying an electric field to the
material, except that the frequency of the applied field is very high. Note that the frequency
of red light at l� 632 nm is � 475 THz. Because of their relatively free electrons,
metals interact with electromagnetic radiation strongly. This is manifested by the strong
absorption by thin metallic films and the high reflection from polished bulk metals. The
strong interaction of metals with microwaves can easily be demonstrated by placing a piece
of aluminum foil in a microwave oven and then observing the noises and sparkles as the oven
is turned on. At shorter wavelengths in the visible spectrum and in the ultraviolet, additional
absorption mechanisms emerge that may be better explained by the particle nature of light.

Semiconductors have band structures similar to those of insulators, except that the energy
bandgap is much narrower, i.e., on the order of 1 eV. For example, diamond has a
bandgap of 5.5 eV and is usually classified as an insulator, whereas silicon has a bandgap of
1.1 eV at room temperature and is a semiconductor. Some semiconductors can have a rela-
tively large bandgap and hence are called wideband semiconductors. Examples are the III-V
semiconductor GaN (3.4 eV) and the II-VI semiconductors CdS (2.4 eV) and ZnS (3.7 eV).
Diamond may be considered as a wideband semiconductor because of its crystal structure
similar to those of Si and Ge. Pure or intrinsic semiconductors are insulators at low temper-
atures. At higher temperatures, as illustrated in Fig. 6.2d, some electrons (dots) can be ther-
mally excited from the valence band to the conduction band, leaving holes (circles) in the
valence band. Subsequently, electrical current may flow through, although with a large resis-
tance as compared to metals. Bandgap absorption is essential for the interaction of semi-
conductors with optical radiation. When the photon energy exceeds the energy gap, strong
absorption occurs. This is why a silicon wafer looks dark and is opaque to visible light.

By doping the semiconductor with impurities, the charge distribution can be signifi-
cantly changed; while at the same time, the bandgap and the Fermi level are slightly mod-
ified. The semiconductor becomes extrinsic, meaning that the number of electrons is no
longer the same as that of holes. A group V element, such as phosphorous with five valance
electrons, may substitute a small fraction of silicon atoms. The extra valence electrons can
be thermally excited to the conduction band via ionization of the impurities. The phospho-
rus atom is said to be a donor, and the doped semiconductor becomes n-type since the
majority of its carriers are electrons. The electron concentration can be significantly
increased to enhance the electrical conductivity. From the band structure point of view, the
donated electrons form a filled impurity band right below the conduction band. The differ-
ence in energy between the conduction band and the impurity band is called ionization
energy, which is on the order of 0.05 eV. The ionization energy of a semiconductor has a
different meaning from the ionization energy required to separate an electron from the

Eg

n � c/l
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atomic nucleus discussed earlier. Likewise, when impurities from a group III element such
as boron with three valance electrons are introduced, additional holes are created such that
the silicon semiconductor becomes a p-type semiconductor because of the additional posi-
tive charge carriers. The boron atoms are called acceptors, which form an empty impurity
band right above the valence band.11 The energy difference between these two bands is also
called the ionization energy. Doping can strongly affect the infrared properties of semi-
conductors because of free carrier absorption. Furthermore, impurities and defects tend to
increase phonon scattering and reduce thermal conductivity since thermal transport in
semiconductors is mainly by lattice vibration.

6.2.3 Atomic Binding in Solids

Two or more atoms can combine to form a molecule, mainly through the electrons in the
outermost orbits (i.e., valence electrons), since the electrons in the inner shells remain
tightly bonded to their nuclei. The wavefunctions of the valance electrons are significantly
modified as compared with those of the individual atoms. There are five major kinds of
chemical bonds: the ionic, covalent, molecular, and hydrogen bonds for insulators and the
metallic bond for conductors. Solids with identical chemical composition can have differ-
ent stable forms or phases, which exhibit distinct differences in their appearances as well
as electrical, mechanical, and thermal properties. A notable example is carbon, which may
exist in the form of diamond, graphite, carbon black (amorphous carbon), or the fullerene
family. A crystal contains periodic and densely packed atoms or lattices, whereas an amor-
phous solid does not have well-organized lattice structures. The atoms in an amorphous
solid are disordered and irregular, like those in a liquid, except that they are firmly bonded
together. Therefore, a crystal is usually denser and harder than the amorphous phase of the
same composition. A crystal usually exhibits distinct facets along the crystalline planes
and has a sharp transition between solid and liquid at a fixed melting point. An amorphous
solid does not have clear facets when broken. When heated up, an amorphous solid is first
softened and then gradually it melts over a wide temperature range. An example is quartz
versus fused silica (glass), both made of SiO2. For a given composition, the thermal con-
ductivity is usually much higher in the crystal form because of lattice vibrations. 

Alkali metals and alkaline earth metals have one and two valance electrons, respectively,
that are loosely bonded. A metal atom can lose its outermost electrons to become a positive
ion. On the other hand, the elements in groups VIIa and VIa tend to gain additional electrons
to fill the outermost orbits and become negative ions. The positive and negative ions attract
each other by electrostatic force and form an ionic bond, which is quite strong. Ionic crystals,
such as NaCl, CsCl, KBr, CaF2 and MgO, are hard and usually have high melting points
(above 1000 K). They are insulators because the ions cannot move around freely and are
transparent in the visible spectrum because of the large bandgap. Nevertheless, some of
these crystals are soluble and can be dissolved in water. The solution becomes conductive
because of the ions. The positive and negative ions form an electrical dipole and can absorb
infrared radiation through lattice vibrations. These solids belong to the group of polar mate-
rials, in terms of polarizability. Note that the elements in groups Ib (noble metals) and IIb
(Zn, Cd, and Hg) resemble those in groups Ia and IIa because of the outermost s-orbit elec-
trons. The difference is that groups Ib and IIb also have filled d subshells. Therefore, II-VI
semiconductors such as ZnSe and CdTe are largely ionic bonded. 

The main contribution to the binding energy is the electrostatic or Madelung energy.2

The long-range electrostatic force between two ions with charges and is ,
where r is the separation distance measured from the center of the ion cores. Depending on
the sign of the charges, either attractive or repulsive force may occur. The ions arrange
themselves in a way that gives the strongest attractive interaction, which is balanced by the
short-range repulsive force between atoms. The contribution of the Coulomb attraction to
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the total energy of the system is roughly proportional to . As atoms are brought very
close to each other, the charge distributions or the electron orbits begin to overlap with each
other. Pauli’s exclusion principle requires some of the electrons move to higher quantum
states, resulting in an increased total energy of the system. Associated with the increased
energy is a repulsive force between the atoms. The magnitude of this repulsive force varies
with (where m is between 6 and 10 for alkali halides with NaCl structure1), and thus,
is negligible at large distances but increases rapidly when the distance is less than 0.5 nm.
The repulsive force contributes to the energy of the system by . There exists a mini-
mum energy or equilibrium position of the system when all the repulsive and attractive
forces balance each other. Readers are reminded about the similar discussion in  Sec. 4.2.4
on the intermolecular force and potential [see Eq. (4.48) and Fig. 4.8]. Understanding the
binding energy or the interatomic potential is very important for atomic scale simulations,
e.g., those using molecular dynamics.

Covalent bonds are formed between nonmetallic elements when the electrons in the outer-
most orbits are shared by more than one atom. Covalent binding is important for gaseous mol-
ecules like Cl2, N2, and CO2. When the atoms are brought close enough, the electron orbits
overlap, allowing them to share one or more electrons. Covalent interactions result in attrac-
tive forces, and the binding of atoms is associated with a reduced total energy. Covalent crys-
tals consist of an infinite network of atoms joined together by covalent bonds. Examples are
diamond, silicon, SiC, and quartz (SiO2). The whole crystal is better viewed as a large mole-
cule or supermolecule. In diamond structure, each atom is bonded to four neighboring atoms,
which form a tetrahedron. In a SiC crystal, each silicon atom is bonded to four carbon atoms
and vice versa. In a SiO2 crystal, while each silicon atom is bonded to four oxygen atoms at
tetrahedral angles, each oxygen atom is bonded only to two silicon atoms. Covalent solids are
usually very hard with a high melting point and thermal conductivity. The melting points of
quartz and silicon are 1920 K and 1690 K, respectively. Diamond has the highest melting point
among all known materials, i.e., 3820 K. At room temperature, the thermal conductivity of dia-
mond is 2300 W/(m � K), which is the highest of all known bulk materials. Pure diamond and
intrinsic silicon do not absorb radiation at frequencies lower than that of the corresponding
bandgap energy. Because of its wide bandgap, diamond is clear in the visible region and trans-
parent throughout the whole infrared and microwave regions.

Some solids have both ionic and covalent characteristics. Examples are the III-V semi-
conductors such as GaN, GaAs, and InSb. II-VI materials such as ZnO and CdS have a
large proportion (30%) of covalent bond characteristics. Even SiC has some ionic bond
characteristics because of the dipoles formed due to different attractive forces by different
atoms. Therefore, SiC is also a polar material that can absorb and emit infrared radiation
through lattice vibrations. 

Inert gases can be solidified at very low temperatures via molecular bonds. At atmos-
pheric pressure, argon becomes liquid at temperatures between 84 and 87 K. At tempera-
tures below 84 K, it crystallizes into a dense solid, called a molecular crystal. Van der
Waals’ force caused by induced dipole moments between atoms is responsible for the
attraction and binding of atoms. The van der Waals weak interaction gives a long-range
potential that is proportional to , as discussed in  Sec. 4.2.4. The repulsive potential
for inert gas is proportional to . Molecular bonds are also important for many organic
molecules.

Hydrogen has only one electron per atom and can form a covalent bond with another to
form H2 molecule. When interacting with other atoms, a hydrogen atom may be attracted
to form a hydrogen bond. The hydrogen bond and the resulting electrostatic attraction are
important for H2O molecules, with many striking physical properties in its vapor, water,
and ice phases. Hydrogen bonds and molecular bonds are essential to organic molecules
and polymers.

Metallic bonds are responsible for the binding energy in metals. Pure metals can form
densely packed periodic lattices or crystals. Metals often exist in polycrystalline form in
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which small grains of crystals are joined together randomly, or in alloy form in which the
atoms are arranged irregularly like an amorphous insulator. Unlike in a covalent crystal
where atoms share a few electrons, in a metallic crystal, some valence electrons leave the
ion cores completely and are shared by all the ions in the crystal. This is consistent with the
picture of free electron gas and describes well the behavior of alkali metals. Transition met-
als, including the noble metals, contain electrons in the d subshell. The metallic bonds are
supplemented by covalent and molecular bonds. Due to the relatively free electron gas,
metals have high thermal and electrical conductivities. Metallic crystals are also more flex-
ible than nonmetallic crystals, which are usually brittle. The melting points of metals vary
significantly. Examples are Hg (234 K), Ga (303 K), Au (1338 K), and W (3695 K). As
mentioned in previous chapters, the physical properties would change significantly as the
structure is reduced down to hundreds, tens, or even a few atomic layers in one-, two-, or
three-dimensions. Examples are carbon nanotubes, silicon nanowires, ZnO nanobelts, and
CdSe-ZnS quantum dots. In order to further understand the properties of solids, let us
examine the crystal structures more closely in the following section.

6.3 CRYSTAL STRUCTURES 

A crystal is constructed by the continuous repetition in space of an identical structural unit.
Geometrically speaking, a crystal is a 3-D periodic array, or network, of lattices. All lattice
points are identical to one another. For a crystal made of only one type of element, each lat-
tice point may be treated as a single atom or ion. However, this is not necessary as will be
illustrated later. In general, each lattice point represents a set of atoms, ions, or molecules,
located in its neighborhood. This set of atoms, ions, or molecules is called a basis. A unit
cell of a crystal structure contains both the lattice and the basis, and can be repeated by
translations to cover the whole crystal.

It has long been hypothesized that crystalline materials must have some periodicity in
their microstructures. In 1913, W. L. Bragg and his father W. H. Bragg used x rays to pro-
vide microscopic evidence of the existence of periodic lattice structures. This was a giant
step because the distances between atoms are on the order of 0.1 nm. X-ray crystallography
provided a powerful tool for the determination of the microscopic structure of solids. The
Braggs received the Nobel Prize in Physics in 1915, when Lawrence Bragg was only 25 years
old. It was not until 1983 that atomic images were obtained in real space using a scanning
tunneling microscope (STM) as discussed in Chap. 1. The physical properties of crystalline
solids are largely determined by the arrangement of atoms in a unit cell, in addition to the
chemical bonds between atoms. It is of great importance to know the structure of a crystal
first in order to understand its electrical, thermal, mechanical, and optical properties.

6.3.1 The Bravais Lattices 

In three dimensions, crystal lattices can be grouped into 14 different types as required by
translational symmetry. These are called Bravais lattices, named after French physicist
Auguste Bravais (1811–1863), who showed that there are only 14 unique Bravais lattices
from the point of view of symmetry. Bravais lattices are then categorized into seven crystal
systems, resulting in seven types of conventional unit cells, namely, cubic, tetragonal,
orthorhombic, hexagonal, rhombohedral, monoclinic, and triclinic, as illustrated in Fig. 6.3. 

There are three cubic lattices: the simple cubic with lattice points only on its apexes, the
body-centered cubic (bcc) with one additional lattice at the center, and the face-centered
cubic (fcc) with one additional lattice at each face, as shown in Fig. 6.3a1, Fig. 6.3a2, and
Fig. 6.3a3. To illustrate the difference between bcc and fcc lattices clearly, Fig. 6.4 displays
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the top views of these two structures with the same a, which is called the lattice constant.
Some practical examples will be given soon. If one looks at Fig. 6.4b along the diagonals,
the face-centered structure becomes body-centered. However, the lattice constant would
become along the lateral directions but remains in the vertical direction. Such a
structure is a special case of the tetragonal, because one side is not the same as the other two.

aa/!2
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FIGURE 6.3 The seven crystal systems with a total of fourteen Bravais lattices, where each point
is called a lattice point. The number in parentheses refers to the number of Bravais lattices in the crys-
tal system.  (a) Three types of the cubic: simple cubic, body-centered cubic (bcc), and face-centered
cubic (fcc). (b) Tetragonal: either simple or body-centered as represented by the empty circle at the
center. (c) Orthorhombic: simple, body-centered, face-centered, or based-centered. (d ) Hexagonal. (e)
Rhombohedral (also trigonal). ( f ) Monoclinic: simple or base-centered as represented by the empty
circles on the opposite faces. (g) Triclinic.



There are two tetragonal Bravais lattices, the simple and the body-centered, because a face-
centered tetragonal lattice can simply be rotated by 45� to become a body-centered one. A
tetragonal lattice can be thought of as a cubic lattice stretched in one direction.

In the orthorhombic lattices shown in Fig. 6.3c, the three lattice constants: a, b, and
c, are not equal to each other. Besides the simple, body-centered, and face-centered
orthorhombic lattices, there exists a base-centered lattice structure, in which two addi-
tional lattices are placed at the center of the top and bottom faces. An orthorhombic lattice
can be thought of as a corresponding tetragonal lattice stretched along one side of its
square. To produce the additional two, one can simply rotate the tetragonal by 45� and then
stretch it.

A hexagonal lattice contains equal triangular or honeycomb layered structures (see
Fig. 6.3d). The next three types of Bravais lattices have inclined faces (see Fig. 6.3e, f,
and g). The rhombohedral (or trigonal) has equal sides, whereas the triclinic has three dif-
ferent sides and angles. Both contain six parallelogram faces. The monoclinic, on the other
hand, has four rectangular faces and two parallelogram faces.

Example 6-2. Copper is an fcc lattice. Estimate the lattice constant and the distance between near-
est copper atoms (or ion cores to be exact) from the density and the molecular weight of copper.

Solution. From Table 5.1, we have for Cu that and M � 63.5 kg/kmol. The num-
ber density of Cu atoms is . If the structure were simple cubic, we
would easily find that , which would also be the closest distance between
atoms. For an fcc lattice, there are eight corner points and six face points. If each lattice point is made
of one atom, each corner point contains one-octant of an atom and each face point contains half of
an atom inside the cube. Therefore, there are four atoms inside each fcc unit cell. The number of unit
cells per unit volume becomes and the calculated lattice constant is for Cu. The
closest distance between atoms is . If we assume that all the atoms are rigid
spheres that are closely packed (touching one another), then we can calculate the packing density or
the fraction of occupied space. Assume that the diameter of an atom is d. For a simple cubic lattice,

and there is only one atom per lattice. Hence, . For an fcc lattice,
and What is the packing density for a bcc lattice then?

Some solids with bcc or fcc lattices are listed in Table 6.1, along with others that form
a hexagonal close-packed (hcp) lattice. An hcp lattice can be considered as two Bravais
hexagonal lattices that are interlocked at c/2. Each lattice point is surrounded by, at equal

f � 4s1/6dpd3/a3 � 0.74.a � d!2
f � s1/6dpd3/a3 � 0.52a � d

a/!2 � 0.256 nm
a � 0.361 nmn/4

a � n�1/3 � 0.228 nm
m�3n � rNA/M � 8.47 � 1028

r � 8930 kg/m3
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FIGURE 6.4 Top views of (a) body-centered cubic and (b) face-centered cubic Bravais lattices.
The two different filling patterns (hatched and shaded) represent lattice points on alternative layers
as in Fig. 6.3a2 and Fig. 6.3a3.



distances, 12 neighboring points: 3 above, 3 below, and 6 at the same height. Imagine that
atoms are rigid spheres with a diameter d; we can be show that and for
an hcp lattice. Each sphere is in contact with 12 others. It can be seen from Table 6.1 that
these hcp crystals follow the ratio within �16%.

6.3.2 Primitive Vectors and the Primitive Unit Cell 

A set of primitive vectors can be defined for Bravais lattices so that the vector
between any two lattice points can be expressed by

(6.4)

where m, n, and l are integers. For a simple cubic lattice, we can simply assign
, as can be seen from Fig. 6.3a1. However, the assignment of prim-

itive vectors is not unique. The parallelepiped formed by the three vectors is called a prim-
itive unit cell, whose volume remains the same no matter how the
primitive vectors are chosen. Taking the bcc lattice as an example, we may choose the
primitive vectors as either

(6.5a)

or (6.5b)

From Eq. (6.5b), we see that points to the center point and . Either
way, we end up with , suggesting that the Bravais bcc lattice is not a primitive
cell. In fact, only the simple Bravais lattices are primitive unit cells. Of course, there are
other ways of choosing the primitive vectors. For a Bravais fcc lattice, we can write 

(6.6)

Each vector conveniently ends at the three face-centered points. The total volume of the
primitive cell becomes , as expected.Vuc � 0.25a3

a � 0.5a(y^ 
 z^), b � 0.5a(x^ 
 z^), c � 0.5a(x^ 
 y^)

Vuc � 0.5a3
a 
 b � az^a 
 b 
 c

a � 0.5a(�x^ 
 y^ 
 z^), b � 0.5a(x^ � y^ 
 z^), c � 0.5a(x^ 
 y^ � z^)

a � ax^, b � ay^, c � 0.5a(x^ 
 y^ 
 z^)

Vuc � a � b # c

a � ax^, b � ay^, c � az^

R � ma 
 nb 
 lc

a, b and c

c/a � !8/3 < 1.633

c � d!8/3a � d
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TABLE 6.1 Crystal Structures and Lattice Constants of Common Elements.1,2 Room Temperature
Values Unless Otherwise Indicated. Note that 1 Å � 0.1 nm

fcc bcc hcp

Element a (Å) Element a (Å) Element a (Å) c (Å)

Ar (4.2 K) 5.26 Ba 5.02 H (4 K) 3.75 6.12
Ag 4.09 Cr 2.88 Be 2.27 3.59
Al 4.05 Cs (78 K) 6.05 Cd 2.98 5.62
Au 4.08 Fe 2.87 Er 3.56 5.59
Ca 5.58 K (5 K) 5.23 Gd 3.64 5.78
Ce 5.16 Li (78 K) 3.49 Mg 3.21 5.21
Cu 3.61 Mo 3.15 Ti 2.95 4.69
Pb 4.95 Na (5 K) 4.23 Tl 3.46 5.53
Pd 3.89 Nb 3.30 Y 3.65 5.73
Pt 3.92 V 3.03 Zn 2.66 4.95
Yb 5.49 W 3.16 Zr 3.23 5.15



Another way of choosing a unit cell is to follow the two steps: (1) Draw lines to connect
a given lattice point to all nearby lattice points. (2) At the midpoint and normal to these
lines, draw new lines or planes. The smallest volume enclosed in this way is called the
Wigner-Seitz primitive cell, as illustrated in Fig. 6.5. The Wigner-Seitz cell for a 2-D lattice
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FIGURE 6.5 The Wigner-Seitz cells: (a) for a 2-D lattice as shown by the shaded region and (b) for an fcc
lattice as shown by the rhombic dodecahedron.

(a) 2-D lattice (b) fcc lattice

becomes a hexagon whose opposite sides are parallel, and that for an fcc lattice is a rhombic
dodecahedron. The longer diagonal of each rhombic face is times that of the shorter diag-
onal. There are six apexes where four surfaces meet and eight apexes where three surfaces
meet. The distance between opposite axes joined by four faces is exactly the Bravais lattice
constant a. The axes: x, y, and z, pass through these six apexes as well as the center. Each
Wigner-Seitz cell contains only one lattice point, and it has been proven to be a primitive cell.

It is convenient to describe the orientation of the crystal plane by the Miller indices,
which are three integers h, k, and l, without common factors, and denoted by (hkl). These
numbers give a vector that is perpendicular to the plane. For example, if a,
b and c are along the x, y and z axes, respectively, the six surfaces of the cubic unit cell are
represented by , , , where a negative sign is denoted
by a bar on top of the number. The whole set of surfaces can be denoted by {100} due to
symmetry. Most commercial semiconductor wafers are (100) oriented and some (111). The
way to find the smallest h,k,l of any specified crystal facet is first to extend the plane so that
it intersects the axes formed by the lattice vectors. Find the intercepts on each axis in terms
of multiples of the unit cell vector, e.g., (2,4,�6); the numbers must be integers for any spec

ified crystal plane. Take the reciprocals of these numbers, which are . Multiply them
by the least common multiple, which is 12 in this example. Put into the Miller indices, i.e.,

. All parallel planes are characterized by the same set of Miller indices.

Example 6-3. Find all angles between the (100), (111), and (311) surfaces in a cubic lattice. 

Solution. For two vectors a and b, . Thus, the angle between

(100) and (111) planes is ; that between (100) and (311) planes is a�

cos�1 ; and that between (111) and (311) planes is .a � cos�1Q3 
 1 
 1
!11 � 3 R � 29.5�Q3/!11R � 25.2�

a � cos�1Q1/!3R � 54.7�

a #  b � ab cos a � xa  xb 
 ya yb 
 za zb

s6,3,2d

Q1
2,

1
4,�

1
6R

s100d, and s100ds010d, s010ds001d, s001d

ha 
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6.3.3 Basis Made of Two or More Atoms

With respect to the primitive vector and basis, a bcc lattice can be thought of as a simple
cubic with a basis made of two atoms, one at and the other at . Each of the
eight lattice points contains the same basis by translation, according to Eq. (6.4), and the
unit vectors along the three orthogonal sides of the cubic. The simple cubic lattice having
a basis of two atoms, however, breaks some of the symmetry of the Bravais cubic lattice
and is called a non-Bravais lattice. Lattices with a basis consisting of more than one atom
have important practical applications as discussed in the following. The cesium chloride
structure is made of two types of elements, each forming a simple Bravais lattice, as shown
in Fig. 6.6a. The two Bravais lattices can be thought of as being placed in identical
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1
2,

1
2Rs0,0,0d
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FIGURE 6.6 Crystalline structures. (a) Cesium chloride; (b) Sodium chloride. (c) Zincblende, which becomes
a diamond structure when the atoms in the empty circles are the same as the filled ones. (d ) YBa2Cu3O7 super-
conductor whose lattice constants are approximately a � 0.38, b � 0.39, and c � 1.17 nm.

positions first, and then one is moved by so that the point at the origin is translated
to the center of the other. It is not a body-centered cubic lattice. Rather, the crystal structure
can be viewed as a simple cubic with a base of two ions, Cs at and Cl at . TheaQ1

2,
1
2,

1
2Rs0,0,0d

aQ1
2,

1
2,

1
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sodium chloride structure is more common. In this case, it can be considered as two fcc
lattices made of different ions. The two fcc lattices are then translated exactly the same
way as in the CsCl structure. The resulting structure is shown in Fig. 6.6b, where each
ion is surrounded by six ions of the other type. The lattice constants of some common
crystals are listed in Table 6.2. It can be seen that most ionic crystals form NaCl or CsCl
structures.

The crystal structures of diamond and zincblende semiconductors are also derivatives
of the cubic structure. The zincblende structure is formed from two fcc lattices with differ-
ent types of atoms, displaced along the body diagonal by one-quarter the length of the diag-
onal. Specifically, the basis is made of one atom at and the other atom at , as
shown in Fig. 6.6c. A total of four atoms are moved completely inside the cube, and each
atom has a covalent bond with each of the four adjacent atoms, which together form a tetra-
hedron. Examples of zincblende structure are GaAs, SiC, and so forth. A diamond struc-
ture can be viewed as a special case of a zincblende structure for which there is only one
type of element, such as C, Si, or Ge. The outermost subshell of Si is , and the s sub-
shell is filled. By promoting an s-electron to a p-state to form hybrids, four covalent
bonds can be formed. This is also true for C and Ge. In essence, the diamond lattice can be
thought of as an fcc lattice with a basis containing two identical atoms: one is on the corner
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3s23p2
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1
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1
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TABLE 6.2 Crystal Properties of Some Compounds and Semiconductors
at Room Temperature.1,2 For Semiconductors, the Bandgap Energy is
Indicated, and “i” in Parentheses Denotes an Indirect Bandgap

Compound Semiconductors

Composition a (Å) Composition a (Å) (eV)

Sodium chloride structure Diamond structure

LiF 4.02 C 3.57 5.47 (i)
LiCl 5.13 Si 5.43 1.11 (i)
NaBr 5.97 Ge 5.66 0.66 (i)
NaCl 5.64
KBr 6.60

Zincblende structure

KCl 6.29 BN 3.62 7.5 (i)
CsF 6.01 CdS 5.82 2.42
AgCl 5.55 CdSe 6.05 1.70
AgBr 5.77 CdTe 6.48 1.56
MgO 4.21 GaAs 5.65 1.42
MgS 5.20 GaN (w) 5.45 3.36
CaO 4.81 GaP 5.45 2.26 (i)
CaS 5.69 GaSb 6.43 0.72
CaSe 5.91 HgTe 6.04 � 0
BaTe 6.99 InAs 5.87 0.36

InP 6.48 1.35
Cesium chloride structure

InSb 4.35 0.17
CsCl 4.12 SiC 4.63 2.36
CsBr 4.29 ZnO 5.41 3.35
CsI 4.57 ZnS 5.67 3.68
TlBr 3.97 ZnSe 6.09 2.58

Eg



and the other on the body diagonal at a distance of one-quarter diagonal. Table 6.2 also pre-
sents commonly used diamond and zincblende semiconductors with associated lattice con-
stants and bandgap energies. Notice that GaN crystal is wurtzite in its stable form with a
hexagonal symmetry. This is also the case for AlN and InN, which are not shown in the
table. The III-nitride materials have a wide band, and thus are important for UV-blue-green
LEDs and lasers. On the other hand, ZnS, ZnO, CdS, and CdSe can also be wurtzite. HgTe
is a semimetal with a negative bandgap and can be mixed with the wideband semiconduc-
tor CdTe to form the ternary compound of Hg1�xCdxTe, which can be used as infrared
detectors, namely, mercury-cadmium-telluride (MCT) detectors.

Yttrium-barium-copper oxide (YBa2Cu3O7) is a high-temperature superconductor,
which becomes superconducting at temperatures below 91 K.12 It belongs to the cuprate-
perovskite family and is a ceramic material when one oxygen atom is removed from the
unit cell to form YBa2Cu3O6.

13 The crystal structure of YBa2Cu3O7 is a simple orthorhom-
bic lattice, whose basis contains 13 atoms, as shown in Fig. 6.6d. The structure is very close
to a tetragonal one since . The properties of YBa2Cu3O7 are highly anisotropic in the
c-axis direction. Superconductivity is found in the a–b plane, which is presumed due to
the CuO2 planes above and below the yttrium atom. Other examples of Bravais lattices
include As, Sb, and Bi with rhombohedral lattices; In and Sn with tetragonal lattices; and
Ga, Cl, Br, and S (rhombic) with orthorhombic lattices.1

Graphite is a form of carbon made of layered structures as shown in Fig. 6.7. When sep-
arated from others, each individual layer or sheet is called a graphene. In the graphite structure,

a < b
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FIGURE 6.7 Crystal structures of (a) graphene layer and (b) graphite. Carbon nanotubes can be viewed as
rolling a graphene sheet in a direction perpendicular to the chiral vector.

each carbon atom is covalently bonded to three others in the plane and loosely bonded
between planes. There are relatively free electrons, and hence graphite is a conductor. The
layer of graphite or graphene has a honeycomb shape, and at first sight, it may be difficult to
link it with the arrays of triangles in the hexagonal lattice. It becomes more obvious, how-
ever, if a basis is chosen to contain two atoms so that a hexagon with all diagonals can be
seen by the dashed lines in Fig. 6.7a. In this way, graphite can be considered as a hexago-
nal close-packed structure. If the basis is chosen to contain four atoms, graphite may be
thought as a simple hexagonal structure.1

(a) Graphene layer

(6, 0)

a1

a2

(4, 4)

(3, 5)

(b) Graphite

Chiral vector: Ch = ma1 + na2



The structure of carbon nanotubes (CNTs) can be understood based on the graphene
structure and the chiral vector,

(6.7)

Different CNTs are based on rolling in the chiral vector so that the axis is perpendicular to
the chiral vector and the magnitude of the chiral vector becomes the perimeter of the tube.
The diameter of the tube becomes

(6.8)

where is the nearest distance between the carbon atoms in graphene.14

Notice that the chiral vector has a magnitude . In calculating the
cross-sectional surface area of a single-walled CNT, one could use as the wall thickness
and obtain

(6.9)

Take (20,20) SWNT as an example; we have and � 2.1 nm2. Some researchers
suggested using a layer thickness equal to the separation of graphite as 0.335 nm, which
gives 2.9 nm2. Note that for a solid wire nm2.

6.4 ELECTRONIC BAND STRUCTURES

The behavior of electrons in solid is complicated because the solution of wavefunctions
involves a rather complicated many-body problem. Electrons in solids can be thought of as
in a periodic potential due to the periodic arrays of atoms. Electronic band structures are
functions that describe the electron states in the energy versus wavevector space. Let us
first look at the reciprocal lattice in three dimensions.

6.4.1 Reciprocal Lattices and the First Brillouin Zone

The reciprocal lattice of a crystal structure is defined in the k-space (wavevector-space).
Since a crystal is a periodic array of lattices in real space, the reciprocal lattice can be
obtained by performing a spatial Fourier transform of the crystal. For a simple orthorhom-
bic lattice with the primitive vectors , the reciprocal lattice can
be defined by the three vectors , which
define another orthorhombic. The product of the volumes of the unit lattice and the reciprocal
lattice is . Some of this aspect was discussed in Chap. 5. In general, the reciprocal prim-
itive vectors can be generated by

(6.10)

In solid state physics, a Brillouin zone is defined as a Wigner-Seitz cell in the recipro-
cal lattice and the smallest of which is called the first Brillouin zone. The definition of the
Brillouin zone gives a vivid geometric interpretation of the Bragg diffraction condition and
thus is of importance in the study of electron and phonon states in crystals, as well as their
interactions with electromagnetic waves. Figure 6.8 shows the first Brillouin zone of a face-
centered cubic lattice. The directions , , and are called the [100], [010], and [001]kzkykx
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directions, respectively. The center of the Brillouin zone is called the -point, and the inter-
section of the three axes with the zone edge is called the -point. The body diagonal, or the
[111] direction, meets the zone edge at the L-point. Other points of interest such as K, W,
and U at the zone edges and , located halfway between the zone center and an
edge, can also be defined. 

6.4.2 Bloch’s Theorem 

The total potential in a crystal includes the core-core, electron-electron, and electron-core
Coulomb interactions. For solving electron wavefunctions subjected to such a potential,
one would have to deal with a many-body problem, which turned out to be very difficult in
mathematics. However, this problem can be simplified using the so-called nearly free elec-
tron model, in which each electron moves in the average field created by the other electrons
and ions. This is also called the one-electron model. The Hamiltonian operator H for the
one-electron model is given as

(6.11)

where pe and me are the momentum and the mass of the electron, respectively, and is
a periodic potential function resulted from both the electron-electron and electron-core
interactions. The one-electron Schrödinger equation is therefore (see Sec. 3.5.1)

(6.12)

where E is the electron energy and c(r) is the electron wavefunction. The periodicity of the
lattice structure yields the boundary condition,

(6.13)Usrd � Usr 
 Rd

c� U2

2me
=2 
 Usrd dcsrd � Ecsrd

U(r)

H �
p2

e

2me

 U(r)

, �, and �

�
�
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FIGURE 6.8 The first Brillouin zone of a face-centered
cubic structure. The shape is a truncated octahedron with eight
hexagons and six squares. This is also the Wigner-Seitz cell
for a bcc lattice, whose first Brillouin zone has the same shape
as the Wigner-Seitz cell for an fcc lattice shown in Fig. 6.5b.



where R is the vector between two lattice points Note that is called the periodic poten-
tial and can be expanded as a Fourier series in terms of the reciprocal lattice vector G as
follows:

(6.14)

The reciprocal lattice vector can be expressed as , where A, B, and
C are primitive vectors of the reciprocal lattice as given in Eq. (6.10), and the integers

are indices. In Eq. (6.14), are complex Fourier expansion coefficients for
a given set of .

According to the Bloch theorem, the wavefunction of an electron in a periodic potential
must have the form:

(6.15)

where is a periodic function with the periodicity of the lattice, similar to Eq. (6.13),
and thus . The wavefunction c(r) can also be expressed as a Fourier
series summed over all values of the permitted wavevector such that

(6.16)

The summation is over all wavevectors k’s. From Eq. (6.16), we have 

(6.17)

The combination of Eq. (6.14) and Eq. (6.16) gives 

(6.18)

Using Eq. (6.16) through Eq. (6.18), we can rewrite the Schrödinger equation as follows:

(6.19)

The coefficients of each Fourier component must be equal on both sides of the equation. Thus, 

(6.20)

where is the coefficient for the term with (k � G) in the exponent, i.e., in
Eq. (6.16). Equation (6.20) is paramount in the electronic band theory of crystals, and it
called the central equation according to Kittel.2 When , Eq. (6.20) reduces to

by noting that for free electrons, as used in the Sommerfeld theory.
Under the influence of a periodic potential, the relationship becomes more complex because
it is a set of linear equations for infinite numbers of coefficients. Because the equation is
homogeneous, the determinant of the characteristic matrix must be zero. In some cases, the
terms can be significantly reduced to yield simple solutions with insightful physics. 

Consider the 1-D case when the Fourier components are relatively small compared with
the kinetic energy of electrons at the zone boundary. This is the weak-potential assumption.
At the first Brillouin zone boundaries, we have

(6.21)k � G/2 � p/a
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Because there are only two values of k and G, Eq. (6.20) reduces to the following two equa-
tions due to symmetry:

(6.22a)

and (6.22b)

where is introduced merely for the convenience of notation. These equations have
solutions only when the determinant becomes zero, i.e.,

(6.23)

Because , the two roots are then obtained as

(6.24)

The two solutions at the zone edge, i.e., , are actually on two curves. When 
is near the zone edge, we can express the central equation, Eq.(6.20), as the following two
equations:1,2

(6.25a)

and (6.25b)

By setting its determinant to zero, we obtain

(6.26)

which gives two branches near the zone edge, as shown in Fig. 6.9. A bandgap of is
formed at the first Brillouin zone edge. The corresponding wavefunctions at the zone edge
are

(6.27a)

where L is the length of the crystal. This forms two standing waves:

and (6.27b)

The lower energy state corresponds to with a probability density peaked
at core sites, as shown in Fig. 6.10. The probability density function describes electrons that
are piled up close to the core site. The upper energy state corresponds to with
a probability density that distributes electrons between the cores. The energy differ-
ence between these two states is the origin of formation of the gap at the Brillouin zone
edge. On the other hand, away from the zone edge, the electron wavefunction can be
expressed as 

(6.28)

which are propagating waves that characterize the wavelike behavior of free electrons.2,15
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When all the Brillouin zones and their associated Fourier components are included, the
result is a set of curves, as those shown in Fig. 6.11a. An easier way to show this is to use
the Kronig-Penney model, first formulated in 1931, in which the potential is assumed to
be a square-well array.2,9 The details are left as an exercise (see Problem 6.12). The allow-
able bands are illustrated by the solid curves in Fig. 6.11. If the electron were completely
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FIGURE 6.9 Plot of the energy bands, where the solid
curves are based on Eq. (6.26). The lower and upper bands
correspond to the choice of the minus and plus signs, respec-
tively. When , the two bands are separated
by a gap of magnitude . The dotted line, on the other
hand, represents free-electron behavior .E ~ k2
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FIGURE 6.10 The upper part of the figure plots the probability density in a 1-D weak potential at
the edge of the first Brillouin zone; the lower part of the figure illustrates the actual potential U(x) of
electrons.
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free, then would be a parabola, as illustrated by the dashed curve
in Fig. 6.11a, without any bandgap. It is useful to plot all the energy levels in the first
Brillouin zone. This can be done by folding the branches in Fig. 6.11a, which is known
as the extended-zone scheme, using the reciprocal lattice vector. The result is shown in
Fig. 6.11b, which is called the reduced-zone scheme for the representation of the elec-
tronic bands.

6.4.3 Band Structures of Metals and Semiconductors

The nearly free electron model described in the previous section assumes a weak potential and
cannot predict the behavior of electrons in the inner orbits or near the nuclei. A simple way
to calculate the electronic structure of inner electrons, such as those in the d subshells, is the
tight-binding method, which assumes that the potential is so large that electrons can hardly
move out of the ion core. Due to the complicated 3-D structure and the multiple number of
outermost electrons in each atom, the actual electronic band structures are rather complicated.
More advanced methods include the augmented plane-wave (APW) method, the Korringa-
Kohn-Rostoker (KKR) Green function method, and the pseudopotential method. More
details can be found from Ashcroft and Mermin,1 Kittel,2 and Omar,15 and references therein.

It can be shown that the number of orbits in a band in the first Brillouin zone is the same
as the number of unit cells in the crystal, N. According to the Pauli exclusion principle, the
number of electrons that can occupy a band is 2N. For copper, the outermost electron config-
uration is . The s- and d-subshell electrons result in six bands (with some overlap), as
can be seen from Fig. 6.12, along the direction according to the first Brillouin zone depicted
in Fig. 6.8.16–18 The d bands are from 2 to 5.5 eV below the Fermi level and are completely
filled. The s band, illustrated by the thicker line segments, is interrupted by the d bands. The

4s13d10

E(k) � E0
k � U2k2/(2me)
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FIGURE 6.11 Representation of the electronic band structure. (a) The extended-zone scheme. (b) The
reduced-zone scheme.
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s band is only half filled and half empty. For alkali metals, there is only one valence elec-
tron and the s band is continuous. Electrons in the s band can be easily excited from below
the Fermi level to above the Fermi level within the same band. This explains why copper
is a conductor. When radiation is incident on a copper surface, because of the relatively
high frequency, free electrons have an inductive characteristic and tend to reflect the radi-
ation. The absorption of photons will cause the electrons in the s band to reach a higher
level within the same band. If the phonon energy exceeds 2 eV, transition from the top d
band to the s band right above the Fermi level is possible, as indicated by the two arrows in
Fig. 6.12. The interband transitions result in strong absorption as well as a reduction in
reflection of copper at wavelengths shorter than about 0.6 �m. Pure copper has a red-brown
color because it does not reflect blue and violet colors. Gold has a similar interband transi-
tion that absorbs short-wavelength visible light. On the other hand, for silver, the interband
transition occurs at a much shorter wavelength. Thus, silver can reflect light in the whole
visible spectrum.

The Fermi surface is anisotropic and not spherical for real crystals. For alkali metals
with bcc lattices, such as Na and K, the Fermi surface is nearly spherical lying inside the
first Brillouin zone.1 The Fermi surface of Al is close to the free electron surface for an
fcc lattice with three conduction electrons per atom. For noble metals, due to the effect
of d bands, the Fermi surface is characterized by a sphere that bulges out in the eight
�111� directions.

The electronic band structures of Si and GaAs in the first Brillouin zone are shown in
Fig. 6.13, along reciprocal lattice directions.19–21 Si and GaAs are chosen here because these
two types of semiconductors have distinct energy gap features that can represent a wide
range of semiconductor materials. Degeneracy causes additional subbands within the con-
duction and valence bands. Intraband transitions refer to the excitation or relaxation of
electrons between subbands. For intrinsic semiconductors, the Fermi level lies right in the
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FIGURE 6.12 Calculated energy band structure of copper, adapted from Segall,16 Burdick,17 and
Hummel.18



middle between the bottom of the conduction band and the top of the valence band. The
valence bands are formed by the bonded valence electrons, and they are completely filled
at low temperatures. The electrons in the conduction band are dissociated from the atom
and hence become free charges. The bandgap energy, or energy gap, Eg is the difference
between the energies at the top of the valence band (EV) and the bottom of the conduction
band (EC). The values of Eg for some semiconductors are included in Table 6.2. For Si, as
shown in Fig. 6.13a, the bottom of the conduction band and the top of the valence band do
not occur at the same k. This type of semiconductor is called an indirect gap semiconduc-
tor. For a direct gap semiconductor, such as GaAs, the bottom of the conduction band and
the top of the valence band occur at the same value of at the �-point, as shown in Fig. 6.13b.
The mechanism for electron transition between the valence band and the conduction band
in a direct gap semiconductor is completely different from that in an indirect gap semicon-
ductor. Additional discussion about radiation absorption will be given in Chap. 8.

At absolute zero temperature, there are no electrons in the conduction band and the
valence band is completely filled. When the temperature increases or there exist optical
excitations, electrons in the valence band can transit to the conduction band, leaving behind
some vacancies in the valence band. The vacancies left in the valence band are called holes,
which have the same mass but opposite charge as electrons. Usually the electrons are found
almost exclusively in levels near the conduction band minima, while the holes are found in
the neighborhood of the valence band maxima. Therefore, the energy versus wavevector
relations for the carriers can generally be approximated by quadratic forms in the neigh-
borhood of such extrema, i.e.,

and (6.29)

where subscript e and h are for electrons and holes, respectively, EC is the energy at the bot-
tom of the conduction band, and EV is the energy at the top of the valence band. In the 1-D
case, the effective mass for electrons and holes are defined as

and (6.30)1
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FIGURE 6.13 Calculated energy band structure of (a) silicon and (b) gallium arsenides, adapted from
Cohen and Bergstresser,19 Herman and Spicer,20 and Cohen and Chelikowsky.21
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where the negative sign is assigned to make the effective mass of the hole positive at the
top of the valance band. Effective mass is defined based on the quantum mechanical
description of the group velocity and the acceleration of charge carriers, respectively, as

and (6.31)

where is the force exerted on the charge carrier due to an electric field.
In 3-D case, the effective mass depends also on the direction and is a tensor.15

6.5 PHONON DISPERSION AND SCATTERING

In the above discussion of electronic band structures, it is assumed that the cores of atoms
are fixed. In a real crystal, however, the cores of atoms are vibrating about their equilibrium
positions and the vibration of atoms has an important influence on energy storage and trans-
port in crystals. Lattice vibration causes elastic waves to propagate in crystalline solids.
Phonons are the energy quanta of lattice waves. For a given vibration frequency , the
energy of a phonon is the smallest discrete value of energy. Thermal vibrations in crys-
tals are thermally excited phonons, like the thermally excited photons in a blackbody cavity.

6.5.1 The 1-D Diatomic Chain

Phonon dispersion describes the relationship between the vibration frequency and the
phonon wavevector. A simple example is given first for a diatomic chain of linear spring-
mass arrays, as shown in Fig. 6.14. It is assumed that the spring constant K is the same
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FIGURE 6.14 A chain of two atoms with different masses m1 and m2 linked by springs of the
same spring constant K, where denote the displacements of individual atoms from their
equilibrium positions.

j and z

between the nearest-neighbor atoms. The spring is a conceptual representation of the com-
bined attractive and repulsive forces, which can be assumed linear if the displacement is suf-
ficiently small. Anharmonic vibrations may become significant at high temperatures. Another
assumption of the nearest-neighbor model is that the forces on an atom come from the near-
est neighbors only.22 The equation of motion of the atoms can be written as follows:

(6.32a)

and (6.32b)m2

d2z2n
1

dt2 � Ksj2n
2 
 j2n � 2z2n
1d

m1

d2j2n

dt2 � Ksz2n
1 
 z2n�1 � 2j2nd



where is the displacement of the atom with mass m1 indexed by an even number and
is the displacement of the atom with mass m2 indexed by an odd number.23 To solve

these equations, let and , and
substitute them into Eq. (6.32). After some manipulations, we obtain the following
equations:

(6.33a)

(6.33b)

The determinant must be zero, viz.,

(6.34)

which gives , and its two roots for
are

(6.35)

The resulting curves are the dispersion relations, as shown in Fig. 6.15. Two
branches are formed when . The upper branch that corresponds to the plus sign ism1 2 m2
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FIGURE 6.15 Phonon dispersion of the linear diatomic chain, calculated by the
nearest-neighbor model. The first Brillouin zone is between and . p/a�  p/a

called the optical phonon branch, or simply optical branch, because it is important for
infrared activities in ionic solids. The lower branch that corresponds to the minus sign is
called the acoustic branch. At very low frequencies, the atoms in the unit cell move in
phase with each other. Such a behavior is characteristic for a sound wave.



It can be seen that the dispersion curves vary periodically with k. The results outside the
first Brillouin zone merely reproduce lattice dynamics that can be fully described by the
dispersion curves in the first Brillouin zone. Due to the periodicity of the solution in terms
of k, we may treat a value of k outside the first Brillouin zone by subtracting an appropri-
ate integer times the reciprocal lattice constant to give a value of k within the limits
of the first Brillouin zone. Given that , the phonon wavelength is specified by

, (6.36)

This makes perfect sense as the wavelength should not be smaller than the lattice constants,
as explained in previous chapter (see Fig. 5.3). For solids with small dimensions, there is
also a limit of the maximum wavelength 2L. For , the acoustic branch gives ,
which is a linear dispersion relation. At , , and the two
branches are separated when . In this case, it should be noticed that the group
velocity . Only standing waves exist. If , then the upper and lower
branches will be continuous at and the slope is not zero. However, the lattice con-
stant needs to be modified to in Fig. 6.14, and thus, the range of the first Brillouin zone
is between and . The upper branch should be unfolded at to connect
smoothly with the lower branch. The result is a single branch covering the first Brillouin
zone. The proof is left as an exercise.

6.5.2 Dispersion Relations for Real Crystals

The above discussion can be extended to 3-D systems, in which lattice vibrations allow both
transverse and longitudinal modes. For the case of two atoms per primitive cell, there are one
longitudinal and two transverse branches for both acoustic and optical vibration modes. The
phonon dispersion relations for silicon and silicon carbide are shown in Fig. 6.16.25–28
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FIGURE 6.16 Optical and acoustical branches of phonon dispersion. (a) Si [100] direction, adapted
from Brockhouse,25 Dolling,26 and Tubino et al.27 (b) SiC, adapted from Feldman et al.28

Experimental determination of the phonon dispersion curves were made with neutron scat-
tering25,26 for Si and Raman scattering for SiC.28 Because for Si, the longitudinal
optical (LO) and longitudinal acoustic (LA) branches meet at the zone edge and thus the
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group velocity is not equal to zero there. For SiC on the other hand, the two roots in Eq.
(6.35) are different because . There exists a frequency gap between the LO and LA
branches at the zone edge. The frequency gap is forbidden for propagating waves, i.e., no
phonons can propagate at frequencies within the gap, similar to the bandgap for electrons.
The group velocities of LO and LA phonon modes are zero at the zone edge; this can be
seen by the flat dispersion curves. One should not worry about the negative or positive sign
of the group velocity as it is merely a result of folding the dispersion curves. The group
velocity is always in the direction of energy transfer. It should be mentioned that the speed
of sound and the phonon propagation speed refer to the group velocity, not to the phase
velocity.

According to the wave-particle duality, a phonon with energy should also have an
associated momentum, given by

(6.37)

where is the wavevector of the phonon. There is a distinction between phonons and pho-
tons. Phonons do not carry any physical momentum because the physical momentum asso-
ciated with lattice vibration is zero, except when all lattices are in phase. On the other hand,
when interacting with other elementary particles, such as electrons or photons, the
wavevector must follow the selection rule such that it looks as if a phonon has a real
momentum given by Eq. (6.37). This momentum is often called the crystal momentum.1,2

The group velocity of phonons in the optical branches is usually small, and subsequently,
optical phonons contribute little to the thermal conduction in solids. On the other hand, opti-
cal phonons can interact or scatter with acoustic phonons, especially at elevated tempera-
tures, to reduce the thermal conductivity.23 Although LA phonons have higher group
velocities than TA phonons, one must consider also the frequency distribution of phonons
since phonons obey Bose-Einstein statistics [see Eq. (5.71) and discussions in Chap. 5]. At
low temperatures, TA phonons are dominant contributors to the heat conduction as well as
the specific heat of insulators and semiconductors. As the temperature goes up, LA phonons
become important. While optical phonons contribute little to the heat conduction, they con-
tribute about half of the heat capacity above room temperature. This is because group veloc-
ity does not enter the equation for specific heat [see Eq. (5.30)]. In general, if there are
q atoms in the primitive cell or basis, there will be one longitudinal and two transverse
acoustic branches, and longitudinal and transverse optical branches.
However, degeneracy of the transverse branches may occur due to symmetry.22–24 An exam-
ple of complex materials is the family of zeolites, which are hydrated aluminosilicate min-
erals that exhibit nanoporous crystalline structures. Zeolites have important applications as
filters, catalysts, solar collector, and adsorption refrigeration. Greenstein et al. studied the
thermal properties of MFI zeolite films considering the phonon dispersion.29 MFI is a spe-
cial type of zeolite that has ordered channel directions and an average pore size of 0.6 nm.
The calculation of specific heat and thermal conductivity involved summation over 864
polarizations (phonon branches) over all wavevectors in the first Brillouin zone. The mod-
eling results were in reasonable agreement with experiments.29

Another important aspect of phonon transport is scattering. The mean free path of phonons
is often small compared with the size of crystals. For nanostructures, on the contrary, the
mean free path can be larger than the characteristic length, resulting in boundary scattering.
Some qualitative discussions have been given in the previous chapter. A summary of the char-
acteristics of phonon and photon is given in Table 6.3. In most situations, phonons are treated
as particles, especially in dealing with interactions among phonons themselves as well as with
electrons, photons, and defects. For long-wavelength phonons, lattice vibration can also be
described by a sound wave or an acoustic wave of three polarizations. To analyze the acoustic
wave behavior, the crystal is viewed as a continuous medium because the individual vibra-
tion of atoms is not of interest. Acoustic mismatch theory is based on the reflection,

2sq � 1dq � 1
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p � Uk

Uv

m1 2 m2
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transmission, and emission of acoustic waves to predict the thermal boundary resistance, to
be discussed in Chap. 7. A brief discussion of the microscopic conservation or selection rules
during scattering events involving phonons is presented next.

6.5.3 Phonon Scattering

Phonon scattering governs the thermal transport properties of dielectric and semiconduc-
tor materials. Proper modeling of phonon scattering is important for the application of the
Boltzmann transport equation (BTE), considering the frequency-dependent scattering
rate. The anharmonic nature of the interatomic potential offers a coupling mechanism for
phonon-phonon interactions, which was not included in the linear oscillator model. The
phonon-phonon scattering is inelastic because the phonon frequency before the scattering
event is different from that after the event. The energy conservation requires the scattering to
involve at least three phonons. A three-phonon process is mostly common since the probabil-
ity is usually much larger than the values for processes involving four or more phonons. In a
three-phonon process, either two phonons interact to form a third one, or one phonon breaks
into two others. The phonon energy and crystal momentum are conserved as given by1,2

or (6.38)

or (6.39)

In Eq. (6.38) and Eq. (6.39), the left-hand-side terms are for phonon(s) before scattering and
the right-hand-side terms are for phonon(s) after scattering. The processes just described
are called normal (or N) processes, in which the wavevectors of phonons are inside the first
Brillouin zone. Since both the energy and the momentum are conserved, N processes do not
alter the direction of energy flow. Hence, N processes make no contribution to the thermal
resistance and do not affect the thermal conductivity. 

Scattering is also permitted when two phonons interact to form a third one, whose
wavevector is outside the Brillouin zone. This can be understood by the equivalence of
phonons with the same energy but with different wavevectors and that follow the
relationship:

(6.40)kr � k 
 G

kkr

Uk1 � Uk2 
 Uk3Uk1 
 Uk2 � Uk3

Uv1 � Uv2 
 Uv3Uv1 
 Uv2 � Uv3
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TABLE 6.3 Comparison of the Characteristics of Phonon and Photon

Phonon Photon

Bose-Einstein statistics Bose-Einstein statistics

Massless Massless

Energy: Energy: 

Phase speed: Phase speed: 

Mechanical vibration (existence in solids Electromagnetic waves (existence in any
and some liquids, such as liquid helium) medium as well as in vacuum)

Both transverse and longitudinal Transverse only

Crystal momentum: Physical momentum: 

Frequency: less than Frequency: no limit

Group velocity: less than Group velocity: order of 

Mean free path: (except at Mean free path: no limit (largely dependent
very low temperatures and in nanotubes) on the medium)

< 10 to 100 nm
108 m/s< 2 � 104 m/s

< 50 THz
p � Ukp � Uk

vp � lnvp � v/k
e � hne � hn



where G is a reciprocal lattice vector. The reverse process is also possible with the assis-
tance of G so that one phonon is annihilated to create two others. The momentum relations
given in Eq. (6.39) need to be modified as follows after dropping in all terms:

or (6.41)

These equations, combined with the energy conservation described by Eq. (6.38), describe
the umklapp (or U) processes. The net momentum is not conserved in the U processes,
which introduce thermal resistance and thus reduce the thermal conductivity. Figure 6.17

k1 
 G � k2 
 k3k1 
 k2 � k3 
 G

U
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FIGURE 6.17 Schematic illustrations of phonon-phonon scattering processes.

schematically shows the relationship between the wavevectors for an N process and a U
process. An N process can be viewed as the general case of a U process when G � 0.

Above room temperature, U processes dominate and the thermal conductivity decreases
linearly as temperature increases. This is because the scattering rate between
acoustic phonons due to a U process can be described by23

(6.42)

where A and B are positive constants. When the temperature is reduced, the U process
becomes weaker because of the shift in phonon distribution function toward longer wave-
lengths. As shown in Fig. 5.13, as the temperature is decreased below room temperature,
the thermal conductivity increases to a maximum and then decreases due to the reduction
in the specific heat. Four-phonon processes are also possible. Four-phonon scattering
includes the annihilation of two phonons to create two others, the annihilation of one
phonon to create three others, and the annihilation of three phonons to create another. The
calculation of the probability of scattering is more involved.23 Ecsedy and Klemens esti-
mated the scattering rate due to four-phonon processes to be30

(6.43)

In the temperature range from 300 to 1000 K, the probability of four-phonon processes is
two to three orders of magnitude less than that of the three-phonon U processes.

In addition to the phonon-phonon interactions, phonons may also have interactions with
defects (such as impurities, vacancies, or dislocations) and boundaries. These scattering
processes may also influence the mean free path of phonons. Scattering of phonons by

gFour~v
2T 2

gU � sAv 
 Bv2dT

g � 1/t



defects is elastic since the phonon energy remains the same. At temperatures near the
Debye temperature, phonon-phonon interactions are dominant. As the temperature drops,
the wavelengths of phonons become comparable to the size of defects, and the scattering
of phonons by defects is important. The scattering rate for phonon-defect scattering is inde-
pendent of temperature but dependent on the phonon wavelength. This can be modeled
using the Rayleigh scattering theory for small particles such that the scattering rate due to
defects is inversely proportional to the fourth power of the phonon wavelength , viz.,

(6.44)

When the bulk mean free path is comparable or greater than the characteristic dimension,
such as the thickness of the film or the diameter of the wire, scattering of phonons by
boundaries becomes important. Boundary scattering is important for nanostructure materi-
als and at low temperatures when the phonon mean free path is large, as discussed exten-
sively in the previous chapter. 

In metals and semiconductors, electronic transport becomes important. The scattering of
charge carriers controls the electric conduction in solids and dominates the thermal conduc-
tion in metals. Carrier-carrier inelastic scattering is negligible except for highly conductive
materials, such as a high-temperature superconductor. Since lattice vibrations are enhanced
with increasing temperature, electron-phonon scattering usually dominates the scattering
process at high temperatures; while at low temperatures, lattice vibrations are weak and
defect scattering becomes important. The vibration of lattice ions causes deviations from
the perfect periodic lattice and distorts the carrier wavefunction. This is more easily visu-
alized as the scattering of electrons by phonons. Both the acoustic branch and the optical
branch can scatter electrons. Usually, the energy of acoustic phonons can be neglected
compared with the electron energy. Therefore, scattering by acoustic phonons is essentially
elastic. Scattering by optical phonons is inelastic because the exchange of energy between
the carriers and the phonons can be significant. This process facilitates the energy transfer
between electrons and phonons, which is associated with Joule heating. For materials with
two different atoms per primitive cell, the asymmetric charge distribution in the chemical
bond forms a dipole. Scattering by optical phonons in these materials is called polar scat-
tering, which can effectively scatter electrons or holes. The energy and momentum con-
servations for carrier-phonon scattering can be written as

(6.45a)

and (6.45b)

where subscripts i and f indicate the initial and final states of the carrier, the minus sign cor-
responds to phonon emission, and the plus sign corresponds to phonon absorption. The
momentum of an electron is similar to that of a phonon and is also referred to as the crys-
tal momentum. If G is set to zero, the process is an N process; otherwise, it is a U process
as in phonon-phonon scattering. In semiconductors at low temperatures, only N processes
are energized. In metals and semiconductors, the electron-phonon scattering rate typically
ranges from 1012 to 1014 Hz at room temperature. Near or above the Debye temperature, the
specific heat is almost a constant and the number of phonons increases linearly with tem-
perature. Hence, the electron-phonon scattering rate is proportional to temperature in met-
als, resulting in nearly temperature-independent thermal conductivity, while the electrical
resistance is proportional to temperature.

An electron or hole in a periodic lattice does not really collide with ions. The transport
of free carriers can be viewed as the propagation of a wave in a periodic potential created by
the ions. In addition to lattice vibrations, defects or impurities may break the periodicity of
the potential or alter its amplitude. Kinetic theory gives the defect scattering rate as

(6.46)ge-d � ndsdve

ge-d

kf 
 G � ki � kphonon

Ef � Ei � Uvphonon

gph-d~l
�4

l
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where nd and !d are the defect number density and cross-sectional area, respectively, and
ve is the average carrier velocity. For metals, the electron velocity is the Fermi velocity ,
which is on the order of m/s. For semiconductors, the random velocity of electrons or
holes can be calculated by

(6.47)

which is called the thermal velocity and is on the order of m/s at room temperature.
In semiconductors, the interband transition requires the conservation of both energy and

momentum. This can occur by electronic transitions when interacting with the incident radi-
ation. For indirect gap semiconductors, however, the photon itself cannot provide a large
enough change in momentum. Therefore, a phonon is either emitted or absorbed for momen-
tum conservation. The energy and momentum conservation equations are, respectively,

(6.48a)

and (6.48b)

where the plus and minus signs correspond to phonon absorption and emission, respectively.
This kind of transition is called the indirect interband transition. For a direct interband transi-
tion, there is no need to emit or absorb a phonon and, thus, the last term in either of Eq. (6.48a)
or Eq. (6.48b) should be dropped out. The interaction of photons with solids will be left to
Chap. 8 (Sec. 8.4) for a more detailed discussion about the absorption and emission processes. 

In addition to the absorption and the emission, photons may be scattered by phonons,
causing a nonlinear effect. There exists inelastic scattering when photons are scattered by
phonons, resulting in x-ray scattering, neutron scattering, Raman scattering, and Brillouin
scattering. In Raman scattering, the creation (emission) or annihilation (absorption) of a
phonon causes a shift in the frequency of the radiation, namely, the Stokes or anti-Stokes
shifts, as shown in Fig. 6.18. The energy conservation equations are

, for a Stokes shift (6.49a)

and , for an anti-Stokes shift (6.49b)Uvs � Uvi 
 Uvph

Uvs � Uvi � Uvph

kf � ki � kphoton � kphonon

Ef � Ei � Uvphoton � Uvphonon

105

vth � s3kBT/m*d1/2

106
vF
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FIGURE 6.18 Illustration of Raman scattering: (a) the Stokes and (b) the anti-Stokes processes.

where subscripts i, s, and ph are for incident photon, scattered photon, and phonon, respec-
tively. Because the interaction involved two photons and one phonon, the momentum of the
phonon is restricted to small values. The Raman effect, or the Raman scattering, was named



after Indian physicist C. V. Raman (1888–1970), who won the Nobel Prize in Physics in
1930 for the discovery. The intensity of the anti-Stokes shift is usually much weaker than
that of the Stokes shift. In certain cases, however, the phonons generated by the Stokes
process can subsequently participate in the anti-Stokes process, causing a strong excitation
to the anti-Stokes component. It is interesting to note that the anti-Stokes component actu-
ally pumps energy out from the material, resulting in a radiative cooling effect. 

Note that the resulting photon can interact with the phonon again, creating a cascade
process that emits m phonons. The photon energy is reduced by m times the energy per phonon.
The probability decreases as the order increases. Raman spectroscopy has become a major ana-
lytical instrument for the study of solids. High-intensity lasers, high-resolution spectrometers,
and sensitive detectors such as photomultiplier tubes (PMTs) are often employed to measure
narrow Raman lines. The Raman intensity and intensity ratio depend upon temperature, as
illustrated in Fig. 6.19. The ratio of the Raman intensities can be expressed by 

(6.50)

which can be used for surface temperature measurements.31

Ianti�Stokes

IStokes
� a
vi � vph

vi 
 vph
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Uvph
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b
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FIGURE 6.19 Raman intensity for the Stokes and anti-Stokes scattering at two different temperatures.

Example 6-4. Neutron scattering by phonons is important for measuring the dispersion relations.
Express the energy conservation and the momentum conservation during the neutron-phonon scat-
tering in terms of the wavevector and the mass of the neutron, and the wavevector and the frequency
of the phonon. Assume the process involves one phonon only.

Solution. A neutron has a mass that is 1834 times that of an electron.
Based on the wave-particle duality, the kinetic energy of a neutron can be expressed as

; thus, the energy conservation becomes

(6.51)

where ki and ks are the magnitude of wavevector of the incident and scattered neutrons. The
wavevector selection rule gives

(6.52)ks 
 G � ki � kph

U2k2
s

2mn
�
U2k2

i

2mn
� Uvph

En � p2/2mn � U2k2/2mn

mn � 1.673 � 10�27 kg



These relations characterize the inelastic scattering of neutrons by phonons. The plus and minus
signs refer to the process that absorbs or releases phonons, respectively.

6.6 ELECTRON EMISSION AND TUNNELING

In all the discussions given so far, electrons are confined to the solid. Emission or dis-
charge of electrons from a solid surface to vacuum or through a barrier (such as in a metal-
insulator-metal multilayer structure) is possible, under the influence of an incident
electromagnetic wave, an electric field, or a heating effect. Because of the importance of
electron emission and tunneling to fundamental physics and device applications, the basic
concepts are described in this section.

6.6.1 Photoelectric Effect

In 1887, Heinrich Hertz observed the photoelectric effect or photoemission. Shortly after-
ward, the phenomenon was experimentally studied by several others, including J. J.
Thomson, who discovered electron as a subatomic particle. When radiation is incident on
a metal plate, the electrons in the metal can be excited by absorbing the energy of the elec-
tromagnetic wave to escape the surface, as illustrated in Fig. 6.20a. The actual apparatus
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FIGURE 6.20 Illustration of (a) the photoelectric effect and (b) the thermionic emission.

used for measuring the ejected photoelectrons was to use another electrode and measure the
current flow via a closed circuit. This is similar to the arrangement shown in Fig. 6.20b for
thermionic emission, but with photons incident on the left plate without heating up any of
the plates. If the frequency of the incident radiation is not high enough, no electrical current
can be measured no matter how intense the incident radiation is. Saying in other words, there
appears to be a threshold frequency for photoemission to occur in a given material. The pho-
toelectric effect was explained in 1905 by Albert Einstein with the concept of light quanta,
postulated by Max Planck a few years earlier. Although Einstein also made seminal contri-
butions to the theory of relativity and Brownian motion, he was awarded the Nobel Prize in
Physics in 1921 mainly for his discovery of the law that governs the photoelectric effect.

From the Fermi-Dirac distribution function of free electron gas, we can see that at low
temperatures, electrons fill all energy levels up to the Fermi energy EF. Note that we use 
and EF as the relative electron energy and, thus, they can be either positive or negative.
Because of the binding of the electron with the rest of the solid, an additional energy, called

E



the work function , must be provided to the electron for it to escape from the solid. For
Ag, Al, Au, Cu, Fe, Pb, and W, the work function ranges from 4 to 5 eV, which corresponds
to a wavelength in the ultraviolet region from 250 to 300 nm. For Na, K, Cs, and Ca, the
work function ranges from 2 to 3 eV, which falls in the visible spectrum. Because a photon
can interact with only one electron at a time, the photon energy must exceed the work
function in order for the incident radiation to eject electrons from the surface. If ,
the photon energy may be absorbed by an electron right at the Fermi level. Subsequently,
the electron will have a kinetic energy of

(6.53)

after leaving the surface. If an electron is below the Fermi level, the kinetic energy of the
ejected electron will be smaller than that given by Eq. (6.53). Therefore, Eq. (6.53) predicts
the maximum kinetic energy of an electron for the prescribed photon frequency. A direct
method for the determination of the work function is to measure the kinetic energy distrib-
ution of the photoelectrons, for a given frequency of the incident radiation.

One of the applications of photoemission is to measure the electron binding energy
using the x-ray photoelectron spectroscopy (XPS), which is also called the electron spec-
troscopy for chemical analysis (ESCA). The basic principle for XPS is 

(6.54)

where Ebd stands for the binding energy with respect to the Fermi energy. The high-energy
photons from an x-ray source (200 to 2000 eV) can interact with the inner electrons and eject
them out of the surface. The photoelectron intensity can be plotted as a function of the elec-
tron kinetic energy using an electron energy analyzer. The intensity peaks are associated with
the binding energies of the particular atomic structures. Comparing with the recorded photo-
electron spectra, XPS allows the determination of the chemical composition of the substance
near the surface. Swedish physicist Kai Siegbahn shared the Nobel Prize in Physics in 1981
for his contribution leading to the practical application of XPS. Furthermore, ultraviolet pho-
toemission spectroscopy (UPS) with photon energies ranging from 5 to100 eV, often from a
synchrotron radiation source, has been used to study the electronic band structures.

6.6.2 Thermionic Emission

The charge emission from hot bodies was independently discovered by British scientist
Frederich Guthrie in 1873, with a heated iron ball, and Thomas Edison in 1880, while work-
ing on his incandescent bulbs. Thermionic emission was extensively studied in the early 1900s
by Robert Millikan, Nobel Laureate in Physics in 1923; Owen Richardson, Nobel Laureate in
Physics in 1928; and Irving Langmuir, Nobel Laureate in Chemistry in 1932, among others.

With the understanding of the work function as the threshold energy that an electron
must gain to escape the solid, it becomes straightforward to explain the emission of elec-
trons from a heated metal. We use metal here to illustrate thermionic emission because
good conductors can be better approximated by the Sommerfeld theory. The distribution
function of a free electron gas has been extensively discussed in Chap. 5 (Sec. 5.1.3). At
absolute zero temperature, all states below the Fermi level are filled by electrons and all
states above the Fermi level are empty. Note that this picture is consistent with the elec-
tronic band theory. At elevated temperatures, the distribution function is modified as illustrated
in Fig. 5.5. Some electrons will have energies above EF (or , as used in Chap. 5). Because
the distribution function becomes zero only when , a small fraction of electrons
must occupy energy levels exceeding . We wish to quantitatively evaluate the current
density or the charge flux from the hot plate to the cold plate, as illustrated in Fig. 6.20b.
Let the electron flow be along the x direction.
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From Eq. (5.16), the number of electrons per unit volume between is

(6.55)

where is the kinetic energy of an electron. The current density in

the x direction is given by 

(6.56)

where is the electron reflection coefficient or the fraction of electron reflected by the
receiver. The integration is from in both the y and z directions. In order for an elec-
tron to escape in the x direction, the following criterion must be satisfied:

(6.57)

This equation suggests that the integration is carried out only in the tail of the distribution
function, where the x velocity is positive and the kinetic energy is sufficiently large, i.e.,

, which is on the order of several electron volts. Note that at
1000 K and 0.026 eV at 300 K. When , dropping the unity term in the denomi-
nator of Eq. (6.55) causes less than 2% error. The error becomes even smaller at a larger 
so that its impact on the integration is negligibly small. For this reason, it appears safe to
substitute the Fermi-Dirac distribution by the Maxwell-Boltzmann distribution, viz.,

(6.58)

The result is the famous Richardson-Dushman equation for the current density:

(6.59)

where is called the Richardson constant,
and the direction of J is as shown in Fig. 6.20b. The heat transfer associated with the elec-
tron flow can be evaluated by considering the kinetic energy associated with each electron,

, i.e.,

(6.60)

This equation suggests that the average energy of the “hot electron” is , as
expected. Vacuum tubes operate based on the principle of thermionic emission. Vacuum
tubes had wide applications in the mid twentieth century in radio, TV, and computer sys-
tems, but have largely been replaced by transistors nowadays. Thermionic generators pro-
duce electricity without any moving parts and belong to the category of direct energy
converters. Extensive discussion of the thermodynamics and efficiency of thermionic con-
verters can be found from Hatsopoulos and Gyftopoulos.32
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In some applications, a voltage can be applied between the electrodes. Furthermore, a semi-
conductor can be used to form a Schottky barrier between a metal and a semiconductor.11 The
applied voltage changes the potential distribution so that it gradually decreases inside the bar-
rier. Furthermore, the work function can be significantly reduced. Assuming the transmission
coefficient is unity, Eq. (6.59) can be modified to the following for the net charge transfer:

(6.61)

where should be calculated according to the effective mass, c* is the effective work
function, and is the applied voltage.11 In deriving Eq. (6.61), we assumed that hot elec-
trons from the cathode will go through the barrier through ballistic processes. This means
that the electron mean free path must be larger than the thickness of the semiconductor film.
Otherwise, the electron transport is governed by diffusion because of collisions with
phonons or impurities. When diffusion occurs, the electron transport under the influence of
a temperature difference is described by the thermoelectric effect, based on irreversible
thermodynamics, as discussed in Chap. 5. When the barrier thickness is extremely small,
another phenomenon called quantum tunneling may occur such that an electron whose
energy is lower than the potential barrier has a chance to transmit through the barrier.
Tunneling effect will be discussed in the next subsection. Mahan and coworkers pointed
out that, for the thermionic phenomenon to be the dominant transport mechanism, the elec-
tron mean free path in the barrier must be greater than the thickness of the barrier.33

Furthermore, the latter must exceed the characteristic length, below which tunneling
becomes significant. Thermionic emission in semiconductor heterogeneous structures has
been extensively studied in the last decade, for both refrigeration and power generation.33–34

The refrigeration process is a reversed thermionic power generation process. In thermionic
refrigeration, the cold cathode emits electrons to the room-temperature anode as a result of
the applied voltage. In order to achieve any cooling effect, energy that is carried through
by the electrical current must be greater than that by heat conduction via lattice vibration
from the hot electrode to the cold electrode. The nonequilibrium electron and phonon trans-
port phenomena have also been investigated. In some cases, both thermionic and thermo-
electric effects may show up.35,36 In other cases, thermionic and tunneling effects can work
together or against each other.37,38

6.6.3 Field Emission and Electron Tunneling

From the above discussion, we have noticed that thermionic emission may be enhanced or
even reversed (from a colder cathode to a hotter anode) by an applied electric field. Some
thermal excitation is necessary for part of the electrons to occupy energy levels above the
Fermi level by a finite amount, prescribed by the work function. This is commonly referred
to as a potential barrier or a potential hill. An electron must acquire sufficient energy for
it to surmount the barrier. When the field strength is very high, however, electrons at energy
levels lower than the height of the barrier can tunnel through the potential hill. The word
tunneling gives a vivid (but inaccurate) picture of the tunneling phenomenon as if a hole
were drilled for the electrons without sufficient energy to pass through a potential hill, with-
out climbing to its top first. This phenomenon of electron emission at high applied field is
called field emission, which can occur at very low temperatures. The applied electric field
can exceed several billion volts per meter. Because of the high field, field emission can
occur only in ultrahigh vacuum (UHV); otherwise, ionization of the gas molecules would
occur that can cause discharge glow. In essence, field emission is a form of quantum
tunneling, which cannot be understood within the framework of classical mechanics. The
electron motion is governed by Schrödinger’s wave equation, and the transmission can be
predicted by the probability of finding an electron on the other side of the potential hill, as
illustrated in Fig. 6.21. 

V
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ELECTRON AND PHONON TRANSPORT 229



In 1928, Fowler and Nordheim provided the first quantum mechanical derivation of the
field emission current density J as follows: 

(6.62)

This is called the Fowler-Nordheim equation, in which is the electric field, C and
are two positive constants, and is the work function defined previously.

The WKB approximation is commonly used to find the transmission probability 
of tunneling. WKB (also KWB or BWK) stands for Wentzel, Kramers, and Brillouin,
although a fourth person Jeffreys was also included in some literature—so, the abbrevia-
tion appeared as JWKB. The main assumption in the WKB approximation is that the poten-
tial is a slow function of x.40 In the region where the electron energy E is greater than

, the wavefunction is of the form

(6.63a)

where A is the amplitude of the electron wave. In the region where the wave-
function is of the form

(6.63b)

The transmission probability or transmission coefficient can be approximated as

(6.64)

where is the width of the potential at E.40

Example 6-5. Assume that and , i.e., linearly
varying barrier whose highest potential is c at x � 0. Find the transmission coefficient.
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Solution. For the triangular barrier shown in Fig. 6.21, we note that

Substituting this equation into Eq. (6.64), we obtain

(6.65)

When E V c, we see that , where . At elevated tempera-
tures, however, we need to consider the energy distribution of electrons. Esaki and coworkers
demonstrated that the resonant tunneling of electron waves may allow the transmission coefficient
to approach unity in superlattice and double-barrier structures.41 Electron tunneling is similar to
photon tunneling of electromagnetic waves, to be discussed in Chap. 10.

The tunneling current density can be calculated by

(6.66)

where is the kinetic energy in the x direction, corresponds to the energy at the top of
the potential barrier, is a reference energy, and is the number of available elec-
trons, with energy between E and , per unit area per unit time, given as

(6.67)

Some analytical expressions similar to Eq. (6.62) have been presented to approximate the
integration of Eq. (6.66).42,43

The energy transfer during field emission or electron tunneling can also be evalu-
ated.37,44,45 A salient difference between thermionic emission and field emission is that
thermionic emission always gives out energy as the electrons are emitted and transfer the
energy to the other side of the barrier. This is because the emitted electrons are in the high-
energy tail of the distribution function, called hot electrons, with a much higher effective
temperature than the equilibrium cathode temperature. On the other hand, field emission
allows electrons with energies much lower than that corresponding to the equilibrium tem-
perature to escape the surface. Since the replacement electrons have a higher average
energy than the emitted electrons, a heating effect occurs that increases the cathode tem-
perature. Depending on the geometry, temperature, transmission coefficient, and energy
distribution, both heating and cooling of the cathode are made possible by field emission.
This is known as the Nottingham effect originally published in 1941.

Some applications of quantum tunneling in semiconductors and superconductors were
discussed in Chap. 1. One of the applications of electron tunneling was the invention of
scanning tunneling microscope (STM). Xu et al. developed a model for the energy
exchange by the tunneling electrons and made a comparison with STM measurements.44

They considered the Nottingham effect on both electrodes, as well as resistive heating. At
short distances, thermionic emission, field emission, and photon tunneling could occur
simultaneously. Photon tunneling will be studied in Chap. 10. Fisher and Walker analyzed
the energy transport in nanoscale field emission processes by considering the geometry of
the emission tip.45 Quantum size effect may play a role in modifying some of the critical
parameters. Field emission by nanotubes has been proposed for nanoscale manufacturing
and thermal writing.46 Wong et al. performed a detailed thermal analysis during electron
beam heating and laser processing.47 Carbon nanotube field emission display (CNT-FED)
has been demonstrated at the Samsung SDI Company by Chung et al. (Appl. Phys. Lett.,
80, 4045, 2002) and is being commercialized as a flat-panel display technology. While
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CNT-FEDs resemble the cathode-ray tubes (CRTs) in many ways, it can be made thin and
flat with a much lower applied voltage. Carbon nanotube field emission has also been
demonstrated for the generation of x ray by Yue et al. (Appl. Phys. Lett., 81, 355, 2002) and
luminescent tubes by Bonard et al. (Appl. Phys. Lett., 78, 2775, 2001).

6.7 ELECTRICAL TRANSPORT IN
SEMICONDUCTOR DEVICES

Semiconductors are the most important materials for microelectronics, MEMS, and opto-
electronics. Much of the discussions in Chap. 5 and the previous sections of this chapter are
applicable to semiconductors, especially for the energy storage and transport by phonons.
This section focuses on the basics of electrical transport and properties for some common
semiconductor devices used in optoelectronics.

6.7.1 Number Density, Mobility, and the Hall Effect

The calculation of the number density of electrons and holes at any given temperature T is
very important for the determination of the electrical, optical, and thermal properties of
semiconductor materials and devices. The free electron gas model can be modified to
describe the electron and hole distributions and the transport in semiconductors. The Fermi-
Dirac distribution function is applicable to electrons and holes according to

and (6.68)

Note that . The number density of electrons or holes is given by

and (6.69)

where and are the densities of states in the conduction and valence bands,
respectively. With the approximated quadratic forms of the conduction and valence bands,
Eq. (6.29), the densities of states can be written as

(6.70a)

and (6.70b)

where MC is the number of equivalent minima in the conduction band. Equation (6.70a) and
Eq. (6.70b) are derived based on the parabolic shape near the bottom of the conduction
band for electrons or the top of the valance band for holes. The effective mass of electrons
is a geometric average over the three major axes because the effective mass of silicon
depends on the crystal direction. The effective mass of holes is an average of heavy holes
and light holes because there exist different subbands.11 At moderate temperatures,

and are satisfied; subsequently, fe and fh can be approx-
imated with the classical Maxwell-Boltzmann distribution:
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We can carry out the integrations in Eq. (6.69) and thus obtain

(6.72a)

and (6.72b)

where and are called the effective den-
sity of states in the conduction band and in the valance band, respectively. The combina-
tion of Eq. (6.72a) and Eq. (6.72b) gives, in terms of ,

(6.73)

This expression does not involve the Fermi energy. Therefore, it holds for both intrinsic and
doped semiconductors. The number density Nth can be viewed as thermally excited electron-
hole pairs per unit volume. It is also referred to as the number density of intrinsic carriers
because , in an intrinsic semiconductor. It can be seen that the number den-
sities increase with temperature so that the electrical conductivity of an intrinsic semicon-
ductor increases with temperature. The Fermi energy for an intrinsic semiconductor can be
obtained by setting in Eq. (6.72a) and Eq. (6.72b), yielding

(6.74)

The Fermi energy for an intrinsic semiconductor is expected to lie in the middle of the forbid-
den band or the bandgap. The requirement for the approximate distributions given in Eq. (6.71)
to hold with less than 2% error is , such that . For

, we have T � 1150 K. One should keep in mind that Eg reduces as tempera-
ture increases. For silicon, and .

When impurities of either donors or acceptors or both are involved, the calculation of
Fermi energy and number densities becomes more involved.11,15 Let ND and NA stand
respectively for the number densities (i.e., doping concentrations) of donors (e.g., P and As)
and acceptors (e.g., B and Ga). In brief, the energy level of donors ED is usually lower but
very close to EC. As a result, the Fermi energy EF goes up but is always below ED. The dif-
ference EC – ED is called the ionization energy of donors, which is required for the donors
to become ionized. The ionization of donors increases the number of free electrons, and the
semiconductor is said to be of n-type. For the semiconductor Si, the ionization energy for
P is 45 meV and that of As is 54 meV. Likewise, the energy level of acceptors EA is slightly
above EV, and EA – EV is called the ionization energy of acceptors. The ionization of accep-
tors increases the number of holes, and the semiconductor is said to be of p-type. For the
semiconductor Si, the ionization energy for B is 45 meV and that of Ga is 72 meV. Note
that there are (atoms per cubic centimeters) for silicon. For n-type silicon
with an arsenic doping concentration of , the impurities occupy one
atomic site per million. Because of the change in Fermi energy, most of the impurities are
ionized at room temperature, when the doping concentration is less than .
For fully ionized impurities, the charge neutrality requires that

(6.75)

If the impurities are partially ionized, and in Eq. (6.75) should be replaced by the
ionized donor and acceptor concentrations, respectively.
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Example 6-6. For boron-doped Si with , find , , and at tempera-
tures from 300 to 1000 K; compare your answers with the values for intrinsic silicon. Assume

and . Use and eV.

Solution. This is a p-type semiconductor with , and from Eq. (6.75), we have
. Substituting it into Eq. (6.72), we have , i.e.,

and (6.76)

The calculated values of and at 300 K are some-
what lower than the recommended values of and .11

The results are plotted in Fig. 6.22 for comparison. In the extrinsic region when , theT � 700 K
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FIGURE 6.22 Calculated number densities for Example 6-6.

majority carriers are holes, and depends little on temperature. In the intrinsic region when
, , due to thermal excitation. It should be mentioned that at very low tem-

peratures, i.e., , ionization is not very effective and . Therefore, the low-
temperature region is called freeze-out zone, which is not shown in the plot.

The Drude free-electron model predicts , as given in Eq. (5.49), which
can be applied for both electrons and holes, using proper effective masses and relaxation
times. In semiconductor physics, the term mobility is often used, and defined as

and (6.77)

The physical significance is that mobility is the drift velocity per unit applied field, i.e.,

and (6.78)

The electrical conductivity of a semiconductor is thus
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Depending on the impurity and temperature range, one term may be dominant, or both the
terms may be comparable. It is crucial to understand the scattering mechanism in semicon-
ductors. In metals, all the conducting electrons are near the Fermi surface, and their average
energy cannot be described by the classical statistics because 
(see Example 5-2). For semiconductors, on the other hand, Eq. (6.71) tells us that

, and the classical statistics is applicable to a large temperature
range. Thermal velocity is the velocity of electrons or holes at the equilibrium temperature
and was given in Eq. (6.47). At sufficiently high temperatures when phonon scattering dom-
inates, the electron mean free path . Based on the relation , we have

(6.80a)

where is the contribution of carrier-phonon scattering. Equation (6.80a) describes intrin-
sic semiconductor without defects. The scattering by impurities results in a mobility given by

(6.80b)

where stands for the concentration of the ionized impurities. The combination gives the
mobility for either electron or hole as follows:

(6.81)

For intrinsic semiconductor, the electrical conductivity is very small and proportional
to so that the electrical conductivity increases with temperature. For inter-
mediately doped semiconductors, there exists a maximum value of the mobility below
room temperature due to the opposite temperature dependence of and . At that tem-
perature, the electrical conductivity is maximum. As the temperature goes up beyond room
temperature, the conductivity decreases due to the increased phonon scattering. When the
semiconductor reaches the intrinsic region, the number density suddenly increases and the
conductivity increases again with temperature.

The Hall effect is very useful in measuring the mobility of semiconductors. In the
extrinsic region, the Hall effect allows measurement of the type and concentration of the
carriers. The measurements are usually carried out with the van der Pauw method, which
is a four-probe technique for determining the electrical resistance and the Hall coefficient.
The data of electrical resistivity and number density allow the extraction of the mobility,
based on the effective mass determined using cyclotron resonance technique.

When both the carriers are significant to the transport properties, the situation is rather
interesting. Referring to Fig. 6.1, when current flows to the positive x direction, we have

and . The magnetic force drives both the electrons and the holes toward
the negative y direction, such that and if . At steady state, a finite
Ey, known as the Hall field, may exist. Since there is no net current flow in the y direction,
we must have

(6.82a)

(6.82b)

In general, both and are not zero. The Lorentz force in the y
direction is related to the drift velocities for electrons or holes by

(6.83a)
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Rewrite Eq. (6.83a) and Eq. (6.83b) as neme(Ey � ve,xB) � �neve,y and nhmh(Ey � vh,xB) �
nhvh,y, respectively. Compared with Eq. (6.82b), we notice that neme(Ey � ve,xB) 

nhmh(Ey � vh,xB) � 0, or

Combining it with Eq. (6.82a), we obtain the Hall coefficient as follows:

Substituting and into the previous equation, we obtain

(6.84)

after canceling Ex. The Hall coefficient for semiconductors may be positive or negative, and
becomes zero when . The drift velocities in the y direction, however, cannot
be zero unless or .

6.7.2 Generation and Recombination

The generation, recombination, and diffusion processes are directly related to the charge
transport in semiconductors and optoelectronic devices. This section takes photoconduc-
tivity as an example to illustrate the generation and recombination processes, followed by
a brief discussion of luminescence.

Much has been said previously about absorption of light that causes a transition in the
electronic states in solids. The bandgap absorption of Si, Ge, and GaAs corresponds to
the wavelengths in the visible and near-infrared spectral regions. The excitation of elec-
trons from the valence band to the conduction band by the absorption of radiation
increases the conductivity of the semiconductor dramatically. This is known as photo-
conductivity and can be used for sensitive radiation detectors. For some semiconductors,
the bandgap is very narrow so that transitions can happen at longer wavelengths. For
example, the bandgap energy of Hg0.8Cd0.2Te is 0.1 eV at 77 K (liquid nitrogen temper-
ature), and the material can be used as infrared detectors, which are commonly referred
to as MCT detectors. At very low temperatures, impurities cannot be ionized thermally
even though the ionization energy is very small. For boron-doped germanium, the ion-
ization energy corresponds to a wavelength of about 120 �m.48

Therefore, Ge:B can be used as far-infrared radiation detectors. There are two groups of
radiation detectors. The first group is called thermal or bolometric detectors, which rely
on the temperature change of the detector as a result of the absorbed radiation. The tem-
perature change can be monitored by a temperature-dependent property, such as the elec-
trical resistance. An example is the superconductive bolometer, which relies on the
drastic change in resistance with temperature, near the superconducting-to-normal-state
transition or the critical temperature . The second group is called nonthermal, non-
bolometric, or nonequilibrium detectors. An example is the photoconductive detector in
which the conductivity changes as a result of the direct interaction of electrons with
photons.

Before the radiation is incident on the photoconductive detector, the conductivity can
be expressed as at thermal equilibrium. Under the influence of ans0 � ene,0me 
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incident radiation with photon energies greater than the bandgap, additional electron-hole
pairs are created so that the concentration is increased by n for both types of carriers. The
relative change in the electrical conductance can be expressed as

(6.85)

Here, n is the net increase in carrier concentration as a result of both generation and
recombination. The generation is associated with the absorbed radiation and depends on
the intensity of the incident light and the quantum efficiency, which is wavelength depen-
dent. The quantum efficiency is the percentage of the incoming photons that generate an
electron-hole pair. The recombination is a relaxation process because the excess charges
are not at thermal equilibrium. If the incident radiation is blocked off, the semiconductor
will quickly reach an equilibrium with the conductivity . The characteristic time of the
recombination process is called the recombination lifetime or recombination time trc.
While it is also related to electron scattering, lattice scattering, and/or defect scattering, the
recombination time is usually much longer than the relaxation time used in charge trans-
port processes. The net rate of change can be expressed as the rate of generation (creation)
minus the rate of recombination (annihilation), viz.,

(6.86)

Under a steady-state incident radiation, we can set so that n � n � n0 � trcng.
Suppose that the incoming photon is of frequency in Hz with a spectral irradiance in
W/(m2 � Hz), and the detector has an effective area A, thickness d, and absorptance . We
have

(6.87)

Substituting into Eq. (6.85), we obtain the sensitivity of a photoconductive detector as follows:

(6.88)

Increasing the recombination time improves the sensitivity but decreases the speed or
response time of the detector. Photoconductivity requires that for bandgap absorp-
tion to occur. However, the sensitivity decreases toward higher frequencies, or shorter
wavelengths, because there are fewer photons per unit radiant power. Consequently, the
sensitivity of a photoconductive detector increases with wavelength first and then suddenly
drops to zero close to the band edge. The absorptance depends on the thickness d, which
should be 2 to 3 times the radiation penetration depth.

In photoconductivity, the recombination is not associated with the emission of radiation,
and therefore, it is said to be nonradiative. The Auger effect and multiphonon emission are two
common processes of nonradiative recombination. In the Auger effect, the energy released by
a recombining electron-hole pair is absorbed by another electron in the conduction band, which
subsequently relaxes to the equilibrium condition by the emission of phonons. In a multi-
phonon emission process, the recombination of an electron-hole pair is associated with the
release of a cascade of phonons, each having a much lower energy. More details on the recom-
bination process and how to calculate the associated lifetime can be found from Sze.11

Radiative recombination can also occur and is very important for light-emitting appli-
cations, such as luminescence, which is essentially the inverse process of absorption. The
excitation of electrons may be accomplished by passing through an electrical current. An
example is the semiconductor light-emitting diode, in which the electronic transition from
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the conduction band to the valence band can result in optical radiation. Photoluminescence
is often referred to as fluorescence, when the emission occurs at the same time as the
absorption, or phosphorescence, when the emission continues for a while after the
excitation.

6.7.3 The p-n Junction

The p-n junction is familiar to every reader although many of us are unfamiliar with the
underlying physics. Let us first take a look at the charge transport by diffusion, which is a
very important process in semiconductor applications. Diffusion takes place when there is
a spatial nonuniformity in the carrier concentration. The principle is the same as the diffu-
sion of ideal gas molecules described in Sec. 4.2.3. Using Fick’s law, we can write the cur-
rent densities resulting from the diffusion of electrons and holes as follows:

(6.89)

where the diffusion coefficient for electrons and holes can be related to the mean free path

and the average velocity by and , according to Eq. (4.42).

Assuming , we have . Combined with ,

we obtain

(6.90)

which is known as the Einstein relation. A similar equation holds also for the holes. In tran-
sient heat conduction, the thermal diffusion length is usually calculated by ,
where is the thermal diffusivity and t is a characteristic time. The diffusion
length for electrons is defined as , which is proportional to te and vth. The diffu-
sion velocity is sometimes defined as . The factor of reduction
arises because the diffusion velocity is the average thermal velocity along one direc-
tion only. In semiconductors, charge transfer is a combined effect of the carrier drift
and diffusion. Electron diffusion is not important for metals because of the large drift
velocity given by the Fermi velocity, which changes little with temperature at moder-
ate temperatures.

Through oxidation, lithography, diffusion and ion implantation, and metallization,
semiconductor p-n junctions can be fabricated with microelectronics manufacturing tech-
nology.11 A p-n junction consists of a p-type semiconductor, with a high hole concentra-
tion, joined with an n-type semiconductor, with a high electron concentration, as shown in
Fig. 6.23.

If one compares Fig. 6.23a with Fig. 4.7b, the process looks similar to a binary diffu-
sion. Because of the concentration gradient, holes will diffuse right and electrons will dif-
fuse left. Diffusion causes the region near the interface to be depleted, so that there are
fewer free holes on the left side and fewer free electrons on the right side of the depletion
region. Keep in mind that electrons and holes are charged particles. As they leave the host
material, ions of opposite charges are left behind. This results in a charge accumulation, as
shown in Fig. 6.23a, that leads to a built-in potential in the depletion region that will inhibit
further diffusion. As a consequence of this built-in potential, the energy in the p-doped
region is raised relative to that in the n-doped region, as shown in Fig. 6.23b. The Fermi
level is the same everywhere, and it is closer to the conduction band for the n-type and the
valence band for the p-type.
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FIGURE 6.23 Schematic of a p-n junction at thermal equilibrium. (a) The device and carrier concen-
trations, including the charge distribution in the depletion region. The width of the depletion region is
exaggerated for clarity. (b) The energy band diagram for the p-n junction near the depletion region. The
dash-dotted line is the Fermi level. The four processes are (1) electron drift, (2) electron diffusion, (3) hole
diffusion, and (4) hole drift.

Example 6-7. Prove that the Fermi energy in a p-n junction is independent of x at thermal equi-
librium, as shown in Fig. 6.23b

Solution. Without any externally applied voltage, the current densities become

(6.91a)

(6.91b)

where is the built-in potential and the electric field is . Because a high potential means
a smaller electron kinetic energy, we have 

(6.92)

From Fig. 6.23, we see that the built-in electric field in the depletion region points toward the neg-
ative x direction and thus ; consequently, and . Employing
Eq. (6.72), we notice that 

and (6.93)

Substituting Eq. (6.90), Eq. (6.92) and Eq. (6.93) into Eq. (6.91a) and setting , we end up with 

(6.94)

This equation can also be derived using Eq. (6.91b); hence, the Fermi energy EF is independent
of x.

A popular application of p-n junction is as a diode rectifier, which allows current to flow
easily with a forward bias but becomes highly resistive when the bias is reversed. For the
configuration shown in Fig. 6.23, a forward bias means that the electrical field is in the pos-
itive x direction, opposite to the built-in field. Qualitatively, this can be understood as a for-
ward bias removes the barrier for holes to diffuse right and for electrons to diffuse left. On
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the other hand, a reverse bias creates an even stronger barrier for these diffusion processes.
Quantitatively, it can be shown that for an externally applied voltage V (positive for for-
ward bias and negative for reverse bias), the current density can be expressed as

(6.95)

where Js is the saturation current density, which depends on the diffusion coefficient, scat-
tering time, number density, and other factors. Since , the
electrical conductance increases with V for forward bias, and decreases to zero as .
It should be noted that in practice, the width of the depletion region is often less than 0.5
�m and the built-in potential may be around 1 V through the depletion region. There is
actually a very large built-in field.

Heterojunction is a junction of dissimilar semiconductors with different bandgap ener-
gies. The energy band diagram can be very different from that shown in Fig. 6.23b. The
Fermi energies can be different on each side. Bipolar transistors were invented in 1947 at
Bell Labs. It is based on two p-n junctions arranged in a p-n-p or n-p-n configuration.
Field-effect transistors (FETs) work on a different principle. As shown in Fig. 1.3, the free
electrons cannot move from the source to the drain because of the lack of free carriers in
the p-type wafer. If a negative voltage is applied to the gate, electrons below the gate will
be pushed even further, and there is still little chance for the electron to flow from the
source to the drain. However, as soon as a positive voltage is applied to the gate, electrons
will be attracted to the region below it and form a path for electricity to flow from the
source to the drain. Furthermore, a transistor can amplify the signal since only a weak sig-
nal is necessary to the gate. Metal-oxide-semiconductor field-effect transistors (MOSFETs)
have become the most important device in contemporary integrated circuits. Thermal
management is important for such devices because of the local heating or hot spots where
Fourier’s law often fails to predict the temperature history. More discussion on nonequi-
librium heat conduction will be given in Chap. 7. A brief discussion on photovoltaic
devices will be given next.

6.7.4 Optoelectronic Applications

The photovoltaic effect is a direct energy conversion process in which electromagnetic
radiation, incident upon a p-n junction, generates electron-hole pairs. The built-in electric
field in the p-n junction tends to push the generated holes to the p-region and the generated
electrons to the n-region, resulting in a reverse photocurrent. Solar cells and photovoltaic
detectors have been developed and applied for over half a century. Thermophotovoltaic
(TPV) devices have also been considered as energy conversion systems that allow recy-
cling of the waste heat.49 Figure 6.24 shows a typical TPV cell and the associated electri-
cal circuit. When the incident radiation with a photon energy greater than the bandgap
energy Eg of the cell material strikes the p-n junction, an electron-hole pair is generated at
the location as each photon is absorbed. Carriers generated in the depletion region are swept
by the built-in electric field and then collected by the electrodes at the ends of the cell,
resulting in a drift current. For radiation absorbed near the depletion region, the minority
carriers (electrons in the p-region, and holes in the n-region) tend to diffuse toward the
depletion region, yielding a diffusion current. If the load resistance RL is zero, i.e., in the
case of a short circuit, there is a photocurrent Iph flowing in the circuit due to the combina-
tion of the diffusion and drift of charge carriers. The direction of this current is indicated
on Fig. 6.24. If the circuit is open, or the load resistance RL approaches infinite, a positive
open-circuit voltage is built up due to irradiation. This gives the maximum voltage

V S �`
dJ/dV � (JskBT/e) exp(eV/kBT )

J � Js cexpQ eV

kBT
R � 1 d

240 CHAPTER 6



ELECTRON AND PHONON TRANSPORT 241

FIGURE 6.24 Schematic of a typical TPV cell with its circuit diagram on the right.49

, when no current flows through the load, i.e., I � 0. When the load has a finite
resistance RL, a voltage V is developed, not only across the load but also across the photo-
voltaic cell. This voltage reduces the built-in potential of the cell as if a forward bias is applied
to the p-n junction. Subsequently, the diffusion of minority carriers produces a forward cur-
rent, which is called the dark current in photovoltaic devices. The current I flowing through
the load resistor becomes 

(6.96)

The first term on the right is the photocurrent, or the short-circuit current, which depends
on the incident photon flux, quantum efficiency, as well as the transport properties. The
second term on the right is the dark current Idark, and Is is the saturation current, as defined
in Eq. (6.95) based on the current density. The dark current is zero, when . For the
photovoltaic cell, shown in Fig. 6.24, if the incident radiation flux , then 
become zero at thermal equilibrium. Basu et al. recently provided an extensive review of
the operation principle and the state of the art in TPV technology, as well as the potential
application of microscale radiative heat transfer for performance improvement.49

Light-emitting diodes (LEDs) are based on p-n junctions as well but with direct gap
semiconductors. At low forward bias voltages, the recombination processes are essentially
nonradiative. At high forward bias voltages, however, radiative recombination results
in the emission of photons. The emission is a spontaneous process and is incoherent.
Depending on the materials used and their bandgaps, LEDs can emit in the ultraviolet, vis-
ible, and infrared regions. 

Semiconductor lasers are based on the stimulated emission process, as discussed in
Chap. 3, and have numerous important applications due to their small size, portability, and
ease of operation. Semiconductor lasers have been used in laser printers, optical fiber com-
munication, CD reading/writing, and so forth. The key is to create population inversion so
that lasing can occur. Quantum well lasers, based on quantum confinement, offer signifi-
cant advantages over conventional semiconductor lasers, such as low threshold current,

I, Iph, and Vqs0 � 0
V � 0

I � �Iph 
 Is cexpa eV

kBT
b � 1 d

V � Vmax



high output power, high speed, and so forth. Further explanation of the optical and elec-
tronic characteristics of semiconductor lasers can be found from Sze11 and Zory,50 for
example.

6.8 SUMMARY

This chapter began with an introduction to the atomic structures, chemical bonds, and
crystal lattices. Emphasis was given on electronic band structures and phonon dispersion
relations, allowing one to gain a deeper knowledge of solid state physics, beyond the pre-
vious chapter. Photoelectric effect, thermionic emission, and field emission were
described in subsequent sections to stress the interrelation between these phenomena. The
basic electrical transport processes in semiconductors, such as number density, mobility,
electrical conductivity, charge diffusion, and photoconductivity were explained. The p-n
junction was discussed along with applications, such as photovoltaic cells, LEDs, and
semiconductor lasers.
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PROBLEMS

6.1. Consider a phosphorus-doped 250-�m-thick silicon wafer, with a doping concentration of
1017 cm�3. The applied current is 10 mA, and the magnetic induction is 0.5 T. 
(a) Determine the Hall coefficient and the Hall voltage, assuming there is only one type of carrier. 
(b) For a chip of area 1 � 1 cm2 and resistivity 0.075 , what is the voltage drop along the direc-

tion of current flow? 

6.2. Consider the Hall experiment arranged in Fig. 6.1, under steady-state operation and with uni-
form magnetic field. Assume a current is flowing in the y direction.
(a) Show that and , when the current is carried

by electrons. Here, t is the relaxation time, are the electron drift velocities in the x and y

directions, respectively, and is called the cyclotron frequency.

(b) Prove Eq. (6.1) by setting .

6.3. Express the electron configurations for Ag and Au. Based on the orbital occupation of outer
electrons, discuss the similarities in their chemical and electrical properties.

6.4. Express the electron configurations for Ca and Zn. Based on the orbital occupation of outer elec-
trons, discuss the similarities in their chemical and electrical properties.

6.5. Give a general discussion of insulators, semiconductors, and metals. Explain why glass (SiO2)
is transparent, silicon wafers appear dark, and aluminum foils look bright. What are the types of chem-
ical bonds in SiO2, Si, and Al?

6.6. How many billiard balls can you pack in a basket with a volume of 0.25 m3? Assume that the
balls are rigid spheres with a diameter d � 43 mm and mass m � 46 g. Arrange the spheres in a crys-
tal lattice according to the diamond, simple cubic, bcc, fcc, and hcp structures. What is the total weight
for each arrangement? [Hint: Show that for close-packed spheres, the fraction of volume occupied by
the spheres is , , , and

6.7. (a) Count the number of atoms inside a unit cell of YBa2Cu3O7 as shown in Fig. 6.6d, and con-
firm that it is the same as that in the basis. 

!2p/6 < 0.740 sfcc or hcp).
!3p/8 < 0.680 sbccdp/6 < 0.524 ssimple cubicd!3p/16 < 0.340 sdiamondd

vy � 0
vc � eB/me

vx and vy

vy � �set/medEy 
 vctvxvx � �set/medEx � vctvy

� # cm
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(b) Find the density of YBa2Cu3O7 crystal based on the dimensions of the unit cell, noting that the mol-
ecular weight M � 88.9 (Y), 137.3 (Ba), 63.6 (Cu), and 16.0 (O) kg/kmol.

6.8. (a) Calculate the diameter and cross-sectional area for CNTs with chiral indices (m,n) � (5,5),
(8,8), (10,10), (10,20), and (20,40). 
(b) Take (40,40) SWNTs of 10-�m length, with a thermal conductivity k� 3200 W/(m � K) at room

temperature. Align sufficient nanotubes to make a bundle with a diameter of 1 �m; how many
wires are needed? 

(c) Neglect the effect of interface and defects on the thermal conductivity. What is the heat transfer
rate if the temperatures at both ends are 320 and 300 K? 

(d) Compare the heat transfer rate if the CNT is replaced by a Si nanowire of 1-�m diameter and 10-�m
length.

6.9. The interatomic potential for a KBr crystal can be expressed as 
where is the Madelung constant, which is 1.748 for crystals with NaCl structure, e0 �

is the electric permittivity of vacuum, is the lattice con-
stant, m � 8.85, and C � J for KBr. Note that r is in meter. 
(a) Plot the attractive potential, the repulsive potential, and the combined potential in eV as a function

of r in Å. 
(b) Find the equilibrium distance, which should be the nearest distance between K+ and Br� ions.
(c) At the equilibrium distance, what are the attractive and repulsive forces between each ion pair? 

6.10. Bragg’s x-ray diffraction formula relates the angle of diffraction maximum and the x-ray
wavelength as follows: , where n is the refractive index that can be taken as unity in
the x-ray region, d is the spacing between adjacent layers of atoms, and is measured between the inci-
dence and the crystal plane, as shown in Fig. P6.10. This formula can be understood by the construc-
tive interference between the two layers. 

a
2d sin a � nll

a

2.65 � 10�21
a � 6.60 � 10�10 m8.854 � 10�12 C2/J # m

aM

f(r) � �aMe2/(4pe0r) 
 C(a/r)m,
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Incidence, λ

a

d

FIGURE P6.10 Schematic of Bragg’s  x-ray diffraction experiment.

(a) To measure a spacing Å, what is the maximum wavelength that can still be used to per-
form the experiment successfully? 

(b) In an x-ray experiment, Å. Assume that the errors in and are negligible. How accu-
rately must one determine in order to measure the spacing with an uncertainty of 0.01 Å?

6.11. Using Eq. (6.10) to show that the reciprocal lattice of a hexagon is also a hexagon, as shown in
Fig. 6.3d, calculate the volumes of the direct and reciprocal lattices in terms of a and c.

6.12. Use the Kronig-Penney model to solve the Schrödinger equation for an electron in a square
well array. Referring to Fig. 6.10, assume that the potential function is at 
and , and at . Note that is at the
core of atom location and the potential is periodic. Find the conditions for the solutions to exist. For
simplicity, you may now assume and to obtain the relation for . Plot this function
to illustrate the electronic band structure.

6.13. Discuss the difference between interband transitions and transitions that occur within a band
for copper. Explain why copper appears reddish brown.

6.14. What is the difference between a direct bandgap semiconductor and an indirect bandgap semi-
conductor? Why are Si and GaAs wafers opaque to the visible light?

EskdU0 S `b S 0

x � 0sa � bd/2 � x � sa 
 bd/2Usxd � U0 � 0sa 
 bd/2 � x � a

0 � x � sa � bd/2Usxd � 0

a
nll � 1.5

ld � 3.12



6.15. Prove Eq. (6.33) and Eq. (6.35) first. Then, plot the phonon dispersion curves for a diatomic
chain with mass ratio equal to 1, 2, 3, and 4. What happens when 

6.16. Approximate , and find the group velocities of LA and TA phonons for Si and SiC
at , based on Fig. 6.16. What is the phase speed at for LO phonon in SiC?
[Hint: Convert the unit of v from cm�1 to rad/s first.]

6.17. Prove Eq. (6.59) and Eq. (6.60). Assume that and , estimate the error
in Eq. (6.59) caused by approximating the Fermi-Dirac distribution with the Maxwell-Boltzmann
distribution in the numerical evaluation.

6.18. Clearly explain the differences between thermionic emission and field emission.

6.19. For a gallium-doped silicon with , use the information from Example 6-6 to
calculate the number density of electrons and holes from 300 to 1000 K. Assume the effect of impurity on
the mobility can be neglected so that me � 1450 for electrons, and � 500 for
holes at 300 K. Determine the electrical resistivity of the doped silicon from 300 to 1000 K.

6.20. For a single-type doped silicon with me � 1350 and � 450 at 400 K,
the Hall coefficient is zero. Is this semiconductor n-type, or p-type? What is the impurity concentra-
tion? [Hint: Use the parameters given in Example 6-6.]

6.21. For a single-type doped silicon with � 1350 , � 450 , and
, calculate and plot the Hall coefficient for p-type doping, with ranging from

0 to . Discuss, without calculation, the trend with n-type doping.

6.22. For a phosphorus-doped silicon, , me � 1350 , and �
450 , at 300 K. Use the parameters from Example 6-6 as needed. 
(a) Calculate the thermal velocity and the diffusion length for the electrons and holes at room

temperature.
(b) Find the electrical conductivity at room temperature. 
(c) Plot the thermal velocity and wavelength as a function of temperature.

6.23. Show the I–V curve of a p-n junction, based on Eq. (6.95), using dimensionless groups and
. Discuss the meaning of saturation current density.

6.24. Show the I–V curve for a photovoltaic cell, and determine the open voltage. Show, on the same
diagram, the I–V curve without irradiation, i.e., with no photocurrent. Discuss the meaning of dark
current.

eV/kBT

J/Js

cm2/sV # sd
mhcm2/sV # sdNd � 2 � 1015 cm�3

2 � 1012 cm�3
NANth � 2 � 1010 cm�3
cm2/sV # sdmhcm2/sV # sdme

cm2/sV # sdmhcm2/sV # sd

cm2/sV # sdmhcm2/sV # sd

NA � 5 � 1016 cm�3

EF � 3 eVc � 0.4 eV

k � 0.3kmaxk � 0.3kmax

kmax � p/a

m1/m2 � 1?m1/m2
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Fourier’s law and the associated heat diffusion equation comprise one of the most cele-
brated models in mathematical physics. Joseph Fourier in 1824 wrote: Heat, like gravity,
penetrates every substance of the universe; its rays occupy all parts of space. . . . The
theory of heat will hereafter form one of the most important branches of general physics.
Soon afterward, heat transfer also became an important engineering field, essential to the
second industrial revolution and the development of modern technologies.

Recall the discussion of heat interaction and heat transfer in Chap. 2. We have treated heat
conduction as a diffusion process based on the concept of local thermal equilibrium. This
allows us to define and determine the equilibrium temperature at each location in a body
instantaneously, under the continuum assumption described in Chap. 1. The local-equilibrium
condition breaks down at the microscale when the characteristic length L is smaller than a
mechanistic length scale, such as the mean free path �. For conduction by molecules, con-
sider a rarefied gas between two parallel plates at different temperatures. If the mean free path
is much greater than the separation distance, i.e., the Knudsen number , the
gas is in the free molecule regime and its velocity distribution cannot be described by
Maxwell’s distribution function. Furthermore, the transport becomes ballistic rather than dif-
fusive. Nonequilibrium energy transfer refers to the situation when the assumption of local
equilibrium does not hold. This can occur in solid nanostructures even at the room tempera-
ture and in steady state, or in bulk solids under the influence of short pulse heating.

For heat conduction across a dielectric thin film, when the thickness is much smaller
than the phonon mean free path, which increases as the temperature goes down, the condi-
tion of local equilibrium is not satisfied. Hence, the phonon statistics at a given location
cannot be described by the equilibrium distribution function at any given temperature.
Strictly speaking, temperature cannot be defined inside the medium. However, an effective
temperature is typically adopted, based on the statistical average of the particle energies. In
the case of heat transfer across a thin dielectric film or between two plates separated by a
rarefied molecular gas, the effective temperature distribution cannot be described by the
heat diffusion theory derived from Fourier’s law using the concept of equilibrium temper-
ature without considering the temperature jumps at the boundaries. This has already been
demonstrated in Chap. 4 (see Fig. 4.12). Consider a metal or a superconductor that is sub-
jected to ultrafast pulsed-laser heating, in which the pulse duration may range from several
femtoseconds to a few nanoseconds. The electrons gain energy quickly to reach a state that
is far from equilibrium with the crystal lattice or the phonon system. The transport
processes during and immediately after the laser pulse become nonequilibrium both tem-
porally and spatially. Conventional Fourier’s law cannot be directly applied.

Kn � �/L W 1
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In Chap. 5, we have considered the size effect on thermal transport in solids. Two
approaches have been used under different situations. In the first situation, we apply
Matthiessen’s rule to account for the reduction in mean free path by assuming that Fourier’s
law is still applicable but with a size-dependent thermal conductivity. In the second situa-
tion, where the transport is completely ballistic, we use the concept of quantum conduc-
tance based on the Landauer formulation to solve the problem in a straightforward manner.
The definition of an effective thermal conductivity is particularly useful for the study of
transport processes along a thin film or a thin wire, when the length in the direction of trans-
port is much greater than the mean free path. In this case, a local equilibrium can be estab-
lished, and thus, the energy transfer is well described by Fourier’s law, even though the
thickness is less than the mean free path. Here, the only microscale effect is the classical
size effect, which arises from boundary scattering of electrons in a metal or phonons in an
insulator or a semiconductor. For energy transport across a thin film or in a multilayer struc-
ture, on the other hand, the local-equilibrium condition breaks down when the film thick-
ness is much smaller than the mean free path. Furthermore, thermal boundary resistance
(TBR) may become significant at the interfaces. Because of the wave-particle duality, the
electron wave or phonon wave effect may need to be considered in some cases. For non-
metallic crystalline materials, the most commonly used method to study thermal transport
is based on the Boltzmann transport equation (BTE) of phonons. Various assumptions and
techniques have been developed to solve the phonon BTE. In very small structures, such as
nanotubes or nanowires, atomistic simulations may prove more effective. 

This chapter first describes the phenomenological theories in which the energy transport
processes are represented by a single differential equation or a set of differential equations
that can be solved with appropriate initial and boundary conditions. These equations are
often called non-Fourier heat equations, which can be considered as extensions of the
Fourier heat conduction model, for better or worse. The second section summarizes statis-
tical and atomistic modeling techniques. While the BTE, Monte Carlo method, and mole-
cular dynamics simulations have been presented in Chap. 4, the discussion in the present
chapter stresses the application in solid nanostructures, including thermal boundary resis-
tance (TBR) and multilayer structures, with some up-to-date references on solid conduc-
tion, multiscale modeling, and thermal metrology.

7.1 PHENOMENOLOGICAL THEORIES

A fundamental difficulty of Fourier’s heat conduction theory was thought to be that a thermal
disturbance in one location of the medium would cause a response at any other location instan-
taneously, as required by the mathematical solution of the diffusion equation. In theory, the
speed of heat propagation appears to be unlimited; this has been viewed by some as a direct
violation of the principle of causality. Let us begin with an example of 1-D transient heating of
a semi-infinite medium. Assume that the medium is homogeneous, with constant thermal
properties, and is initially at a uniform temperature . The thermal diffusivity of the
medium is , where k, r and cp are the thermal conductivity, density, and specific
heat of the material, respectively. The wall at is heated with a constant heat flux at

, where tp is the width of the step heating, and insulated at t � tp. The solution of the
temperature distribution can be found from Carslaw and Jaeger1 and Özişik2 as follows:

at (7.1a)

at (7.1b)t � tpT(x, t) � Ti � 2qs0
2at
k cF(j) � �Fa j�b d

0 � t � tpT(x,t) � Ti � 2qs0
2at
k F(j)

T(x,t)
0 � t � tp

qs0x � 0
a � k/(rcp)

T(x,0) � Ti
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where , , and with erfc
being the complementary error function as given in Appendix B.1.2. While F(10) �

and the right-hand sides of both Eq. (7.1a) and Eq. (7.1b) are essentially negligi-
ble when the paradox is that a nonzero response must not occur faster than the
speed of the thermal energy carriers, such as the Fermi velocity in metals or the speed of
sound in dielectrics. In reality, this rarely causes any problem because a signal that is below
the noise level cannot be detected by any physical instrument, as will be discussed in the
following example:

Example 7-1. A thick plate of fused silica SiO2, initially at room temperature, is heated at one sur-
face by a heat flux of W/m2 for 5 s and then insulated. Treat the heated surface to be at x �
0, and assume the other surface is at . Plot the temperature distributions at various times.
Imagine a temperature sensor is placed at certain locations with instantaneous response and zero
additional heat capacity. Estimate the time for the thermometer to sense the temperature rise as
a function of the location x. Assume that the thermophysical properties of the glass are constant,

, and .

Solution. The temperature distribution is shown in Fig. 7.1a at t � 0.01, 0.1, 1, 5, 10, and 20 s.
During the heating, the temperature monotonically increases with time and the heat flux is always

a � 8.5 � 10�7 m2/sk � 1.43 W/(m # K)

x S `

2.0 � 105

x � 6!at,
1.0 � 10�46

F(j) � exp (�j2)/!p � j erfc (j)� � !1 � tp /tj � x/!4at
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FIGURE 7.1 (a) The temperature distributions at various times. (b) The time required for a given location
to acquire a minimum temperature rise and the estimated thermal diffusion speed.
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positive. After the heat input is stopped when t � 5 s, the temperature near the surface decreases but
is still the highest and the temperature decreases toward increasing x. While the predicted temperature
rises everywhere instantaneously, the magnitude may be too small to be observed practically. We can
calculate the time required for a minimum temperature rise , specified by the thermometer
sensitivity. Let us choose and 0.1 K for illustration. The average thermal diffusion

speed can be estimated by , for any given location x. The results are shown in Fig. 7.1b.
In reality, diffusion is often a slow process near room temperature. For the example given here, vdif for

is between 1 and 5 m/s, for 5 nm � x � 5 �m, and goes down rapidly at �m.
At , vdif is only 2 to 3 mm/s. On the other hand, the speed of sound in glass is on the order
of 5 km/s, which is several orders of magnitude greater than the average thermal diffusion speed.

Recall that the uncertainty principle in quantum mechanics states that , sug-
gesting that we cannot measure time and energy simultaneously with unlimited precision.
From statistical mechanics, the distribution function allows a small fraction of particles to
have a very high speed or to travel a very large distance without collision, although the
probability may be extremely low. Based on the uncertainty principle and statistical
mechanics, it seems convincing that Fourier’s law, in its applicable regime, does not violate

Et � U

x � 10 mm
x � 5Tmin � 10 mK

vdif(x) � x/t

Tmin � 10 mK
Tmint



the principle of causality. What is physically problematic and practically impossible is to
provide a temperature impulse to the surface or at any given location instantaneously. We
further conclude that the heat diffusion equation does not produce an infinite speed of ther-
mal energy propagation; rather, it is often a very slow process. Microscopically, Fourier’s
law fails when a local equilibrium is not established, as explained earlier. At the same time,
the concept of an equilibrium temperature cannot be applied. It is critically important for
the technological advancement to establish and apply thermal transport theories, both
microscopically and macroscopically, under nonequilibrium conditions.

Several phenomenological theories have been developed to describe transient heat
transfer processes in solids and micro/nanostructures. Applications of transient and ultra-
fast heating include laser processing, nanothermal fabrication, and the measurement of
thermophysical properties. In the literature, there appears to be controversial experimental
evidence on the existence of certain phenomena predicted by the hyperbolic heat conduc-
tion. Furthermore, there exists a large division as regards the formulation and the interpre-
tation of the theories of non-Fourier conduction. While the intention is to provide a clear
and objective presentation, the discussion will inevitably reflect the author’s personal
views and limitations at the time the manuscript was prepared. This section should help
readers gain a general understanding of the basic concepts and phenomena related to non-
Fourier heat conduction. Although relatively few papers out of a large number of publica-
tions are cited in the text and the reference section, interested readers can easily trace the
relevant literature from the cited sources.

7.1.1 Hyperbolic Heat Equation

Several earlier studies have pointed out that the instantaneous response may be an indica-
tion of a nonphysical feature of the Fourier heat theory. Carlo Cattaneo in 1948 used kinetic
theory of gas to derive a rate equation given by

(7.2)

which is called the modified Fourier equation or Cattaneo equation. The historical contri-
butions by James Clerk Maxwell in 1867 and Pierre Vernotte in 1958 have been extensively
reviewed by Joseph and Preziosi and will not be repeated here.3 In Eq. (7.2), tq is a kind of
relaxation time, originally thought to be the same as t, i.e., the average time between colli-
sions. The energy equation for heat conduction involving an internal source or volumetric
heat generation rate is

(7.3)

The divergence of Eq. (7.2) and the time derivative of Eq. (7.3) give two equations, which
can be combined with Eq. (7.3) to eliminate the heat flux terms. The resulting differential
equation for constant properties can be written as

(7.4)

This is the hyperbolic heat equation, in contrast to the heat diffusion equation or parabolic
heat equation. Without heat generation, we can rewrite Eq. (7.4) as
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which is a telegraph equation or a damped wave equation. The solution of the hyperbolic
heat equation results in a propagating wave, the amplitude of which decays exponentially
as it travels. The speed of this temperature wave in the high-frequency limit, or the short-
time limit, is given by

(7.6)

The amplitude of the temperature wave decays according to due to the damp-
ing caused by the first-order time-derivative term , which is also called the dif-
fusion term. For an insulator, from the simple kinetic theory, we have .
Noting that for an incompressible solid and assuming , we get 

(7.7)

Equation (7.7) relates the speed of the temperature wave to the speed of sound in an insu-
lator. The square root of three can be understood as due to the randomness of thermal fluc-
tuations in a 3-D medium, just like the relation between the velocity and its components,

, in kinetic theory. Equation (7.5) indeed sets a limit on the heat propa-
gation speed, which is manifested by a sharp wavefront that travels at inside the medium
for a sudden temperature change at the boundary. As a wave equation, the solution is a tem-
perature field with both an amplitude and a phase. Theoretically, the temperature wave can
be reflected by another boundary and can interfere, constructively or destructively, with a
forward propagating wave. The interaction between the temperature waves may also result
in a resonance effect, a typical wave phenomenon. Numerous analytical and numerical pre-
dictions have been made, as referenced in the work of Özişik and Tzou,4 along with Yeung
and Lam,5 Haji-Sheikh et al.,6 and Gembarovic and Gembarovic, Jr.7 It should be noted that
the terms heat wave3 and thermal wave4 have also been frequently used in the literature to
describe the temperature wave behavior. The term “temperature wave” is used in this chap-
ter for the wavelike behavior associated with the hyperbolic-type heat equations, because
“heat wave” might be confused with the calamitous weather phenomenon and “thermal
wave” might be confused with the diffusion wave used in photoacoustic techniques.
Bennett and Patty (Appl. Opt., 21, 49, 1982) clarified: The term thermal wave interference
is used to mean the superposition of simple harmonic solutions of the thermal diffusion
equation. Although wavelike in nature there are important differences between thermal
waves arising from a differential equation that is of the first order in time and waves that
are solution to a wave equation that is of the second order in time. In the heat transfer lit-
erature, thermal wave often refers to periodic-heating techniques used widely for thermo-
physical property measurements. 

Let us consider an example of a semi-infinite solid under a constant heat flux at the sur-
face. Figure 7.2 illustrates the solutions for a small tp and a large tp, compared with . Here
again, we have assumed . The propagation speed is equal to , and the pulse wave-
front is given by and . Hence, , where is the
mean free path. In the case of a short pulse, the temperature pulse propagates and its height
decays by dissipating its energy to the medium as it travels. The parabolic heat equation,
on the other hand, predicts a continuous temperature distribution without any wavefront
(see Fig. 7.2). 

As time passes on, the first-order time derivative, or the diffusion term, in Eq. (7.5)
dominates. If the relative change of or during one is large, then the wave fea-
ture is important. This should happen immediately after a sudden thermal disturbance that
results in a temporal nonequilibrium, as well as a spatial nonequilibrium near the heat pulse
or the wavefront. After a sufficiently long time, usually 5 to10 times , a local equilibrium will
be reestablished, and the thermal field can be described by the parabolic heat equation. At
steady state, the hyperbolic and parabolic equations predict the same results. While Eq. (7.4)
is mathematically more general than the heat diffusion equation, it should not be taken as
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a correction, or a more realistic theory than the Fourier conduction model, because the
Cattaneo equation has not been justified on a fundamental basis, nor has it been validated
by any plausible experiments.

Many researchers have investigated the hyperbolic heat equation based on the second
law of thermodynamics.8–10 It has been found that the hyperbolic heat equation sometimes
predicts a negative entropy generation and even allows energy to be transferred from a
lower-temperature region to a higher-temperature region. The entropy generation rate for
heat conduction without an internal source can be calculated by10

(7.8)

The above equation was obtained by setting the energy and entropy balances as follows:

and (7.9)

Note that . A negative entropy generation can easily be numerically demonstrated
from Eq. (7.5) during the temperature wave propagation. Here, a negative entropy genera-
tion does not constitute a violation of the second law of thermodynamics because the con-
cept of “temperature” in the hyperbolic heat equation cannot be interpreted in the
conventional sense due to the lack of local thermal equilibrium. Extended irreversible ther-
modynamics has been proposed by Jou et al. by modifying the definition of entropy such
that it is not a property of the system anymore but depends on the heat flux vector.11 The
theory of extended irreversible thermodynamics is self-consistent but has not been experi-
mentally validated; hence, it cannot be taken as a generalized thermodynamic theory.
Similarly, the hyperbolic heat equation should not be treated as a more general theory over
Fourier’s heat conduction theory. 

Example 7-2. Derive the modified Fourier equation, or the Cattaneo equation, based on the BTE
under the relaxation time approximation.

Solution. Tavernier (C. R. Acad. Sci., 254, 69, 1962) first showed that the Cattaneo equation
could be derived for phonons and electrons using the relaxation time approximation of the BTE. Let
us first review Sec. 4.3.2, where we have derived Fourier’s law based on the BTE. Again, let us start
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FIGURE 7.2 (Not to scale) Illustration of the solution of the hyperbolic heat equation at short timescales.
(a) A short pulse, . (b) A long pulse, . The solid curves are the solutions of the hyperbolic heat
equation, Eq. (7.5), and the dash-dotted and dashed curves are the solutions, calculated from Eq. (7.1),
obtained from the heat diffusion equation.
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by assuming that the temperature gradient is in the x direction only. The transient 1-D BTE under
the relaxation time approximation can be written as follows:

A further assumption is made such that , which is exactly the con-
dition of local equilibrium. Multiplying the earlier equation by and then integrating each term
over the momentum space, we obtain by noting that

(7.10a)

or (7.10b)

which can be generalized to the 3-D case as given in Eq. (7.2), after replacing with .

The derivation given in this example, however, does not provide a microscopic justifica-
tion of the hyperbolic heat equation, because it is strictly valid only under the local-equilibrium
assumption with an averaged relaxation time. The local-equilibrium assumption prohibits
application of the derived equation to length scales comparable or smaller than the mean
free path.12 Suppose a thermal disturbance occurs at a certain time and location; after a
duration of time that is much longer than the relaxation time,  the Fourier law and the par-
abolic heat equation are well justified because both the spatial and temporal local-equilib-
rium conditions are met. On the other hand, if we wish to use the modified Fourier equation
to study the transient behavior at a timescale less than t, then the disturbance will propa-
gate by a distance shorter than the mean free path, as shown in Fig. 7.2. Therefore, the
derivation based on the BTE, under local-equilibrium and relaxation time approximations,
is not a microscopic proof of the hyperbolic heat equation, which is meaningful only in a
nonequilibrium situation. To this end, it appears that Maxwell made the right choice in
dropping terms involving the relaxation time in the paper (Phil. Trans. R. Soc. London, 157,
49, 1867), by assessing that the rate of conduction will rapidly establish itself.

While the previous derivation does not support Eq. (7.2), it does not disprove Eq. (7.2)
either because the relaxation time approximation is not a very good model in the nonequi-
librium regime. The local-equilibrium assumption breaks down completely at extremely
short timescales. The basic assumption in the relaxation time approximation is that the dis-
tribution function is not too far from equilibrium. For a heat pulse with a duration less than
, the relaxation time approximation should generally be applied when , regardless of

whether we are dealing with a thin film or a semi-infinite medium. What may be concluded
is that we have failed to prove either by any fundamental theory or by any credible exper-
iments that the Cattaneo equation, originated from the kinetic theory according to the relax-
ation time approximation, is a physical law that extends Fourier’s law to the nonequilibrium
regime. Atomistic simulations, based on molecular dynamics and the lattice Boltzmann
method, have provided further evidence that the hyperbolic heat equation is not applicable
at very short timescales or in the nonequilibrium regime, where the applicability of the
relaxation time approximation is also questionable.13,14 For this reason, we have intention-
ally avoided phrases like “generalized Fourier’s equation” and “modified Fourier’s law” in
describing Eq. (7.2).

One might argue that when was identified as the average time between collisions,
under the relaxation time approximation, Eq. (7.7) could give the appropriate heat propa-
gation speed, which is one-third of the speed of sound, as observed in liquid helium and
some solids at low temperatures. This is a misinterpretation because the phenomenon, related
to the second sound with a characteristic speed , cannot occur by a single relax-
ation mechanism, as will be shown later. Nevertheless, after some modifications, there
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exist special cases when the modified heat equation becomes physically plausible and prac-
tically applicable. The modified equation does not produce sharp wavefronts like those
illustrated in Fig. 7.2.

7.1.2 Dual-Phase-Lag Model

Chester (Phys. Rev., 131, 2013, 1963) first explained the lagging behavior associated with
the Cattaneo equation. He pointed out that the physical significance of the modified Fourier
equation lies in that there exists a finite buildup time after a temperature gradient is imposed
on the specimen for the onset of a heat flow, which does not start instantaneously but rather
grows gradually during the initial period on the order of the relaxation time t. Conversely,
if the thermal gradient is suddenly removed, there will be a lag in the disappearance of the
heat current. Gurtin and Pipkin (Arch. Ration. Mech. Anal., 31, 113, 1968) introduced the
memory effect to account for the delay of the heat flux with respect to the temperature gra-
dient. They expressed the heat flux as an integration of the temperature gradient over time,
in analogy with the stress-strain relationship of viscoelastic materials with instantaneous
elasticity. The linearized constitutional equation reads

(7.11)

where is a kernel function. When , Eq. (7.11) reduces to Fourier’s law;
when , Eq. (7.11) reduces to the Cattaneo equation. By assuming

(7.12)

Joseph and Preziosi showed that the heat flux can be separated into two parts:3

(7.13a)

Hence, (7.13b)

where is the steady-state thermal conductivity, as can be seen from Eq. (7.13a).
Combined with Eq. (7.3), the heat equation becomes a partial differential equation of the
Jeffreys type,

(7.14)

where is known as the retardation time.3 The Jeffreys equation was originally
developed in the early twentieth century to relate deformation with stress in the earth’s
mantle. Unless or , Eq. (7.14) maintains the diffusive feature and produces
an instantaneous response, albeit small, throughout the medium for an arbitrary thermal
disturbance.

In a series of papers published in the early 1990s, Tzou extended the lagging concept to
a dual-phase-lag model, as described in his monograph published in 1997.15 He started with
the assumption that
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The introduction of a delay time tT in Eq. (7.15) implies the existence of a lag in the tem-
perature gradient, with respect to the heat flux driven by an internal or external heat source.
The rationale of the phenomenological equation given in Eq. (7.15) was that, in some cases,
the heat flux might be viewed as the result of a preceding temperature gradient; in other
cases, the temperature gradient might be viewed as the result of a preceding heat flux. The
heat flux and the temperature gradient can switch roles in the relationship between “cause”
and “effect.” Moreover, both lags might occur simultaneously in certain materials under
dramatic thermal disturbances, such as during short-pulse laser heating.4,15 These primitive
arguments should not be scrutinized rigorously; rather, they are merely thinking instru-
ments to help us gain an intuitive understanding of the heat flux and temperature gradient
relationship. After applying the Taylor expansion to both sides of Eq. (7.15) and using the
first-order approximation, one immediately obtains

(7.16)

which is mathematically identical to Eq. (7.13b), with the substitution of .
Applying the first-order approximation of Eq. (7.15), one may end up with 

or , or even 
. These equations are merely special cases of Eq. (7.16),

after regrouping and . The only requirement for Eq. (7.16) to make logical sense is
that both and tT are nonnegative. The reason that a lag in time has been called a phase
lag is perhaps because the temperature field can be viewed as a Fourier transform:

, where is the Fourier component at frequency . The
actual phase lag (or for heat flux) depends on the frequency. Equation (7.16) is
mathematically more general and has some advantages over the Cattaneo equation. From
now on, Eq. (7.14) will be called the lagging heat equation. It is straightforward to include
the source terms in the lagging heat equation, as well as to treat thermophysical properties
as temperature dependent. The solution, however, becomes more and more difficult as the
complexity increases. Numerous studies have appeared in the literature on analytical solu-
tions and numerical methods.4,15–18

It should be noted that in Eq. (7.12), and denote the effective and elastic conduc-
tivities, respectively, and are supposed to be nonnegative.3 Therefore, must not be
greater than . In fact, the ratio is a direct indication of whether thermal
behavior can be described by heat diffusion (when ) or the hyperbolic heat equation
(when ). In general, , and the thermal process lies somewhere between the
two extremes prescribed by Fourier’s law and the Cattaneo equation. In other words, there
will be wavelike features in the solution, which is superimposed by an instantaneous diffu-
sive response throughout the medium. The diffusive response here, as well as in Fourier’s
law, does not correspond to an infinite speed of propagation. Rather, it is well justified by
quantum statistics as explained previously.

The dual-phase-lag model relaxes the requirement of ; but in the mean time, it
produces a negative thermal conductivity component, i.e., k1 � 0, according to Eq. (7.12).
This drawback has long been overcome by Tzou, who proposed a new memory function in
accordance with Eq. (7.16) as follows:15

(7.17)

Equation (7.17) suggests that the heat flux depends not only on the history of the tempera-
ture gradient but also on the history of the time derivative of . When , Eq. (7.17)
becomes the Cattaneo equation. When , Eq. (7.17) reduces to Fourier’s law.
However, is theoretically permitted because Eq. (7.17) does not presume that thetT � tq
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thermal conductivity is composed of an effective conductivity and an elastic conductivity.
The inclusion of makes Eq. (7.16) more general than the original Jeffreys-type
equation, which is based on Eq. (7.13a). The extension to the region enables the
lagging heat equation to describe the behavior of parallel heat conduction, which can occur
in a number of engineering situations.

Sometimes, a microscale phenomenon can be understood easily if a macroscale analog
can be drawn. For this reason, let us consider the solid-fluid heat exchanger shown in Fig. 7.3.

tT � tq

tT � tq
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FIGURE 7.3 Illustration of heat transfer in a solid-fluid heat exchanger,
where long solid rods are immersed in a fluid inside a sealed pipe, which is
insulated from the outside.

Side view
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x x + dx
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Assume that a fluid is stationary inside a sealed pipe, filled with long solid rods. The pipe
is insulated from the outside. If the rods are sufficiently thin, we may use the average tem-
perature in a cross section and assume that heat transfer takes place along the x direction
only. Let us denote the temperatures of the solid rods and the fluid by and ,
respectively, and take their properties , to be constant.
Note that and are the volumetric heat capacities. Given the rod diameter d, the num-
ber of rods N, and the inner diameter D of the pipe, the total surface area per unit length is

, and the total cross-sectional areas of the rods and the fluid are and
, respectively. Assume the average convection coefficient is h. The

energy balance equations can be obtained using the control volume analysis as follows:

(7.18a)

and (7.18b)

where and . In writing Eq. (7.18b), we have assumed that 
and dropped the term . Equations (7.18a) and (7.18b) are coupled equations that
can be solved for the prescribed initial and boundary conditions. These are completely
macroscopic equations governed by Fourier’s law of heat conduction. Nevertheless, we can
combine Eq. (7.18a) and Eq. (7.18b) to eliminate and, consequently, obtain the following
differential equation for :
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where . The same equation 
can also be obtained for the fluid temperature . Here, does not have the meaning of relax-
ation time, and the solutions of Eq. (7.18) exhibit diffusion characteristics. Equation (7.18c) is
completely physical but should not be viewed as a wave equation; rather, it describes a paral-
lel or coupled heat diffusion process. The concept of dual phase lag can still be applied. It
should be noted that, due to the initial temperature difference between the rod and the fluid, a
local equilibrium is not established at any x inside the pipe until after a sufficiently long time. 

Although no fundamental physics can be gained from this example, it can help us appre-
ciate that the lagging heat equation may be useful for describing the behavior in inhomo-
geneous media. Minkowycz et al. studied the heat transfer in porous media by considering
the departure from local thermal equilibrium and obtained higher-order differential equa-
tions similar to Eq. (7.18c).19 On the other hand, Kaminski made an experimental attempt
to determine in the hyperbolic heat equation, by measuring the time interval between
when the heat source was turned on and when a temperature signal was detected.22 The heat
source and the thermometer used were long needles, placed in parallel and separated by a
gap of 5 to 20 mm. What the experiment actually measured was the average thermal diffu-
sion speed if the cylindrical geometry and the initial conditions were properly taken into
consideration in the analysis. The main problem with this frequently cited paper and simi-
lar studies in the 1990s was that most researchers did not realize that the hyperbolic heat
equation is physically unjustified to be superior to the parabolic heat equation; instead, they
thought that the parabolic equation was only a special case of the more general hyperbolic
equation. It appears that the Cattaneo equation and the associated hyperbolic heat equation
are unlikely to be able to characterize any heat transfer problems successfully without addi-
tional terms. Many researchers have already expressed doubt about the applicability of the
hyperbolic heat equation, though not so many have realized that an instantaneous response
is a legitimate property, rather than a drawback of the diffusion equation. Electron gas and
phonon gas in solids are quantum mechanical particles, which do not have memory of any
kind. Ideal molecular gases obey classical statistics and do not have memory either, unless
the deposited energy is too intense to cause ionization or reaction.

Does the temperature wave exist? What is a temperature wave anyway? In the early
1940s, Russian theoretical physicist Lev Landau (1908–1968) used a two-fluid model to
study the behavior of quasiparticles in superfluid helium II and predicted the existence of a
second sound, propagating at a speed between and , depending on the temperature.
Note that the group velocity is the same as the phase velocity for a linear dispersion. Above
the l-point, where superfluidity is lost, the second sound should also disappear. Landau was
awarded the Nobel Prize in Physics in 1962 for his pioneering theories of condensed matter
at low temperatures. He authored with his students a famous book series in mechanics and
physics. Landau’s prediction was validated experimentally (J. Phys. USSR, 8, 381, 1944) by
Peshkov, who further postulated the existence of a second sound in crystals, when scatter-
ing by defects becomes minimized. It was not until the mid 1960s that the second sound
associated with heat pulse propagation was observed in solid helium (below 1 K) and other
crystals at low temperatures (below 20 K). The second sound can occur only at very low
temperatures when the mean free path of phonons in the U processes, in which the total
momentum is not conserved, is longer than the specimen size; while at the same time, the
scattering rate of the N processes, in which the total momentum is conserved, is high enough
to dominate other scattering processes. It should be noted that while the N processes have a
much shorter mean free path than the size of the specimen, scattering by N processes does
not dissipate heat (see Sec. 6.5.3). Callaway simplified the BTE for phonon systems by a
two-relaxation-time approximation, which should be applicable when :
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where t stands for the relaxation time for the U processes, is the relaxation time for the
N processes, and and are the associated equilibrium distribution functions.21 Guyer and
Krumhansl solved the linearized BTE and derived the following equation for the phonon
effective temperature:

(7.20)

where is the average phonon speed.22 Assuming a linear dispersion, it can be evaluated
using Eq. (5.10). Substituting , we see that Eq. (7.20) is
identical to Eq. (7.14). The condition can be satisfied even at since .
The significance of Eq. (7.20) lies in that the temperature wave or the second sound is not
universal, but rather, requires strict conditions to be met.22 When the condition is
satisfied, we have and the energy transfer is dominated by wave propagation. At
higher temperatures, the scattering rate for the U processes is usually very high, and the
N processes contribute little to the heat conduction or thermal resistance, as discussed in
Chap. 6. Therefore, the reason why temperature waves have not been observed in insulators
at room temperature is not because of the small , in the range from 10�10 to 10�13 s, but
because of the lack of mechanisms required for a second sound to occur. No experiments
have ever shown a second sound in metals, as suggested by the hyperbolic heat equation.

Recently, Shiomi and Maruyama performed molecular dynamics simulations of the
heat conduction through (5,5) single-walled carbon nanotubes, 25 nm in length, for several
femtoseconds.23 They found that the wavelike behavior could be fitted by the lagging heat
equation, but could not be described by the hyperbolic heat equation due to local diffusion.
The ballistic nature of heat propagation in nanotubes has already been explained in Chap. 5.
They suspected that optical phonons might play a major role in the non-Fourier conduction
process.23 Tsai and MacDonald studied the strong anharmonic effects at high temperature
and pressure using molecular dynamics.24 Their work predicted a second sound response.
The coupling of elastic and thermal effects was thought to be important. Studies on ther-
momechanical effects such as thermal expansion, thermoelasticity, and shock waves can be
found from Tzou15 and Wang and Xu,25 and will not be discussed further.

Tang and Araki clearly delineated four regimes in the lagging heat equation, according
to the ratio .17 (1) When , it is a damped wave, i.e., hyperbolic heat con-
duction. (2) When , it is wavelike diffusion, for which wave features can be
clearly seen if . (3) When , it is pure diffusion or diffusion, i.e., Fourier’s con-
duction. (4) When , it is called over-diffusion, which makes the dimensionless tem-
perature decay faster than pure diffusion would. In the next section, we will discuss a
microscopic theory on short-pulse laser heating of metals, which falls in the regime of over-
diffusion, or parallel conduction.

7.1.3 Two-Temperature Model

With a short laser pulse, 5 fs to 500 ps, free electrons absorb radiation energy and the
absorbed energy excites the electrons to higher energy levels. The “hot electrons” move
around randomly and dissipate heat mainly through electron-phonon interactions.
Following the work of Kaganov et al. (Sov. Phys. JETP, 4, 173, 1957), Anisimov proposed
a two-temperature model, which is a pair of coupled nonlinear equations governing the
effective temperatures of electrons and phonons.26 This model was experimentally con-
firmed later by Fujimoto et al. (Phys. Rev. Lett., 53, 1837, 1984) and Brorson et al. (Phys.
Rev. Lett., 59, 1962, 1987). The two-temperature model was introduced to the heat transfer
community by Qiu and Tien, who also analyzed the size effect due to boundary scattering
and performed experiments with thin metallic films.27 In the two-temperature model, it was
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assumed that the electron and phonon systems are each at their own local equilibrium, but
not in mutual equilibrium. The electron temperature could be much higher than the lattice
(or phonon) temperature due to absorption of pulse heating. Therefore,

(7.21a)

(7.21b)

Here, the subscripts e and s are for the electron and phonon systems, respectively, C is the
volumetric heat capacity, G is the electron-phonon coupling constant, and is the source
term that represents the absorbed energy rate per unit volume during the laser pulse and
drops to zero after the pulse. Heat conduction by phonons is neglected, and thus, the sub-
script e is dropped in the thermal conductivity k. Note that , according to
Fourier’s law. We have already given a macroscopic example of parallel heat transfer, as
shown in Fig. 7.3, which should ease the understanding of the phenomenological relations
given in Eq. (7.21). Equation (7.21) originates from microscopic interactions between pho-
tons, electrons, and phonons. In order to examine the parameters in Eq. (7.21) and their
dependence on and , let us assume that the lattice temperature is near or above the
Debye temperature, for simplicity. In such a case, electron-electron scattering and electron-
defects scattering are insignificant compared with electron-phonon scattering. It is expected
that the electron relaxation time is inversely proportional to the lattice temperature, i.e.,

. The meaning of the relaxation time is that the electron system can be
assumed to be at internal local equilibrium when , which is the condition for Eq. (7.21)
to be applicable. Boundary scattering may play a role for very thin films or in polycrystalline
materials. An effective mean free path can be introduced to modify the scattering rate.27–29

The volumetric heat capacity for the lattice or phonons, , is a weak function of the
lattice temperature; the volumetric heat capacity of electrons, from Eq. (5.25), becomes

(7.22)

Recall that is relatively small compared with , even at several thousand kelvins. From
the simple kinetic theory, the thermal conductivity is

(7.23)

where is the thermal conductivity when , which can be set as the room temper-
ature value. The term in Eq. (7.23) comes from the heat capacity. The size effect can be
included using an effective relaxation time. Theoretically, the coupling constant can be
estimated by

or (7.24)

which is independent of temperature, when boundary scattering is not important but pro-
portional to the square of the speed of sound in the metal. With the speed of sound in the
low-frequency limit, the dispersion is linear; thus, we do not have to worry about the dif-
ference between the phase velocity and the group velocity. From Eq. (5.10), we have
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When boundary scattering is included, G is expected to increase from the bulk value and
depend on the lattice temperature. Using the Debye temperature and for , we have 

(7.26)

Typical values of are on the order of W/(m3 � K), e.g., 
for gold. The behavior of the electron and phonon temperatures near the surface is shown
in Fig. 7.4, for a short pulse. The electron temperature rises quickly during the pulse and
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FIGURE 7.4 Illustration (not to scale) of ultrafast thermoreflectance experi-
ments and the associated electron and phonon temperatures near the surface, dur-
ing a short pulse.
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begins to decrease afterward; in the mean time, the lattice temperature gradually increases
until the electron and lattice systems reach a thermal equilibrium. Both the temperatures
will go down as heat is carried away from the surface. Note that the electron temperature
can rise very high due to its small heat capacity, but the lattice or solid may be just slightly
above room temperature. If the temperatures of electron and lattice were assumed the same,
Eq. (7.21) reduces to the simple Fourier heat conduction equation, which in turn predicts a
much lower temperature rise, because the heat capacity of the lattice is much higher than
that of the electrons.

Given such a short timescale and the nonequilibrium nature between electrons and
phonons locally, no contact thermometer could possibly measure the effective electron
temperature. Experiments are usually performed by the femtosecond or picosecond ther-
moreflectance technique, also known as the pump-and-probe method, shown in the inset of
Fig. 7.4. The reflectance of the surface depends on the electron temperature . The exper-
imental setup is rather involved and cannot measure the temperature distribution inside the
material. The procedure is to send a pump pulse train that is synchronized with a probe
pulse train at a fixed delay time. The electron temperature change near the surface is
deduced by comparison of the reflectance measurements at different delay times. Electron-
phonon coupling, boundary scattering, and thermal boundary resistance can all affect the
thermoreflectance signal. Comparing with the model described in Eq. (7.21), along with the

Te



dependence of the reflectance on the electron temperature, the microscopic characteristics
can be analyzed. Ultrafast thermoreflectance techniques have become an important thermal
metrology tool for the study of electron-phonon interactions, TBR, and thermophysical
properties.30,31 Thermionic emission can also occur from the surface, especially when the
electrons are excited to higher energy states.32

Similarly to what has been done for Eq. (7.18), Eq. (7.21a) and Eq. (7.21b) can be com-
bined to formulate partial differential equations for either the electron or phonon tempera-
ture. Neglecting the temperature dependence of the parameters, one obtains the following
differential equations for the electron temperature and the phonon temperature, respectively,

(7.27a)

(7.27b)

where , , and . These
equations are identical to the lagging heat equations and can be solved with appropriate
boundary conditions. The results again belong to the regime of over-diffusion, or parallel con-
duction, without any wavelike features. Cooling caused by thermionic emission is usually
neglected, and the surface under illumination can be assumed adiabatic. A 1-D approxima-
tion further simplifies the problem. The solution follows the general trends depicted in
Fig. 7.4. The situation will be completely changed if a phase change occurs or if the sys-
tem is driven to exceed the linear harmonic behavior.15,25

The term is clearly not the same as the relaxation time due to collision. The result-
ing solution is more diffusive than wavelike. In the literature, is commonly referred to as
the thermalization time. The physical meaning of is a thermal time constant for the elec-
tron system to reach an equilibrium with the phonon system. For noble metals at room tem-
perature, the relaxation time is on the order of 30 to 40 fs, the thermalization time tq is
0.5 to 0.8 ps, and the retardation time tT is 60 to 90 ps. In practice, we need to consider the
temperature dependence of the parameters in Eq. (7.21), as mentioned earlier. Some
numerical solutions, considering temperature dependence, and comparisons with experi-
ments can be found from Smith et al.33 and Zhou and Chiu.34 Given that the two-temperature
model cannot be applied to , due to the limitation of Fourier’s law, one may prefer to
use a pulse width between 100 and 200 fs and measure the response during several
picoseconds until the thermalization process is complete, i.e., the electron and phonon tem-
peratures become the same. This first-stage measurement allows the determination of the
coupling constant G. In the case of a thin film, the TBR sets a barrier for heat conduction
between the film and the substrate. The time constant of the film can range from several
tens to hundreds of picoseconds. Therefore, the TBR between the film and the substrate can
be determined by continuing the observation of thermoreflectance signals for 1 to 2 ns after
each pulse. Fitting the curves in the second-stage measurement allows an estimate of the
TBR. Of course, one could use a longer pulse width to determine the TBR. Most
advanced femtosecond research laboratories are equipped with Ti:sapphire lasers whose
pulse widths range from 50 to 500 fs. Femtosecond lasers with a pulse width of 25 fs have
also been used in some studies; see for example Li et al. (J. Opt. Soc. Am. B, 15, 2404, 1998;
Phys. Rev. Lett., 82, 2394, 1999). For tp below 50 fs, Eq. (7.21a) is not applicable during
the heating, at least for noble metals. The relaxation time for Cr is about 3 fs, and Eq. (7.21)
can be safely applied even with tp � 10 fs. However, the processes below 20 fs may largely
involve electron-electron inelastic scattering, thermionic emission, ionization, phase trans-
formation, chemical reaction, and so forth. Other difficult issues associated with the reduced
pulse width include widened frequency spectrum, increased pulse intensity, decreased pulse

tp

tp

t � t

t

tq

tq

ttq

tq � tTCe/(Ce 
 Cs) < Ce/G V tTtT � Cs/Ga � k/(Ce 
 Cs)

=2Ts 
 tT
'

't
=2Ts 


q
.
a

k �
1
a

'Ts

't


tq

a

'2Ts

't 2

=2Te 
 tT
'

't
=2Te 


q
.
a

k 

tT

k

'q
.
a

't
�

1
a

'Te

't


tq

a

'2Te

't 2

NONEQUILIBRIUM ENERGY TRANSFER IN NANOSTRUCTURES 261



energy, and so forth. A simple hyperbolic heat flux formulation cannot properly address
these issues at . One must investigate the physical and chemical processes occurring
at this timescale in order to develop a physically plausible model, with or without the concept
of effective temperatures. Femtosecond laser interactions with dielectric materials have also
been extensively studied (see Jiang and Tsai35 and references therein).

Let us reiterate the major points presented in this section: (a) Fourier’s law, which is
limited to local equilibrium conditions, does not predict an infinite speed of heat diffusion,
nor does it violate the principle of causality. An instantaneous response at a finite distance
is permitted by quantum statistics although the probability of such a response sharply
approaches zero as the distance increases. An instantaneous temperature change or heat
flux at a precise location is not physically possible. Only under the continuum assumption,
we can use the concept of sudden change of temperature at the boundary. (b) Heat diffu-
sion is usually a very slow process, compared with the speed of sound. The temperature
wave, or the second sound, has been observed only in helium and some very pure dielec-
tric crystals, at low temperatures, where the U processes are ballistic and the N processes
have a very high scattering rate. However, the simple hyperbolic heat equation has been
proved neither theoretically nor experimentally. There is no need to collect previous or
future experimental evidence to test the hyperbolic heat equation, which was ill-formulated
in the first place. (c) All kinds of non-Fourier equations are based on some sort of effective
temperature, which are not measurable using a contact thermometer. The principle of con-
tact thermometry is the zeroth law of thermodynamics, which originates from the theory of
thermal equilibrium. The concept of coldness or hotness should be abandoned in reference
to nonequilibrium energy transport processes. Noncontact thermometry, on the other hand,
relies on certain physical responses to deduce the equilibrium temperature or the effective
temperature of the system being measured. (d) The memory hypothesis and the lagging
argument are phenomenological models that may be useful in the study of certain non-
equilibrium or parallel conduction processes, but are not universally applicable. These and
similar equations must be derived and applied on a case-by-case basis. It is important to
understand the microscopic processes occurring at the appropriate length scales and
timescales in order to develop physically reliable models.

7.2 HEAT CONDUCTION ACROSS
LAYERED STRUCTURES

In Sec. 5.5.2, we have given a detailed discussion on the heat conduction along a thin film
using the BTE, under the local equilibrium assumption. An effective thermal conductivity
can be used after taking proper account of boundary scattering. The heat conduction prob-
lem can thus be well described by Fourier’s law using the effective thermal conductivity.
As mentioned earlier, for heat transfer across a film or a superlattice, the condition of local
equilibrium breaks down in the acoustically thin limit. The local distribution function can-
not be approximated by an equilibrium distribution function at any temperature.
Conventional Fourier’s law breaks down because it relies on the definition of an equilib-
rium temperature and the existence of local equilibrium. It is natural to ask the following
two questions: (1) Is it possible for us to define an effective temperature? (2) Can Fourier’s
law still be useful in the nonequilibrium regime, according to the effective temperature?
This section presents the equation of phonon radiative transfer (EPRT) and the solution of
EPRT for thin films under the relaxation time approximation. A resistance network repre-
sentation is present to illustrate how Fourier’s law of heat conduction may be applied inside
the medium, at least approximately, with temperature-jump boundary conditions. Because
of the importance of understanding the boundary conditions, this section also discusses
models of thermal boundary resistance (TBR) in layered structures.

tp � t
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7.2.1 Equation of Phonon Radiative Transfer (EPRT)

The phonon BTE under the relaxation time approximation, in a region with heat genera-
tion, may be written as

(7.28)

where the second term on the right-hand side is a source term to model the generation of
phonons due to heat dissipation, such as electron-phonon scattering. Phonon-phonon scatter-
ing is already included in the first term on the right-hand side. The scattering rate may also
include phonon-defect scattering. Many studies have treated phonon transport in analogy to
thermal radiative transfer.12, 36–43 In the following, a simplified case is used to illustrate how to
model heat transfer across a thin film as well as multilayer structures. Let us consider a film of
thickness L between two boundaries without any internal source. The phonon BTE becomes

(7.29)

Realizing the nonequilibrium distribution function may be anisotropic, let us define

(7.30)

where P is the number of phonon modes or polarizations. Equation (7.30) gives the phonon
intensity, which is the energy transfer rate in the direction from a unit area, per unit fre-
quency and per unit solid angle. The geometry of the problem and illustration of the inten-
sity is given in Fig. 7.5. In this section, we use for the group velocity and for thevpvg
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FIGURE 7.5 Schematic of phonon radiative transfer inside a dielectric
medium between two walls maintained at temperatures T1 and T2. These walls
are like heat reservoirs, but their surfaces are not necessarily blackbodies.
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where and is the intensity for equilibrium distribution that is indepen-
dent of the direction. Equation (7.31) is called the equation of phonon radiative transfer
(EPRT).12,40 Comparing the EPRT with the ERT given in Eq. (2.52), we see that the scat-
tering terms are neglected in the EPRT, and the emission and the absorption are replaced
by the phonon collision terms. The phonon mean free path is also called the
phonon penetration depth (see Example 4-2). The inverse of the penetration depth 1/� cor-
responds to the absorption coefficient in the ERT. Conversion to the EPRT allows well-
established theories and numerical techniques, developed in radiative transfer, to be applied
to solve Eq. (7.31) and to interpret the physical significance of the solutions.44,45 If does
not depend on frequency, we are dealing with a gray medium. 

If the phonon Knudsen number , then most phonons will collide with
phonons or defects inside the medium. This regime is called the acoustically thick limit, in
analogy to the optically thick limit for photons. This is also known as the macroscale regime
or the local equilibrium situation. Unless at a very short timescale, when a sudden local dis-
turbance occurs, we expect that Fourier’s law is applicable and the heat conduction is by
diffusion. On the other hand, if , phonons originated from one boundary
will most likely reach the other boundary without colliding with other phonons or defects
inside the medium. This is the ballistic regime, corresponding to free molecule flow for
molecular gases. This regime is called the acoustically thin limit, where the phonon distri-
bution inside the medium cannot be characterized by an equilibrium distribution function
if the walls are at different temperatures, even in the steady state. Because we are dealing
with the radiative transfer for phonons as we do for photons, from now on, we will refer

as the radiative thin limit and as the radiative thick limit.
Because the BTE is more fundamental than Fourier’s law, it works for either limit as well
as between the two limits. It would be very useful if a macroscopic model can also be devel-
oped to bridge these two limits. Rather than referring readers to more specialized journal
papers, in the following, we present some basic formulations that are logically connected
with materials presented in earlier chapters. 

Note that is the equilibrium distribution function, which is independent of the direc-
tion. Using Bose-Einstein statistics, we have

(7.32)

This equilibrium distribution is also the distribution function for blackbody radiation with
replaced by the speed of light. Integrating Eq. (7.32) over all frequencies gives the total

intensity for all three phonon modes as follows:

(7.33)

where is the phonon Stefan-Boltzmann constant, and is the average
phase velocity of the two translational and one longitudinal phonon modes, defined accord-
ing to Eq. (5.7). Let us consider a solid at temperatures higher than the Debye temperature.
The integration can be carried out to an upper limit with . From the
discussion following Eq. (5.13), one can easily show that

(7.34)

This integration is a good approximation, even at temperatures slightly lower than the
Debye temperature. When phonons are at equilibrium, the energy flux is , which ispI*
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obtained by integrating over the hemisphere. According to Eq. (4.12), the
energy density can be expressed as

(7.35)

Note that the volumetric heat capacity . We therefore obtain the low-temperature
relation of the specific heat, i.e., the T 3 law, and the high-temperature relation of the spe-
cific heat, i.e., the Dulong-Petit law, as already derived in Sec. 5.1.2. It is important to pay
attention to the meaning of C in the kinetic expression of thermal conductivity:

(7.36)

At very low temperatures, when , C is the volumetric heat capacity of all phonon
modes combined because only low-frequency modes or acoustic branches contribute to the
specific heat. However, at temperatures close to the Debye temperature, phonons in the
optical branches contribute little to the thermal conductivity, as already discussed in Chap. 6.
The relative contributions of LA and TA branches are also temperature dependent. The
Debye temperature for most materials, except diamond, is not much higher than room tem-
perature (see Table 5.2). Therefore, we must treat C as a fraction of the volumetric specific
heat in dealing with Si, GaAs, Ge, ZnS, or GaN, near room temperature. Also, we must use
the appropriate upper limit in the integral in calculating the total energy transfer when
applying the EPRT. The heat flux per unit frequency interval can thus be expressed as

(7.37)

Energy balance at any given location requires that the incoming flux be the same as the
outgoing flux, for both steady and transient states. This is the criterion for radiative equi-
librium, which can be expressed as follows:

(7.38)

where is the mean free path at , 4p on the left-hand side came from the integration over
all solid angles in a sphere, and 2p on the right-hand side came from integration over the
azimuth angles. Equation (7.38) gives a definition of an effective phonon temperature based
on . An equivalent expression can be obtained based on the energy density, viz.,

(7.39)

It follows that the local equilibrium condition can be rewritten as

(7.40)

Local equilibrium is a sufficient, but not necessary, condition for radiative equilibrium
given in Eq. (7.38), regardless whether the medium is gray or not. The physical significance
of Eq. (7.40) is that the angular average of the intensity, at a given location and time, can
be described by an equilibrium intensity at the effective temperature. Obviously, Eq. (7.40)
is not applicable in the radiative thin limit, unless the temperature difference between the
two boundaries is negligibly small.
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Example 7-3. For a dielectric medium of thickness , where is independent of wave-
length. The boundary or wall temperatures are and . Both the temperatures
are much lower than the Debye temperature. Assume that reflection at the boundaries is negligible,
i.e., the walls can be modeled as blackbodies. Find the steady-state temperature of the medium and
the heat flux through the medium.

Solution. Because , the medium is said to be in the radiative thin limit, in which
phonons travel from one wall to another ballistically with little chance of being scattered by other
phonons or defects inside the medium. The forward intensity can be expressed as for

, and the backward intensity for . From Eq. (7.37), we have 

(7.41)

For heat conduction, the above equation is called the Casimir limit (Physica, 5, 595, 1938). To
numerically evaluate this equation, we need data for . From Eq. (7.38), we have

(7.42)

where is the effective temperature inside the medium . Since and  
are the boundary conditions, there is a temperature jump at each boundary. We notice immediately
that Eq. (7.40) cannot be satisfied with the temperature defined previously. If we force

(7.43)

we would end up with different temperatures at each frequency. In the next chapter (Sec. 8.2.3), we
will further discuss the concept of monochromatic temperature. If the walls are not black but
diffuse-gray with emissivities and , similar to Eq. (2.51), the heat flux becomes 

(7.44)

7.2.2 Solution of the EPRT

The two-flux method is very helpful in developing a solution of the EPRT in planar struc-
tures. The equations for the forward and backward intensities, denoted respectively by
superscripts (
) and (�) can be separated. In the steady state, we have:

, when (7.45a)

, when (7.45b)

where we have assumed that the medium is gray.44,45 If we further assume that the walls are
diffuse and gray, then the boundary conditions become

and (7.46)
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The solutions of Eq. (7.45a) and Eq. (7.45b) can be expressed as follows:

for (7.49)

and for (7.50)

In Eq. (7.49), the first term represents intensity originated from the left surface, after being
attenuated, and the second term is the contribution of generation that is subject to attenua-
tion as well. Equation (7.50) is viewed reversely for intensity from the right to the left. The
spectral heat flux, defined in Eq. (7.37), can be written as

(7.51a)

Here again, is the mth exponential integral. If the surface is dif-
fuse, then

(7.51b)

Note that energy balance requires that . Differentiation of
Eq. (7.51a) yields

(7.52)

In radiative transfer, we call and the total radiosi-
ties at surfaces 1 and 2, respectively, and the total blackbody emissive
power. Therefore,

(7.53)

This is the same as the radiative equilibrium condition, given in Eq. (7.38). We cannot set
Eq. (7.52) to zero at all frequencies, when local equilibrium does not exist, even for a gray
medium.

Example 7-4. Find the temperature distribution, the heat flux, and the thermal conductivity for a
gray medium, with diffuse-gray surfaces, in the radiative thick limit, i.e., , under two
extreme conditions: (1) and (2) .T1, T2 � �DT1, T2 V �D
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Solution. In the radiative thick limit, the first two terms in Eq. (7.51a) can be dropped as long as
x is not too close to either surface. Applying the first-order Taylor expansion I*

"(x) � I*
"(j) 


and letting in the third and fourth terms, we obtain 

(7.54)

since . In fact, this equation applies to everywhere inside the medium because the
spectral heat flux is continuous in the radiative thick limit. Integrating Eq. (7.54) over the frequen-
cies of interest, we see that, under condition (1),

, when (7.55a)

This is nothing but a heat diffusion equation if we define the thermal conductivity as

(7.55b)

Comparing with , we notice from the previous equation that . In the
radiative thick limit, the temperature distribution is continuous at the wall, i.e., 
and . Furthermore, the radiosity at the wall becomes the blackbody emissive
power, even though the surface is not black; thus, we can integrate Eq. (7.54) over x from 0 to L:

which gives (7.56a)

as well as the temperature distribution:

(7.56b)

which is linear in terms of the fourth power of temperature. From the definition of thermal resis-
tance, , we have

(7.57)

Under condition (2), when the temperature is greater than the Debye temperature, we have

when (7.58)

The thermal conductivity becomes , which implies that 
A proper should be chosen so that only propagating phonons are considered. Assuming that the
temperature difference is small so that we can approximate the thermal conductivity as a con-
stant, we have

(7.59)

The thermal resistance becomes , which increases as L increases. The temperature
distribution is linear. One should realize that the scattering rate increases with temperature, due to
phonon-phonon scattering, and depends on the frequency. If we look at the radiative equilibrium
condition again, by assuming , we see that . Therefore, local equilibrium is notI
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a stable-equilibrium state. In the radiative thick limit, the difference between and is caused by
the spatial variation of as can be clearly seem from Eq. (7.49) and Eq. (7.50). Hence, Eq. (7.40)
is a good approximation. In the radiative thin limit, according to Eq. (7.34), Eq. (7.59) becomes

(7.60)

Although no closed form exists for the solution of the ERT between the thick and thin
limits, a number of approximation techniques and numerical methods can be used to pro-
vide satisfactory solutions, such as the discrete ordinates method (SN approximation) and
the spherical harmonics method (PN approximation). It is important to see that except in the
radiative thick limit, energy transfer occurs inside the medium in two ways: one is through
exchange with the walls, and the other is through diffusion. For this reason, a ballistic-
diffusion approximation has been developed to solve the EPRT; see Chen (Phys. Rev. Lett.,
86, 2297, 2001). In general, the temperature distribution looks like that in Fig. 4.12b if
is comparable to the Debye temperature. If , then the temperature distribution can
be plotted in terms of T 4 so that the distribution looks more or less linear. There exists a
temperature jump such that and , except in the radiative thick
limit. Understanding that the temperature is only an effective temperature and given such
a temperature distribution, one may assume that there is a thermal resistance at each bound-
ary and an internal thermal resistance, which may be described by Fourier’s heat conduc-
tion.41 For thermal radiative transfer in the absence of heat conduction, there exists a
radiation slip or radiation jump at the boundary, unless the medium is optically thick.
Without a participating medium, photons do not scatter on itself to dissipate heat or trans-
fer heat by diffusion. This is a distinction between photons and phonons. Radiation slip is
manifested by a discontinuous change of the intensity at the boundary. The temperature in
the medium adjacent to the wall differs from the surface temperature. Such a temperature
jump does not exist in classical Fourier’s heat conduction theory; however, both velocity
slip and temperature jump have already been incorporated in microfluidics research, as dis-
cussed in Chap. 4 [see Eq. (4.94)]. The temperature-jump concept was first applied in the
study of heat conduction in rarefied gases over 100 years ago. A straightforward approach
for phonon transport is to sum up the thermal resistances in the radiative thin and thick lim-
its. The heat flux at very low temperatures can be expressed as

(7.61)

Here, we separately write and to emphasize the thermal resistance
due to radiation slip at each boundary. In the radiative thick limit, the temperature jump
approaches to zero as . Basically, Eq. (7.61) reduces to Eq. (7.44) and Eq. (7.56a), in
the extremes. If the walls can be treated as blackbodies, i.e., , and the tempera-
ture difference between and is small, we can approximate the heat flux as follows: 

(7.62)

where , the bulk thermal conductivity , and
the effective conductivity of the film is
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At relatively high temperatures close to the Debye temperature, from Eq. (7.59) and Eq. (7.60),
we can write

(7.64)

where . Equation (7.64) gives the same conductivity ratio as in
Eq. (7.63) for blackbody walls. These effective thermal conductivities are on the same
order of magnitude as we have derived in Sec. 5.5.5, based on simple geometric arguments
and Matthiessen’s rule for the mean free path given in Eq. (5.116). In previous chapters,
however, we did not elaborate in detail the nature of nonequilibrium and the necessity of
defining an effective temperature. It is interesting that different schools of thought can
result in rather consistent results. The heat diffusion equation per se cannot tell us the cause
of a temperature jump or how to evaluate it. The phonon BTE enables us to explore the
microscopic phenomena and helps evaluate the parameters and the properties. The micro-
scopic understanding and the macroscopic phenomenological equations can indeed work
together to provide an effective thermal analysis tool.

The preceding discussions are consistent with the detailed derivation of the temperature
jump or the radiation slip, originally formulated by Deissler (J. Heat Transfer, C86, 240,
1964), for situations not too far from the radiative thick limit. Nevertheless, the expressions
given in Eq. (7.61) and Eq. (7.64) can be approximately applied between the diffusion and bal-
listic extremes. It should be noted that when the temperature jump is treated as a thermal resis-
tance at the boundary, Fourier’s law can be used for the heat conduction inside the medium
with bulk thermal conductivity. This is very different from heat conduction along the film.

While there seems to be no problem in understanding the meaning of emissivity for
optical radiation, a question still remains as how to interpret the boundary conditions in the
case of phonon conduction. If a multilayer structure is considered, we need to better under-
stand the reflection and the transmission of phonons at the interfaces between dissimilar
materials. A three-layer structure is shown in Fig. 7.6 to illustrate the temperature distribution

keff /kbkb(T) �
1
3Cvg�

qsx �
kb

L

T1 � T2

1 
 a 1
e1



1
e2

� 1b4Kn

3

� keff

T1 � T2

L

270 CHAPTER 7

FIGURE 7.6 Temperature distribution in a multilayer structure, with thermal
boundary resistance, and the thermal resistance network representation. Here, R�i is
the internal resistance in the ith layer due to heat conduction, and R�ij is the thermal
boundary resistance between the ith and jth media. Two temperatures are needed to
specify the effective temperature of different media at the interface.



in a multilayer structure. Depending on the temperature range, it seems that we can conve-
niently determine the internal thermal resistance with Fourier’s law, i.e., . For
the thermal resistance at the interface inside the layered structures, we could replace the
emissivity with the transmissivity such that 
At the boundaries, we can still use and 
The heat flux can be estimated by , where is the sum of all ther-
mal resistances. The effective thermal conductivity of the whole layered structure becomes

The details were presented by Chen and Zeng, who further considered non-
diffuse surfaces and defined equivalent equilibrium temperatures.41 The assumption is that
the deviation from the radiative thick limit is not significant. If we are dealing with the
ballistic regime, we might need to consider phonon wave effects as well as the quantum
size effect. Models for thermal boundary resistance will be discussed in the next sub-
section. It is intriguing to apply the same approach to electron systems for the study of
both electrical conductivity and thermal conductivity of metallic solids, as well as metal-
dielectric multilayer structures. The thermal resistance network method, however, cannot
be easily extended to multidimensional problems or to transient heating by a localized heat
source. Statistical models or atomistic simulations are necessary. Therefore, the extension
of Fourier’s law for 1-D nonequilibrium heat transfer should be considered only as a spe-
cial case.

7.2.3 Thermal Boundary Resistance (TBR)

Thermal resistance at the interface between dissimilar materials is very important for heat
transfer in heterostructures. Let us first clarify the difference between thermal contact
resistance and thermal boundary resistance (TBR). The former refers to the thermal resis-
tance between two bodies, usually with very rough surfaces whose root-mean-square
roughness is greater than 0.5 �m, brought or joined together mechanically. For
thermal contact resistance, readers are referred to a recent comprehensive review by
Yovanovich.46 Originally, TBR refers to the resistance at the interface between two solids
or between a liquid and a dielectric at low temperatures. Even when the materials are in
perfect contact with each other, reflections occur when phonons travel toward the bound-
ary, because of the difference in acoustic properties of adjacent materials. In practice, the
interface can be atomically smooth, or with a roughness ranging from several tenths of a
nanometer to several nanometers. The thermal resistance between a solid material and liq-
uid helium is called the Kapitza resistance, first observed by the Russian physicist and
1978 Nobel Laureate Pyotr Kapitza, in the 1940s. This thermal resistance results in a tem-
perature discontinuity at the boundary and has been modeled, based on the acoustic mis-
match model (AMM). Thermal boundary resistance exists between two dielectrics as well
as between a metal and a dielectric. In a thin-film structure, an interface is often accom-
panied by the formation of an intermediate layer of mixed atoms. An extensive review of
earlier studies can be found in the work of Swartz and Pohl in 1989;38 see also Stoner and
Maris (Phys. Rev. B, 48, 16373, 1993). Prasher and Phelan (J. Supercond., 10, 473, 1997)
reviewed the studies of TBR of high-temperature superconductors in both the normal and
superconducting states, for applications in superconducting electronics and radiation
detectors.

Little showed that the heat flux across the boundary of a perfectly joined interface
between two solids is proportional to the difference in the fourth power of temperature on
each side of the interface.39 This can be understood based on previous discussions of phonon
radiative transfer and blackbody radiation. Consider longitudinal phonon modes that follow
the linear dispersion in a Debye crystal, and assume that the interface is perfectly smooth.
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At any given frequency, the transmission coefficients can be written as follows (with a small
modification for consistency):39,47

(7.65a)

(7.65b)

where subscripts 1 and 2 denote the media 1 and 2, respectively, is the density, is the
propagation speed of longitudinal phonons, and u is the polar angle, as illustrated in
Fig. 7.7. The scattering is assumed to be purely elastic since the phonon frequency is con-
served. An analog of Snell’s law can be written as follows:

(7.66)1
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FIGURE 7.7 Schematic of phonon transport across an interface
between two semi-infinite media, each at a thermal equilibrium.

If , for incidence from medium 2 to 1, there exists a critical angle ,
beyond which all phonons will be reflected. Due to the boundary resistance, there will be a
temperature difference across the interface. By assuming that the phonons are at equilib-
rium on either side, the heat flux from medium 1 to 2 can be expressed as follows:

(7.67)

If the distribution function is isotropic over the hemisphere, we have

(7.68)
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can be viewed as the hemispherical transmisivity. Note that 

(7.70)

For the Debye density of states, we have 

Therefore, the net heat flux across the interface becomes

(7.71)

or (7.72)

where . In the low-temperature limit, we obtain

(7.73)

After replacing with , i.e., one longitudinal and two transverse
phonon modes, we obtain 

(7.74)

The TBR can now be obtained as . Furthermore, by assuming that the
temperature difference is small, we can approximate by

(7.75)

which is inversely proportional to T 3.
The characteristic wavelength is the most probable wavelength in the phonon distribu-

tion function. It can be approximated by

(7.76)

where a is the lattice constant, on the order of 0.3 to 0.6 nm.47 Only when , can we
assume that the scattering is completely specular. Even for atomically smooth interfaces, the
characteristic wavelength for phonons will be on the same order of magnitude as the rms sur-
face roughness, when the temperature approaches the Debye temperature. The specularity
parameter introduced in Eq. (5.131) is often used to approximate the fraction of specular reflec-
tion with respect to the total reflection. Another expression of the specularity parameter is
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This equation has often been wrongly expressed with being mistaken as in the heat
conduction literature, following a hidden typo in Ziman’s book, Electrons and Phonons.48

In the high-temperature limit, TBR is expected to be small, especially when compared with
conduction in the solids. Other considerations are (a) the interface may not be perfectly
smooth, (b) there exists an upper limit of the frequency or a lower limit of wavelength, and
(c) phonons on either sides of the boundary may not be in a local-equilibrium state. These
difficulties post some real challenges in modeling TBR. Nevertheless, we shall present the
diffuse mismatch model (DMM) that was introduced by Swartz and Pohl.38 In the DMM,
it is assumed that phonons will be scattered according to a probability, determined by the
properties of the two media but independent of where the phonons are originated. For
phonons coming from medium 1, the transmission and reflection probabilities are related
by . For phonons originated from medium 2, on the other hand, 
and . Hence, the reciprocity requires that 

(7.78a)

We can rewrite Eq. (7.70), considering all three polarizations, as follows:

(7.78b)

Solving Eq. (7.78a) and Eq. (7.78b), we get

(7.79)

The heat flux can be calculated according to

(7.80)

Equation (7.79) and Eq. (7.80) are the only equations needed to calculate TBR with the DMM.
In addition to the Debye temperatures and the speeds of longitudinal and transverse waves, one
would need to determine the upper limits of the integrals in Eq. (7.80). Alternatively, Eq. (7.80)
can be recast using the volumetric heat capacities and the group velocities to obtain

(7.81)

One must be careful in applying the heat capacity in Eq. (7.81) since the heat capacity in
the expression of thermal conductivity is different from , unless at very low tempera-
tures. Both the AMM and the DMM assume that the phonons are in equilibrium on each
side of the interface, and do not take into account the nonequilibrium distribution of
phonons. In multilayer thin films, especially in quantum wells and superlattices, when the
film thickness is comparable with or smaller than the phonon mean free path, thermal trans-
port inside the film cannot be modeled as pure diffusion anymore. A detailed treatment of
temperature-jump conditions and boundary resistance in superlattices was performed by
Chen and Zeng.40,41 Majumdar (J. Heat Transfer, 113, 797, 1991) proposed a modified AMM
by modeling interface roughness using a fractal structure. In this study, the reflection
was approximated by geometric optics, which is applicable when the phonon wavelength
is smaller than the autocorrelation length of the rough surface. TBR between highly dis-
similar materials, metal-metal interface, and metal-dielectric interface have been the areas
of some recent studies; see Majumdar and Reddy (Appl. Phys. Lett., 84, 4768), Ju et al.
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(J. Heat Transfer, 128, 919, 2006), Lyeo and Cahill (Phys. Rev. B, 73, 144301, 2006), and
Gundrum et al. (Phys. Rev. B, 72, 245426, 2006).

Let us consider how to model transient heat conduction in thin films. The single relax-
ation time approximation appears to be limited to the timescale t � t. Joshi and Majumdar
(J. Appl. Phys., 74, 31, 1993) performed a transient analysis of the EPRT. However, the use
of Eq. (7.43) implies the presumption of the local-equilibrium condition, which is not valid
for large temperature gradients. If worked out properly, the EPRT is applicable for t � t.
If the temperature jumps can be properly taken into consideration, it appears that Fourier’s law
should be applicable when tW t. The question is, “How long will it take for the temperature-
jump conditions to be justified?” In order to model a timescale less than t, it would be inter-
esting to see if there exists another scattering mechanism that has a much smaller relaxation
time than t and that does not transfer or dissipate heat, like the N processes discussed ear-
lier or phonons in the optical branch. In the two-fluid model, the superfluid moves forward
freely, without any viscosity, but conserves kinetic energy as it moves around. This is the
principle of superfluidity in liquid helium and superconductivity for electrons. The super-
fluid does not carry thermal energy, nor does it dissipate heat. Although the N processes do
not carry heat forward, these processes are important for the redistribution of phonons. The
two-relaxation-time model developed by Callaway21 and Guyer and Krumhansl22, or the
Jeffrey-type equation, might be applicable in extreme cases, e.g., in a nanotube at very
small timescales, on the order of femtoseconds. The solution describes a wavelike charac-
teristic that is a combination of a damped wave and a weak diffusion process, which enables
an instantaneous response, intrinsic to all heat conduction processes, as justified by statis-
tical mechanics. As mentioned earlier, the wavelike behavior has been demonstrated
recently in SWNTs, via molecular dynamics simulation, although a lot of work needs to be
done to extend the simulation to multilayer structures. Let us emphasize again that
Fourier’s heat diffusion appears to be universal for heat conduction, and the hyperbolic heat
equation, Eq. (7.5), can be neither physically justified nor practically useful. In the
extremely acoustic thin limit, we are dealing with quantum conductance or the Schrödinger
wave equation. This wave phenomenon cannot be explained by the hyperbolic heat
equation.

7.3 HEAT CONDUCTION REGIMES

There has been a continuous effort to delineate the regimes of microscale heat conduction
since 1992. A number of references have already been cited in Chap. 5. A recent effort has
been made by Escobar et al.43 Following the previous discussions in this chapter, let us
schematically depict the regimes of heat conduction, especially by electrons and phonons
in crystalline solids, as in Fig. 7.8. Here, is known as effective collision interaction time,
or simply collision time, since collision does not occur instantaneously but is through inter-
molecular potential and force interactions. These forces become important only when the
particles come very close to each other. Of course, this is the classical picture of atomic or
molecular interactions. Electrons and phonons are quantum mechanical particles; thus, the
interaction is via the wavefunctions predicted by Schrödinger’s equations. For ultrafast
pulse heating, the collision time can be the time required for a photon and an electron to
interact. Generally speaking, the collision time is much shorter than the relaxation time and
neglected in the BTE. The characteristic phonon or electron wavelength l is assumed to be
less than the mean free path �.

Region 1 is the macroscale regime where Fourier’s law and the heat diffusion equation
can be applied, when the timescale is greater than t and the length scale is greater than
about . Region 2 is called the mesoscale or quasi-equilibrium regime, which is charac-
terized by the classical size effect. This region is also known as the first microscale. For
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heat transfer along a film or a wire, local-equilibrium assumption is appropriate and bound-
ary scattering reduces the effective mean free path and thermal conductivity. For heat trans-
fer across a film or a multilayer, it is possible to use Fourier’s law inside the medium by
considering an effective temperature and the temperature-jump boundary condition. It is dif-
ficult, if not impossible, to apply Fourier’s law to complex geometries or local heating. The
two-temperature model for fast laser heating can be in either region 1 or 2, depending on how
the length scale is compared with the mean free path. Most of the research on microscale
heat transfer between 1990 and 2005 dealt with the microscale phenomena in region 2.

Region 3 is the regime of wave behavior, which is described by Schrödinger’s wave
equations and where quantum tunneling can occur. Quantum size effect becomes signifi-
cant on thermal conductivity and specific heat. Quantum conductance is a special case of
quantum tunneling, for which the ballistic processes are confined in one dimension through
a channel. For very thin layers, wave interference may become important. However, due to
the interface roughness, the coherence may be destroyed so that the energy ray method or
the particle approach can still be applied at very small length scales. We will give a com-
prehensive treatment of electromagnetic wave interference and scattering phenomena in
subsequent chapters, without discussing the nature of acoustic waves further. The region
on the upper left is said to be of no interest at short timescales because a thermal distur-
bance cannot travel that far and affect the temperature field. 

Region 4 is designed to represent the wavelike behavior, described by the Jeffreys-type
equation, Eq. (7.14). When we say Jeffreys-type equation, we mean that both and in
Eq. (7.12a) are positive. As discussed earlier, is the second relaxation time for phonon
scattering that does not transfer or dissipate thermal energy, as in the N processes. In this
regime, the BTE based on the two-relaxation-time approximation may be applied.21,22 This
regime includes the heat pulse propagation and the second sound in dielectric crystals, at

tN

k1k0
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low temperatures. It suffices to say that this region, while of great academic interest, has very
limited applications. The pure hyperbolic heat equation, however, predicts a nonphysical
wavefront and cannot be applied without the additional diffusion term. Nevertheless, theo-
retical studies of the hyperbolic heat equation have helped in a better understanding of the
heat transfer behavior at short timescales and, subsequently, facilitated the development of
more realistic models. While the lagging heat equation can mathematically describe both
wavelike behavior and parallel heat conduction, it does not provide any new physics. On the
other hand, the memory concept may be related to the anharmonic and nonlinear effects that
are inherent to the solid and crystal structures. Study of the thermomechanical and thermo-
elastic effects, and thermal transport in polymers and inhomogeneous materials, such as bio-
logical materials, may require empirical and semiempirical models. The lagging heat
equation or similar differential equations may be quite helpful in these applications.

Region 5 belongs to the nanoscale regime, where it is necessary to employ quantum or
sometimes classical molecular dynamics to study the underlying phenomena. The dashed
ellipse indicates the overlapping between different regions, where molecular dynamics
simulation may provide rich information as well as a bridge between different timescales
and length scales.

Holland (Phys. Rev., 132, 2461, 1963) analyzed the effect of different polarizations on
the thermal conductivity of germanium. Several studies have employed the Monte Carlo
method to solve phonon transport equations.36,37,49 The lattice Boltzmann method has also
been employed in a number of publications.14,43 Molecular dynamics has been applied to
the study of TBR, including the interface between SWNTs.50–53 Chung et al. investigated
the effect of different dispersion models on the lattice thermal conductivity.54 Narumanchi
et al. used a finite volume method to solve the 2-D BTE during transient heat transport for
a local heating source in silicon.55 They also demonstrated the feasibility to include phonon
dispersion and polarization in the model. Nonequilibrium phonon transport in dimensions
less than 100 nm has become an important issue in silicon-on-insulator transistors. Several
studies have focused on a multiscale approach to model the thermal transport phenomena
at the device level.42,43,56–58 Sinha and Goodson provided an extensive review on multiscale
modeling.42

Thermal metrology includes measurements of temperature (thermometry), specific heat
(calorimetry), and heat flux. Thermophysical properties, such as thermal conductivity and spe-
cific heat, can be measured with steady-state, modulated, or pulsed heating techniques. MEMS
and NEMS have enabled the fabrication of miniaturized heaters and sensors. Furthermore,
optical techniques such as thermoreflectance, Raman spectroscopy, photothermal radiome-
try, fluorescence, and laser flash techniques have been widely used in the measurement of
thermal properties of nano/microstructured materials. Scanning thermal microscopy and
near-field optical microscopy have further improved the spatial resolution. A large number of
publications can be found from the bibliography of the present and previous chapters [see,
e.g., Cahill et al.31 and references therein]. Recently, Abel et al. employed micro–Raman
spectroscopy to measure the temperature distribution in silicon microstructures with a spatial
resolution of 1 �m.59 Lee et al. performed a steady-state characterization of heated AFM can-
tilevers over a range pressures for thermal metrology applications.60 Park et al. analyzed the
frequency response of heated AFM cantilevers in the frequency range from 10 Hz to 1 MHz,
and observed high-order harmonic responses, such as , at frequencies below
100 kHz and impedance effect at higher frequencies.61 Park et al. also investigated thermal
behavior of heated cantilevers at cryogenic temperatures, down to 78 K.62 By measuring the
thermal response at various frequencies, this study extracted the specific heat near the can-
tilever tip and the thermal conductivity along the heavily doped silicon legs, at temperatures
ranging from 80 to 200 K. There appears to be a significant reduction in the thermal conduc-
tivity for the free-standing silicon cantilever, with a thickness of 0.59 �m, at low tempera-
tures. These studies demonstrate that heated AFM cantilevers have become a promising
thermal analysis tool at the micro- and nanoscales.59-62
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7.4 SUMMARY

The present chapter, along with Chaps. 5 and 6, provided a comprehensive treatment of
thermal properties of and the transport processes in micro/nanostructured solid materials.
This chapter focused on the transient and nonequilibrium heat conduction, when the local
equilibrium condition is not satisfied to justify the conventional heat diffusion theory,
based on Fourier’s law. Several modified phenomenological theories were critically
reviewed with an emphasis on their application regimes. The phonon BTE was presented
using the EPRT, and the solutions were discussed for the nonequilibrium heat transfer
across a thin film or a multilayer structure. The basic models of TBR were outlined. Finally,
a heat transfer regime was developed to assist readers in choosing an appropriate method-
ology for a given situation, with a brief summary on advanced multiscale modeling and
measurement techniques. 
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PROBLEMS

7.1. What is the characteristic length for heat conduction along a thin film? Why is local equilibrium
a good assumption in this case, even though the film thickness is less than the mean free path of the
heat carriers? Why does the thermal conductivity depend on the thickness of the film?

7.2. Why do we say that Fourier’s law is a fundamental physical law, like Newton’s laws in mechan-
ics, but the Cattaneo equation is not? Comment on the paradox of infinite speed of heat diffusion by
considering the feasibility of exciting the surface temperature or depositing a heat flux to the surface
instantaneously.

7.3. Consider a 1-D semi-infinite medium initially at uniform temperature Ti. The surface tempera-
ture is suddenly changed to a constant temperature, . The analytical solution of the heat dif-
fusion equation gives

For silicon at various temperatures, use the properties given in Example 5-6 to estimate how long it
will take for a given location to gain a temperature rise that is u� 10�12, or one part per trillion of the
maximum temperature difference. Estimate the average thermal diffusion speed in terms of x and Ti.
[Hint: .]

7.4. Repeat Problem 7.3, using copper instead of silicon as the material, based on the properties
given in Example 5-5. Discuss why the average thermal diffusion speed is different under different
boundary conditions, i.e., constant heat flux and constant temperature. From an engineering point of
view, do you think heat diffusion is a fast or slow process? Why?

7.5. (a) Derive Eq. (7.4), the hyperbolic heat equation from the Cattaneo equation. 
(b) Derive Eq. (7.14), the lagging heat equation, based on the dual-phase-lag model.

7.6. Take GaAs as an example. How would you compare the speed of sound with the average ther-
mal diffusion speed at different temperatures and length scales? This problem requires some literature
search on the properties.

7.7. Assume the hyperbolic heat equation would work for transient heat transfer in glass (Pyrex),
at near room temperature. Given , , , and

.
(a) At what speed would the temperature wave propagate? 
(b) For an excimer laser with a pulse width , 0.1 ns after the pulse starts, could the hyper-

bolic equation be approximated by the parabolic equation? 
(c) Suppose we have an instrument available to probe the timescale below , will the hyperbolic heat

equation be able to describe the observation?

7.8. Derive Eq. (7.13b) from Eq. (7.13a). Discuss the conditions for these equations to be reduced to
Fourier’s law or the Cattaneo equation.

7.9. Show that Eq. (7.17) satisfies Eq. (7.16). Discuss the conditions for Eq. (7.17) to represent
Fourier’s law or the Cattaneo equation.

7.10. Derive Eq. (7.18a), Eq. (7.18b), and Eq. (7.18c).

7.11. Derive Eq. (7.27a) and Eq. (7.27b). Calculate , , and of copper, for � 300, 1000, and
5000 K, assuming the lattice temperature .

7.12. Calculate the electron-phonon coupling constant G for aluminum, copper, gold, and silver near
room temperature. Discuss the dependence of k and G upon the electron and lattice temperatures 
and .

7.13. At � 1000, 3000, and 6000 K, estimate the energy transfer by thermionic emission from a
copper surface, assuming that the electrons obey the equilibrium distribution function at .

7.14. Based on Example 7-3, evaluate the heat flux in a thin silicon film. How thin must it be in order
for it to be considered as in the radiative thin limit? Calculate the medium temperature T. Plot the left-hand

Te

Te

Ts

Te

Ts � 300 K
TetTtqt

tq

tp � 10 ns

va � 5640 m/s
cp � 835 J/(kg # K)r � 2500 kg/m3k � 1.4 W/(m # K)

erfc(5.042) � 1.00 � 10�12

u(x,t) �
T(x,t) � Ti

Ts � Ti
� erfca x

22at
b

T(0,t) � Ts
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side and the right-hand side of Eq. (7.43). Furthermore, assuming Eq. (7.43) to be true for each fre-
quency, find a frequency-dependent temperature of the medium. At what frequency does

? Is there any physical significance of ? 

7.15. Derive Eq. (7.53), using Eq. (7.38), Eq. (7.49), and Eq. (7.50).

7.16. In principle, one should be able to study nonequilibrium electrical and thermal conduction in
the direction perpendicular to the plane, and use the BTE to determine the effective conductivities.
This could be a team project, in which a few students work together to formulate the necessary equa-
tions. As an individual assignment, describe how to set up the boundary conditions, as well as the steps
you plan to follow, without actually deriving the equations.

7.17. For a diamond type IIa film, , , and , near
300 K. Assume that the boundaries can be modeled as blackbodies for phonons. For boundary tem-
peratures and , calculate and plot the heat flux and the effective thermal
conductivity across a film of thickness L, which varies from 0.05 to 50 �m.

7.18. Calculate the TBR between high-temperature superconductor YBa2Cu3O7-d and MgO sub-
strate, at an average temperature between 10 and 90 K, using both the AMM and the DMM without
considering the electronic effect. The following parameters are given for YBa2Cu3O7-d: ,

, , and ; and for MgO: , ,
, and .

7.19. Evaluate the effective thermal conductivity near room temperature of a GaAs/AlAs superlattice,
with a total thickness of 800 nm, using the DMM to compute the transmission coefficient. Assume the end
surfaces are blackbodies to phonons; consider that (a) each layer is 4 nm thick and (b) each layer is 40 nm
thick. The following parameters are given, considering phonon dispersion on thermal conductivity, for
GaAs: , , and ; and for AlAs: ,

, and . How is the result compared with a single layer of either GaAs or AlAs?

7.20. Evaluate the effective thermal conductivity near room temperature of a Si/Ge superlattice, with
a total thickness of 1000 nm, using the DMM to compute the transmission coefficient. Assume the end
surfaces are blackbodies to phonons; consider that (a) each layer is 5 nm thick and (b) each layer is 50
nm thick. The following parameters are given, considering phonon dispersion on thermal conductivity,
for Si: , , and ; and for Ge: ,

, and . How is the result compared with a single layer of either Si or Ge?� � 199 nmvg � 1042 m/s
C � 870 kJ/(m3 # K)� � 260 nmvg � 1804 m/sC � 930 kJ/(m3 # K)

� � 236 nmvg � 1246 m/s
C � 880 kJ/(m3 # K)� � 145 nmvg � 1024 m/sC � 880 kJ/(m3 # K)

�D � 950 Kr � 3576 kg/m�3
vt � 6050 m/svl � 9710 m/s�D � 450 Kr � 6338 kg/m�3vt � 3010 m/s
vl � 4780 m/s

keff

qsxT2 � 250 KT1 � 350 K

k � 3300 W/(m # K)vt � 12,800 m/svl � 17,500 m/s

T(v)T(v) � T

T(v)
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FUNDAMENTALS OF
THERMAL RADIATION

CHAPTER 8

283

Radiation is one of the fundamental modes of heat transfer. However, the concepts of ther-
mal radiation are much more complicated and, hence, very difficult to perceive. The main
features of radiation that are distinct from conduction and convection are as follows: (a)
Radiation can transfer energy with and without an intervening medium; (b) The radiant heat
flux is not proportional to the temperature gradient; (c) Radiation emission is wavelength
dependent, and the radiative properties of materials depend on the wavelength and the tem-
perature; and (d) The radiant energy exchange and the radiative properties depend on the
direction and orientation.1,2

The dual theory explains the nature of radiation as either electromagnetic waves or a
collection of particles called photons. Although radiation can travel in vacuum, it origi-
nates from matter. All forms of matter emit radiation through complicated mechanisms
(e.g., molecular vibration in gases, and electron and lattice vibrations in solids). In most
solids and some liquids, radiation emitted from the interior is strongly absorbed by adjoin-
ing molecules. Therefore, radiation from or to these materials is often treated as surface
phenomena, while radiation in gases and some semitransparent solids or liquids has to be
treated as volumetric phenomena. Nevertheless, one must treat solids or liquids as a medium
(i.e., volumetrically) to understand the mechanisms of reflection and emission, to predict
the radiative properties of thin films and small particles, and to calculate radiation heat
transfer between objects placed in close vicinity. Thermal radiation refers to a type of radi-
ation where the emission is directly related to the temperature of the body (or surface).

There are numerous engineering applications where radiation heat transfer is important,
such as furnaces, combustion, high-temperature materials processing and manufacturing,
solar energy, space cooling and insulation, and cryogenic systems. Even at room tempera-
ture, radiative heat transfer may be of the same order of magnitude as convective heat trans-
fer. The study of thermal radiation went along with the study of light phenomena and led
to some major breakthroughs in modern physics. It is instructive to give a brief survey of
major historical developments related to thermal radiation.

Quantitative understanding of the nature of light began in the seventeenth century with
the discoveries of Snell’s law of refraction, Fermat’s least-time principle of light path,
Huygens’ principle of contructing the wavefront from secondary waves, and Newton’s
prism that helped him prove white light consists of many different types of rays. In the
dawn of the ninteenth century, Sir Frederick Herschel (1738–1822), a German-born English
astronomer, discovered infrared radiation.3 His original objective was to find a suitable
color for a glass filter, which could transmit most of light but the least amount of heat, for
use in solar observations. By moving a thermometer along the spectrum of solar radiation
that passed through a prism, Herschel accidently found that the temperature of the ther-
mometer would rise even though it was placed beyond the red end of the visible light. He
published several papers in Philosophical Transactions of the Royal Society of London in
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1800 and called the unknown radiation invisible light or heat-making rays. Young’s double-
slit experiment in 1801 demonstrated the interference phenomenon and the wave nature of
light, followed by intensive studies on polarization and reflection phenomena, led by French
physicist Augustin-Jean Fresnel (1788–1827) who contributed significantly to the establish-
ment of the wave theory of light. In 1803, radiation beyond the violet end of the visible spec-
trum via chemical effects was also discovered. The ultraviolet, visible, and infrared spectra
were thus associated with chemical, luminous, and heating effects, respectively. Yet, the com-
mon nature of the different types of radiation was not known until the late nineteenth century. 

One of the obstacles of accurately measuring infrared radiation (or heat radiation, as it
was called in those days) was the lack of sensitive detectors. In the earlier years, measure-
ments were performed using thermometers with blackened bulbs. In 1829, Italian physi-
cists Leopoldo Nobili (1784–1835) and Macedonio Melloni (1798–1854) invented the
thermopile, which is made by connecting a number of thermocouples in series, that is much
more sensitive and faster than the thermometer. Melloni used the device to study the
infrared radiation from hot objects and the sun. Gustav Kirchhoff (1824–1887), a German
physicist, contributed greatly to the fundamental understanding of spectroscopy and the
thermal emission by heated objects. In 1862, he coined the term “black body” radiation and
established Kirchhoff’s law, which states that the emissivity of a surface equals its absorp-
tivity at thermal equilibrium. 

Many famous physicists and mathmaticians have contributed to electromagnetism. The
complete equations of electromagnetic waves were established in 1873 by Scottish physi-
cist James Clerk Maxwell (1831–1879), and later confirmed experimentally by German
physicist Heinrich Hertz (1857–1894), who discovered radio waves due to electrical vibra-
tions. Before the existence of electrons had been proven, Dutch physicist Hendrik Lorentz
(1853–1928) proposed that light waves were due to oscillations of an electric charge in the
atom. He received the Nobel Prize in Physics in 1902, for his mathematical theory relating
electron wave motion and light. The 1902 Nobel Prize was shared with his student Pieter
Zeeman (1865–1943) for the experimental study about the effect of magnetic fields on
atomic structures that has resulted in the splitting of spectral lines of the produced light. The
electromagnetic wave theory has played a central role in radio, radar, television, microwave
technology, telecommunication, thermal radiation, and physical optics. Albert Einstein
arrived at the famous formula E � mc2 in 1905, after connecting the relativity principle
with the Maxwell equations. 

In 1881, Samuel Langley (1834–1906), the American astronomer, physicist, and aero-
nautics pioneer, invented a highly sensitive device called bolometer for detection of ther-
mal radiation. The bolometer used two platinum strips, connected in a Wheatstone bridge
circuit with a sensitive galvanometer, to read the imbalance of the bridge caused by the
exposure of one of the strips to radiation. Langley was the first to make an accurate map of
the solar spectrum up to a wavelength of 2.8 �m. The Stefan-Boltzmann law of blackbody
radiation is a result of the empirical relation obtained by Slovenian physicists Joseph Stefan
(1835–1893) in 1879, based on observation of experiments, and the theoretical proof given
by Austrian physicist Ludwig Boltzmann (1844–1906) in 1884, based on thermodynamic
relations of a Carnot cycle with radiation as a working fluid using the concept of radiation
pressure. In the late nineteenth century, German physicist Wilhelm Wien (1864–1928)
derived the displacement law in 1893 by considering a piston moving within a mirrored
empty cylinder filled with thermal radiation. Wien also derived a spectral distribution of
blackbody radiation, called Wien’s formula, which is applicable to the short-wavelength
region of the blackbody spectrum but deviates toward long wavelengths. Wien received the
Nobel Prize in 1911 “for his discoveries regarding the laws governing the radiation of
heat.” In 1900, Lord Rayleigh (1842–1919), British physicist and Nobel Laureate in Physics
in 1904, used the equipartition theorem to show that the blackbody emission should be
directly proportional to temperature but inversely proportional to the fourth power of
wavelength. Sir James Jeans (1877–1946), British physicist, astronomer, and mathematician,
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derived a more complete expression in 1905. The Rayleigh-Jeans formula agreed with exper-
iments at sufficiently high temperatures and long wavelengths, where Wien’s formula failed,
but disagreed with experiments at short wavelengths. It is noteworthy that Rayleigh made
great contributions to light scattering and wave phenomena, such as the discovery of Rayleigh
scattering by small objects that explains why the sky is blue and the sunset appears orange
glow. Rayleigh also predicted the existence of surface waves, sometimes called Rayleigh
waves, which propagate along the interface between two different media. The amplitude of
the wave, however, reduced in each media as the distance from the interface increases.

In an effort to obtain a better agreement with measurements at long wavelengths,
German physicist Max Planck (1858–1947) in 1900 used the maximum entropy principle,
based on Boltzmann’s entropy expression, to derive an equation, known as Planck’s law,
which agrees with experiments in the whole spectral region. Planck obtained his expression
independently of Rayleigh’s work published several months earlier, while the complete
derivation of Rayleigh-Jeans formula was obtained several years later. In his book The
Theory of Heat Radiation, Planck showed that his formula would reduce to Wien’s formula
at small lT and Rayleigh-Jeans formula at very large lT.4 In his derivation, Planck used a
bold assumption that is controversial to classical electrodynamics. His hypothesis was that
energy is not infinitely divisible but must assume discrete values, which are proportional to
the frequency. This concept would have been easily accepted for a system consisting of
particles, like atoms or gas molecules, but not for oscillators that radiate electromagnetic
energy. Planck’s work opened the door to quantum mechanics. The idea of quantization of
radiation was further developed by Einstein, who applied it to explain the photoelectric
effect in 1905. Planck was awarded the Nobel Prize in Physics in 1918 for the discovery of
energy quanta. In 1924, Indian mathematical physicist Satyendra Nath Bose (1894–1974)
modified the Boltzmann statistics of ideal molecular gases, by treating photons as indistin-
guishable particles in order to derive Planck’s distribution function. With the help of
Einstein, Bose’s work was published in Zeitschrift für Physik in1924. Einstein further
extended Bose’s theory to atoms and predicted the existence of a phenomenon, known as
Bose-Einstein condensate, as discussed in Chap. 3. It is clear that the path of quest for the
truth in understanding thermal radiation has led to important discoveries in modern physics.

This chapter contains an introduction to the electromagnetic wave theory, blackbody
radiation, plane wave reflection and refraction at the boundary between two semi-infinite
media, and various models used to study the optical properties of different materials. The
materials covered in the following sections are intended to provide a detailed background for
more in-depth discussion on the applications to micro/nanosystems in subsequent chapters.

8.1 ELECTROMAGNETIC WAVES

8.1.1 Maxwell’s Equations

The propagation of electromagnetic waves in any media is governed by a set of equations,
first stated together by Maxwell. The macroscopic Maxwell equations can be written in the
differential forms as follows:5–7

(8.1)

(8.2)

(8.3)

(8.4)= # B � 0

= # D � re

= � H � J 
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= � E � �
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FUNDAMENTALS OF THERMAL RADIATION 285



Based on the SI units, E in V/m is the electric field, H in A/m is the magnetic field, J in
A/m2 is the electric current density (i.e., electric charge flux), D in C/m2 is the electric dis-
placement, B in Wb/m2 is the magnetic flux density (also called magnetic induction), and
re in C/m3 is the charge density. Note that in magnetism, 1 tesla (T) � 1 Wb/m2, and 1
weber (Wb) � 1 V � s. The charge conservation or continuity equation, ,
is implicitly included in the Maxwell equations, because it can be obtained by taking the
divergence of Eq. (8.2) and then applying Eq. (8.3). The constitutive relations for a linear
isotropic medium are

(8.5)

(8.6)

where em in F/m is the electric permittivity and mm in N/A2 is the magnetic permeability of
the medium. Note that farad (F) is the SI unit of capacitance: 1 F � 1 C/V. The permittiv-
ity and permeability values of free space (vacuum) are F/m and

N/A2, respectively. For anisotropic media, em and mm are dyadic tensors.
The microscopic form of Ohm’s law gives

(8.7)

where s in A/(V � m) is the electric conductivity.
A brief discussion on the physical interpretation of Maxwell’s equations is given next.

Equation (8.1) is an expression of Faraday’s law of induction, which states that a time vary-
ing magnetic field produces an electric field in a coil. In other words, through any closed
electric field line, there is a time varying magnetic field. Combining Eq. (8.1) with Green’s
theorem, Eq. (B.71), we see that the integral of the electric field around a closed loop is
equal to the negative of the integral of the time derivative of the magnetic induction, over
the area enclosed by the loop. Equation (8.2) is the general Ampere law, which includes
Maxwell’s displacement current ( ). It states that through any closed magnetic field
line, there is an electric current density J or a displacement current or both. Conversely, cir-
culating magnetic fields are produced by passing an electrical current through a conductor
or changing electric fields or both. Equation (8.3) is Gauss’s law, which implies that the
electric field diverges from electric charges. Using Gauss’s theorem, Eq. (B.70), it can be seen
from Eq. (8.3) that the integral of the electric field over a closed surface is proportional to
the electric charges enclosed by that surface. If there are no electric charges inside a closed
surface, there is no net electric field penetrating the surface. Equation (8.4) is an analogy to
Gauss’s law for magnetic field. However, since there exist no isolated magnetic poles,
called magnetic monopoles, the integration of magnetic field over any closed surface is zero.

The interpretations given in the preceding paragraph are straightforward since all vari-
ables and coefficients are considered as real quantities. However, Maxwell’s equations are
mostly useful when all quantities are expressed in complex variables. The material proper-
ties, such as em and mm, are generally complex and frequency dependent. To facilitate the
understanding, we will start with simple cases first and then generalize the theory for more
realistic problems.

8.1.2 The Wave Equation

Sometimes called free charge density, in Eq. (8.3) should be treated as excess charges or
net charges per unit volume. Because the number of electrons equals the number of protons
in the nuclei, in most media, we can assume . For a nonconductive material, s� 0.
We further assume that and are both real and independent of position, time, and the
field strength. This is true for a nondissipative (lossless), homogeneous, and linear mater-
ial. If , the material is said to be nonmagnetic. Therefore, a nonconductive andmm � m0

mmem

re � 0

re

'D/'t

J � sE

m0 � 4p � 10�7
e0 � 8.854 � 10�12

B � mmH

D � emE

= # J 
 're /'t � 0
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nonmagnetic material is a dielectric for which only em is needed to characterize its electro-
magnetic behavior. Materials with both em and mm being real but are sometimes
called general dielectrics or dielectric-magnetic media. Substituting the constitutive rela-
tions into Maxwell’s equations and then combining Eq. (8.1) and Eq. (8.2), we obtain

(8.8)

where the vector identity given in Eq. (B.64), ,
has been employed. Equation (8.8) is the wave equation, which can also be written in terms
of the magnetic field. The wave equation has infinite number of solutions (see Problem
8.1). The solution of Eq. (8.8) for a monochromatic plane wave can be written as

(8.9)

where E0 is the amplitude vector, v is the angular frequency, is the posi-
tion vector, and is the wavevector, which points toward the direction
of propagation. In order for Eq. (8.9) to be a solution of Eq. (8.8), the magnitude of k must
be . The complex form of the electric field is used in Eq. (8.9) to facilitate
mathematical manipulation. The actual electric field may be expressed as the real part of
Eq. (8.9), viz.,

(8.10)

where Re or Im stands for taking the real part or the imaginary part, and is
the phase. Equation (8.9) is a time-harmonic solution at a fixed frequency. Because any
time-space-dependent function can be expressed as a Fourier series of many frequency
components, we can integrate Eq. (8.9) over all frequencies to obtain the total electric field
at any time and position. Therefore, understanding the nature of Eq. (8.9) is very important
to the study of electromagnetic wave phenomena. 

When Eq. (8.9) is substituted into Maxwell’s equations, a time derivative can be
replaced by a multiplication of and the operator can be replaced by . Hence, the
first two Maxwell equations can be written as

(8.11a)

and (8.11b)

The two equations suggest that E, H, and k are orthogonal and form a right-handed triplet,
when both em and mm are positive. On the surface normal to the wavevector k, the electric
or magnetic field is a function of time only, because This surface is called a
wavefront. In the k direction, the wavefront travels at the speed given by

(8.12)

which is called phase speed, and it is the smallest speed at which the phase of the wave
propagates.8 The phase velocity is the phase speed times the unit wavevector.

Figure 8.1 illustrates a plane wave, propagating in the positive x direction, whose elec-
tric field is parallel to the y direction and magnetic field parallel to the z direction. In such
cases, and . The wavefront is perpendicular to the x direction. It can be
seen clearly that the wavevector is related to the wavelength lm in the medium by 

In free space, the speed of electromagnetic wave is given by . The speed
of light in vacuum was instated as an exact number, , by the General
Conference on Weights and Measures (abbreviated as CGPM for Conférence Générale des
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Poids et Mesures) in 1983. The SI base unit meter has since been defined as the distance that
light travels in vacuum during a time interval of s. The NIST reference on
constant, units, and uncertainty can be found on the web page: http://physics.nist.gov/cuu/
index.html, which contains detailed discussions about the fundamental physical constants and
the base SI units. For most calculations, it suffices to use m/s. The refrac-
tive index of the medium is given as . Therefore, and

, where l is the wavelength in vacuum. For nonmagnetic materials ;
thus, .

Notice that n of a medium is a function of frequency (or wavelength) and is in general
temperature dependent. For polychromatic light, the phase speed usually depends on wave-
length because in a dispersive medium. In vacuum, the energy propagation veloc-
ity is the same as the phase velocity. For polychromatic waves in a dispersive medium, the
group velocity determines the direction and speed of energy flow and is defined as

(8.13)

which is the gradient of v in the k-space. In a homogeneous and isotropic medium,
and the direction of the group velocity will be the same as that of

the wavevector k. In a nondispersive medium, where n is not a function of frequency, it is
clear that . When light is refracted from a nondispersive medium to a dis-
persive medium, the group velocity can have a component parallel to the group fronts, and
hence, the energy flow is not necessarily perpendicular to the group fronts.8 Notice that the
wave equation is also applicable to other types of waves such as acoustic waves, which are
matter waves with a longitudinal and two transverse modes, as mentioned in Chap. 5.

8.1.3 Polarization

A simple transverse wave will oscillate perpendicular to the wavevector. Because electro-
magnetic waves have two field vectors that can change their directions during propagation,
the polarization behavior may be complicated. It is important to understand the nature of
polarization in order to fully characterize an electromagnetic wave. There are two equiva-
lent ways to interpret a complex vector A. The first method considers it as a vector whose
components are complex, i.e.,

(8.14)A � Axx
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FIGURE 8.1 Illustration of a linearly polarized electromagnetic wave.
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where are complex numbers:

, , and (8.14a)

The second method decomposes it into two real vectors such that

(8.15)

where are the real and imaginary parts of the complex vector, given by

and (8.15a)

In either case, a complex vector has six real scalar terms. 
For the time being, let us assume all the material properties to have real values and k to

be a real vector. Both E and H are complex, according to Eq. (8.9). To ensure that 
at any time and location, both and must be perpendicular to k. The same is
true for the magnetic vector. Because H can be obtained from Eq. (8.11a), the state of polar-
ization can be based on how the electric field varies in time and along the k direction in
space. In order to study the time dependence of the electric field, rewrite Eq. (8.10) as

(8.16)

where and are both real vectors and perpendicular to k.
In general, the electric field will vary with time in an ellipse, called the vibration ellipse, as
shown in Fig. 8.2. If a and b are parallel or, equivalently, and are parallel toIm(E0)Re(E0)
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FIGURE 8.2 Illustration of polarization by the vibration ellipse, for a plane
wave propagating in the positive z direction (out of the paper). The electric field
vector is plotted at an increment of .vt � p/12

each other, then the electric field will not change its directions. The wave is said to be linearly
polarized, and either a or b specifies the direction of polarization. An example of a linearly
polarized wave is the wave shown in Fig. 8.1. When and , the vibration ellipse
is a circle and the wave is said to be circularly polarized. In general, a monochromatic wave

Za Z � Zb Za ' b



described by Eq. (8.10) is elliptically polarized. For circularly or elliptically polarized
light, if is in the same direction as k, the vibration ellipse will rotate counter-
clockwise (left-handed), as viewed toward the light source; and if is opposite to
the direction of propagation, the vibration ellipse will rotate clockwise (right-handed).6,7

Similarly, one can consider the polarization of the electric field at a fixed time, and
observe the vibration ellipse along the direction of propagation as an exercise (see
Problem 8.2). 

Because of the random nature of thermal radiation, the Fourier component does not vary
with time exactly following but with some fluctuations in the amplitude. The polarization
may become completely random, which is said to be unpolarized, randomly polarized, or
completely uncorrelated. In any case, the electric field can be decomposed into the two
orthogonal directions on the vibration ellipse. This is particularly useful for calculating
energy transfer. A complete description of polarization is based on Stokes parameters,
which are important in the study of light scattering and will be discussed in Chap. 9.

8.1.4 Energy Flux and Density

The energy conservation for electromagnetic field can be obtained from Maxwell’s
equations, according to English physicist John Poynting (1852–1914). To derive Poynting’s
theorem, one can dot multiply Eq. (8.1) and Eq. (8.2) by and , respectively, and
then add up each side. Using the vector identity in Eq. (B.63), we have 

. After simplifications, we obtain

(8.17)

The left-hand term represents the energy flow into a differential control volume, the first
term on the right is the rate of change of the stored energy (associated with the electric and
magnetic fields), and the last term is the dissipated electromagnetic work or Joule heating.
The Poynting vector is defined as

(8.18a)

The Poynting vector is essentially the energy flux, which gives both the direction and the
rate of energy flow per unit projected surface area. Equation (8.17) and Eq. (8.18a) can be eas-
ily extended to the complex field notation. Although it is easy to write the Poynting vector
(which is always real) as , it is not very helpful because one would
have to evaluate the real parts of E and H individually. Besides, the frequency of oscilla-
tion is usually too high to be measured. For harmonic fields, the time-averaged Poynting
vector can be expressed as

(8.18b)

where * signifies the complex conjugate. Similarly, the time-averaged energy density for
time-harmonic fields can be expressed as5

(8.19)

For an absorbing or dissipative medium, a more complete description of the energy density
can be found in Cui and Kong (Phys. Rev. B, 70, 205106, 2004).
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Example 8-1. Prove that Eq. (8.18b) is the time-averaged Poynting vector for time-harmonic
fields.

Solution. Let and , where are complex vectors.
Integrating the Poynting vector over a period T, we have

8.1.5 Dielectric Function

The conductivity is large at low frequencies for metals, due to free electrons. Even for good
conductors, however, the electrons are not completely free but will be scattered by defects and
phonons. At high frequencies, the current density J and the electric field E are not in phase
anymore, suggesting that the conductivity should be a complex number. For insulators such
as crystalline or amorphous dielectrics, electromagnetic waves can interact with bound elec-
trons or lattice vibrations to transfer energy to the medium. At optical frequencies, the dis-
tinction between a conductor and an insulator becomes ambiguous unless the optical response
over a large frequency region is considered. For example, a dielectric material can be highly
reflective at a certain frequency region in the mid-infrared. On the other hand, a good con-
ductor will be highly reflective in a much broader wavelength region from the near-infrared
to the microwave. Let us first take the conductivity and the permittivity to be real, for a non-
magnetic material. The wave equation for and has the following form:

(8.20)

Suppose Eq. (8.9) is a solution of this equation. We can substitute ,
, and into Eq. (8.20) to obtain

(8.21)

Therefore, the wavevector becomes complex: , where 
and  are real vectors. Note that Eq. (8.21) tells us the value of

, where each wavevector component may be complex, but does
not specify the individual components. The complex dielectric function is defined as

(8.22)

For a nonmagnetic material, the complex refractive index is related to the com-
plex dielectric function by . The imaginary part k of the complex refractive
index is called the extinction coefficient. By definition, we have

and (8.23)

The refractive index n and the extinction coefficient k are also called optical constants,9

although none of them are constant over a large wavelength region for real materials. The
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dielectric function is also called relative permittivity, with respect to the permittivity of
vacuum . One can consider the term in Eq. (8.22) as the imaginary part of the per-
mittivity. Some texts used for the dielectric function and for the
complex refractive index. In doing so, Eq. (8.9) must be revised to . In
either convention, e� and smust be nonnegative for a passive medium. Equation (8.21) can
be rewritten as

(8.24)

For simplicity, we will remove the tilde and simply use n for the complex refractive index,
where it can be clearly understood from the context.

By substituting ik for and �iv for , we can rewrite Maxwell’s curl equations as

(8.25)

and (8.26)

Similar to the definition of the complex dielectric function, one may choose to define a
complex conductivity that satisfies Ohm’s law at high frequencies, , where 

(8.27)

because we have assumed that s is the real part of . Therefore,

and (8.28)

Equation (8.26) can be recast in terms of the complex conductivity as

(8.29)

In the subsequent discussion, we will omit the tilde above , when the context is sufficiently
clear. The complex conductivity and the complex dielectric function are related to each
other. For a linear, isotropic, and homogeneous nonmagnetic material, only two frequency-
dependent functions are needed to fully characterize the electromagnetic response. The
function pairs often found in the literature are , ( ), , and . The prin-
ciple of causality, which states that the effect cannot precede the cause, or no output before
an input, imposes additional restrictions on the frequency dependence of the optical prop-
erties so that the real and imaginary parts are not completely independent, but related to
each other. In general, the relative permeability, which is complex and frequency depen-
dent, can be expressed as

(8.30)

The complex refractive index for magnetic materials should be defined as follows:

(8.31)

The amplitude of the complex wavevector is , the same as Eq. (8.24). One can
verify that Eq. (8.9) is a solution of the wave equation. The relative permittivity e and per-
meability m will be used to formulate the general equations later in this chapter. In most
sections of this chapter, we deal with nonmagnetic materials, such as metals, dielectrics,
and semiconductors. However, we will devote the discussion of the optical properties of
magnetic materials in Sec. 8.4.6, because of the emerging interest in metamaterials, which
are synthesized materials with magnetic response at the microwave and higher frequencies
(see Problem 8.6, for example).
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8.1.6 Propagating and Evanescent Waves

In an absorbing nonmagnetic medium, the electric and magnetic fields will attenuate expo-
nentially. As an example, consider a wave that propagates in the positive x direction, with
its electric field polarized in the y direction. Then,

(8.32)

where and are the real and imaginary parts of the wavevector,
respectively; that is, . Equation (8.32) suggests that the amplitude of the
electric field will decay exponentially according to . The magnetic field can be
obtained from Eq. (8.25) as

(8.33)

By substituting Eq. (8.32) and Eq. (8.33) into Eq. (8.18b), we obtain the time-averaged
energy flux in the x direction as

(8.34)

where is called the absorption coefficient. The inverse of al is called the radi-
ation penetration depth (or photon mean free path) given by

(8.35)

It is the distance through which the radiation power is attenuated by a factor of 1/e (<37%).
(See Problem 8.5 for some typical values of the penetration depth in various materials at
different wavelengths.)

When k is complex, the plane normal to k� is the constant-phase plane and the plane
normal to k� is the constant-amplitude plane because

(8.36)

When , the wave is said to be homogeneous; otherwise, the constant-phase
planes will not be parallel to the constant-amplitude planes, and the wave is said to be
inhomogeneous. An example of a homogeneous wave is given in Eq. (8.32). Next, we will
discuss an example of an inhomogeneous wave. Consider a wave, defined in the z 0
half plane of vacuum, with a wavevector . The electric field is
linearly polarized in the y direction; thus, . It can be shown that

hence, k is indeed a valid wavevector of vacuum. The electric field can
be written as

(8.37)

Here, , and . Clearly, the wave has a constant phase for any
constant-x plane and a constant amplitude for any constant-z plane. Furthermore, the ampli-
tude decays exponentially toward positive z direction and becomes negligible, when ,
as shown schematically in Fig. 8.3. Such a wave is called an evanescent wave, which exists
in waveguides and is important for near-field optics and nanoscale radiation heat transfer.
It can be shown that the time-averaged Poynting vector is parallel to the x direction so that
no energy is transported toward the z direction (see Problem 8.7).
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8.2 BLACKBODY RADIATION: THE PHOTON GAS

8.2.1 Planck’s Law

Consider an enclosure of volume V, whose walls are at a uniform temperature T, as shown
in Fig. 8.4a. The enclosure may contain a medium (such as a molecular gas), which may be
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FIGURE 8.3 Schematic of an evanescent wave.

FIGURE 8.4 An isothermal enclosure (blackbody cavity): (a) without an opening and
(b) with a small opening on the wall that has little effect on the equilibrium distribution.

evacuated (vacuum). Inside the enclosure, there exist electromagnetic fields, which may be
viewed either as many transverse waves at different frequencies or as a large number of
quanta with different energies. The particle theory treats radiation as a collection of pho-
tons. The energy and the momentum of each photon are related to the frequency and the
speed of light, by and , respectively. We are interested in finding the equi-
librium distribution of photons with respect to photon energy or frequency or momentum.

p � hn/ce � hn



Photons obey Bose-Einstein statistics, without requiring the total number be conserved
because the number of photons depends on temperature; therefore,

(8.38)

The quantum states in the phase space, consisting of a volume V and a spherical shell in the
momentum space (from to ), are given by , where the factor
2 accounts for the two polarization states of electromagnetic waves. Thus, we can write

(8.39)

Notice that c is the speed of light in the medium and the density of states is .
The number of photons per unit volume per unit frequency interval is therefore

(8.40)

In essence, the number of photons is the number of quantum states that are occupied.
Therefore, the photon concentration (number density) is often referred to as the occupation
number in quantum statistics. Since each photon has an energy , the spectral energy den-
sity (energy per unit volume per unit frequency interval) can be written as

(8.41)

For an area element inside the enclosure, the radiant energy flux is related to the energy
density and the speed of light by

(8.42)

If a blackbody is placed inside the enclosure, it will absorb all incoming radiant energy that
reaches its surface; at thermal equilibrium, it must emit the same amount of energy. After
substituting Eq. (8.41) into Eq. (8.42), we obtain the spectral emissive power of a black-
body as

(8.43)

Substituting , , and into the above expression, we
obtain the blackbody distribution function in terms of wavelength:

(8.44)

which is called Planck’s law or Planck’s distribution (of blackbody radiation). In Eq. (8.44),
C1 and C2, called the first and second radiation constants, are used for convenience. It
should be noted that the blackbody intensity is , as in Eq. (2.48), and
isotropic inside the whole cavity. Furthermore, when there is a small opening, the emitted
radiation is diffuse and obeys the blackbody distribution, as shown in Fig. 8.4b. The
requirement is that the opening should be sufficiently small compared with the size of the
enclosure, but large enough compared to the wavelengths of interest. The concept of black-
body cavity was made clear by Wien in his 1911 Nobel lecture, as seen from the excerpt
below (http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html):
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. . . there must exist, in a cavity surrounded by bodies of equal temperature, a radiation energy
that is independent of the nature of the bodies. If in the walls surrounding this cavity a small
aperture is made through which radiation issues, we obtain a radiation which is independent of
the nature of the emitting body, and is wholly determined by the temperature. The same radia-
tion would also be emitted by a body which does not reflect any rays and which is therefore
designated as completely black, and this radiation is called the radiation of a black body or
black-body radiation.

Equation (8.43) or Eq. (8.44) can be integrated over the whole spectrum to obtain the
Stefan-Boltzmann law, , in vacuum. In Fig. 8.5, has been plotted as aeb,l/sSBT 5eb � sSBT 4
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FIGURE 8.5 Planck’s law for blackbody emissive power.
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approaches zero at extremely short or long wavelengths. If , the right-hand side
of Eq. (8.44) can be approximated by .  This is called Wien’s formula, which
gives approximately correct result, even beyond the maximum emissive power, as can be
seen from Fig. 8.5. At very long wavelengths, Wien’s formula underpredicts the emissive
power and asymptotically approaches to , suggesting that the emissive power is inde-
pendent of temperature. Note that the right-hand side of Eq. (8.44) approaches 
if , since . This is called the Rayleigh-Jeans formula,
which is applicable at very long wavelengths, as shown in Fig. 8.5. The significance of the
Rayleigh-Jeans formula is that it correctly predicts the temperature dependence of the
blackbody spectrum, at very long wavelengths, where Wien’s formula fails. The failure of
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the Rayleigh-Jeans formula at short wavelengths is called the ultraviolet catastrophe. The
significance of Planck’s formula is more than a correct unified mathematical formulation.
It was derived based on the hypothesis of energy quanta that do not exist in classical
Newtonian mechanics and Maxwell’s electrodynamics. It should be noted that the preced-
ing derivation is based on statistical thermodynamics, presented in Chap. 3, rather than
Planck’s original semi-classical oscillator model.

Example 8-2. Find the wavelength lmp at which Planck’s distribution reaches a maximum. What
is the ratio of the energy emitted at to that at 

Solution. By setting the derivative of Eq. (8.44) equal to zero, i.e., , we have
x 
 5e�x � 5 � 0, where x � hc/(kBlT ). This equation can be solved numerically to yield

(8.45)

This is Wein’s displacement law. The location of lmpT is also marked on Fig. 8.5. To find out
the ratio of the energy emitted at to that at , we can numerically evaluate 

. The numerical result is approximately 1:3 and independent of 
temperature. For a medium of refractive index n, the speed of light c should be replaced by c0 /n in
Eq. (8.43). In the previous discussion, we have assumed a nondispersive medium with ,
which is true for vacuum only. Corrections are rarely needed if the medium is a gas, but would be
necessary for radiation inside solids or liquids. Furthermore, in a dispersive medium, the group
velocity needs to be considered in deriving the density of states in Eq. (8.40) and the energy
flux in Eq. (8.42); see Prasher (Appl. Phys. Lett., 86, 071914, 2005).

Example 8-3. Assuming the sun to be a blackbody at 5800 K, calculate the emitted power at the
following wavelength intervals: l� 0.3 µm, 0.3 �m � l� 0.4 µm, 0.4 µm � l� 0.7 µm, 0.7 µm
� l � 3 µm, and l � 3 µm. Neglect the absorption by the atmosphere. What is the radiant power
arriving at the earth’s surface from the sun?

Solution. The total emissive power is . We can
obtain the emitted power in each spectral region by integrating Eq. (8.44), as listed in the following
table. Note that represents the fraction of radiation falling between l1 and . 

The total power emitted by the sun equals the emissive power multiplied by the surface area of the
sun. The fraction of the power that reaches the earth equals the solid angle of the earth divided by 4p.
Note that the radius of the sun , the radius of the earth ,
and the earth-sun distance . Therefore, the total power that will reach the
earth’s surface, if the absorption by the atmosphere is neglected, is

The average irradiation on the earth is: This value is very close to the
total solar irradiance (TSI), measured outside the earth’s atmosphere.

Because of the broad spectral region of electromagnetic waves, alternative units are
often used, such as wavelength l (in vacuum), wavenumber � 1/l, frequency n � c0/l,
angular frequency , and photon energy E � hn. Generally speaking, optical radi-
ation covers the spectral region of ultraviolet (UV), visible (VIS), near-infrared (NIR),

v � 2pn
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.
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mid-infrared (MIR), and far-infrared (FIR). Table 8.1 outlines the subdivisions of the spec-
tral region in different units from ultraviolet (UV) to microwave (MW).

8.2.2 Radiation Thermometry

The developments of the absolute temperature scale and radiation thermometry are among the
most important applications of blackbody radiation. The Stefan-Boltzmann law 
defines an absolute thermodynamic temperature, which is consistent with the one defined
by the ideal-gas law and the Carnot cycle. While radiation thermometry can serve as a
primary standard, most practical radiation thermometers are not absolute instruments
because of other considerations such as fast response, easy operation, and low cost. High-
temperature furnaces are commonly used as calibration standards. The cavity is a hollow
cylinder, made of graphite for example, with a conical ending and a small aperture. The
most accurate calibration source is the fixed-point heat pipe blackbody, for which a pure
metal is melted outside the graphite cylinder to maintain a constant temperature in a two-
phase state. The freezing temperatures are then used to define the temperature scales
(1234.93 K for Ag, 1337.33 for Au, and 1357.77 K for Cu).

To measure the absolute temperature of a thermally radiative body, two blackbody cav-
ities at different temperatures would be needed: one serves as the emitter (blackbody source)
and the other as the receiver (radiometer). Quinn and Martin used a blackbody source and a
cryogenic radiometer to directly determine the thermodynamic temperatures and measure
the Stefan-Boltzmann constant.10 The experimentally obtained Stefan-Boltzmann constant
was ( ) . The difference is 0.13% of the theoretical
value ( ) , based on Planck’s constant, Boltzmann’s
constant, and the speed of light. Since the early 1990s, the National Institute of Standards
and Technology (NIST) has developed a high-accuracy cryogenic radiometer (HACR)
facility to serve as the primary standard for optical radiation measurements. A schematic of
the original HACR receiver is shown in Fig. 8.6. The receiver is mounted at the bottom of
a liquid-helium cryostat in an evacuated chamber, and the optical access is through a
Brewster window below the cavity. The HACR facility has gone through some major
upgrades in recent years. The receiver cavity is made of copper with a high thermal con-
ductivity and low specific heat at cryogenic temperatures. The inner wall of the cavity is
coated with a specular black paint to absorb the incident radiation with an effective absorp-
tance greater than 99.998%. The electrical-substitution technique links the radiant power to
the electric power to achieve an overall uncertainty within 0.02% for optical power measure-
ments. Detailed descriptions can be found from Pearson and Zhang and references therein.11

The cosmic microwave background radiation, measured with cryogenic bolometers, can be

W/(m2 # K4)� 10�85.67040 � 0.00004
W/(m2 # K4)� 10�85.66967 � 0.00076

eb � sSBT 4
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TABLE 8.1 Spectral Regions Expressed in Different Units

UV VIS NIR MIR FIR MW
from–to up to up to up to up to up to

Wavelength, l (�m)* 0.01–0.38 0.76 2.5 25 103 105

Wavenumber, (cm�1) 106–(2.6 � 104) 1.3 � 104 4 � 103 400 10 0.1
Frequency, (THz) (3 � 104)–790 395 120 12 0.3 3 � 10�3

Angular frequency, v (2 � 105)–(5 � 103) 2.5 � 103 750 75 1.9 0.02
(rad/s)

Photon energy, E (eV)† 124–3.3 1.63 0.5 0.05 1.2 � 10�3 1.2 � 10�5

*The wavelength will be reduced in a medium whose refractive index n is not unity.
†The conversion from the vacuum wavelength l in �m to the photon energy E in eV is E � 1.240/l.

n

n



fitted to the blackbody distribution at 2.7 K, which is the temperature of the universe at
the present time. The discovery of cosmic radiation background in 1964 and the subse-
quent measurements and theoretical studies have been recognized by the Nobel Prizes in
Physics to Arno Penzias and Robert Wilson in 1978 and to John Mather and George
Smoot in 2006.

Most radiation thermometers are based on spectral measurements rather than on the
measurement of the total irradiance from the target. When a radiation thermometer is
used to measure the temperature of a real surface, the unknown emissivity of the surface
and the influence of the surrounding radiation are the major issues that affect the mea-
surement. Various methods have been developed to deal with these problems, including
the creation of a blackbody cavity on the surface, the two-color method, and the use of a
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FIGURE 8.6 Schematic of the receiver cavity of an absolute cryo-
genic radiometer, where GRT stands for germanium resistance ther-
mometer, from Pearson and Zhang.11



controlled reference source.12 The development of optical fibers has allowed radiometric
temperature measurements for surface locations that are otherwise inaccessible by imag-
ing radiometers.

The measurement equation of a spectral radiation thermometer can be approximated as
follows:

(8.46)

where Vd is the detector output signal and CI is an instrument constant that is independent
of the target material and temperature. The term is called the exitent spectral radi-
ance, which includes the radiation emitted by the target and the surroundings, as well as
that reflected by the target. The radiance temperature (also called the brightness tem-
perature) is defined according to

(8.47)

where is the blackbody intensity at the wavelength l and temperature . If the
surrounding emission and absorption can be neglected, the exitent spectral radiance is due
only to the emission; therefore,

(8.48)

where is the directional-spectral emissivity, and is the intensity emitted by the
target. By combining Eq. (8.47) and Eq. (8.48) and applying Wien’s formula, the surface
temperature is related to the radiance temperature by

(8.49)

The uncertainty in the measured temperature due to an uncertainty in the emissivity is

(8.50)

The effect of the emissivity uncertainty on the temperature accuracy decreases as l decreases.
However, the wavelength at which is a maximum is given by Wien’s displacement
law. In practice, the choice of the operating wavelength should also be based on the mate-
rial’s properties and the surrounding radiation, and requires a detailed analysis of different
effects. If the surrounding radiation is not negligible, is the sum of the emitted and
reflected spectral radiances, and may be affected by participating medium emission and
absorption.

Example 8-4. Rapid thermal processing is a semiconductor single-wafer manufacturing tech-
nique. Lightpipe radiation thermometer, at � 0.95 �m, is used to measure the wafer temperature.
The emissivity of a plain silicon wafer is approximately 0.7 at this wavelength. Neglect the reflected
radiation from the wafer. If the wafer is at a temperature of 1200 K, what is the radiance tempera-
ture? If the temperature needs to be determined within an uncertainty of 1 K, how much tolerance
on the emissivity error is acceptable?

Solution. From Eq. (8.49), < 1167 K, which differs from the actual temperature by approxi-
mately 33 K. One can also solve Eq. (8.47) and Eq. (8.48), using Planck’s law, and the result is
essentially the same. Based on Eq. (8.50), to obtain a temperature within an uncertainty of 1 K, the
emissivity must be determined within an uncertainty of � 0.0074. Zhou et al. (Int. J. Heat Mass

Transfer, 45, 1945, 2002) developed a model to predict the effective emissivity of silicon wafers in
rapid thermal processing furnaces and showed that the temperature measurement uncertainty can be
significantly reduced by using a reflective cavity.
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8.2.3 Entropy and Radiation Pressure

Like other particles, the photon gas also has the property of entropy and can be related to
other properties in equilibrium states. Express the energy density in an enclosure of volume
V, at thermodynamic equilibrium, with a temperature T as . It can be
seen that the specific heat at constant volume is . The entropy can
therefore be obtained as

(8.51a)

or (8.51b)

Note that is satisfied. The Helmholtz free energy 
Thus, the radiation pressure is

(8.52)

The force by the radiation pressure, albeit small, has some important applications in trap-
ping and manipulating atomic and molecular particles. This technique is called optical traps
or optical tweezers; see Lang and Block (Am. J. Phys., 71, 201, 2003) for a bibliographical
review.

If each photon mode (frequency) is individually considered, the spectral entropy den-
sity for unpolarized radiation can be expressed as follows:

(8.53)

where 4. Note that , which is
consistent with Eq. (8.41). Similar to the energy flux (emissive power) and intensity, the radi-
ation entropy flux can be obtained by multiplying a factor to Eq. (8.51b) and Eq. (8.53),
and the radiation entropy intensity can be obtained by dividing the flux by p, because of the
isotropic nature of blackbody radiation. Clearly, electromagnetic radiation carries both
energy and entropy.

Example 8-5. Consider the radiation heat transfer between two parallel plates at T1 and T2, respec-
tively. Assume each plate has an area of A and both plates are blackbodies. The separation distance
is much smaller than but much greater than the wavelength of thermal radiation. 
(a) How much entropy is generated at each plate? Evaluate the ratio of entropy generation assum-
ing that 
(b) If a thermophotovoltaic receiver is mounted on the lower-temperature side to convert thermal
radiative energy to electricity (work), what is its maximum achievable efficiency?

Solution. (a) The net energy flow from plate 1 to 2 is . The entropy of plate
1 will decrease at the rate of , and the entropy of plate 2 will increase at the rate of

. On the other hand, the net entropy flow from plate 1 to 2 can be calculated as

. Therefore, , 

, and the combined total entropy generation is equal to ,
as expected. It can be shown that the entropy generation at each plate is always greater than zero if

, or equal to zero if . When , the entropy generation by plate 1 is about one-
quarter and that by plate 2 is about three-quarters of the total entropy generated.
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(b) The available energy or exergy of thermal radiation is defined as the maximum work that can be
produced by a system with respect to a large reservoir. In the present example, we may assume that
the reservoir is at the same temperature as . Suppose an amount of heat is taken from the high-
temperature plate; we would like to find out the maximum work that can possibly be produced. Let
us consider a reversible heat engine at T2. The radiative energy leaving surface 1 can still be described
by , and the entropy leaving surface 1 is . Therefore, the
entropy generation in plate 1 cannot be eliminated. In other words, it is impossible to achieve the
Carnot efficiency of . The maximum work can be obtained when the irreversibility
at the lower-temperature plate is negligible and the heat engine is also reversible. It can easily be
shown that the maximum work , and the optimal efficiency is given by

(8.54)

where . When y � 2, we obtain an optimal efficiency hopt � 37.8% , which is less
than the Carnot efficiency of 50%, because of the unrecoverable irreversibility at plate 1. A com-
prehensive discussion can be found from the review of Landsberg and Tonge.13

The next question is whether temperature can be defined for laser radiation. The answer
is yes, and the temperature for high-intensity lasers can be very high. An intuitive guess is
to define the temperature, based on the intensity of the laser or the monochromatic radi-
ation, by setting . The definitions of entropy and thermodynamic temperature
for optical radiation are very important for analyzing optical energy conversion systems,
such as solar cells, thermophotovoltaic generators, luminescence devices, and laser cooling
apparatus.13,14 Assume that the monochromatic radiation is from a thermodynamic equilib-
rium state, such as a resonance cavity that allows only a single mode to exist. The spectral
entropy intensity of unpolarized radiation can be written as follows:13

(8.55)

Thermodynamically, the monochromatic radiation temperature can be defined by

(8.56)

This is indeed Planck’s distribution of intensity at the same temperature. The expressions
can be modified for polarized radiation. When the energy intensity is very high, Eq. (8.56)
approaches , which is in the Rayleigh-Jeans limit. The radiation tem-
perature will be proportional to the intensity of the monochromatic radiation and can
exceed 1010 K, with a 1-mW He-Ne laser at 632.8-nm wavelength.15 Therefore, for lasers
with a moderate intensity, tends to be so high that the entropy is nearly zero; hence, the
interaction of a laser beam with a material can be considered as work interaction. If a col-
limated beam is randomly scattered by a rough surface, the scattered radiation will have a
much lower intensity because of the increase in the solid angle. The process is accompa-
nied with an entropy increase and is thus irreversible. It is not possible to increase the inten-
sity of the scattered light, back to their original intensity, without leaving any net effect on
the environment of the photon system. On the other hand, if a nearly collimated light is split
into two beams with a beamsplitter, the transmitted and reflected beams can interfere with
each other to reconstruct the original beam. This process is reversible because the two
beams are correlated. The correlated beams have lower entropy than those with the same
intensity at thermodynamic equilibrium. The concept of temperature is applicable only if
the maximum-entropy state has been reached.15 While the definition of the monochromatic
radiation temperature is similar to that of the radiance temperature, the two concepts are
quite different. In the definition of radiance temperature, the quality (entropy) does not
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enter into play. On the other hand, the definition of the monochromatic temperature for
incoherent radiation is for a state that is equilibrium in a certain wavelength and angular
ranges.

Consider a gray-diffuse body, for which the emissive power is proportional to the black-
body emissive power, at any frequency and angle of emission. The monochromatic tem-
perature calculated from Eq. (8.56), however, is frequency dependent. This is because the
emitted radiation, as a whole, cannot be considered as a blackbody at any temperature.
Thermal radiation of this type has been called dilute blackbody radiation.13 This simple
example shows that photons at any given frequency can be considered as in a thermody-
namic equilibrium but not necessarily in equilibrium with photons at other frequencies.
When radiation has two linear polarizations with a different intensity, the monochromatic
temperature will be different, even for the two polarizations. In general, it is a function of
frequency, direction, and polarization. The requirement is that each subsystem be in a ther-
modynamic equilibrium, even though it is not in equilibrium with other subsystems at the
same spatial location. Photons at different frequencies, with different polarization states, or
propagating toward different directions, can coexist in their own equilibrium state without
any interaction with each other. The concept may be called partial equilibrium, as in the
case when the two parts of a cylinder were separated by a moveable adiabatic wall. The
mechanical equilibrium would be established to maintain the same pressure on each side,
but the temperatures may be different from each other because thermal equilibrium is
reached only inside each portion but not between them. Another example is in ultrafast
laser heating of metals, as discussed in Chap. 7, where the electron and phonon systems can
be treated as in separate equilibrium states but not in equilibrium with each other.

The concept of entropy intensity has recently been applied by Caldas and Semiao to study
the entropy generation in an absorbing, emitting, and scattering medium, based on the equa-
tion of radiative transfer (ERT) introduced in Sec. 2.4.3.16 The key is that the change in entropy
in an elemental path length equals the change in intensity divided by the radiation temperature.
The entropy change at steady state can be obtained from Eq. (2.53) in Chap. 2 as follows:

(8.57)

Like Il, the entropy intensity is a function of wavelength, location, and direction. Note
that , where Tg is the local temperature. For an anisotropic radiation field,

would be different for different directions. For nonblackbody radiation, will be
a function of wavelength. The term , however, is not the same as . Integration of
Eq. (8.57) over the solid angle of 4p at all wavelengths in a volume element yields the
entropy that is transferred out of the control volume. Furthermore, the entropy change in
the control volume is equal to the total energy absorbed divided by . The energy rate
received per unit volume can be expressed as

(8.58)

Because the entropy change is the sum of the net entropy transferred into the system and the
entropy generation by irreversibility, we can express the volumetric entropy generation rate as

(8.59)
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For an isotropic field, is independent of the direction, and scattering does not contribute
to the entropy generation. In this case, the entropy generation becomes 

(8.60)

The entropy generation is always greater than zero, because the intensity is an increasing func-
tion of temperature, unless the medium is at thermal equilibrium. When a surface is involved
in radiative heat transfer, the entropy generation rate per unit area can be expressed as

(8.61)

where is the wall temperature, subscripts “in” and “out” signify the energy or entropy
intensity to and from the surface, respectively. If the surface is not a blackbody, the outgo-
ing intensity includes both the emitted and reflected intensities. An alternative approach is
to integrate the intensity over the whole sphere with a solid angle of . In Eq. (8.61), the
entropy intensity is related to the energy intensity by Eq. (8.55), which is recast in terms of
wavelength as follows:

(8.62)

The use of Eq. (8.62) may be disputed when multiple reflections occur. The intensity of the
emitted radiation is less than that of the blackbody and is reduced by each reflection. The
question still remains as whether the blackbody intensity should be used to calculate the
entropy or the actual intensity after each reflection or the combined intensity at any given
location. An example is a system of two large parallel plates, separated by vacuum. One of
the plates is at a temperature T1 and is diffuse-gray with an emissivity of 0.5. The other plate
is insulated and is a perfect reflector (i.e., zero emissivity). It is clear that a thermal equi-
librium will be established in the cavity after a long time. Again, the separation distance is
much larger than the thermal radiation wavelengths. The radiation leaving surface 1
includes the emitted rays, as well as the first-order and higher-order reflected rays. An
attempt to define the entropy of the emitted ray and each reflected ray will result in a total
entropy intensity greater than the entropy intensity calculated based on the blackbody
intensity . Therefore, to apply the previous analysis in a consistent way and to
obtain meaningful results, we must make the following hypotheses:

• The intensity at any given location is additive regardless of where it originates from, as
long as it falls within the same solid angle and wavelength intervals. While this sounds
obvious, it is untrue when interference effects become important. The resulting intensity
is called the combined intensity.

• The monochromatic radiation temperature , defined in Eq. (8.56), is a function of
the combined intensity and is in general dependent on the direction and wavelength. The
effect of polarization is neglected to simplify the problem. Equation (8.56) must not
be applied to each of the reflected or scattered rays. The physical significance is that all
the photons, with the same wavevector and frequency, can be considered as a subsystem
that is at thermodynamic equilibrium with the temperature .

• The entropy intensity is defined based on the combined intensity, according to Eq. (8.62).
While entropy must be additive, the entropy of all individual rays must be calculated
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based on the monochromatic temperature of the combined intensity. Because the number
of photons, intensity, and entropy are additive, the fraction of the entropy of each ray is
the same as the ratio of the intensity of that ray to the combined intensity.

With the theories presented in this section, one should be able to perform a second law
thermodynamic analysis for a given system, involving radiative transfer of energy. Zhang
and Basu investigated entropy flow and generation considering incoherent multiple reflec-
tions.17 There exist different approximations in analyzing the entropy of radiation. For
example, the method of dilute blackbody radiation uses a dilution factor and defines an
effective temperature for each wavelength.13 When the process is very complicated, it
appears that such an effective temperature cannot be easily defined and this definition can-
not be applied to multiple reflections. Entropy generation is usually accompanied by the
generation of heat, such as heating by friction, electrical resistor, chemical reaction, or
absorption of solar radiation. On the other hand, it appears that entropy generation can
occur in radiation without the generation of heat, such as by scattering. The definition of
inelastic scattering is based on the conservation of energy (wavelength) and momentum,
which does not impose any constraints on the reversibility. Further research is much
needed in order to better understand the nature of entropy of radiation and determine the
ultimate efficiency of photovoltaic cells and other radiative processes, including laser
cooling and trapping. Another area of possible application of radiation entropy is in
nanoscale heat conduction using the EPRT, as discussed in Chap. 7. The entropy concept
may be extended to the phonon system by defining radiation entropy and entropy inten-
sity of phonons.

8.2.4 Limitations of Planck’s Law

The concept that a blackbody surface absorbs all radiant energy that is incident upon it is
purely from the geometric-optics point of view, in which light travels in a straight line and
cannot interact with an object that does not intercept the light ray. Another example of the
geometric-optics viewpoint is that the transmittance of an iris (open aperture) should be 1,
i.e., all the radiation incident on the opening will go through. However, for an aperture
whose diameter is comparable to the wavelength of the incident radiation, diffraction may
become important and, as a result, the transmittance can be less or even greater than 1. Due
to the diffraction effect, a particle that is sufficiently small compared to the wavelength will
interact with the radiation field, according to the scattering and absorption cross sections,
which can be greater than the projected surface area. In some cases, it is possible for the
object to absorb more energy than the product of the radiant flux and the projection area.
The absorptance can be greater than 1 and thus exceeds the limit set by a blackbody. When
such an object is placed in an isothermal enclosure, the emitted energy will be greater than
that from a blackbody having the same dimensions. This anomaly has been discussed in
detail by Bohren and Huffman.7

The energy density near the surface within a distance less than the wavelength can be
much greater than that given by Eq. (8.41) and increases as the distance is further reduced.
When two objects are placed at a distance much smaller than the characteristic wavelength
of thermal radiation, i.e., in the near field, photon tunneling can occur and cause significant
enhancement of the energy transfer. In recent years, there have been numerous studies of
light transmission through small apertures, radiation heat transfer at nanometer distances,
and light emission from nanostructures.18 This is still an open field with many new devel-
opments as well as controversies. We will study these phenomena and the underlying
physics in the following two chapters. The entropy concept and the second law limitation
have not been applied to the study of near-field energy transfer.
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8.3 RADIATIVE PROPERTIES
OF SEMI-INFINITE MEDIA

8.3.1 Reflection and Refraction of a Plane Wave

Consider radiation incident from one medium to another at the interface or the boundary.
The boundary that separates the media is assumed to be a smooth plane and extends to
infinity. Each medium is homogeneous and isotropic; so, there is no scattering within the
medium. Therefore, the electric response can be characterized by the relative permittivity
or dielectric function , and the magnetic response can be characterized by the relative per-
meability m. For nonmagnetic materials, the refractive index is related to the dielectric
function by . Keep in mind that these quantities are, in general, complex and fre-
quency dependent. The real and imaginary parts of the refractive index are often called the
optical constants. In this section, we present the general formulation for both magnetic and
nonmagnetic materials. For certain crystalline and amorphous solids, like quartz and glass,
the refractive index is real in a wide spectral region and is the only parameter needed to
fully characterize the optical response of the material. In such a case, the expression can be
largely simplified and the results can be easily comprehended. The reduced results will also
be presented because of their importance to numerous engineering problems. 

The incident radiation is a monochromatic plane wave with an angular frequency v. As
shown in Fig. 8.7, the wavevector of the incident wave is , and the surfacek


1 � (k1x,0,k1z)

n � !e
e
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FIGURE 8.7 Illustration of reflection and transmission at an interface: (a) TE wave or s
polarization. (b) TM wave or p polarization.

normal defines the plane of incidence, which is the x-z plane. The wavevectors of the reflected
and transmitted waves must lie in the same plane. The angle of incidence u1 is the angle
between the incident wavevector and the z direction, i.e., and ,
where . It is common to study the reflection and the refraction for
linearly polarized waves, with either the electric or magnetic field being parallel to the y-axis,
because other polarizations can be decomposed into the two polarization components. 

When the electric field is in the y direction, as shown in Fig. 8.7a, the wave is called a
transverse-electric (TE) wave or is said to be perpendicularly (s) polarized. The incident elec-
tric field can be expressed as follows by omitting the time-harmonic term of hereafter:

(8.63)Ei � y^Ei e
ik1z z
ik1x x

e�ivt

k2
1 � k2

1x 
 k2
1z � m1e1v

2/c2
0

cos u1 � k1z /k1sin u1 � k1x /k1

(a) TE wave (b) TM wave



The boundary conditions state that the tangential components of both E and H must be con-
tinuous at the interface. This implies that the x component of the wavevector must be the
same for the incident, reflected, and transmitted waves, i.e., . Because the
angle of reflection must be the same as the angle of incidence (specular reflection), we have

. For the transmitted or refracted wave, we have and

(8.64)

which is called Snell’s law. It can be easily visualized by observing the bended image of
a chopstick in a bowl of water. Note that .
Generally speaking, the wavevector components and the refractive indices may be complex.
Complex angles can be defined so that Eq. (8.64) is always valid. Near the interface, the
nonzero components of the electric and magnetic fields are

(8.65)

(8.66)

and

(8.67)

where Ei, Er, and Et are, respectively, the amplitudes of the incident, reflected, and trans-
mitted electric fields at the interface. It is further assumed that is real so that the ampli-
tude of the field is independent of x. The Fresnel reflection and transmission coefficients
for a TE wave are defined as and respectively. Boundary condi-
tions require that Ey and Hx be continuous at z � 0. From Eq. (8.65) and Eq. (8.66), we
obtain and ; thus,

(8.68a)

and (8.68b)

which are generally applicable, as long as each medium is homogeneous and isotropic.6 For
nonmagnetic materials, the previous equations can be written as follows:

(8.69a)
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The directional-hemispherical spectral reflectivity, or simply reflectivity, is given by
the ratio of the reflected energy flux to the incident energy flux, and the directional-
spectral absorptivity is the ratio of the transmitted energy flux to the incident energy
flux, since all the photons transmitted through the interface will be absorbed inside the sec-
ond medium. We use terms ending with “-ivity” only for a perfect interface and those with
“-tance” for surfaces with roughness and coatings. The energy flux is related to the time-
averaged Poynting vector, defined in Eq. (8.18b). From Eq. (8.65) to Eq. (8.67), the x and z
components of the Poynting vector at the interface ( ) in medium 1 are

(8.70a)

and (8.70b)

It can be seen that, in general, the reflected wave and the incident wave are coupled and the
energy flow cannot be separated by a reflected flux and an incident flux. Under the assump-
tion that medium 1 is lossless (nonabsorbing or nondissipative) and , we can write

(8.71)

where and (8.72)

If medium 1 is lossy, there will be additional terms associated with and . In this case,
the power flow normal to the interface cannot be separated as forward and backward terms
because of the cross-coupling terms. Therefore, the lossless condition in medium 1 is required
in order to properly define the energy reflectivity; see Salzberg (Am. J. Phys., 16, 444, 1948)
and Zhang (J. Heat Transfer, 119, 645, 1997). This is usually not a problem when radiation
is incident from air or a dielectric prism onto a medium. The power reflectivity can be defined
based on the z components of the reflected and incident Poynting vectors; therefore,

(8.73)

The Poynting vector at the interface in medium 2 can be written as 

(8.74)

which is not parallel to unless . Recall that the plane of constant phase is
perpendicular to . If medium 2 is dissipative, is parallel to the z-axis and the
amplitude will vary along the z direction. The wave becomes inhomogeneous in medium 2,
except when (normal incidence). The definition of the transmitted energy flux at the
interface is based on the projected Poynting vector in the z direction. Hence, the absorptiv-
ity is the ratio of the z components of the transmitted and incident Poynting vectors, viz.,

(8.75)

Note that , and since medium 1 is lossless. It
can be shown that , as required by energy conservation: at

. For nonmagnetic and nearly nondissipative materials, we have

(8.76)arl,s(u1) �
n2 cos u2

n1cos u1
P t12,s P 2

z � 0
kS1zl � kS2zlrrl,s 
 arl,s � 1

Re(k 
1z /m1) � k 

1z /m1Re(k 
2z /m2) � Re(k *

2z /m
*
2)

arl,s(u1) �
Re(k2z /m2)

Re(k1z /m1)
P t12,s P 2

kx � 0

Im(k2)Re(k2)
Im(m2) � 0Re(k2)

kStl �
1

2v m0
 Reak*

xx
^ 
 k *

2z z^

m*
2

b PEt P 2

rrl,s(u1) � ZEr Z2@ZEi Z2 � Zr12,s Z2

E*
i ErEi E

*
r

kSrzl �
k1z

2v m0 m1
PEr P 2kSizl �

k1z

2v m0 m1
PEi P 2

kS1zl � kSizl � kSrzl

k2
x � k2

1

kS1zl �
1
2

 Re c k*
1z

vm0 m
*
1

 (Ei 
 Er)(E
*
i � E*

r ) d

kS1xl �
1
2

 Re c k*
x

v m0 m
*
1

 (Ei 
 Er)(E
*
i 
 E*

r ) d

z S 0

arl

rrl

308 CHAPTER 8



The reflection and transmission coefficients for the transverse-magnetic (TM) wave or
parallel (p) polarization are defined as the ratios of the magnetic fields: and

, respectively. Hence,

(8.77a)

(8.77b)

In the case of nonmagnetic materials, we obtain

(8.78a)

and (8.78b)

At normal incidence, the reflection coefficients in Eq. (8.69a) and Eq. (8.78a) are related by

(8.79)

When both and are real and , the electric field will experience a phase rever-
sal (phase shift of p) upon reflection but the magnetic field will not. On the other hand, if

, it is the magnetic field that will experience a phase reversal. In fact, based on
Maxwell’s equations, the electric and magnetic quantities obey a duality, when , and
can be interchanged with the following substitutions: and . Note that e
and m, as well as the polarization states s and p, should also be interchanged. The Poynting
vector for a TM wave is , which is not parallel to when

. Upon refraction into an absorbing medium, the waves become inhomogeneous
and the Poynting vectors for different polarizations may split into different directions;
see Halevi and Mendoza-Hernandez (J. Opt. Soc. Am., 71, 1238, 1981). Nevertheless, the
constant-amplitude plane is always perpendicular to the z direction because the amplitude
cannot change along the x-y plane. The reflectivity for p polarization is

(8.80)

Hence, the absorptivity becomes

(8.81)

For nonmagnetic and nearly nonabsorbing materials, we have

(8.82)

If the incident wave is unpolarized or circularly polarized, the reflectivity can be obtained
by averaging the values for p- and s-polarized waves, i.e.,
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The reflectivity for radiation incident from air ( ) to a dielectric medium (n2 � 2) and
that from the dielectric to air are shown in Fig. 8.8 for each polarization as well as for the

n1 < 1
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FIGURE 8.8 Reflectivity versus the angle of incidence between air and a dielectric.

unpolarized incident radiation. When , the reflectance will reach 1 at u1 � uc �
sin�1(n2/n1). This angle is called the critical angle, and total internal reflection occurs at
angles of incidence greater than the critical angle. This is the principle commonly used in
optical fibers and waveguides, since light is trapped inside the high-index material and
propagates along the medium. It can be seen that in total internal reflection, while

becomes purely imaginary. The amplitude of the wave is exponentially attenuating in
the positive z direction. This is similar to Eq. (8.37) and is an evanescent wave, as shown
in Fig. 8.3. The time-averaged Poynting vector is zero in the z direction. Hence, no energy
is transmitted across the boundary.

For the TE wave, the reflectivity increases monotonically with the angle of incidence
and reaches 1 at the grazing angle (90�) or at the critical angle when . The reflec-
tivity for the TM wave, on the other hand, goes through a minimum that is equal to zero.
The angle at which � 0 is called the Brewster angle, given by for
nonmagnetic materials. For p polarization, all the incident energy will be transmitted into
medium 2, without reflection at the Brewster angle. This phenomenon has been used to
build polarizers and transmission windows in absolute cryogenic radiometers. The physi-
cal mechanism of reflection can also be understood as the re-emission by the induced elec-
tric dipoles in the medium, based on the Ewald-Oseen extinction theorem. At the Brewster
angle, the electric dipoles induced in the material align in the direction of the reflected
wave, and the refracted wave is perpendicular to the reflected wave (i.e., ).
The reflective power goes to zero because an electric dipole cannot radiate along its own
axis. The situation is changed when magnetic materials are involved, such as a negative
index material. The fields radiated by both the induced electric dipoles and magnetic
dipoles are responsible for the reflection. The Brewster angle can occur for either polariza-
tion when the radiated fields cancel each other. A detailed discussion can be found from the
publication of Fu et al.19 In an absorbing medium, there is a drop in reflectance for p polar-
ization, but the minimum is not zero. Furthermore, there exists a principal angle at which
the phase difference between the two reflection coefficients equals to 90� and the ratio of
the reflectance for the TM and TE waves is minimized.6
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The reflectivity for radiation incident from air ( ) or vacuum, at normal incidence,
becomes

(8.84)

for any polarization. It can be seen that the normal reflectivity will be close to 1, when
either or . The reflectivity is often large for most metals in the infrared
because both and are large, whereas the reflectivity of a conventional superconductor
approaches to 1 when the frequency is lower than that of the superconducting energy gap,
since in this case. On the other hand, when and . This can
occur in a dielectric material at a wavelength in the infrared and for most metals in the
x-ray region.

8.3.2 Emissivity

Real materials have finite thicknesses. The assumption of semi-infinity or opaqueness
requires that the thickness is much greater than the radiation penetration depth. This is usu-
ally not a problem for a metal in the visible or infrared spectral regions. When this is not
the case, we are dealing with a transparent or semitransparent material, like a glass window.
The radiative properties of semitransparent layers and thin films will be studied in the next
chapter. Laser beams or light from a spectrophotometer do not extend to infinity and are
not perfectly collimated. Nevertheless, as long as the diameter of the beam spot is much
greater than the wavelength and the beam divergence is not very large, the directional-spectral
reflectivity and absorptivity, calculated from the previous section, are applicable to
most situations. According to Kirchhoff’s law, the directional-spectral emissivity is equal
to the directional-spectral absorptivity of a material.1,2 This can be shown by placing the
object into an enclosure at the thermal equilibrium. When the material is not at thermal
equilibrium with the surroundings, the emissivity is defined based solely on the sponta-
neous emission and is an intrinsic material property that does not depend on the surround-
ings. On the other hand, the absorptivity is defined based on the net absorbed energy by
treating stimulated or induced emission as negative absorption. Under proper definitions,
Kirchhoff’s law is always valid in terms of the directional-spectral properties for any given
polarization.1 The only assumptions are (a) the material under consideration is at a uniform
temperature, at least within several penetration depths near its surface and (b) the external
field is not strong enough to alter the material’s intrinsic properties, as in a nonlinear inter-
action. We can then compute the directional emissivity for an opaque surface or semi-infinite
media, from the directional-hemispherical reflectivity for incidence from air or vacuum,
using the following relation:

(8.85)

The emissivity is commonly calculated by averaging over the two polarizations. The pre-
ceding equation can be integrated to obtain the hemispherical emissivity 

(8.86)

It can be seen from Fig. 8.8a that, when averaged over the two polarizations, the reflectiv-
ity changes little until the Brewster angle and then increases to 1 when the incidence angle
approaches 90�. The hemispherical emissivity for a nonmetallic surface is about 10%
smaller than the normal emissivity. On the other hand, the hemispherical emissivity for
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metallic surfaces is about 20% greater than the normal emissivity. Diffuse emission is a
good first-order approximation, even though the surface is smooth. Thus, the hemispheri-
cal emissivity may be approximated by the normal emissivity. In most studies, the emis-
sivity is calculated from the indirect method, based on the reflectivity and Kirchhoff’s law,
discussed earlier. Direct calculations can be accomplished by considering the emission
from the material, and the internal absorption and transmission. Another method is based
on the fluctuation-dissipation theorem, in which the emission arises from the thermally
induced fluctuating currents inside the material. The fluctuational electrodynamics is
essential to the study of near-field radiation and will be discussed in detail in Chap. 10. The
total-hemispherical emissivity can be evaluated using Planck’s distribution. Therefore,

(8.87)

The total emissivity depends on the surface temperature and the spectral dependence of the
optical constants. Pure metals usually have a very low emissivity, and the emissivity
increases due to surface oxidation. Spectrally selective materials that appear to be reflective
to the visible light may exhibit a large total emissivity, greater than 0.9, at room temperature;
examples are white paint and paper. An earlier compilation of the radiative properties of
many engineering materials can be found in Touloukian and DeWitt.20 The use of surface
microstructure to modify the emission characteristics will be discussed in the next chapter.

8.3.3 Bidirectional Reflectance

Real surfaces contain irregularities or surface roughnesses that depend on the processing
method. A surface appears to be smooth if the wavelength is much greater than the surface
roughness height. A highly polished surface can have a roughness height on the order of
nanometers. Some surfaces that appear “rough” to human eyes may appear to be quite
“smooth” for far-infrared radiation. The reflection of radiation by rough surfaces is more
complicated. For randomly rough surfaces, there often exist a peak around the direction of
specular reflection, an off-specular lobe, and a diffuse component. When the surface con-
tains periodic structures, such as patterned surfaces or micromachined surfaces, diffraction
effects may become important and several peaks may appear.

The bidirectional reflectance distribution function (BRDF), which is a function of the
angles of incidence and reflection, fully describes the reflection characteristics from a
rough surface at a given wavelength. As illustrated in Fig. 8.9, the BRDF is defined as the
reflected radiance (intensity) divided by the incident irradiance (flux) at the surface, i.e.,

(8.88)

where and denote the directions of incident and reflected beams, respectively,
Ii is the incident irradiance (radiant flux), and dIr is the reflected radiance (intensity). In the
experiment, the detector output signal is proportional to the solid angle . The denomi-
nator of Eq. (8.88) gives the incident radiant power reaching the detector. Hence, the BRDF
can be obtained from the following measurement equation:
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where Pi and Pr are the incident and reflected powers reaching the detector.21 The
directional-hemispherical reflectance can be obtained by integrating the BRDF over the
hemisphere:1,2

(8.90)

An important principle of the BRDF is reciprocity, which states symmetry of the BRDF,
with regard to reflection and incidence angles. In other words, the reflectance for energy
incident from (ui, fi) and reflected to (ur, fr) is equal to that for energy incident from (ur,
fr) and reflected to (ui, fi). Therefore,

(8.91)

For a diffuse or Lambertian surface, the BRDF is independent of and is related to
the directional-hemispherical reflectance as . On the other hand, the BRDF for
an ideal specular, or mirrorlike, reflector can be represented as

(8.92)

where the Dirac delta function is zero everywhere, except at . Furthermore,
the delta functions are normalized such that . 
These examples clearly demonstrate that the BRDF is applicable to any kind of sur-
faces. In the next chapter, we will study the BRDF models based on geometric optics
and physical optics, as well as rigorous solutions of the Maxwell equations. We will
also discuss the effect of surface microstructures on the BRDF and how to characterize
a rough surface.
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FIGURE 8.9 Geometry of the incident and reflected beams in defining the BRDF.



8.4 DIELECTRIC FUNCTION MODELS

Unlike in dilute gases where the molecules are far apart, in solids, the closely packed atoms
form band structures. Absorption in solids usually happens in a much broader frequency
region or band. Free electrons in metals can interact with the incoming electromagnetic waves
or photons, and cause a broadband absorption from the visible (or even ultraviolet) all the way
to the microwave and longer wavelengths. For semiconductors especially with high impurity
(doping) concentrations or at elevated temperatures, both the free electrons and holes con-
tribute to the absorption process. The absorption of a photon makes the electron or the hole
to transit to a higher-energy state within the same band. Therefore, free-carrier absorption is
caused by intraband transitions. In order to conserve momentum, the carriers must also col-
lide with ionized impurities, phonons, other carriers, grain boundaries, interfaces, and so
forth. The collisions act as a damping force on the motion of carriers. The Drude model
describes the oscillatory movement of an electron, driven by a harmonic field, which is sub-
jected to a damping force. The model is simple in form and predicts the dielectric function of
some metals fairly well in a broad spectral region, especially in the mid- and far-infrared.

Absorption by lattice vibrations or bound electrons, which is important for insulators
and lightly doped semiconductors, is due to the existence of electric dipoles formed by the
lattice. A maximum absorption is achieved when the frequency equals the vibrational mode
of the dipole, i.e., the resonance frequency, which is usually in the mid- to far-infrared
region of the spectrum. The contribution of bound electrons is often modeled by the
Lorentz model.

Interband transition is the fundamental absorption process in semiconductors. An elec-
tron can be excited from the valence band to the conduction band by absorbing a photon,
whose energy is greater than the energy gap . Because the absorption by electrons is usu-
ally weak in semiconductors, a strong absorption edge is formed near the bandgap. In this
transition process, both the energy and the momentum must be conserved.

This section discusses the formulation for different contributions to the dielectric function.
It should be noted that the real and imaginary parts of the dielectric function are interrelated
according to the causality, which is discussed first. Because all naturally occurring and most
of the synthesized materials are nonmagnetic at high frequencies, only nonmagnetic materi-
als are considered so that in the following, except in Sec. 8.4.6. 

8.4.1 Kramers-Kronig Dispersion Relations 

The real and imaginary parts of an analytic function are related by the Hilbert transform
relations. Hendrik Kramers and Ralph Kronig were the first to show that the real and imag-
inary parts of the dielectric function are interrelated. These relations are called the Kramers-
Kronig dispersion relations or K-K relations for simplicity. The K-K relations can be
interpreted as the causality in the frequency domain and are very useful in obtaining opti-
cal constants from limited measurements. The principle of causality states that the effect
cannot precede the cause, or no output before input. Some important relations are given
here, and a detailed derivation and proofs can be found from Jackson,5 Born and Wolf,6 and
Bohren and Huffman.7

The real part and the imaginary part of a dielectric function are related by

(8.93a)
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where s0 is the dc conductivity, denotes the principal value of the integral, and is a
dummy frequency variable. These relations can be written in terms of n and k as

(8.94a)

(8.94b)

Equation (8.93) and Eq. (8.94) are the K-K relations, which relate the real part of a causal
function to an integral of its imaginary part over all frequencies, and vice versa. A number
of sum rules can be derived based on the K-K relations and are useful in obtaining or vali-
dating the dielectric function of a given material. The K-K relations can be applied to
reflectance spectroscopy to facilitate the determination of optical constants from the mea-
sured reflectivity of a material in vacuum.9 For radiation incident from vacuum on a mate-
rial at normal incidence, the Fresnel reflection coefficient is

(8.95)

where is the amplitude and f the phase of the reflection coefficient. The directional-
hemispherical spectral reflectivity, expressed in terms of v, is

(8.96)

The amplitude and the phase are related, and it can be shown that

(8.97)

The refractive index and the extinction coefficient can be calculated, respectively, from

(8.98)

and (8.99)

8.4.2 The Drude Model for Free Carriers

The Drude model describes frequency-dependent conductivity of metals and can be
extended to free carriers in semiconductors. In the absence of an electromagnetic field, free
electrons move randomly. When an electromagnetic field is applied, free electrons acquire
a nonzero average velocity, giving rise to an electric current that oscillates at the same fre-
quency as the electromagnetic field. The collisions with the stationary atoms result in a
damping force on the free electrons, which is proportional to their velocity. The equation
of motion for a single free electron is then
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where e is the absolute charge of an electron, is the electron mass, and g denotes the
strength of the damping due to collision, i.e., the scattering rate or the inverse of the relax-
ation time t. Assume the electron motion under a harmonic field is of the form

so that . We can rewrite Eq. (8.100) as

The electric current density is ; therefore, the complex conductivity is 

(8.101)

where is the dc conductivity, as discussed in Chap. 5. Equation (8.101) is
called the Drude free-electron model, which describes the frequency-dependent complex
conductivity of a free-electron system in terms of the dc conductivity and the scattering
rate, in a rather simple form. The electrical conductivity approaches to the dc conductivity
at very low frequencies (or very long wavelengths). The dielectric function is related to the
conductivity by Eq. (8.28); thus,

(8.102)

where , which is on the order of 1, is included to account for contributions, other than the
contribution of the free electrons, that are significant at high frequencies. There exist sev-
eral transitions at the ultraviolet and visible regions for metals, such as interband transi-
tions. Note that when , the real part of the dielectric function of all materials should
approach unity, as can be seen from Eq. (8.93a). In the low-frequency limit when ,

and . Therefore, 

(8.103)

This is the Hagen-Ruben equation and is applicable at very long wavelengths.1 Both the
refractive index and the extinction coefficient will increase with the square root of wave-
length in vacuum. It is interesting to note that the radiation penetration depth 
will also increase with the square root of wavelength. As an example, consider gold at l�
4 �m with . The penetration depth is 13 nm at this wavelength. If the wavelength is
increased to 4 cm, which is well into the microwave region, the penetration depth will
increase to 1.3 �m. Generally speaking, metals are highly reflecting in the infrared wave-
length region. 

The plasma frequency is defined according to . Using the
plasma frequency, we can write Eq. (8.102) in a more compact form as follows:

(8.104)

If , the dielectric function can be approximated as

, when (8.105)vW ge(v) < e
`

�
v2

p

v2a1 � i
g
vb

vW g

e(v) � e
`

�
v2

p

v(v 
 ig)

v2
p � s0g/e0 � nee

2/mee0

k � 25

dl � l/(4pk)

n < k < Å
s0

2e0v

es W ers~(v S 0) < s0

v V g
v S `

e
`

e(v) � e
`

�
s0g

e0(v
2 
 igv)

s0 � nee
2t/me

s~(v) �
nee

2/me

g � iv
�

s0

1 � iv/g

J � �neex
.

� s~(v)E

x
.

�
e/me

iv � g
E

x
$

� �ivx
.

x � x0e
�ivt

E � E0e
�ivt

me

316 CHAPTER 8



The plasma frequency falls in the ultraviolet region for most metals. For example, the
wavelength corresponding to the plasma frequency is approximately 80 nm for alu-
minum and 200 nm for tungsten. When , as in the x-ray region, 
Thus, metals behave more absorbing than reflecting. Take tungsten as an example. At

, the optical constants are and k � . The penetration depth is
calculated to be . Because the refractive index is similar to that of air, the
reflection is very low so that all incident radiation will be absorbed within 1-�m skin
depth. Some metals become rather transparent; for example, the radiation penetration
depth in lithium is close to 100 �m at . The Center for X-Ray Optics at
Lawrence Berkeley National Laboratory maintains a website on x-ray properties, which
can be accessed at http://www-cxro.lbl.gov/optical_constants. If , the real part
of the dielectric function becomes negative, and the extinction coefficient is much
greater than the refractive index, i.e., . This corresponds to a high reflectivity,
according to Eq. (8.84). A vanishing real part of the refractive index corresponds to a
longitudinal collective oscillation of the electron gas, i.e., a plasma oscillation. Plasma
oscillations originate from a long-range correlation of electrons caused by Coulomb
forces.

Example 8-6. From Table 5.2, calculate the plasma frequency and the electron scattering rate for
aluminum. Calculate the dielectric function, and compare the normal reflectivity with data.

Solution. For aluminum, at near room temperature, and s0 � 1/re �3.75 �
107 (m � �)�1. From Appendix A, C, kg, and e0 � 8.854 �
10�12C2/(N � m2). Hence, , or the scattering time t �

, and , which corresponds to a wavelength of 79 nm. The exact
parameters may differ slightly in different references, and sometimes, an effective mass is used which
is slightly larger than the electron mass me. The predicted optical constants are plotted in Fig. 8.10,
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FIGURE 8.10 Optical constants of aluminum, calculated from the Drude model.
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function becomes negative. A sharp transition occurs at the plasma frequency so that
and decreases rapidly toward higher frequencies. 

The reflectivity calculated from Eq. (8.84) is compared with the measured data for an aluminum
film, prepared by ultrahigh vacuum deposition, and measured in high vacuum to avoid oxidation.9

The results agree very well at wavelengths greater than 2 �m (see Fig. 8.11). For l � 1 �m, the

kn S 1
er � n2 � k2
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FIGURE 8.11 Normal spectral reflectivity of aluminum.
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contribution from the bandgap transition and bound electrons causes a reduction in the reflectivity.
Note that the Drude model did not include these effects and is applicable for long wavelengths only.
The established optical constants of metals are based on the measured reflectivity in a broad spec-
tral region and the K-K transformation discussed in Sec. 8.4.1. The results for a large number of
samples are tabulated in Handbook of the Optical Constants of Solids, with pertinent references.9

In some studies, the Drude model is modified by considering the temperature and fre-
quency dependence of the scattering rate and the effective mass. While the Drude model pre-
dicts well the radiative properties at room temperature or above, caution should be taken at
extremely low temperatures. If the electron mean free path becomes comparable to the distance
over which the electric field varies, i.e., the field penetration depth, nonlocal effects become
important and the Drude theory breaks down. This can occur at cryogenic temperatures, and a
more complex theory called the anomalous skin effect theory must then be applied.22

8.4.3 The Lorentz Oscillator Model for Lattice Absorption

Vibrations of lattice ions and bound electrons contribute to the dielectric function in a cer-
tain frequency region, often in the mid-infrared. The refractive index can be calculated
using the Lorentz oscillator model, which assumes that a bound charge e is accelerated by
the local electric field E.  In contrast to free electrons, a bound charge experiences a restor-
ing force determined by a spring constant Kj. The oscillator is further assumed to have a



mass mj and a damping coefficient gj, as shown in Fig. 8.12. The force balance yields the
equation of motion for the oscillator:

(8.106)mj x
$


 mjgj x
.


 Kj x � eE
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FIGURE 8.12 The classical oscillator model.

when E is a harmonic field. The change e is conventionally taken as positive in the Lorentz
model. There exists a solution, valid at timescales longer than the relaxation time, given by

(8.107)

where is the resonance frequency of the jth oscillator. The motion of the sin-
gle oscillator causes a dipole moment ex. If the number density of the jth oscillator is , the

polarization vector, or the dipole moment per unit volume, is , where N is the 

total number of active phonon modes (oscillators). The constitutive relation gives the polar-
ization as . It can be shown that 

(8.108)

where is a high-frequency constant and is called the oscil-
lator strength.

At very low frequencies, , which is called the dielectric constant. 

The real and imaginary parts of the dielectric function and the refractive index for a simple
oscillator are illustrated in Fig. 8.13, near the resonance frequency for . It can be
seen from Eq. (8.108) and Fig. 8.13 that, for frequencies much lower or much higher than
the resonance frequency, the extinction coefficient of the oscillator is negligible. Only
within an interval of gj around the resonance frequency is the absorption appreciable.
Within the absorption band, the real part of the refractive index decreases with frequency;
this phenomenon is called anomalous dispersion. It follows that in an interval of width gj

around the resonance frequency, the Lorentz oscillator is highly reflecting and absorbing,
while for higher or lower frequencies, it acts as a transparent material. A more compli-
cated treatment based on quantum mechanics yields a four-parameter model.23 The previous
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classical oscillator model can be considered as the approximation when the relaxation
time of the longitudinal and transverse optical phonons are the same. In some studies,
frequency- and temperature-dependent scattering rate is also considered to model the
infrared spectra.

In practice, it is much more difficult to predict the parameters of Lorentz oscillators from
other data of the material than to predict the Drude parameters. In practice, the oscillator
parameters are often treated as adjustable parameters that are determined by fitting Eq. (8.108)
to the measured reflectivity data. The Lorentz model has been applied to a large number of
dielectric materials by fitting the reflectance spectra.9 Zhang et al. (J. Opt. Soc. Am. B, 11,
2252, 1994; Int. J. Thermophys., 19, 905, 1998) obtained the Lorentz parameters for sev-
eral perovskite crystals (LaAlO3, LaGaO3, and NdGaO3) and thin polyimide films.

Example 8-7. The Lorentz model for SiC at room temperature for ordinary ray is given as follows:

(8.109)

where vLO � 969 cm�1 and vLO � 793 cm�1 are the frequencies corresponding to the longitudinal
and transverse optical phonons, respectively, g � 4.76 cm�1, and .24 What is the refrac-
tive index at the high- and low-frequency limits? Calculate the normal reflectivity, and compare it
with the experimental result.

Solution. Comparing Eq. (8.108) and Eq. (8.109), we see that the resonance frequency corre-
sponds to the TO phonon frequency, and the oscillation strength is .
The high-frequency limit of the refractive index is , and the low-frequency limit
is . Note that transitions that occur in the visible and ultraviolet regions are
not included so that the high-frequency limit is approximately 1 �m. On the other hand, because
there are no other transitions at long wavelengths, the dielectric constant is approximately the
same for zero frequency. The normal reflectivity is calculated using Eq. (8.84) and compared with
the data, as shown in Fig. 8.14. The agreement is excellent since the Lorentz parameters were fit-
ted to the experimental data.24 The phonon band causes a large k value and hence a high reflec-
tivity (very low emissivity) between and . This band is called
reststrahlen band of the reststrahlen reflection. At , the reflectivity is nearly 0 so
that the emissivity is almost 1. This happens at the edge of the reststrahlen band, when the refrac-
tive index increases passing 1 and the extinction coefficient decreases to a very small value. This
wavelength is called Christiansen wavelength, and the associated phenomenon is called the
Christiansen effect.7

v � 1000 cm�1
vTO � 793 cm�1vLO � 969 cm�1

n � !e
`


 S1 � 3.16
n < !e

`
� 2.6

S1 � e
`
(v2

LO /v2
TO � 1) � 3.3

e
`

� 6.7

e(v) � e
`
c1 


v2
LO � v2

TO

v2
TO � igv � v2

d

320 CHAPTER 8

FIGURE 8.13 The Lorentz oscillator model. (a) The dielectric function. (b) Optical constants.



8.4.4 Semiconductors

The absorption coefficient of lightly doped silicon is shown in Fig. 8.15 to illustrate the
contribution of different mechanisms.17,25 Let us look at the absorption of silicon in the visible
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FIGURE 8.14 The calculated and measured normal reflectivity of SiC at room temperature.

FIGURE 8.15 The absorption coefficient and the refractive index of Si at room temperature. (a)
Absorption coefficient in the visible and the infrared. (b) Absorption coefficient and refractive index from
the ultraviolet to the near infrared.

and the infrared first, as shown in Fig. 8.15a. At short wavelengths, photon energies are
large enough to excite electrons from the valence band to the conduction band. This inter-
band transition causes the absorption coefficient to rise quickly as the photon energy 
is increased above the indirect bandgap, which is approximately 1.1 eV at roomEg �
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temperature and decreases somewhat as temperature increases. As the wavelength further
increases beyond the absorption edge (l< 1.1 �m), the absorption coefficient is affected
by the existence of impurities and defects, absorption by free-carriers (i.e., intraband or
intersubband transitions by electrons and holes), and absorption by lattice vibrations.
While the lattice vibration affects certain regions of the spectrum, the free-carrier contri-
bution increases at longer wavelengths. For intrinsic silicon at low temperatures, the free-
carrier concentration is very low, and thus, silicon is transparent at wavelengths longer
than the bandgap wavelength. Lattice absorption occurs in the mid-infrared and introduces
some absorption for 6 �m � l � 25 �m. Free-carrier absorption is important for doped
silicon at longer wavelengths. Note that even for intrinsic silicon at high temperatures, ther-
mally excited free carriers dominate the absorption at longer wavelengths; a 0.5-mm-thick
silicon wafer is essentially opaque above 1000 K. The free-carrier concentration for intrinsic
silicon is about at 300 K and nearly at 1000 K. As shown in Fig. 8.15b,
the absorption coefficient continues to increase toward shorter wavelengths due to the
interband transition associated with the direct bandgap, which dominates the optical char-
acteristics of silicon in the ultraviolet region. This transition also affects the refractive index
of silicon at longer wavelengths. Beyond 500 nm, the refractive index of lightly doped Si
decreases somewhat as the wavelength increases.

Modeling the interband transitions requires the quantum theory and is more compli-
cated. In a direct-bandgap semiconductor, shown in Fig. 8.16a, the lowest point of the

1018 cm�31010 cm�3
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FIGURE 8.16 Interband transitions in semiconductors. (a) Direct transition without involving a
phonon. (b) Indirect transition involving the emission or absorption of a phonon.

conduction band occurs at the same wavevector as the highest point of the valence. An elec-
tron can be excited from the top of the valence band to the bottom of the conduction band
by absorbing a photon of energy that is at least equal to the bandgap energy. When the
valence band and the conduction band are parabola-like, the absorption coefficient due to
direct bandgap absorption can be expressed as

(8.110)

where A is a parameter that depends on the effective masses of the electrons and the holes,
and the refractive index of the material. 

abg � A(Uv � Eg)
1/2



When a transition requires a change in both energy and momentum, as in the case of an
indirect bandgap semiconductor, shown in Fig. 8.16b, a phonon is either emitted (process 1)
or absorbed (process 2) for momentum conservation because the photon itself cannot pro-
vide a change in momentum. This kind of transition is called indirect interband transition.
With the involvement of phonons, the absorption coefficient is given as

, (8.111)

and , (8.112)

where and correspond to the absorption coefficients for transitions with phonon absorp-
tion and emission, respectively, and their values are nonzero only when the photon energy
is greater than the bandgap energy subtracted (or added) by the phonon energy. In the pre-
ceding equations, B and C are temperature-dependent materials parameters. There may be
several phonon modes that can cause indirect interband transitions, and their effects on the
absorption coefficient can be superimposed;25 also see Forouhi and Bloomer (Phys. Rev. B,
38, 1865, 1988), Albrecht et al. (Phys. Rev. Lett., 80, 4510, 1998), Benedict et al. (Phys. Rev.
B, 57, R9385, 1998), and Rohlfing and Louie (Phys. Rev. Lett., 81, 2312, 1998).

The Drude model can be applied to model the free-carrier contribution for both intrin-
sic and doped silicon as given in the following:

(8.113)

where the first term on the right accounts for contributions by transitions across the
bandgap and lattice vibrations, the second term is the Drude term for transitions in the con-
duction band (free electrons), and the last term is the Drude term for transitions in the
valence band (free holes).25,26 Here, and are the concentrations, and the effec-
tive masses, and and the scattering rates of free electrons and holes, respectively. The
effective masses are taken as and .

The value of is determined using the refractive index and the extinction coefficient
of intrinsic silicon. The refractive index of silicon changes from 3.6 at l � 1 �m to 3.42
at l � 10 �m at room temperature and increases slightly toward higher temperatures.
Absorption by lattice vibrations occurs in silicon at wavelengths between 6 and 25 �m. To
account for the lattice absorption, the extinction coefficients are taken from the tabulated
values in Handbook of the Optical Constants of Solids.9 At elevated temperatures or for
heavily doped silicon, the effect of absorption by lattice vibrations is negligible compared
to the absorption by free carriers. The carrier concentrations and the scattering rates are
functions of temperature and dopant concentrations. For bulk silicon, the scattering is
caused by the collision of electrons or holes with the lattice (phonons) or ionized dopant
sites (impurities or defects). The total scattering rates can be calculated by

and (8.114)

Here again, the subscripts ph and d stand for phonon and defects, respectively. Generally
speaking, the scattering rate increases with the defect concentration and temperature. The
carrier concentrations depend on temperature and dopant concentrations. For intrinsic sili-
con, the concentration, , of the thermally excited free electrons and holes are the same
and can be found from the relation:
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where NC and NV are the effective densities of states in the conduction band and the valence
band, respectively, and for silicon, eV. Note that NC �
2.86 � 1019 cm�3 and NV � 2.66 � 1019 cm�3 at 300 K, and both increase with tempera-
ture proportional to T 3/2. When the dopant concentrations are not very high, the free-carrier
concentrations can be obtained from

(8.116)

and when the majority impurities are n-type. When the majority impurities are
p-type, the equations become and . 
Equation (8.116) has been derived based on complete ionization, which may not hold for heav-
ily doped semiconductors or at very low temperatures. Integration is needed to determine the
concentration when complete ionization is not expected. The procedure has been implanted
in the accompanied software Rad-Pro (radiative properties) for calculating the radiative prop-
erties of silicon at wavelengths longer than 0.5 �m; see www.me.gatech.edu/~zzhang under
Software Tool to download the free software Rad-Pro.

The calculated optical constants n and k of silicon, for wavelengths in the range between
1 and 100 �m, are shown in Fig. 8.17 at 300 K and 1000 K for n-type phosphorus donors. The
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FIGURE 8.17 Optical constants of n-type phosphorus-doped silicon, at 300 K and 1000 K, for
different dopant concentrations.

10
10−5

10−4

10−3

10−2

10−1

100

101

10−5

10−4

10−3

10−2

10−1

100

101

11 10 100

1
1

2

3

4

5

6

7

1

2

3

4

5

6

7

10 100 1 10 100

100

1E17 or under

1E18

1E17

1E17

1E18

1E16

1E20 1E20

1E19

1E18 or under

(a) n at 300 K (b) n at 1000 K

(c) k at 300 K (d) k at 1000 K

1E16

1E15

1E18
1E191E19

1E20
1E20

Wavelength, l (µm)

Wavelength, l (µm)

Wavelength, l (µm)

Wavelength, l (µm)

ND (cm−3) = 1E21 

ND (cm−3) = 1E21 

ND (cm−3) = 1E21 ND (cm−3) = 1E21 

E
xt

in
ct

io
n 

co
ef

fi
ci

en
t, 
k

E
xt

in
ct

io
n 

co
nf

fi
ci

en
t, 
k

R
ef

ra
ct

iv
e 

in
de

x,
 n

R
ef

ra
ct

iv
e 

in
de

x,
 n

1E19

refractive index changes little for lightly doped silicon, even at high temperatures. The
refractive index for heavily doped silicon first decreases and then increases abruptly toward
longer wavelengths. The carrier contribution to the extinction coefficient at 300 K is very

www.me.gatech.edu/~zzhang


small for lightly doped silicon, and the lattice contribution can be clearly seen between 6 and
25 �m. As the doping level exceeds , these phonon features are screened out. This
is also true for lightly doped silicon at 1000 K as the thermally excited carriers have a concen-
tration of about . At 1000 K, k is essentially the same for and
increases with higher dopant concentrations. At 300 K, however, except for the interband
absorption (l� 1.12 �m) and in the lattice absorption (6 �m � l� 25 �m), the calculated k
decreases with reducing dopant concentration until is less than , when most car-
riers are from the thermal excitation rather than the doping. The significance is that the pene-
tration depth, which is the inverse of the absorption coefficient, can be very large because of
the small k values. Generally speaking, for doping levels under , unless the
wavelength is very long, and silicon behaves as a dielectric. For heavily doped silicon, on the
other hand, the Drude model predicts that in the long-wavelength limit, just like in a
metal. The accuracy of the simple Drude model is subject to a number of factors, such as the
dependence of the effective mass on temperature, dopant concentration, and even frequency.
The scattering rate may be frequency dependent as well. Furthermore, the ionization energy
depends on the dopant concentration for heavily doped silicon. Nevertheless, this model has
captured the essential features of the dielectric function of silicon, for wavelengths greater than
0.5 �m, at temperatures from 300 to 1200 K, and with a doping level up to .

8.4.5 Superconductors

A superconductor is a material that exhibits zero resistance and perfect diamagnetism when
it is maintained at temperatures below the critical temperature Tc, under a bias current less
than the critical current and an applied magnetic field less than the critical magnetic field.
The discovery of high-temperature superconductors in the late 1980s has generated tremen-
dous excitement in the public because the achievement of superconductivity above the boil-
ing temperature of nitrogen (77 K at atmospheric pressure) offers many technological
promises. More and more materials have been found to be superconducting at higher and
higher temperatures. Extensive studies have been devoted to the infrared properties of
superconducting films for applications as radiation detectors, optical modulators, and other
optoelectronic devices.27 High-temperature superconducting (HTS) materials are made of
ceramic structures, such as YBa2Cu3O7-d, where d is between 0 and 1. The Y-Ba-Cu-O
compound behaves as an insulator when d� 0.6 and as a conductor when d� 0.2 at room
temperature.

In the normal state ( ), the dielectric function can be modeled as a sum of the
free-electron contribution using the Drude model, an intraband absorption that is important
for the mid-infrared region by using the Lorentz term, and a high-frequency constant:28

(8.117)

The expression of the Drude term is the same as Eq. (8.102) or Eq. (8.104). Although
phonon contributions can be neglected compared to the large electronic contributions, a
broadband mid-infrared electronic absorption often exists in the HTS materials, which is
typically modeled with a Lorentz oscillator that has a large width, or a frequency-dependent
scattering rate.

Many properties of superconductors can be explained in terms of a two-fluid model that
postulates that a fluid of normal electrons coexists with a superconducting electron fluid.
These two fluids coexist but do not interact. According to the BCS theory, interaction
between a pair of free electrons and a phonon (or other thermally generated excitations)
leads to the formation of an electron pair, called Cooper pair.29 The Cooper pairs cannot be
scattered by any sources as they move in the lattice structure. In the superconducting state,
only a fraction of free electrons are in the condensed phase (or superconducting state) and
the remaining electrons are in the normal state. The value of is temperature dependentfs
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and goes to zero at Tc. The contribution of the superconducting electrons to the dielectric
function is

(8.118)

where is the Dirac delta function that equals zero at nonzero frequencies. The Drude
term remains due to the presence of normal electrons with a number density of .
The dielectric function in the superconducting state can be modeled by

(8.119)

The calculated results are usually fitted with the experimental measurements by adjusting
the plasma frequency, the scattering rate, and the fraction of superconducting electrons.
Excellent agreement has been observed between the predicted and experimental values of
both the transmittance and the reflectance of superconducting films, at temperatures rang-
ing from 300 down to 10 K.28

8.4.6 Metamaterials with a Magnetic Response

The concept of negative refractive index (n � 0) was first postulated by Victor Veselago
for a hypothetical material that has both negative permittivity and permeability in the same
frequency region. In this case, the sign of n should be chosen as negative in .
Many of the unique features associated with negative index materials (NIMs) were sum-
marized in Veselago’s original paper (Sov. Phys. Usp., 10, 509, 1968), such as negative
phase velocity, reversed Doppler effect, and the prediction of a planar lens. As illustrated
in Fig. 8.18a, if n is negative, the phase speed will be negative and light incident from a

n � �!em
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`
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FIGURE 8.18 Unique features of a negative index material (NIM). (a) The refracted ray
bends toward the same side as the incidence. (b) A slab of NIM can focus light like a lens does.
Arrows indicate the wavevector directions. Note that the energy direction is the opposite of the
wavevector direction in a NIM.

conventional positive index material (PIM) to a NIM will be refracted to the same side as
the incidence. This is called bending light in the wrong way. Furthermore, if light can be
bent differently, then a planar slab of a NIM can focus light as shown in Fig. 8.18b. The
lack of simultaneous occurrence of negative e and m in natural materials hindered further



study on NIMs for some 30 years. On the basis of the theoretical work by John Pendry and
coworkers in the late 1990s. Shelby et al. (Science, 292, 77, 2001) first demonstrated that
a metamaterial exhibits negative refraction at x-band microwave frequencies. In a NIM
medium, the phase velocity of an electromagnetic wave is opposite to its energy flux. The
electric field, the magnetic field, and the wavevector form a left-handed triplet. For this rea-
son, NIMs are also called left-handed materials (LHMs). Because both e and m are simul-
taneously negative, NIMs are also called double negative (DNG) materials. 

Pendry (Phys. Rev. Lett., 85, 3966, 2000) conceived that a NIM slab with e� m� �1
would perform the dual function of correcting the phase of the propagating components and
amplifying the evanescent components, which exist only in the near field of the object. The
combined effects could make a perfect lens that eliminates the limitations on image reso-
lution imposed by diffraction for conventional lenses. Despite the doubt cast by some
researchers on the concept of “perfect lens” and even on negative refraction, both hypothe-
ses of negative refraction and the ability to focus light by a slab of NIM have been verified
by analytical, numerical, and experimental methods. Potential applications of NIMs range
from nanolithography to novel Bragg reflectors, phase-compensated cavity resonators,
waveguides, and enhanced photon tunneling for microscale energy conversion devices; see
Zhang and Fu (Appl. Phys. Lett., 80, 1097, 2002). Ramakrishna gave an extensive biblio-
graphic review on the theoretical and experimental investigations into NIMs and relevant
materials.30 There has been growing interest in the study of NIMs because of the promis-
ing new applications as well as the intriguing new physics. The search of new ways of con-
structing NIMs also calls for the development of new materials and processing techniques. 

The ideal case, where , cannot exist at more than a single frequency
because both e and m of a NIM must be inherently dependent on the frequency as required
by the causality. In addition, real materials possess losses, and hence, both e and m are com-
plex. The negative index can be realized by considering the complex plane, as illustrated in
Fig. 8.19. Note that . Then, we have

(8.120)n � rne
ifn � 2rerme

i(fe
fm)/2

e � ree
ife and m � rme

ifm

e � m � �1
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FIGURE 8.19 Illustration of a negative refractive index, using the complex planes.

Therefore, if both and are negative, will be negative, but k will always be posi-
tive. Note that a negative n can be obtained as long as . Generally speaking, one
would like to see all the phase angles to be close to so that the loss is minimized. Note
that the principal value of the phase is chosen from 0 to in the earlier discussion, rather
than from �p to . If the latter is chosen, one would obtain a negative e and a positive n
for a NIM. Many metals and polar dielectrics have a negative e in the visible and the
infrared. Furthermore, periodic structures of thin metal wires or strips can dilute the aver-
age concentration of electrons and shift the plasma frequency to the far-infrared or longer

p
2p

p
fn � p/2

nmrer



wavelengths. Negative-mmaterials rarely exist in nature, at the optical frequencies, but can
be obtained using metamaterials consisting of split-ring resonator structures at microwave
frequencies. These structures can be scaled down to achieve negative m toward higher fre-
quencies. The combination of repeated unit cells of interlocking copper strips and split-ring
resonators makes a metamaterial to exhibit a negative e and m simultaneously. Based on an
effective-medium approach, the relative permittivity and permeability of a NIM can be
expressed as functions of the angular frequency v as follows:

(8.121)

and (8.122)

where vp is the effective plasma frequency, v0 is the effective resonance frequency, ge and
gm are the damping terms, and F is the fractional area of the unit cell occupied by the split
ring. From Eq. (8.121) and Eq. (8.122), both negative e andm can be realized in a frequency
range between v0 and vp for adequately small ge and gm. Here, the values of v0, vp, ge, gm
and F depend on the geometry of the unit cell that constructs the metamaterial. These struc-
tures can be scaled down to achieve negative index toward higher frequencies.

To illustrate the negative index behavior, Fig. 8.20 shows the calculated refractive index
and the extinction coefficient of a hypothetical NIM using the following parameters:

, F � 0.785, and .31 Because of the scaling capability
of the metamaterial, the frequency is normalized to . It can be seen that in the frequencyvp
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v2 � v2
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 igmv
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FIGURE 8.20 Calculated refractive index of a hypothetical negative index material (NIM).



range from v0 to vp, where the real parts of e and m are negative, n is negative and k (for
small values of g) is small at frequencies not too close to v0.

The study of NIMs is in its early stage, and new results are emerging every week. In
addition to the use of lithographic techniques to scale down the split-ring dimensions, other
approaches, such as nanowire pairs, self-assemblies, and photonic crystals, have also been
proposed to realize NIMs in three dimensions and, more importantly, toward short wave-
lengths. There also exist theoretical challenges in terms of unambiguous determination of
the electric and magnetic properties. How can the four parameters, , be
determined from the reflectance measurement only? Can the K-K transform be applied to
a magnetic material when there are two pairs of complex variables? If so, what is the min-
imum set of quantities that must be measured by experiments?

8.5 SUMMARY

In this chapter, we started from the Maxwell equations to derive the plane wave equation
and defined the material’s optical properties. The Planck law was derived using statistical
mechanics, and the radiation entropy was then introduced. The reflection and refraction of
waves at a smooth interface were discussed to relate radiative properties of surfaces with
the electromagnetic wave theory. The last part of the chapter presented the dielectric func-
tions for metals, dielectrics, semiconductors, and superconductors. At the very end, we
also introduced the concept of NIM or DNG materials, as well as their unique features. In
the subsequent two chapters, more extensive discussions will be given on thin films, grat-
ings, rough surfaces, as well as evanescent waves, surface polaritons, and near-field
energy transfer.
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PROBLEMS

8.1. Write the wave equation in the 1-D scalar form as , where c is a posi-
tive constant. Prove that any analytical function f can be its solution as long as . Plot

as a function of x for two fixed times t1 and t2. Show that the sign determines the direction (either
forward or backward) and c is the speed of propagation. Develop an animated computer program to
visualize wave propagation.

8.2. Considering an electromagnetic wave propagating in the positive z direction, i.e., . Plot
the vibration ellipse, and compare it with Fig. 8.2 for two cases: (1) and and
(2) and . Consider the spatial dependence of the electric field at a given time,b � �2x^ 
 y^a � 3x^

b � x^ 
 2y^a � 3x^
k � kz^

c
c(x,t) � f (x � ct)

'2�/'x2 � (1/c2)'2�/'t2
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say , where m is an integer. Discuss how E will change with kz for the following two cases:
(3) and , and (4) and . The polarization is said
to be right handed if the end of the electric field vector forms a right-handed coil or screw in space at
any given time. Otherwise, it is said to be left handed. Discuss the handedness for all the four cases.

8.3. Integrate Eq. (8.17) over a control volume to show that the energy transferred through the
boundary into the control volume is equal to the sum of the storage energy change and energy dissi-
pation. Write an integral equation using Green’s theorem.

8.4. Derive the wave equation in Eq. (8.20) for a conductive medium; show Eq. (8.9) is a solution if
k is complex, as given in Eq. (8.21). Many books use instead of Eq. (8.9) as the solu-
tion; how would you modify Eq. (8.21) and Eq. (8.22)? Show that the complex refractive index must
be defined as , where .

8.5. Calculate the refractive index, absorption coefficient, and radiation penetration depth for the fol-
lowing materials, based on the dielectric function values at room temperature.
(a) Glass (SiO2): at 1 �m; at 5 �m.
(b) Germanium: at 1 �m; at 20 �m.
(c) Gold: at 0.65 �m; at 2 �m.

8.6. Consider a metameterial with and ; determine the refractive
index and the extinction coefficient. Calculate the radiation penetration depth. Do a quick Internet
search on negative index materials, and briefly describe what you have learned.

8.7. Find the magnetic field H for the wave given in Eq. (8.37). Show that the time-averaged
Poynting vector is parallel to the x-axis. That is, the z component of for such a wave vanishes.
Briefly describe the features of an evanescent wave.

8.8. Write Planck’s distribution in terms of wavenumber , i.e., the emissive power in terms
of the wavenumber: . What is the most probable wavenumber in ? Compare your answer
with the most probable wavelength obtained from Wien’s displacement law in Eq. (8.45). Explain why
the constants do not agree with each other. Cosmic background radiation can be treated as a blackbody
radiation at 2.7 K; what is the wavenumber corresponding to the maximum emissive power?

8.9. Based on the geometric parameters provided in Example 8-3 and neglecting the atmospheric
effect, calculate the total intensity of the solar radiation arriving the earth’s surface. Calculate the spec-
tral intensity at 628-nm wavelength. A child used a lens to focus the solar radiation to a small spot on
a piece of paper and set fire this way. Does the beam focusing increase the intensity of the radiation?
The lens diameter is 5 cm, and the distance between the lens and the paper is 2.5 cm. What are the focus
size and the heat flux at the focus? Neglect the loss through the lens.

8.10. For a surface at T � 1800 K, with an emissivity of 0.6, what are the radiance temperatures at
l� 0.65 �m and 1.5 �m? If a conical hole is formed with a half cone angle of 15�, what is the effec-
tive emittance and the radiance temperature at l� 0.65 �m?

8.11. What is a radiometer? What is a calorimeter? What is a detector? What is a bolometer? If you
are asked to buy a detector for infrared radiation measurement for the wavelength range between 2 and
12 �m, discuss how you would select a detector and why.

8.12. Express Eq. (8.53) in terms of wavelength, i.e., as . Find an expression of the entropy
intensity for blackbody radiation, i.e., , and show that . 

8.13. Assume that all the blue light at l in the range between 420 and 490 nm of the solar radiation
is scattered by the atmosphere and uniformly distributed over a solid angle of sr. What are the
monochromatic temperatures of the scattered radiation at l � 420 nm and 490 nm?

8.14. A diode-pumped solid state laser emits continuous-wave (cw) green light at a wavelength of
532 nm with a beam diameter of 1.1 mm. If the beam divergence is 0.2 µsr, what would be the spot
size at a distance of 100 m from the laser (without scattering)? If the output optical power is 2 mW and
the spectral width is (assuming a square function), what is the average intensity of the
laser beam? Find the monochromatic radiation temperature of the laser that is linearly polarized.
Suppose the laser hits a rough surface and is scattered into the hemisphere isotropically. Find the radi-
ation temperature of the scattered radiation and the entropy generation by scattering.

8.15. In Example 8-5, the two plates are blackbodies. Assume that the plates are diffuse-gray sur-
faces with emissivities . Calculate the entropy generation rate in each plate per unit area. How
will you determine the optimal efficiency for an energy conversion device installed at plate 2? For

, plot the optimal efficiency versus .er1T1 � 1500 K, T2 � 300 K, and er2 � 1

er1 and er2

dl � 0.1 nm

4p

Ll(l,T ) � (c/4p)sl(l,T )Ll(l,T )
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E � E0e
i(vt�k # r)

Im(E0) � �3y^Re(E0) � 3x^Im(E0) � 0Re(E0) � 3x^
vt � 2pm

FUNDAMENTALS OF THERMAL RADIATION 331



8.16. The concept of dilute blackbody radiation can be used as an alternative method to calculate the
entropy generation of a two-plate problem as in Problem 8.14. Assume that the multiply reflected rays
are not in equilibrium with each other. Rather, each ray retains its original entropy, and can be treated
as having an effective temperature of or , depending on which plate the ray is emitted from. How
would you evaluate the entropy transfer from plate 1 to 2 and the entropy generation by each plate then? 

8.17. Calculate the entropy generation rate per unit volume for Example 2-7. Further, calculate the
entropy generated at each surface, assuming that surface 2 is at 300 K.

8.18. The conversion efficiency of thermophotovoltaic devices is wavelength dependent, and the
optical constants are wavelength dependent as well. Perform a literature search to find some recent
publications in this area. Use the entropy concept to determine the ultimate efficiency of a specific
design. Based on your analysis, propose a few suggestions for further improvement of the particular
design you have chosen.

8.19. Derive the Fresnel reflection coefficient for a TM wave, following the derivation given in the
text for a TE wave.

8.20. Show that , where is given in Eq. (8.73) and is given in Eq. (8.75).
Discuss why the z component of the time-averaged Poynting vector must be continuous at the bound-
ary but not the x component.

8.21. For nonmagnetic lossy media with and , expand Eq. (8.70b) and
compare your results with Eq. (8.71).

8.22. For plane wave incident from air to a nonmagnetic material with (negative real),
show that the reflectivity is always 1 regardless of the angle of incidence and the polarization. What can
you say about and ? Is the wave in the medium a homogeneous wave or an evanescent wave?

8.23. The refractive index of glass is approximately 1.5 in the visible region. What is the Brewster
angle for glass when light is incident from air? Calculate the reflectance, and plot it against the inci-
dence angle for p polarization, s polarization, and random polarization. Redo the calculation for inci-
dence from glass to air, and plot the reflectance against the incidence angle. At what angle does total
internal reflection begin, and what is this angle called?

8.24. The principal angle is defined as the angle at which the ratio of the reflectance for TM and TE
waves is minimized. For radiation incident from air to a medium with and , determine the
principal angle and show that the phase difference between the two reflection coefficients equals to

at this angle. [Hint: Use graphs to prove the existence of the principal angle.]

8.25. Calculate and plot the emissivity (averaged over the two polarizations) versus the zenith angle
for the materials and wavelengths given in Problems 8.5. Calculate and tabulate the normal and hemi-
spherical emissivities for all cases.

8.26. Calculate the optical constants and the radiation penetration depth for either gold or silver at room
temperature, using the Drude model, and plot them as functions of wavelength. In addition, calculate the
normal  reflectivity and plot it against wavelength. Compare the results using the Hagen-Ruben equation.
How will the scattering rate and the plasma frequency change if the temperature is raised to 600 K?

8.27. Calculate the normal emissivity of MgO from 2000 to 200 cm�1 (5 to 50 �m) using the Lorentz
model with two oscillators having the following parameters: ; , g1� 7.62 cm�1,
and ; , , and . Can you develop a program to cal-
culate the hemispherical emissivity and plot it against the normal emissivity for a comparison?

8.28. Using the accompanied software, Rad-Pro, to plot the absorption coefficient and the reflectivity
of lightly doped silicon in the spectral region from 0.5 to 25 �m, at two temperatures: 600 K and 900 K.

8.29. Find the Brewster angles for light incident from air to a NIM with (a) and ,
(b) and , and (c) and .

8.30. Suppose a NIM can be described by Eq. (8.121) and Eq. (8.122) with the following parame-
ters: rad/s ( �m), rad/s (i.e., �m), , and

. Assume a wave is propagating in such a medium in the region of with a wavevec-
tor , where . Show that the group velocity is in the negative x direction. Also
show that the Poynting vector is in the same direction as the group velocity.

8.31. Suppose a NIM can be described by Eq. (8.121) and Eq. (8.122) with the following parameters:
rad/s (i.e., �m), rad/s (i.e., �m), and .

Calculate and plot the refractive index and the extinction coefficient in the spectral region from 2 to
15 �m, for 0, 1012, and 1013 rad/s.g �
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RADIATIVE PROPERTIES 
OF NANOMATERIALS

CHAPTER 9

333

Optical and thermal radiative properties are fundamental physical properties that describe
the interaction between electromagnetic waves and matter from deep ultraviolet to far-
infrared spectral regions. A large number of studies have been devoted to the measurement,
analysis, modeling, and simulation of optical and radiative characteristics of materials in
solid, liquid, gas, and plasma phases. The radiative properties of nanostructured materials
are critical to the functionality and the performance of many devices, such as semiconductor
lasers, radiation detectors, tunable optical filters, waveguides, solar cells, and selective
emitters and absorbers. The use of microstructures not only modifies the optical properties
for optoelectronic applications and processing control but also facilitates some important
energy conversion devices, such as solar cells and thermophotovoltaic applications.

This chapter will start with the radiative properties of a single layer with or without con-
sidering the wave interference effect. The effect of partial coherence and surface scattering
will be considered next. The approach will then be generalized to multilayered structures
using the 1-D matrix formulation. Furthermore, periodic structures such as photonic crys-
tals and gratings will be studied based on the Bloch wave equation. Subsequently, the effec-
tive medium formulations will be briefly discussed. Finally, the effect of surface roughness
and microstructures on the radiative properties will be presented.

9.1 RADIATIVE PROPERTIES OF A SINGLE LAYER

Crystalline films, from a few nanometers to several micrometers thick, have been deposited
(by physical vapor deposition, chemical vapor deposition, sputtering, laser ablation, molecu-
lar beam epitaxy, rapid thermal processing, and other techniques) onto suitable substrates.
These layered structures play important roles in contemporary technologies, such as integrated
circuits, semiconductor lasers, quantum well detectors, superconductor/semiconductor hybrid
devices, optical filters, and spectrally selective coatings for solar thermal applications.
Radiative energy transport in thin films differs significantly from that at bulk solid surfaces
and through thick windows because of multiple reflections and interference effects. The
radiative properties of a lamina with smooth and parallel surfaces will be discussed first,
with emphasis on different formulations for various applications. At the end of this section,
the effect of surface scattering will be considered in the regime where the roughness is
much smaller than the wavelength.

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



9.1.1 The Ray Tracing Method for a Thick Layer

A “thick” layer refers to the case where interference between multiply reflected waves can be
neglected. In other words, the waves are incoherent. On the contrary, a “thin” film refers to
the case where all multiply reflected waves are coherent and interfere with each other. The
condition for being thick has often been commonly interpreted as that the layer thickness d is
much greater than the wavelength. A more rigorous criterion is that the thickness is much
greater than the coherence length, which can be much greater than the wavelength. The coher-
ence length depends on the spectral width of the source and the spectral resolution of the spec-
trophotometer, such as a grating monochromator or a Fourier transform spectrometer. In
addition, beam divergence, surface roughness, and nonparallelism of the surfaces further
reduce the degree of coherence. Generally speaking, when the thickness is comparable to the
wavelength, interference effects are important. However, this does not guarantee complete
coherence because of the nature of the source and imperfect surfaces. Let us first consider
the radiative properties of a layer or a slab, in the incoherent limit, because of its simplicity.

Either the ray tracing method or the net radiation method can be applied to find out the
transmittance and the reflectance of a thick layer.1 Consider a slab of thickness d, placed in
air or vacuum, as shown in Fig. 9.1. The refractive index and the extinction coefficient of
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FIGURE 9.1 Transmittance and reflectance of a lamina as a result of multiple reflections.

the material are n2 and k2, respectively. As mentioned earlier, it is generally required that the
thickness be much greater than the wavelength to avoid the interference effect. Because the
intensity will attenuate exponentially inside an absorbing medium, the penetration depth

should be greater than the layer thickness in order to have appreciable trans-
mission. For this reason, the extinction coefficient is usually much smaller than the refractive
dl � l/4pk



index, i.e., . Therefore, we can limit our consideration to dielectric materials with a
small loss, such as a glass window or a silicon wafer in the semitransparent region. For a given
surface reflectivity r�l and an internal transmissivity t�l, ray tracing yields the directional-
hemispherical spectral reflectance as

(9.1)

because the second term and beyond form a geometric series. Similarly, the directional-
hemispherical spectral transmittance can be expressed as

(9.2)

Hence, the directional-spectral absorptance of the lamina at the given direction and wave-
length is

(9.3)

The reflectivity r�l can be calculated from Eq. (8.73) and Eq. (8.80), for each polariza-
tion, as a function of the angle of incidence u1 and the refractive index. For unpolarized
incident radiation, R�l , T�l, and A�l should be averaged over the two linear polarizations. The
influence of k2 on r�l is often negligibly small. On the other hand, k2 affects the absorption
through the internal transmissivity t�l, defined as

(9.4)

where l is the wavelength in air or vacuum, u2 is the refraction angle inside the slab, and d/cos
u2 can be considered as the actual path length of the ray inside the layer. From Snell’s law,
we have . Here again, the effect of k2 is neglected. Figure 9.2
shows the transmittance at normal incidence for several semitransparent materials with a
thickness d � 0.5 mm, calculated using the tabulated optical constants from Palik.2 It can be
seen that SiO2 glass is transparent in the visible region but opaque to infrared radiation beyond
5-�m wavelength. On the other hand, silicon is opaque for visible light but has a transmit-
tance of about 50% in the far-infrared region.

When there is no absorption, the reflectance and the transmittance are independent of the
layer thickness d, and for normal incidence, the following simplified equation can be used:

(9.5)

For a fused silica (SiO2) window in the visible range, with a refractive index around 1.5,
the transmittance is 0.923. For diamond with a refractive index of 2.4, the transmittance is
0.71. In some applications, antireflection coatings are often used to reduce reflectance and
enhance transmittance, which will be discussed later for multilayer structures.

9.1.2 Thin Films

Thin-film coatings are of practical importance to the design of spectrally selective surfaces
for solar energy utilization and space applications, optical filters, and antireflection coatings.
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When the wavelength of radiation is comparable to the coherence length, which depends
not only on the properties of the film but also on the characteristics of the source and the
detector, wave interference becomes important. To consider the interference effect, the
amplitude and the phase of the electric field (or the magnetic field) must be traced during
multiple reflections. The method is usually referred to as thin-film optics, as illustrated in
Fig. 9.3 for a thin film of thickness d between two semi-infinite media.3,4 There are several
practical configurations based on the structure shown in this figure. (a) The first is for a
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FIGURE 9.3 Illustration of interference between multiple reflections.

FIGURE 9.2 Normal transmittance of several dielectric materials with 0.5-mm thickness at
room temperature.
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free-standing film in air. (b) The second is for radiation incident from air (medium 1) on a
thin film (medium 2) coated onto a semi-infinite substrate (medium 3). (c) In the third con-
figuration, media 1 and 3 are dielectrics but medium 2 is vacuum. This configuration is
important for photon tunneling experiments to be discussed in Chap. 10. Let us first con-
sider the lossless case, where the refractive indices are all real, and so are the angles of inci-
dence and refraction. It will be seen later that the equations can easily be extended to
absorbing media using complex variables. A plane wave with either p or s polarization is
incident from medium 1. Note that tjk and rjk, where j, k � 1, 2, or 3, are respectively the
transmission and reflection coefficients between the media j and k for the given polariza-
tion. While the multiply reflected waves are illustrated with a spatial displacement, inter-
ference occurs at the same time and location between multiply reflected beams. For this
reason, upon traversing the film, the wave acquires a phase shift given by

(9.6)

Note again that l is the wavelength in vacuum. This is to say that b � 2p (n2/l)d cosu2.
The reason that cos u2 is in the numerator, instead of the denominator, is because the phase
for the same location x is considered when z is changed from 0 to d. The phase of the elec-
tric field is given by k�r, and thus, the phase difference is b � k2dcosu2, where
k2� 2pn2/l. Another way to understand the phase shift is to consider the plane of con-
stant phase, as illustrated in Fig. 9.3 with the line OA. The first reflected wave is the wave
from A to C that acquires a phase difference of (k1 sin u1)(2d tan u2) � (k2 sin u2)(2d tan u2)
because kx � kj sin uj is the same in all media. The second reflected wave goes through
the film twice (from O to B and then from B to C) and gains a phase difference of
2k2d/cos u2. It can easily be shown that the phase shift between the first and the second 
reflected waves is . More detailed discussion can be
found from Brewster.5After the superposition, the field reflection and transmission coeffi-
cients of the film can be expressed as

(9.7)

and (9.8)

which are known as Airy’s formulae.3,4 It should be noted that these coefficients are defined
based on the electric fields for s polarization and the magnetic fields for p polarization,
respectively. The energy reflectance can be calculated by

(9.9)

For the incident radiation with random polarization, Eq. (9.9) should be averaged over the
two linear polarizations by evaluating Fresnel’s coefficients for each polarization sepa-
rately. Furthermore, Eq. (9.6) through Eq. (9.9) are not limited to lossless situations as long
as the absorption in medium 1 is negligible.6 When n2 and n3 are complex, the phase shift
given in Eq. (9.6) becomes complex. Note that the reflection and transmission coefficients
in Eq. (9.7) and Eq. (9.8) are always complex. Waves inside an absorbing medium are inho-
mogeneous because the constant-phase planes are defined by the real part of the wavevector
and the constant-amplitude planes are parallel to the interfaces. To determine the direction
of energy flow, one needs to carefully evaluate the Poynting vector in medium 3. The
expression of the energy transmittance is similar to those for the absorptivity in Eq. (8.75)
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and Eq. (8.81). If medium 3 is lossless, we can write the transmittance in terms of the trans-
mission coefficient as in the following:

, for s polarization (9.10a)

and , for p polarization (9.10b)

For a free-standing film in air, since n1 � n3 � 1, the transmittance can be reduced to
the following equation when the film is slightly absorbing (i.e., ):6

(9.11)

In Eq. (9.11), and are calculated by neglecting , and is from Eq. (9.4). The trans-
mittance will oscillate even though the optical constants are unchanged. A change in wave-
length, thickness, or refractive index can cause the transmittance to oscillate. The
transmittance spectrum has peaks at b � mp and valleys at , where m is a 
nonnegative integer. Figure 9.4 shows the calculated normal transmittance for d � 10 �m
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FIGURE 9.4 Calculated transmittance of a thin film of 10-�m thickness with n � 2
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and n2 � n 
 ik, with n � 2 and k� 0, 0.005, and 0.05. The subscript 2 is dropped for con-
venience. The results are plotted in terms of wavenumber between 750 and 1500 cm�1. The
free spectral range is the frequency interval between two peaks. It is convenient to use the
wavenumber instead of frequency. For normal incidence, the free spectral range in terms
of wavenumber is given by

(9.12a)n �
1

2nd



where d is in cm and is in cm�1. When plotted in terms of wavelength, the free spectral
range becomes

(9.12b)

which increases with wavelength for constant n and d. In the absence of absorption, the
maximum transmittance is unity. The inclusion of a very small nonzero extinction coeffi-
cient k can cause the transmittance to be reduced from the lossless situation, especially at
shorter wavelengths. When k � 0.05, the internal transmissivity is a strong function of
wavelength and the transmittance is significantly reduced. Furthermore, the fringe contrast
is also reduced due to absorption. The fringe contrast is defined, based on the maximum
transmittance Tmax and minimum transmittance Tmin, as

(9.13)

For broadband or polychromatic radiation, the total transmittance is defined as the frac-
tion of the energy transmitted. Suppose the spectral intensity is , then the total transmit-
tance is

(9.14)

In some practice, one needs to integrate the transmittance over a narrow band. An example
is the radiation coming through a filter or a spectrometer with a finite resolution. The inten-
sity is nearly constant within the small bandwidth; the transmittance can be averaged over
a spectral width around l for each wavelength, viz.,

(9.15)

It can be shown that, integrating the coherence formula in Eq. (9.11) over a free spectral
range gives the same result as the incoherence formula in Eq. (9.2). However,
the fringe-averaged transmittance is not equal to the arithmetic average of the transmittance
maximum and minimum. When d is much greater than the wavelength by a factor of, say,
1000, the free spectral range will become so small that most spectrophotometers do not
have the sufficient resolution to discern the fringes. Furthermore, a slight variation in the
film thickness or the wedge effect will cause the phases of multiple reflections to be can-
celed out. The measured transmittance will follow Eq. (9.2) without the high-frequency
oscillation. That is why Eq. (9.2) has practical importance even though it can be obtained
from Eq. (9.11) by spectral averaging. The spectral-averaging method is useful to obtain
radiative properties in the partial coherence regime, to be discussed in Sec. 9.1.4.

It should be emphasized that for metallic films, when the extinction coefficient is not
much smaller than the refractive index, Eq. (9.11) breaks down and the transmittance of a
thin film must be calculated according to Eq. (9.10). Consider a 100-nm gold film with n2 �
0.916 
 i1.84 at the wavelength l� 0.5 �m. The penetration depth is dl� l �(4pk) � 21.6
nm. At normal incidence, and , and both Eq. (9.2) and Eq. (9.11)
reduce to . This result, however, is incorrect because neither
equation is applicable for large extinction coefficients. Using Eq. (9.10) and the complex
Fresnel coefficients defined in Chap. 8, we have reevaluated the normal transmittance of
the gold film to be in this case (see Zhang6 for more discussion and Problem 9.5
as an exercise).
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Example 9-1. Calculate the reflectance in terms of film thickness d for a dielectric film onto a sil-
icon substrate with a refractive index of n3 � 3.44 near l� 2.5 �m. Assume radiation is incident at
normal incidence from air. Consider two cases: n2 � 1.83 (SiO) and n2 � 4.07 (Ge).

Solution. Equation (9.9) can be recast as , where for normal incidence, 

r12 � (n1 � n2)/(n1 
 n2) and r23 � (n2 � n3)/(n2 
 n3). While the Fresnel coefficients are for s polar-
ization, a minus sign for both r12 and r23 for p polarization will not change the value of . The
results are plotted in terms of the dimensionless parameter in Fig. 9.5. The reflectancej � n2d/l

R rl

R rl � 2 r12 
 r23e
i2b2

1 
 r12r23e
i2b2

2 2
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FIGURE 9.5 Reflectance for a SiO or Ge film onto a Si substrate at l� 2.5 �m.

0.0
0.0

0.1

0.2

0.3

0.4

0.5

0.5 1.0 1.5 2.0

n2 = 1.83

n2 = 4.07

R
ef

le
ct

an
ce

,R
' l

x = n2d/l

oscillates with a period . When n2d � l/2, 3l/2, 5l/2, and so on, the reflectance is
reduced to that of silicon without coating, i.e., . When n2 � n3 or n2 � n1,
the reflectance is always greater than that without coating, and reaches a maximum at n2d � l/4,
3l/4, 5l/4, and so on. When n1 � n2 � n3, the reflectance is always smaller than that without coat-
ing, and reaches a minimum at n2d � l/4, 3l/4, 5l/4, and so on. The values are determined by

. Note that the reflectance minimum becomes zero when n2 �
�1.885. Since the refractive index of SiO is close to this value, a nearly zero reflectance can

be obtained. This is called the antireflection effect and has numerous applications in many optical
systems including eye glasses. In addition, quarter-wave antireflection coatings can be used to
improve the energy conversion efficiency for solar energy applications.

9.1.3 Partial Coherence

It should be noted that no source is perfectly coherent—even laser or atomic emission has a
nonzero line width. Likewise, no source is completely incoherent—even the most chaotic
blackbody radiation has a small coherence length. The coherence length is related to the dis-
tance that light travels within a coherence time. The concept of coherence is related to the
situation where the wave nature will be preserved. When the time is longer than the coher-
ence time or when waves travel a distance longer than the coherence length, fluctuations will
manifest and thus undermine the interference effects.7 Although complete incoherence and
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coherence formulae can be applied to a variety of practical problems, there are situations
that do not fall in either regime. An example is the measured transmittance spectra of a slab
with a spectrometer, such as a grating spectrophotometer or the Fourier transform infrared
(FTIR) spectrometer based on the Michelson interferometer with a beamsplitter, a fixed
mirror, and a moving mirror. Due to the finite instrument resolution and imperfections of the
sample surfaces (not perfectly parallel or smooth), the fringe contrast defined in Eq. (9.13)
for transmittance is always less than that predicted by the coherence formula. A similar def-
inition also applies to the reflectance spectrum.

Partial coherence theory was developed before 1960, and has gone through significant
advancements after the first lasers in the 1960s, including the application to radiometry.7 A brief
introduction is given here with an emphasis on the radiative properties of thin films. The elec-
tric field can be expressed in either frequency domain as E(n) or time domain as E(t), which are
related by Fourier transforms. The mutual coherence function of any two waves is defined as

(9.16)

where the angular bracket symbolizes the time-averaging operation, i.e.,

(9.17)

and is the mutual spectral density, given by

(9.18a)

where the “long bar” denotes ensemble averaging. The spectral density of a wave is defined by

(9.18b)

and the optical intensity, which is proportional to the radiant energy flux in a given
medium, is

(9.19)

The complex degree of coherence is defined as

(9.20)

Note that . If there are only two waves, each with an optical intensity of and ,
the combined optical intensity of the two waves is given as follows:

(9.21)

Let us use Young’s double-slit experiment as an example, where light from a pinhole goes
through two slits. Interference patterns will be projected on a screen. When the slits are of
very small width and the source is nearly monochromatic, a sine wave pattern will be
observed with alternate bright and dark fringes. This is because g12 � exp(id), where d is
the phase difference between the two beams and varies with position on the screen. The out-
come is completely coherent because . On the other hand, when the source is poly-
chromatic, the pattern will be the brightest at the center because constructive interference
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occurs for all wavelengths only at the center. The interference fringes will fade away from
the center and eventually disappear because of the lack of coherence. In this case, is
position dependent. Partial coherence can also occur as the width of the slit is enlarged. If
the slit width is comparable to or larger than the wavelengths, the screen will be evenly illu-
minated. This corresponds to a complete incoherence with and .

Chen and Tien employed the partial coherence theory to calculate the radiative properties
of a layer, by taking the forward propagating field in the film as composed of two compo-
nents: the first transmitted wave and all the rest that are caused by multiple reflections.8

Alternatively, the degree of coherence may be defined between any two multiply reflected
waves, and the radiative properties in the partial coherence regime can be expressed in an infi-
nite summation. Several factors affect the degree of coherence, such as the beam divergence,
the thickness variation, or the finite spectral width of the instrument. The combined effect is
that multiple reflections become less and less coherent, because the phase of the wave
increases by 2b each time it undergoes a round trip inside the film (see Fig. 9.3). Recently,
Fu et al. obtained analytic formulae for the reflectance and the transmittance of a thin film
using direct spectral integration.9 The integral averaging of transmittance, calculated from
wave optics over a finite frequency interval, yields the same result as the partial coherence
formulation does. The spectral averaging of the transmittance can be evaluated by

(9.22)

where is a dummy variable and , the frequency interval used for the averaging, is called
the coherence spectral width.10 The directional-hemispherical spectral transmittance is sim-
ply expressed as T(n) in Eq. (9.22) without any subscript or superscript for clarity. The fre-
quency n is most conveniently expressed in cm�1 or in terms of wavenumber as done before.
It should be emphasized that the spectrally averaged property is still a spectral property rather
than a total property. It is inherently assumed that is a small bandwidth within which the
source spectral intensity is independent of frequency. Furthermore, is related not only to the
effective bandwidth, the resolution, and the sampling interval of the spectrometer but also to
the conditions of the specimen. Figure 9.6 illustrates the effect of spectral averaging on the
transmittance spectrum for a film with and k � 0, with various values, at normal
incidence. Both the frequency � and the coherence spectral width are normalized by the
free spectral range so that the curves are independent of the film thickness and the fre-
quency unit used. As increases from 0 (the coherent limit), the fringe contrast
decreases until when all the fringes disappear. When , however, the
fringes reappear but the peaks and the valleys invert from the original. The inversion is largest
when . When , the fringe contrast becomes negligible, and the trans-
mittance approximates the incoherent limit when geometric optics are applicable.

Although and correspond to the coherent and incoherent limits, respec-
tively, the magnitude of is not directly related to the degree of coherence in the partial
coherence regime. For example, is more coherent than (when all
fringes disappear). The degrees of coherence are difficult to calculate even for smooth films
and not applicable to films with rough surfaces. Lee et al. introduced a coherence function:

(9.23)

where Tcoh is the transmittance calculated from the coherence formulation without scatter-
ing loss (i.e., thin-film optics), is the spectral averaging of transmittance calculated from
Eq. (9.22) to include partial coherence, and nmax and nmin are the frequencies corresponding
to transmittance maximum and minimum, respectively, in the coherent limit.10 In essence,
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the denominator equals the difference between transmittance extrema in the coherent limit,
and the numerator equals the difference in transmittance extrema, when partial coherence
is considered.

The coherence function is plotted in Fig. 9.7 as a function of a dimensionless parameter
for dielectric thin films. The film thickness is implicitly included in the parameters anddn/n
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FIGURE 9.6 The effect of coherence spectral width on the spectrally averaged
transmittance.

FIGURE 9.7 Coherence function versus the ratio of the coherence spectral width to
the free spectral range for different refractive indices.
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does not affect the shape of the curves. The coherence function varies within (�1, 1), and its
magnitude quantifies the reduction in the fringe contrast from 1 in the coherent limit to 0 in
the incoherent limit. The locations where f � 0 correspond to (m � 1,2,3 . . .),
when all fringes disappear in the transmittance spectra. When , the peaks and the val-
leys are inverted in the transmittance spectrum, resulting in fringe flipping. When it
can be seen from Fig. 9.7 that the coherence function is approximated by the sinc function:

. As refractive index increases, however, the coherence function becomes
flatter and deviates from the sinc function. The coherence function serves the same role as
the degree of coherence that helps determine which approach (i.e., wave optics, partial
coherence formulation, or geometric optics) is most suitable for modeling the radiative
properties for a particular case. In addition, Eq. (9.23) can also be applied to rough surfaces,
as will be discussed in the next section.

Figure 9.8 shows the measured and predicted transmittance for a double-side polished
silicon wafer in two narrow spectral regions as functions of the wavenumber. The trans-

sinc(x) � sin(x)/x

n � 2,
f � 0
dn � mn
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FIGURE 9.8 Normal transmittance of a 35-�m-thick Si wafer in two narrow spectral regions near the
wavelengths of 10 �m (1000 ) and 2.5 �m (4000 ), respectively.10cm�1cm�1

mittance spectra in the coherent and incoherent limits are shown for comparison. Because
the refractive index of silicon changes less than 1% (n � ), the free spectral
range in wavenumber is 41.3 cm�1, and the transmittance predicted by the incoher-
ence formula is approximately 0.537. It can be seen that the transmittance is less coherent
toward short wavelengths (increasing wavenumber). Therefore, a wavenumber-dependent
coherence spectral width was used to fit the data obtained from the FTIR spectrometer.10

The coherence spectral width varies from 10.4 cm�1 at � 1000 cm�1 to 28.7 cm�1

at � 4000 cm�1. The coherence function f calculated from Eq. (9.22) changes from 0.84 at
� 1000 cm�1 to 0.33 at � 4000 cm�1. The coherence spectral width is much greater

than the instrument resolution of 1 cm�1, suggesting that the surfaces of the wafer may be
slightly nonparallel. The measured transmittance is also sensitive to the mechanical stress
on the wafer.

9.1.4 Effect of Surface Scattering

In order to model the losses in the reflectance and transmittance due to scattering at the sur-
faces, shown in Fig. 9.9, the Fresnel coefficients can be modified by the scattering factors
that depend on the rms roughness. Notice that the reflectance and transmittance obtained
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n <
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this way are not directional-hemispherical properties. Because only the reflection and the
transmission near the specular directions are considered, we will use specular reflectance

and specular transmittance . The derivation of the scattering factor is based on 
the assumptions that the surface height follows the Gaussian distribution and the autoco-
variance function of surface roughness is also Gaussian. When both the rms roughness and
the autocorrelation length are much less than the wavelength of the incident radiation, the
scalar scattering theory may be applied to determine the reflection coefficients, consider-
ing scattering losses.11 The modified Fresnel coefficients between the media j and k ( j � 1,
2, or 3; k � j � 1) are given in the following:

(9.24a)

and (9.24b)

where the prime refers to the modified Fresnel coefficients for a given polarization, and the
scattering factors are defined as follows, based on real refractive indices only:

(9.25a)

and (9.25b)

where srms is the rms roughness of the interface.11 It should be noted that some relations of
the Fresnel coefficients, such as rjk � � rjk and 1 
 rjk� tjk, do not hold after the modifi-
cations, because of scattering losses. The reflectance and the transmittance should be
obtained from Eq. (9.9) and Eq. (9.10). Furthermore, the energy losses due to surface
roughness increase toward shorter wavelengths, because of the srms/l term in the scatter-
ing factors; this yields a reduction in the fringe contrasts and a decrease in the overall trans-
mittance. Even for a nonabsorbing film, the sum of the specular transmittance and
reflectance is not equal to 1, because of scattering losses.

St, jk � exp c� 1
2
a

2psrms(nj cosuj � nkcosuk)

l
b

2

d

Sr, jk � exp c� 1
2
a

4psrmsn j cosuj

l
b

2

d

t rjk � tjkSt, jk

r rjk � rjk Sr, jk

T rl,spR rl,sp
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FIGURE 9.9 Geometry of a thin film with rough surfaces, in the model of the specu-
lar transmittance and reflectance, when and .srms V lk2 V n 2



Example 9-2. Calculate the normal transmittance of a 10-�m film with a refractive index
when there is no absorption, in the spectral range from 1000 and 3000 cm�1. Both surfaces

are rough with a roughness srms of 0.10 �m. How does the srms value affect the transmittance?

Solution. We can use Eq. (9.10) to calculate the transmittance but with the reflection and trans-
mission coefficients modified by Eq. (9.24). The results are plotted in Fig. 9.10, for srms � 0.05,

n � 2.4,
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0.10, and 0.20 �m, to examine the effect of roughness on the specular transmittance. It can be seen
that surface roughness reduces both the peak transmittance and the fringe contrast. Furthermore, the
reduction is more prominent toward shorter wavelengths. 

An optically smooth surface has an rms roughness on the order of 10 nm. Some highly pol-
ished semiconductor wafers or thin films, grown by molecular beam epitaxy, can have an rms
roughness less than 1 nm. On the other hand, chemical-vapor-deposited (CVD) diamond films
and the backside of silicon wafers can have a roughness ranging from 100 nm to 1 �m. The fringe
contrast in the measured spectrum is often less than that predicted by wave optics after the mod-
ification of the Fresnel coefficient, due to the lack of parallelism between the two surfaces. In
other words, when the effect of partial coherence is significant, the scalar scattering theory alone
cannot accurately predict the transmittance of thin films. Lee et al. used the fringe-averaging
method, along with the scalar scattering theory, to predict the specular transmittance for rough
surfaces, and obtained excellent agreement with FTIR measurements for a CVD diamond film
and several silicon wafers.10 On the other hand, the scalar scattering theory cannot be applied
when either the autocorrelation length or the rms roughness is comparable with the wavelength.

9.2 RADIATIVE PROPERTIES OF MULTILAYER
STRUCTURES

Since many applications involve a thin film on a substrate or multilayer thin films, expres-
sions of the radiative properties of multilayer structures are summarized in this section. The

FIGURE 9.10 Transmittance of a dielectric thin film with surface roughness on both
sides.
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matrix formulation for thin-film multilayer structures will be described, and its application
to films on a thick substrate will also be discussed.

9.2.1 Thin Films with Two or Three Layers

Examples of two-layer thin films include a metallic coating on a thin dielectric substrate,
especially in the long-wavelength region, where interference in the substrate cannot be
ignored. The film can also be modeled as a sheet resistance for metallic films in the far-
infrared and microwave regions. Nevertheless, thin-film optics is generally applicable to
any spectral region and for different materials. The expressions of the reflectance and the
transmittance of a thin film-substrate composite in vacuum are

(9.26)

(9.27)

and (9.28)

where the subscripts F and S indicate whether the incoming radiation is incident on the film
or substrate, since the direction of incidence makes a difference for the reflectance, is
the complex phase shift inside the substrate; ta and ra are the transmission and reflection
coefficients for incidence from vacuum to the film, when the substrate is assumed semi-
infinite; tb and rb are the transmission and reflection coefficients for incidence from the
substrate to the film; and subscripts S0 and 0S refer to the Fresnel coefficients at the sub-
strate-vacuum interface. The reflection and transmission coefficients are
generally complex and should be calculated from Eq. (9.7) and Eq. (9.8) using the phase
shift of the film. The absorptance also depends on which side the radiation is incident from.
When there is another coating at the backside of the substrate, one can replace the Fresnel
coefficient with the transmission and reflection coefficients of the film.

Example 9-3. A Fabry-Perot interferometer can be built with two mirrors made by coating highly
reflecting materials (e.g., ultrathin metallic films) on both sides of a dielectric thin film, as illustrated
on the left of Fig. 9.11. Derive a formula for the transmittance, and show that resonance in trans-
mittance can be obtained within narrow spectral bands.

Solution. Before 1900, Charles Fabry and Alfred Perot constructed a device based on interference
effect and published a series of papers on the possible applications in metrology and spectroscopy. This
is the Fabry-Perot interferometer, also known as an optical cavity resonator or etalon. Like the
Michelson interferometer, the Fabry-Perot interferometer is an important device used in spectroscopy,
laser applications, and wavelength and frequency standards.11 By considering the transmission and
reflection coefficients , at each boundary of the dielectric film, the overall transmittance
coefficient of the Fabry-Perot interferometer, shown in Fig. 9.11, can be expressed as follows:

(9.29)

where is the phase shift according to Eq. (9.6) Here, is the wavenum-
ber in cm�1. The energy transmittance can be written as follows:

(9.30)T rl,FP � t FP t *
FP �

T1T2

a1 � 2R1R2b
2


 42R1R2 sin2c

n � 1/lb � 2pn 2nd2 cosu2

tFP �
t1t2eib

1 � r1r2e
i2b

t1, t2, r1, and r2

ra, rb, ta, and tb

bS

T rl � 2 tatS0e
ibS

1 � rbrS0e
i2bS

2 2Rrl,S � 2r0S 

t0StS0rbe

i2bS

1 � rbrS0ei2bS

2 2Rrl,F � 2ra 

tatbrS0e

i2bS

1 � rbrS0e
i2bS

2 2
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where is a new phase angle, and are not exactly
the transmittances through the coating, and and are indeed the reflectances for
incidence from the dielectric to the left and right boundaries, respectively. When the loss can be
neglected and the structure is symmetric, we have , , and ;
thus, Eq. (9.30) can be simplified as

(9.31)

The results for different R values are shown on the right of Fig. 9.11. Clearly, a large R yields sharp
transmission peaks at . Suppose the refractive index of the dielectric is kept constant and the
change of the phase shift corresponds to the frequency variation, the free spectral range is the inter-
val between two resonance peaks, given by , similar to that of Eq. (9.12a). The
full-width-at-half-maximum (FWHM), , measures how sharp the peak is. The ratio is
called the finesse of the interferometer, which determines the resolving power. The finesse is known
as the Q-factor of the resonator. For a lossless Fabry-Perot cavity, it can be shown that

(9.32)

which is 313, when R � 0.99. Kumar et al. constructed a Fabry-Perot resonator, based on high-critical-
temperature superconducting films on Si substrates, and demonstrated sharp transmission peaks in
the far-infrared at cryogenic temperatures, when YBa2Cu3O7-d becomes superconducting.12

9.2.2 The Matrix Formulation

A multilayer structure containing N layers is shown in Fig. 9.12. In this section, the 1-D
matrix formulation is present in such a way that magnetic materials can also be included. Each
layer is assumed to be isotropic and homogeneous, and it can be fully described by a rela-
tive permittivity el and a relative permeability ml (l � 1, 2, . . . , N ). For a monochromatic
plane wave originated from layer 1, which is assumed to be lossless, the phase-matching
condition requires that . Consider a linearly polarized electromag-
netic wave, whose plane of incidence is perpendicular to the y-axis. For s polarization or

klx ; kx � vn1 sinu1/c

Q �
n

dn
�
p2R

1 � R

Q � n/dndn
n � 1/(2n2d2 cosu2)

b � mp

T rl,FP �
(1 � R)2

(1 � R)2 
 4R sin2b

T1T2 � (1 � R)2R1 � R2 � Rc � b

R2 � r2r
*
2R1 � r1r

*
1

T2 � t2t *
2T1 � t1t

*
1c � b 
 arg(r1)/2 
 arg(r2)/2
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FIGURE 9.11 Schematic of a Fabry-Perot interferometer (left) and the calculated transmittance
for different R values (right).
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TE wave, where the electric field is parallel to the y-axis, the electric field in the lth layer
can be written as , where13

and (9.33)

Here, Al and Bl are the amplitudes of the forward and backward waves at the interface,
respectively, zl � zl�1 
 dl (l � 2, 3, . . . , N �1), and dl is the layer thickness. The magnetic
field can be obtained from the electric field using Maxwell’s equations. The expression of
the wave component klz is calculated from k 2

x 
 k 2
lz � elmlv

2/c2. The only condition
imposed is that the imaginary part of klz must not be less than zero. This will ensure that the
wave will decay toward positive z. After applying boundary conditions at the interface, we
obtain the field amplitudes of adjacent layers relate as 

(9.34)

In Eq. (9.33), is the propagation matrix given by

and (9.35)

Dl is called the dynamical matrix, and is its inverse. For s polarization, Dl is given in
terms of klz and ml as follows:

(9.36)Dl � a 1 1

k lz /ml �klz /ml

b , l � 1, 2,c, N

D�1
l

Pl � ae
�iklz dl 0

0 eiklz dl

b , l � 2, 3,c, N � 1

Pl � I � a1 0

0 1
b, l � 1

Pl

aAl

Bl

b � PlD
�1
l Dl
1a

Al
1

Bl
1

b, l � 1, 2,c, N � 1

El(z) � Ale
iklz(z�zl�1) 
 Ble

�iklz(z�z l�1), l � 2, 3,c, N

E1(z) � A1e
ik1z z 
 B1e

�ik1z z

El(z)ei(kx x�vt)
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FIGURE 9.12 Schematic illustration of an N-layer structure,
where the first and last layers are semi-infinite, and each layer is
assumed to be homogeneous and isotropic.



By successively applying Eq. (9.35) to all layers, we have

(9.37)

where (9.38)

The electric field transmission and reflection coefficients are obtained by setting BN � 0,
because the last layer is semi-infinite, and thus there is no backward wave. Simple algebraic
manipulations give the expressions of the coefficients as

(9.39)

and (9.40)

Furthermore, the energy reflectance and transmittance are given as follows:

(9.41)

(9.42)

For p polarization or TM wave, the magnetic field is parallel to the y-axis. Equation
(9.33) can be written in terms of the magnetic field. The previous procedure can then be
applied to derive the transmission and reflection coefficients based on the magnetic fields.
Then, the dynamical matrix given in Eq. (9.36) must be replaced by 

(9.43)

The expression for the reflectance is the same as Eq. (9.41), and that for transmittance for
p polarization becomes 

(9.44)

The assumption that the first medium is lossless is necessary because the reflectance
is ill-defined if the first medium is lossy, because of the coupling between the reflected
and incident waves.6 However, Eq. (9.41), Eq. (9.42), and Eq. (9.44) are applicable even
though the last medium is lossy. Comparing Eq. (9.42) with Eq. (9.44), and Eq. (9.36)
with Eq. (9.43), we immediately notice the duality of the electric and magnetic fields,
since the only difference is the interchange of e and m in these equations. Further appli-
cations of the matrix formulation will be discussed in subsequent sections as well as in
the next chapter.

9.2.3 Radiative Properties of Thin Films on a Thick Substrate

Radiative properties of thin coatings on a substrate are important for a large number of
applications, such as a thermal oxide on a Si substrate, antireflection coatings on the lens

T rl �
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FIGURE 9.13 Radiative properties of multilayer thin films on an incoherent, thick substrate.

the geometry of an incoherent substrate of thickness ds bounded by multilayer thin films
on both sides. The refraction angle in the substrate can be calculated from the inci-
dence angle by neglecting absorption of the substrate. In Fig. 9.13, or refers to
the reflectance of the first multilayer structure for rays originated from air or the sub-
strate, and and are the corresponding transmittance. Furthermore, repre-
sent the reflectance and transmittance for rays originated from the substrate at the second
multilayer structure. Since the coupling between the incident and reflected waves in the
substrate is negligible, the transmittance is the same whether the ray is originated from
air or the substrate, i.e., . In order to calculate these parameters, the matrix
formulation discussed in the previous section can be separately applied to the multilayer
structures for a given incident direction. The internal transmittance of the substrate is

, where is the wavelength in vacuum. The reflectance and the
transmittance of the multilayer structure can be calculated using the ray-tracing method
and expressed as follows:

(9.45a)
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of glasses, interference filters, metallic coatings, and superconducting films. In these cases,
the coating thicknesses are on the order of nanometers and they must be considered as thin
films. On the other hand, the substrate is usually thick enough to be considered incoherent,
while being semitransparent for energy transfer consideration. Furthermore, the substrate
is either lossless or slightly absorbing (ks ns), as discussed earlier. Figure 9.13 showsV
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Radiative properties of arbitrary numbers of thick and thin layers have been derived
theoretically.14 For each thin-film stack, the field reflection and transmission coefficients
are obtained first, using the matrix formulation described previously. The power trans-
mittance and reflectance at the interfaces of each thick layer can then be obtained. Using
the net-radiation method, the energy transmittance and reflectance can be evaluated.
Spectral averaging is another and perhaps more powerful technique of obtaining the trans-
mittance and reflectance for systems involving thick and thin layers.

Lee and Zhang developed a reliable and easily accessible software tool, named Rad-Pro
(for radiative properties), in an Excel-VBA environment.15 It allows users to calculate the
directional, spectral, and temperature dependence of the radiative properties for the multilayer
structures of silicon, including doping effects, and related materials such as silicon dioxide,
silicon nitride, and polysilicon. Rad-Pro contains various options such as coherence versus
incoherence, spectral averaging, polarization status, and input of user-defined materials. This
software is downloadable free of charge at the author’s website: www.me.gatech.edu/~zzhang.

9.2.4 Local Energy Density and Absorption Distribution

The absorptance of the composite layers can be calculated by subtracting the reflectance and
the transmittance from unity. The Poynting vector can be evaluated as a function of z to
obtain the radiant energy flux . The fraction of energy absorbed
between z1 and z2 is given by

(9.46)

where Siz is the incident radiant energy flux in the z direction. From Sec. 8.1.4, one can
obtain the local energy density. The energy dissipated per unit volume is given by

9.3 PHOTONIC CRYSTALS

Recently, many studies have utilized the unique features of periodic microstructures (i.e.,
photonic crystals) to engineer the radiative properties for specific applications.16,17 A photonic
crystal (PC) is a periodic array of unit cells (i.e., photonic lattices in analog to those in real
crystals), which replicate infinitely into one, two, or three dimensions. Figure 9.14a illustrates
a 1-D PC using the arrangement of alternating Journal of Heat Transfer and Journal of
Thermophysics and Heat Transfer issues in the author’s bookshelf. To have a PC with a
period of the order of infrared wavelengths, say 3 �m, the thickness needs to be reduced by
a factor of 6000. Figure 9.14b is a photo of a stack of chopsticks in three dimensions.
Structures of 3-D tungsten PCs have been fabricated with a rod width of 1.2 �m and rod-to-
rod spacing of 4.2 �m, for tuning the infrared thermal emission properties.18

From the analogy of the electron movement in crystals, electromagnetic wave propagation
in a PC should also satisfy the Bloch condition, discussed in Chap. 6. Similarly, due to the peri-
odicity, a PC exhibits band structures consisting of pass and stop bands when the frequency is
plotted against the wavevector. In the pass band, for instance, waves can propagate inside a
PC. Whereas in the stop band, no energy-carrier waves can exist inside a PC, and only oscil-
lating but evanescently decaying fields possibly exist. The existence of stop bands enables a
PC to be used in many optoelectronic devices such as band-pass filters and waveguides.4,5,13,19

Most of the 1-D PCs are made with alternating layers of two lossless dielectrics, while metal-
lodielectric PCs have recently been developed and studied by several groups. In some cases,
the dimension may be smaller than 100 nm for tuning the visible properties.

While 3-D PCs with complicated structures have been fabricated and used in a number
of applications, the fundamental physics can be illustrated using 1-D PCs and can easily be

�= # S.

az1�z2
�

Sz(z1) � Sz(z2)

S iz

S(z) �
1
2 Re(E � H*)
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generalized for 2-D or 3-D structures. The 1-D PC, illustrated in Fig. 9.15, is a periodic
multilayer structure, where is the period of the PC or photonic lattice con-
stant. The unit cell is composed of alternating dielectrics with different refractive indices
na and nb. It is assumed that all layers are infinitely extended in the x-y plane, and the PC
is in the positive-z half space starting with m � 0 at z � 0. From the analogy between wave
propagation in a periodic media and the motion of electrons in crystalline materials, the
electric field vector in the 1-D PC, for a monochromatic electromagnetic wave of angular
frequency , should satisfy the Bloch condition given by

(9.47)E(x,y,z,t) � u(z)eiKzei(kxx
kyy�vt)

v

� � da 
 db

RADIATIVE PROPERTIES OF NANOMATERIALS 353

FIGURE 9.14 Illustration of 1-D and 3-D photonic crystal (PC) structures.



where is a periodic function of z with a period equal to the lattice constant
of the photonic crystal, kx and ky are the parallel components of the wavevectors that must
be the same in all layers as required by the phase-matching condition, and K represents the
Bloch wavevector that is a scalar in the 1-D case. Here, K is a characteristic parameter of
the PC that is the same for all layers. The wavevector components in the z direction are kaz

and kbz in media a and b, respectively, and are determined by the relations
and . From the Bloch con-

dition, the electric field in the 1-D PC satisfies the following equation:

(9.48)

The magnetic field is related to the electric field by Maxwell’s equations and must also fol-
low the Bloch condition. Therefore, the fields inside the PC are not periodic functions.

Because of the axial symmetry, the coordinate can always be rotated around the z-axis
to make ky � 0. For s polarization, the electric field is parallel to the y direction and can be
expressed as

(9.49)

where the time-dependent term is omitted for simplicity, m is an integer, Am and
Cm are the amplitudes of forward waves, and Bm and Dm are the amplitudes of backward
waves at the interfaces, as shown in Fig. 9.15.13 The coefficients ,

, , and are the amplitudes at the other side of
the boundary. Boundary conditions require that the tangential components of the electric
and magnetic fields Ey and Hx, respectively, to be continuous at each interface. From the
matrix formulation, the coefficients Am and Bm at z � m� are related to those at z �
(m
1)� with the propagation matrix P and dynamical matrix D as follows:
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1
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FIGURE 9.15 Amplitudes of the forward and backward waves in a semi-infinite 1-D PC, in the
right half space. The unit cell of the 1-D PC is made of two dielectric layers: type a and type b, and
has a period .� � da 
 db



From Eq. (9.48), the ratio of the electric fields at two points separated by a period � along
the z direction is equal to exp(iK�); thus,

(9.51)

The Bloch wavevector parameter K can be obtained by solving the eigenvalue equation:

(9.52)

where . In general, K depends on the frequency v and the paral-
lel wavevector component kx, for a given geometry and refractive indices. Once K is deter-
mined, the electric field in the PC can be expressed in the Bloch wave form as

(9.53)

where u(z) is a periodic function of z. For , 

(9.54a)

and for ,

(9.54b)

Note that A0 and B0 are amplitudes of the first layer, i.e., at m � 0, and 

(9.55)

The expressions for the magnetic field can be obtained from those of the electric field using
Maxwell’s equations. For p polarization, the magnetic field is parallel to the y-axis. The
same procedure can be used to determine the magnetic field first and then the electric field.
The amplitudes A0 and B0 depend on the boundary condition at z � 0, i.e., the interaction
of the PC with the medium in the left half space.

For a given PC, the Bloch wavevector can be solved from the eigenvalue problem given
in Eq. (9.52), for any real positive values of v and kx. In general, K is complex. When K is
purely real, i.e., Im(K) � 0, the electric field oscillates in the direction of z, and the Bloch
wave propagates into the positive z direction, which is called an extended mode. When
Im(K) $ 0, on the other hand, the amplitude of the Bloch wave decays exponentially along
the positive z direction, and the wave is confined to the first few unit cells of the photonic
crystal; this is called a localized mode.6,17 For the localized mode, the field is localized in
the vicinity of the defect or the edge. Notice that K � K(kx, v), and the regions with Im(K)
� 0 in the v-kx plane are called pass bands, and those with Im(K) $ 0 are called stop bands.
Suppose light is incident from air (in the left half space) on the PC at z � 0. In the stop band,
the PC will act like a perfect mirror, which is also called a Bragg reflector. A diagram in
the v-kx domain, showing the different regions, allows one to study the band structures of
a PC, as demonstrated in the following example.

Example 9-4. Consider the 1-D PC depicted in Fig. 9.15, with the following parameters: na� 2.4,
nb� 1.5, and . Construct the band structure for both polarizations, and calculate the normal
reflectance.

Solution. The PC is semi-infinite, and the incidence is from air. The unit cell of the 1-D PC is defined
by the thickness . Following the previous discussion, we have calculated the band� � da 
 db

da � db
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structure of the 1-D PC for either polarization, and the results are shown in Fig. 9.16. Here, the par-
allel component of the wavevector is , where u is the angle of incidence. The bandkx � (v/c)sinu

FIGURE 9.16 Band structures of a 1-D PC. (a) TM wave ( p polarization). (b) TE wave (s polarization).

structure is expressed by the reduced frequency and wavevector; hence, it is independent of the
period of the PC. For the calculation, it is assumed that the 1-D PC is a perfectly periodic structure
infinitely extended into the z direction (i.e., no defect or edge exists in the PC). The shaded regions
represent the stop bands, while unshaded regions are the pass bands. The light line in air, which cor-
responds to , is plotted as a dash-dot line based on . On the upper-left side of this
line, propagating waves exist in air and . On the lower-right side of this line, evanescent
waves exist in air since becomes complex. Note that stop bands shrink to zero only for p polar-
ization. The point where the top and bottom band edges merge together corresponds to the Brewster
angle between the dielectric of types a and b of the PC. At the Brewster angle, the reflectivity at the
interface between two dielectrics is zero; thus, waves or incident energy can propagate into the PC.
For the 1-D PC considered here, because the Brewster angle is located on the lower-right side of the
light line, the propagating waves in air will not be affected by the Brewster angle of the constituent
dielectrics of the PC.

Figure 9.17 shows the reflectance of the 1-D PC structure with different numbers of periods (N �
30 and 300), calculated using the 1-D matrix formulation. The wavelength is normalized to the
period �. The reflectance approaches unity in the stop band (when �30). In the pass band, inter-
ference causes oscillations in the reflectance. Since the free spectral range decreases as the total
thickness of the PC increases, the oscillation frequency increases with the number of periods of the
PC structure. A special type of 1-D PCs is the Bragg reflector, which is composed of alternating
high- and low-index films, each at a thickness of one-quarter of the wavelength in the film, i.e.,

and . Further discussion about surface waves and coherent emission char-
acteristics of PC structures will be deferred to the next chapter.

9.4 PERIODIC GRATINGS

The diffraction grating is considered as one of the simplest and most important devices in opti-
cal metrology, and many studies have been performed on the effect of gratings on radiative
property modification.20,21 Nanoscale diffraction elements fabricated using nanolithography
may enable many applications in biochemical sensing, surface diagnostics, and nanophoton-
ics. Patterned semiconductor microelectronics has periodic structures on the surface with a
period below 100 nm.22 Understanding the radiative properties is essential for thermal pro-
cessing and modeling in semiconductor manufacturing as the feature size continues to shrink.

db � l/(4n b)da � l/(4n a)

N

u
u � 90�

v � kx cu � 90�



In the inhomogeneous region, where the permittivity e and the permeability m are spa-
tial functions, the monochromatic plane wave equations become more complicated. By
assuming the solution is a time-harmonic plane wave, we can rewrite the Maxwell equa-
tions as follows:

(9.56)

(9.57)

(9.58)

(9.59)

Since only isotropic media are considered here, both and are scalars. By taking the curl
of Eq. (9.56) and applying the vector identities in Appendix B.7 and Eq. (9.58) and Eq. (9.59),
we obtain

(9.60)

(9.61)

where is the wavevector in vacuum.13

These equations cannot be solved easily and numerical methods are often required.
Among them are rigorous coupled-wave analysis (RCWA), finite-difference time-domain
(FDTD), finite element method (FEM), boundary element method (BEM), as well as the
volume integral method. Effective medium formulation is another approach that takes the
average field by approximating the inhomogeneous medium with effective homogenous
electric and magnetic properties. The concept of RCWA will be presented next because it is
an effective tool for calculating the optical properties of the grating geometry with sufficient
accuracy. We will then give a brief discussion of the effective medium formulation, which
may be applied to both periodic and random media under restricted conditions.

k � v/c
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 k 2meH � 0

=2E 
 =(E # = lne) 
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 k 2meE � 0

me

m= # H 
 H # =m � 0

e= # E 
 E # =e � 0

= � H � �ivee0E

= � E � ivmm0H
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FIGURE 9.17 Reflectance of a 1-D PC, with different numbers of periods.
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FIGURE 9.18 Schematic drawing for a TE wave incident on a grating layer, showing the reflected dif-
fraction orders j � �2, �1, 0, and 1.

9.4.1 Rigorous Coupled-Wave Analysis (RCWA)

We begin with a discussion restricted to s polarization and for incidence perpendicular to
the gratings, as illustrated in Fig. 9.18. A plane wave is incident on a 1-D grating surface

from free space, region I with . Region II is composed of binary
materials A and B so that the dielectric function in region II is a periodic function of x with
a period �, i.e., the grating period. The filling ratio f is the volume fraction of material A,
and the lateral extension of the grating is assumed to be infinite. Region III is the substrate
with a dielectric function . 

The wavevector k defines the direction of incidence, and the angle between k and the sur-
face normal is the angle of incidence u, also called the polar angle. The grating vector K is
defined in the positive x direction with a magnitude K � 2p/�. In the following discussion,
it is assumed that the incident wavevector is on the x-z plane, i.e., the y component of k is
zero. For s polarization, the electric field E is parallel to the y direction and perpendicular to
the grating vector K. The magnitude of the incident electric field, after normalization, can
be expressed as exp (ikx x 
 ikzz � ivt). For simplicity, the time-harmonic term exp(�ivt)
will be omitted hereafter. The magnitude of k in regions I and III can be expressed as

(9.62)

where is the refractive index of region III. There exists a phase difference of
between the incident wave at (x, z) and that at due to a path

difference of . This condition must also be satisfied by each diffracted wave, i.e., the
magnitude of the jth-order reflected wave can be written as rj exp (ikx,j x � ikIz ,j z), where rj

is the reflection coefficient, and kx,j is determined from the Bloch-Floquet condition:22

(9.63a)

This equation can be expressed in terms of the angle of reflection given by

(9.63b)sinuj � sinu 
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where uj � sin�1(kx,j /k) is the jth-order diffraction angle for reflection and Eq. (9.63b) is the
well-known grating equation. When kx,j � kI, sin uj � 1 and the jth-order reflected wave
decays exponentially toward the negative z direction. This is an evanescent wave that exists
only near the surface, within a distance on the order of the wavelength. Note that the z com-
ponent of k for the jth-order reflected wave is

(9.64)

Because kx,j must be the same in all media, similar criteria can be applied to the transmitted
waves in region III to obtain kIIIz,j by replacing I by III in the subscripts in Eq. (9.64).

The electric field in region I is a superposition of the incident and reflected waves;
therefore,

(9.65)

The electric field in region III can be obtained by superimposing all transmitted waves as

(9.66)

where tj is the transmission coefficient for the jth-order transmitted wave.
The electric field in region II can be expressed as

(9.67)

where �j(z) is the amplitude of the jth space-harmonic component. Here, the order j is
matched with the diffraction order in regions I and III. Due to the periodic structure, the
dielectric function of region II can be expanded in the following Fourier series:

(9.68)

where em is the mth coefficient that can be calculated from

and (9.69) 

for rectangular gratings depicted in Fig. 9.18. It should be noted that each em is not a physical
property of the material, and its imaginary part may be negative for a passive medium.

The coupled-wave formulation comes from the wave equation of the total electric field
in region II. Due to the factors that is independent of y and E is parallel to the y-axis, we
have from Eq. (9.60) that 

(9.70)

A differential equation can be obtained by substituting Eq. (9.67) and Eq. (9.68) into 
Eq. (9.70) as

(9.71)
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Equation (9.71) can be rearranged in terms of for the jth order as follows:

(9.72)

In order to satisfy this equation for any value of x, the coefficient of exp(ikxj x) must be zero
for all j’s. Hence, Eq. (9.72) is an infinite set of second-order coupled equations. Note that
each space-harmonic term is coupled to other components through the harmonics of the
grating. The numerical solution is obtained with sufficiently large number of diffraction
orders. Suppose j � 0, � 1, � 2, . . . , � q, then there are N � 2q 
 1 diffraction orders so
that p � 0, � 1, � 2, . . . , � q will also have N terms. Equation (9.72) can be represented
by an N � N matrix. The Fourier expansion of the dielectric function will have m � 0, � 1,
� 2, . . . , � 2q, or 4q 
 1, terms. The magnetic field can be obtained from Eq. (9.67) and
expressed in terms of �j. The N unknown functions �j ( j � 0, � 1, � 2, . . . , � q) can be
expressed as summations of the eigenfunctions, which have 2N unknown coefficients.
Together with rj and tj ( j � 0, � 1, � 2, . . . , � q), there are 4N unknowns. By matching
the boundary conditions for the electric field and the tangential component of the magnetic
field at the interface between regions I and II and that between regions II and III, the cor-
responding 4N linear equations can be solved using the matrix method. An enhanced,
numerically stable transmittance matrix approach was developed and applied to the imple-
mentation of RCWA for surface-relief and multilevel gratings, with detailed equations and
solution procedures.22 The derivation for a TM wave is more complicated because of the
extra term in Eq. (9.61). Nevertheless, a corrected procedure has been proposed by Li.23

Many researchers have considered the effect of azimuthal angle of incidence on the radia-
tive properties of gratings, i.e., when the incident wavevector k is not perpendicular to the
grating grooves. RCWA has also been developed and applied for 2-D gratings as well as
gratings of complicated geometries.

Once the reflection and transmission coefficients are obtained, it is possible to compute
the fields inside and outside the grating structures, as well as to obtain the grating efficiency
for each diffracted wave by calculating the time-averaged Poynting vector. The directional-
hemispherical reflectance is the summation of the reflectance of all orders. Furthermore,
the directional absorptance can be calculated by , assuming region III is semi-
infinite.

As an example, the reflectance at normal incidence of a silicon grating for both p and s
polarizations is shown in Fig. 9.19. The grating region simulates polycrystalline silicon
gates in the 65-nm devices used in high-performance complementary metal-oxide-
semiconductor (CMOS) technology.24 The grating period � � 240 nm. The thickness of
the grating (i.e., the height of the gates) is d � 50 nm. The width of the gates is 30 nm, yield-
ing a filling ratio of f � 1/6. The properties of the gates and the substrate are taken from
Palik for single-crystal silicon at room temperature.2 Comparison has been made to the
reflectance of plain silicon, which is independent of the polarization, and that predicted by
effective medium formulations (to be discussed later). When compared with plain silicon,
the reflectance is significantly reduced by the thin grating layer, and the reduction depends
strongly on the wavelength and the polarization. For a TE wave, the reduction is largest at
l � 520 nm; whereas for a TM wave, the reduction is more significant at shorter wave-
lengths and grating anomalies occur at the wavelengths of 240 and 380 nm.

9.4.2 Effective Medium Formulations

When the grating period is much smaller than the wavelength, i.e., 
all the diffracted waves are evanescent waves, except the zeroth-order (specular direction)
one. The reflection is similar to a smooth film with an effective uniform dielectric function.
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This approach is called the method of homogenization, and the underlying physics is based
on the effective medium theory (EMT). Effective medium formulations have been used
widely to describe the optical properties of inhomogeneous media. The EMT was first pos-
tulated by Garnett (Phil. Trans. Royal Soc. London A, 203, 385, 1904) to obtain the effec-
tive dielectric function of metallic particles embedded in a dielectric medium. The general
assumption is that the spacing separating the particles to be sufficiently large or the filling
ratio of the particles is small. Bruggeman (Ann. der Physik, 24, 636, 1935) developed a dif-
ferent formulation by assuming that two materials are embedded in the effective medium
and obtained an expression which has been successfully applied to study the effect of
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FIGURE 9.19 Calculated reflectance of silicon gratings. (a) TE wave (s polar-
ization). (b) TM wave (p polarization).24
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porosity on refractive index and absorption coefficient of various materials. Bruggeman’s
expression is often called the effective medium approximation (EMA). The dielectric func-
tion of the effective medium is related to those of the two components by

(9.73)

where is the volume fraction (filling ratio) of material A. In 1956, Rytov (Sov. Phys.
JETP, 2, 466, 1965) first applied the EMT for a periodic structure by treating a stratified
medium as a homogeneous uniaxial crystal and obtained the effective permittivity and per-
meability tensors. The zeroth order is considered to be applicable when � l and has
been used for designing surfaces with antireflection and selective radiative properties. The
expression has been extended to include higher-order terms for both 1-D and 2-D gratings.
The effective medium formulation for gratings depends on the polarization. The zeroth-
order expressions of the dielectric function for different polarizations are given below:

, for TE waves (9.74)

, for TM waves (9.75)

The results of the effective medium formulation are compared with those of the RCWA
in Fig. 9.19, in which the reflectance predicted by the EMA is independent of the polariza-
tion. Both of the effective medium formulations cannot predict the radiative properties well
at shorter wavelengths. The agreement between effective medium formulations and the
RCWA is reasonable in the long-wavelength end, except that the EMA is worse for the TE
wave. Chen et al. performed a detailed study on the effects of temperature, wavelength,
polarization, and angle of incidence on the absorptance of nanoscale patterned wafers for
the CMOS technology.24 They also compared the configuration of combined polycrys-
talline silicon gates with SiO2 trenches or a SiO2 film. The results demonstrate nanostruc-
tures can have a significant impact on the radiative properties in unexpected ways. Hence,
further research is much needed to fully understand the effect of complex nanostructures
on radiative energy transfer and properties.

9.5 BIDIRECTIONAL REFLECTANCE
DISTRIBUTION FUNCTION (BRDF)

The bidirectional reflectance, formally known as bidirectional reflectance distribution
function (BRDF), is a fundamental radiative property, which describes the redistribution of
energy reflected from a rough surface. Knowledge of BRDFs is essential for the analysis
of radiative heat transfer between rough surfaces. Because the major heating source in rapid
thermal processing is lamp radiation, knowledge of the radiative properties of materials is
important for the thermal budget and temperature control during the process. A challeng-
ing problem is the accurate measurement of wafer temperature based on radiation ther-
mometry, because it is nonintrusive and can achieve fast response. The accuracy of radiation
thermometry can be affected by the emittance change and the background radiation, espe-
cially when the measured surface is rough, such as the backside of the silicon wafer. The
surface roughness affects not only the emittance of the wafer but also the directional dis-
tribution of the reflected radiation by scattering. Therefore, a detailed understanding of the
directional radiative properties of rough surfaces is essential to model the apparent emit-
tance, considering the background radiation and multiple reflections.
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Roughness is a measure of the topographic relief of a surface. It describes features of
irregularities on the surface. Some common roughness parameters and functions include rms
roughness srms, power spectral density (PSD), autocorrelation length tcor, and slope distrib-
ution function (SDF). A surface appears to be smooth if the wavelength is much greater than
srms. A highly polished surface can have an rms roughness on the order of nanometers. Some
surfaces that look rough to human eyes may appear to be smooth for the far-infrared radia-
tion. The reflection of radiation by rough surfaces is more complicated. For randomly rough
surfaces, the scattered energy distribution or the BRDF often exhibits a peak around the
direction of specular reflection, an off-specular lobe, and a diffuse component.

The BRDF of a surface can be predicted by solving the Maxwell equations if the sur-
face roughness is fully characterized. The boundary integral method is commonly used to
rigorously solve the Maxwell equations by matching the boundary conditions for the elec-
tric and magnetic fields. Since the rigorous electromagnetic wave solution generally
requires a huge memory with a high-speed CPU, this approach is practically applicable to
1-D rough surfaces only, though in some cases, solutions for 2-D rough surfaces have been
obtained. It is common to use approximation methods, such as the Rayleigh-Rice pertur-
bation theory, the Kirchhoff approximation, and the geometric optics approximation. These
approximations are appropriate only within certain ranges of roughness and wavelength.

The geometric illustration for the BRDF definition has been given in Chap. 8, Fig. 8.9.
The Rayleigh-Rice perturbation theory can be used for relatively smooth surfaces, i.e., for
surfaces with srms cos ui/l � 0.05, or small particles on surfaces. It is based on a statistical
Fourier analysis of the surface, and predicts that the BRDF is directly proportional to the PSD
and inversely proportional to the fourth power of the wavelength.25 The Kirchhoff approxi-
mation is another physical-optics-based method that is often used to model the surface scat-
tering with wave characteristics, like wave diffraction, by assuming that the radius of the
surface curvature is smaller than the wavelength and there is no multiple scattering. The
Kirchhoff approximation is applicable when the surface profile is slightly undulating (i.e.,
without sharp crests and deep valleys). The condition for this approximation to hold is that
srms must be relatively small compared with l and tcor. In the Kirchhoff approximation, the
effects of shadowing and multiple scattering, which may be significant at large angles of inci-
dence, are usually neglected. Most studies assumed that the roughness statistics is Gaussian.

The geometric optics approximation (GOA) neglects interference and diffraction
effects and treats a rough surface as one with many small facets where an incident ray
reflects specularly. Under these assumptions, the ray-tracing technique can be applied to
predict the BRDF either with appropriate analytical expressions or with a Monte Carlo
method. The shadowing and multiple scattering can be taken into account through a prob-
ability density function, called shadowing or masking function. Multiple scattering can be
incorporated into the geometric optics formulation with the Monte Carlo method. The GOA
is applicable to surfaces whose srms and tcor are greater than . There exists a good agree-
ment between the simulation results employing the GOA and the rigorous electromagnetic
wave solution. However, the simulation based on geometric optics requires much less com-
putational resources and takes much less time than that based on the rigorous solution. In
the following, the GOA-based analytical formulation and ray-tracing algorithms will be
presented, and the results will be compared for anisotropic surfaces.

9.5.1 The Analytical Model

For the in-plane BRDF (fr � fi or fr � fi 
 180�), referring to Fig. 8.9, Zhu and Zhang
unified several analytical models considering first-order scattering only.26 The expression
of the BRDF is given in the following:

(9.76)fr(ui,fi,ur,fr) �
p(zx,zy)S(ui)S(ur)

4cosuicosur cos4a
r(n,c)

l
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Here, is the 2-D SDF, and and are the slopes in x and y directions, given by 

(9.77a)

and (9.77b)

respectively. A shadowing function S is used in Eq. (9.76) to account for shadowing and re-
striking, and is a function of the incidence or reflection zenith angles and the rms slope w,
which equals for Gaussian surfaces. Smith (IEEE Trans. Ant. Prop., 15, 668,
1967) derived a shadowing function based on Gaussian statistics. The Smith shadowing
function is expressed as

, 0 � u � 90� (9.78)

where u is the zenith angle of incidence (for shadowing) or reflection (for masking), and
. The microfacet reflectance r(n,c), where n is a complex

refractive index and c is the local incidence angle, is calculated from Fresnel’s reflection
coefficients by averaging over the two polarizations. In the denominator of Eq. (9.76), a is
the inclination angle of the microfacet. While a � (ui 
 ur)/2 and c � �ui � ur�/2 for fr �
fi, a� �ui � ur�/2 and c� (ui 
 ur)/2 for fr � fi 
 180�. While the expression is simple,
the GOA allows calculations for the in-plane BRDF with first-order scattering only.

9.5.2 The Monte Carlo Method

Lee et al. developed two ray-tracing techniques for modeling the BRDF in the Monte Carlo
method, namely, the surface generation method (SGM) and the microfacet slope method
(MSM).27 The major difference lies in how to simulate the rough surfaces. The SGM is the
most commonly used ray-tracing method, in which a surface realization (i.e., a numerically
generated rough surface) is required prior to tracing the ray bundles. Therefore, the origin
and direction of reflection is determined based on the physical location and orientation of
the microfacet that the ray strikes. The BRDF is obtained from an ensemble average over
a sufficiently large number of surface realizations. On the other hand, the MSM does not
need to generate the entire surface a priori. In the MSM, ray tracing is performed by gen-
erating a normal vector of a microfacet for each ray bundle, based on the SDF and the direc-
tion of the incoming ray.28 Because a surface profile does not exist in the MSM, the optical
path of a propagating ray and whether the ray restrikes the surface cannot be directly deter-
mined. Hence, the MSM relies on a shadowing function, which is the probability that a
reflected ray re-strikes another surface facet, to model multiple scattering. Zhu et al. com-
pared the two ray-tracing techniques with rigorous solutions of the electromagnetic wave
equation, using the boundary integral method, for dielectric surfaces coated with a thin
film.29 Although the MSM is not applicable for very rough surfaces at oblique incidence, it
takes less computational time and has the advantage for multiscale problems, such as light
scattering from semitransparent materials, because the MSM algorithm is compatible in
both micro- and macroscales.

The spectral method is commonly used for surface realization in the SGM by using the
power spectrum. The power spectrum can be obtained from the roughness statistics. The
autocorrelation function multiplied by srms and the PSD are a Fourier transform pair. A rough
surface, defined with the height distribution function and the autocorrelation function, are
usually generated with the spectral method, regardless of whether the surface is Gaussian

� � tan(90� � u)/(22w)

S(u) �
1 � 0.5erfc(�)

1 � 0.5erfc(�) 
 exp(��2)/(22p�)
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or not. However, it is difficult to generate an anisotropic surface with this method. On the
other hand, the surface topographic data from the AFM measurement are stored in a 2-D
array of the height, which can be conveniently incorporated into the SGM algorithm with-
out using the spectral method. The challenge is how to deal with the trade-off between the
measurement area, spatial resolution, noise and artifacts in the AFM measurements, mea-
surement time, and the number of measurements that will produce statistically meaningful
results. The anisotropic SDF can be numerically evaluated as a 2-D histogram using topo-
graphic data for use in the MSM. A weight function must be included in generating micro-
facets because, statistically, the incident energy that is intercepted by a microfacet depends
not only on the SDF but also on the projected area of the microfacet. The rejection method
allows the generation of microfacets, following the weighted SDF, with uniform random
numbers. The rejection method is suitable for any type of distribution function as long as a
comparison function is appropriately selected. Meanwhile, the Smith shadowing function
determines the probability of re-striking, in the MSM.

The polarization state may change upon reflection by a 2-D rough surface, because
of the random orientation of the microfacets. When the microfacet reflectivity is calcu-
lated using Fresnel’s reflection coefficients, the change of the polarization state should
also be considered. In a 2-D rough surface, even though the incident radiation is purely
s or p polarized, the radiation incident at the microfacet can have both polarization com-
ponents in the local coordinates. Furthermore, depolarization may occur upon reflection
so that the polarization of the scattered wave is different from that of the incident wave.
The geometrical relations between wavevectors and polarization vectors delineate the
contribution of each polarization to the reflectivity. As illustrated in Fig. 9.20, unit vec-
tors in the direction of incidence and reflection, i.e., si and sr, respectively, are defined
in the following:

(9.79)si � °
�sinui cosfi

�sinui sinfi

�cosui

¢       and        sr � °
sinur cosfr

sinur sinfr

cosur

¢
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FIGURE 9.20 Schematic of incident and scattered rays. Here, x, y, and z are the global coor-
dinates, where the x-y plane is the mean plane of a rough surface.



The vectors and define the plane of incidence in the global coordinates, and the vec-
tors and define the plane of reflection. A unit vector hi perpendicular and a unit vector

parallel to the plane of incidence characterize the two polarizations of the incident wave.
Here, indicates the electric field for s polarization while the electric field for p polar-
ization. Similarly, and represent the two polarizations of the reflected wave. Hence,

(9.80)

(9.81)

Calculation of the reflectivity involves two conversions of the polarization components.
The s- and p-polarization components of the incident wave defined in the global coordi-
nates are first converted to their counterparts in the local coordinates. The local polariza-
tion components are multiplied by Fresnel’s reflection coefficients and then converted to
the global components. Accordingly, the microfacet reflectivities for the co- and cross-
polarizations can be expressed as follows:

(9.82a)

(9.82b)

(9.82c)

(9.82d)

where r denotes Fresnel’s reflection coefficient. The subscripts s and p stand for each polar-
ization. On the left-hand side, the double subscripts indicate the polarization for the inci-
dence and the reflection, respectively. 

In terms of the microfacet reflectivities, the reflected energies Gr,s and Gr,p are related to
the incident energies Gi,s and Gi,p by

(9.83)

The reflectivity is defined as the ratio of the reflected energy Gr � Gr,s
 Gr,p to the incident
energy Gi � Gi,s
 Gi,p; thus, it depends on the polarization state of the incident wave. To
facilitate the calculation, the incident energy of each ray bundle is set to unity such that
(Gi,s, Gi,p ) � (1, 0) for s polarization, (Gi,s, Gi,p � (0, 1) for p polarization, and (Gi,s,Gi,p) �
(0.5,0.5) for random polarization (i.e., unpolarized incidence). For the first reflection, Gr,s
and Gr,p are calculated from Eq. (9.83). For multiple reflections, the previously reflected
energies are substituted for Gi,s and Gi,p, and the next reflected energy is updated according
to Eq. (9.83). Each ray bundle is traced until it leaves the surface, and then, the information
of its direction and energy for each polarization is stored in a database. Because the energy
of the bundle is reduced after each reflection, there is no need to use random numbers to
decide whether a ray bundle is reflected at the microfacet or not.

In a special case, when the planes of incidence and reflection are identical, the polar-
ization state is maintained for either s or p polarization if only the first-order scattering has
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been considered. This means that the vectors hi and hr are either parallel or antiparallel
(refer to Fig. 9.20); consequently, hi � sr � 0 and hr � si � 0. It can be seen from Eq. (9.82)
that rsp�rps�0, rss� �rs�

2, and rpp� �rp�
2. The corresponding BRDF is called the in-

plane BRDF (fr � fi or fr � fi 
 180�). Nevertheless, the cross-polarization term is
nonzero for the in-plane BRDF when multiple scattering is significant. After a large num-
ber of ray bundles have been traced, the BRDF can be calculated in terms of the energy of
the ray bundles: 

(9.84)

where Gi(ui, fi) is the total energy of the incident ray bundles, and Gr(ur,fr) is the energy of
the ray bundles leaving the surface within the solid angle �r, in the direction (ur, fr). The
integration of the BRDF yields the directional-hemispherical reflectance. The directional
emittance can be obtained according to the conservation of energy and Kirchhoff’s law.

9.5.3 Surface Characterization

In most studies, surface roughness is assumed to satisfy Gaussian statistics in the deriva-
tion of the BRDF model and for the surface generation in the Monte Carlo simulation.
Furthermore, the roughness statistics of 2-D rough surfaces is assumed to be isotropic in
most publications so that the autocorrelation function is independent of the direction.
However, the Gaussian distribution may miss important features of natural and man-made
rough surfaces that are strongly anisotropic. Before the invention of the AFM, the surface
profile was usually measured with a mechanical profiler that scans the surface line-by-line.
Some mechanical stylus profilers can measure rough surfaces with a vertical resolution of
a few nanometers. However, the lateral resolution is usually on the order of 1 �m due to
the large radius of the stylus probe. Because the radius of curvature of the probe tip is in the
range from 5 to 50 nm, an AFM can provide detailed information on the topography of a
small area on the microrough surfaces, with a vertical resolution of subnanometers and a
lateral resolution around 10 nm. The result is stored in an array, containing the height infor-
mation, z(m, n), where m � 1, 2, . . . , M and n � 1, 2, . . . , N are the points along the x and
y directions, respectively.

To evaluate the 2-D slope distribution p(zx, zy), each surface element is determined by
the four closest nodes in the data array. The four-node element can be considered as two
triangular surfaces with a common side. The surface normals for the two triangles can be
averaged to give the mean slope of the surface element such that

(9.85a)

(9.85b)

where l is the lateral distance between adjacent data points.26 The SDF can be determined by
evaluating the slopes of all measured surface elements. For a scan area of 100 � 100 �m2,
the lateral interval l � 0.2 �m, when the data are stored in a 512 � 512 array. 

The 2-D SDFs from the AFM measurement in the tapping mode, for two lightly doped
�100� single-crystal silicon surfaces, are shown in Fig. 9.21.27 In the contact mode, lateral
or shear forces can distort surface features and reduce the spatial resolution. Thus, deep val-
leys may not be correctly measured. The AFM scanning performed in the tapping mode with
sharper silicon tips allows measuring precipitous slopes. The two SDFs are non-Gaussian and
anisotropic, although the anisotropy of Si-1 is not as striking as that of Si-2. The SDF of Si-1
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FIGURE 9.21 2-D slope distribution obtained from AFM topographic measurements for two samples:
(a) Si-1; (b) Si-2.

contains only one dominant peak at the center, indicating that a large number of microfacets
are only slightly tilted. The SDF of Si-2 also has a dominant peak at the center, though smaller
than that of Si-1. Four side peaks can also be seen that are nearly symmetric. These side peaks
are associated with the formation of {311} planes, during the chemical etching in the (100)
crystalline wafer.26,27 The angle between the (100) plane and any of the four (311) planes is

, which is close to the location of the observed side peaks.

9.5.4 BRDF Measurements

The BRDF of silicon wafers was measured with a laser scatterometer, named as three-axis
automated scatterometer (TAAS), shown schematically in Fig. 9.22.30 The sample is vertically
mounted. Three rotary stages, automatically controlled by a computer, are used to change
incidence and reflection directions. One rotates the sample around the y-axis to change the
incidence angle ui, another rotates detector A in the x-z (horizontal) plane to change the reflec-
tion angle ur, and the third rotates the arm of detector A out of the x-z plane to change the
azimuthal angle fr for out-of-plane measurements. Manual rotation of the sample on a sample
holder around the z-axis adjusts the azimuthal angle fi. The incident laser beam is parallel to
the optical table (x-z plane). A diode laser system serves as an optical source, and a lock-in
amplifier, connected with a diode laser controller, modulates the output optical power at 400
Hz. The wavelength can be selected by replacing the fiber-coupled diode laser, and a number
of diode lasers in the visible and the near-infrared are available. The diode laser is mounted on
a thermoelectrically controlled stage to provide power stability within a standard deviation of
0.2%. An optical fiber is used to provide flexibility for optical access and alignment. The light
from the output end of the fiber is in the horizontal plane. 

As shown in Fig. 9.22, the beam first passes through a collimator with a pair of lenses and
a small aperture. A linear polarizer mounted on a dial allows the selection of polarization for
light incident on the sample. The beamsplitter then divides the laser beam into two passes:
one goes to the sample and the other to a stationary reference detector B. The light scattered
by the sample is measured by detector A. The beam spot size on the sample is a few mil-
limeters in diameter, and the measurement can be considered as a spatial average over the
beam diameter. Si and Ge photodiode detectors measure the radiant power in the wave-
length range from 350 to 1100 nm and from 800 to 1800 nm, respectively. The power col-
lected at each detector is sent to a trans-impedance preamplifier that has nine decades of
amplification range. The preamplifier has a linear frequency response from dc (zero fre-
quency) up to a certain maximum frequency that is much greater than 400 Hz. The lock-in

cos�1(3/211) � 25.2�



amplifier picks up only the phase-locked signals at 400 Hz, thereby eliminating the effect
of background radiation or stray light without using a chopper. The measurement equation
for the BRDF is given by

(9.86)

where VA and VB are the outputs of detectors A and B, respectively, and �r is the reflec-
tion solid angle, which is 1.84 � 10�4 sr, as determined by the area of a precision-machined
aperture in front of the detector and the distance between this aperture and the beam spot
on the sample. An instrument constant CI compensates the beamsplitter ratio and the dif-
ference in the responsivities of the two detectors. The BRDF within �2.5° of the retrore-
flection direction (ur � ui and fr � fi) cannot be measured since the movable detector
blocks the incident beam. A PC performs the data acquisition and automatic rotary-stage
control in a LabView environment. In the measurements, VA and VB are averaged over
many measurements at a given position to reduce the random error. The relative uncertainty
of the TAAS is estimated to be 5% for through intercomparison with a reference
standard instrument at NIST.30

fr � 0.1

fr(ui,fi,ur,fr) � CI

VA

VB cosur �r
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FIGURE 9.22 Schematic of the three-axis automated scatterometer (TAAS) for BRDF mea-
surements.



9.5.5 Comparison of Modeling with Measurements

Figure 9.23 compares the predicted BRDFs based on the slope distribution with the BRDFs
measured using TAAS at l � 635 nm, for Si-2, which is strongly anisotropic.27 For clarity,
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FIGURE 9.23 Comparison of Monte Carlo model based on the MSM and the measured in-plane BRDF
for Si-2. The observation angle uobs is the same as the reflection polar angle when and neg-
ative refraction polar angle when fr � fi.

27
fr � fi 
 p

only the prediction using the MSM is presented. The predictions with the SGM and the ana-
lytical model yield a similar agreement with experiments.26,27 As can be seen from Fig. 9.23a,
the prediction and the measurement agree well, except near , where the measure-
ments can not be taken within �2.5° and the simulation has a large fluctuation. The simula-
tion captures the general features and trends of the measured BRDF, while some
discrepancies exist near the side peaks. For and , as shown in Fig. 9.23b, the
BRDF contains two large side peaks associated with the side peaks in the SDF for Si-2 at

in Fig. 9.21b. The Monte Carlo simulations also predict the side peaks 
located approximately at ur � 57�, which deviates somewhat from the measured value of 50�.
Based on Snell’s law, the inclination angle of microfacets is half of ur, at ui � 0�. Therefore,
the measured side peaks in the BRDF correspond to an inclination angle 25�, which is very
close to the angle of 25.2� between any of the four {311} planes and the (100) plane. On the
other hand, the predicted side peaks correspond to an inclination angle of 28.5°, which is
almost the same as that calculated from the slope at . Consequently, the
side peak position obtained from the BRDF measurement is more reliable than that predicted
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by the Monte Carlo methods using the topographic data from the AFM measurement. Due to
the artifacts in the AFM measurements, the BRDF values are underpredicted when 15� � ur
� 50� and overpredicted when 50� � ur � 80�. When, ui � 45� the Monte Carlo method over-
predicts the specular peak, presumably due to the limitation of geometric optics. The dis-
agreement between the predicted and measured BRDFs, for 60� � uobs � 85�, may be due to
the combined result of the artifacts in the AFM measurement, the limitation of the GOA, and
multiple scattering. For ui � 45� andfi � 45�, a small side peak appears at uobs � �60� in the
measured curve and at uobs � �71� in the predicted curve. This is believed to be due to micro-
facets with {111} orientation that have an inclination angle of 54.7°. The small side peak
should occur around uobs � �64.4� based on simple geometric arguments.

Figure 9.24 shows the directional-spectral emittance measured using an integrating
sphere coupled with a monochromator.31 The directional emittance was calculated from the
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FIGURE 9.24 Comparison of the predicted and measured emittance of Si-1 and Si-2, in a polar
angle approximately equal to 7�.31

measured directional-hemispherical reflectance at an incidence angle of approximately 7�.
The emittance values calculated from the models based on Gaussian distribution and
anisotropic slope distribution are compared with those obtained from experiments. For Si-1,
which is nearly isotropic, the difference between the models is small and the agreement
with the experiment is excellent. The combined uncertainty in the measurement is esti-
mated to be 0.01, except at l � 1000 nm, where the silicon wafer becomes slightly trans-
parent. For Si-2, however, the Gaussian model underpredicts the emittance and there is a
large enhancement of the emittance due to anisotropy. The Monte Carlo model, based on
the MSM, significantly improves the prediction. Given the fact that the AFM surface topo-
graphic measurements may not perfectly match the actual surface slope distribution, an
uncertainty of 0.01 has been estimated for the Monte Carlo model. It can be seen that the
prediction agrees with the measurement better at short wavelengths, where geometric optics
is more suitable.

The out-of-plane BRDFs of Si-1 and Si-2, calculated with the MSM at ui � 30�, are pre-
sented in Fig. 9.25 as contour plots in a polar coordinates system.27 In these plots, the radial
and azimuthal coordinates respectively correspond to ur and fr, and the z-axis represents
fr cosur. The BRDFs depend little on fr around the specular direction, but the dependence
becomes large as the angular separation from the specular peak increases. The region where
the BRDF is independent of fr is broader for Si-1 than for Si-2. The predicted BRDFs for
Si-2 display a strong specular reflection peak, together with the four large side peaks asso-
ciated with {311} planes. In addition, a small side peak associated with a {111} plane appears
at large ur, as illustrated in Fig. 9.25c at fr � 294� and another in Fig. 9.25d at fr � 45�. The
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FIGURE 9.25 BRDF predicted by the MSM at ui � 30� for random polarization.27 (a) Si-1 at fi � 0�.
(b) Si-1 at fi � 45�. (c) Si-2 at fi � 0�. (d) Si-2 at fi � 45�. In the polar contour plots, the radial coordinate
corresponds to ur, and the azimuthal coordinate corresponds to fr.

actual magnitudes of the small side peaks may be smaller than those predicted by the MSM,
and their positions may shift toward smaller ur. Nevertheless, Fig. 9.25 indicates that the Monte
Carlo method is an effective technique for studying the BRDFs for anisotropic surfaces.

9.6 SUMMARY

This chapter provided a detailed treatment of the radiative properties of stratified media
based on the electromagnetic wave theory, considering partial coherence, and extended to
the discussion of periodic structures, i.e., photonic crystals. A discussion of the coupled-
wave analysis was also present for periodic gratings. Moreover, a survey was given to some
recent research on the bidirectional reflectance of anisotropic surfaces.

An important area that was not covered is light scattering by small particles and colloids
for which there have been tremendous interests and extensive studies. The heat transfer
community is very familiar with light scattering and radiative transfer in scattering and
absorbing media. Recently, more and more studies on light scattering have employed rig-
orous treatments of the electromagnetic wave scattering in random media, considering
polarization and surface plasmon resonance. Further discussions on evanescent waves, sur-
face waves including surface plasmon and phonon polaritons, and near-field energy trans-
fer by electromagnetic waves will be given in the next chapter.
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PROBLEMS

9.1. A greenhouse looks like a small glass house used to grow plants in the winter. Based on the
transmittance curve of fused silica (SiO2), shown in Fig. 9.2, explain why glass walls can keep the
plants warm in the winter. Discuss the greenhouse effect in the atmosphere. What gases are responsi-
ble for the greenhouse effect?

9.2. Calculate the transmittance T, the reflectance R, and the absorptance A of a thick (without con-
sidering interference) silicon wafer (0.5 mm thick) at normal incidence. Plot T, R, and A versus wave-
length, in the range from 2.5 to 25 �m. The refractive index and the extinction coefficient of the doped
silicon are given in the following table:
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Optical Constants of a Doped Silicon Wafer

Wavelength l (�m) Refractive index n Extinction coefficient k

2.5 3.44 0
5.0 3.43 1.0 � 10�7

7.5 3.42 8.4 � 10�5

10.0 3.42 2.1 � 10�4

12.5 3.42 4.0 � 10�4

15.0 3.42 5.0 � 10�4

17.5 3.42 9.0 � 10�4

20.0 3.42 1.0 � 10�3

22.5 3.42 1.1 � 10�3

25.0 3.42 1.3 � 10�3

9.3. Calculate and plot the transmittance and reflectance for the same silicon wafer described in
Problem 9.2 at l � 5 �m as functions of the polar angle u. Consider the individual polarizations and
their average. Compare your results with those by Zhang et al. (Infrared Phys. Technol., 37, 539, 1996).

9.4. Using data from the table in Problem 9.2, calculate and plot the normal transmittance of a
100-�m-thick silicon wafer, near 10-�m wavelength, considering interference.



(a) Plot the transmittance in terms of wavelength (�m) with an interval between the data spacing of
0.05 and 0.005 �m, respectively, on one graph.

(b) Plot the transmittance in terms of wavenumber (cm–1) with an interval between the data spacing of
5 and 0.5 cm–1, respectively, on one graph.

(c) What is the fringe-averaged transmittance at 10-�m wavelength?
(d) What is the free spectral range in wavenumber and in wavelength? How will and change

if the wavelength is changed to 20 �m?

9.5. For gold, the refractive index at l � 0.5 �m is n � 0.916 
 i1.84, and at l � 2.0 �m is 
n � 0.85 
 i12.6. Calculate the transmittance of a free-standing gold film at these wavelengths for
d � 10, 20, 50, and 100 nm, using both Eq. (9.10) and Eq. (9.11). Which equation gives the correct
results, and why?

9.6. For the three-layer structure shown in Fig. 9.3, calculate the normal reflectance for n1 � 1.45
(glass), n2 � 1 (air gap), and n3 � 2 (substrate) without any absorption at l� 1 �m. Plot the reflectance
as a function of the air-gap width d. Obtain the analytical formulae of the reflectance maximum and
minimum.

9.7. Assume that glass has a refractive index of 1.46 without any absorption in the visible spectrum
(0.4 �m � l� 0.7�m). Design an antireflection coating (for normal incidence) that will minimize the
reflectance from a semi-infinite glass. You need to determine the coating thickness and the refractive
index (assuming it is independent of wavelength). Plot the normal reflectance of the coated glass sur-
face in the spectral range from 0.4 to 0.7 �m. What material would you recommend for use with the
desired property?

9.8. To evaluate the effect of antireflection coating for oblique incidence, assume the antireflection
coating has a refractive index of 1.21 and a thickness of 114 nm. What will be the reflectance, at 45�
and 60�, for each polarization?

9.9. While the extinction coefficient is often related to absorption or loss, it should be noted that
when , it is the real part of the refractive index that is related to the loss. This is because the
dielectric function can be expressed as , where e� is related to the dis-
sipation. For a semi-infinite medium, a purely negative dielectric function means perfect reflection.
The effect of n on the absorption by a thin film can be studied by considering a thin film of thickness
d with a complex refractive index n2 � n 
 ik. For a wavelength of l � 0.5 �m and at normal inci-
dence, let d � 30 nm and k� 3.0. Plot the transmittance, the reflectance, and the emittance (which is
the same as the absorptance), against the refractive index n ranging from 0.01 to 2. Discuss the effect
of n on the absorption.

9.10. Use the dielectric function of SiC given in Example 8-7 to calculate the normal emittance for
a SiC film at wavelengths from 9 to 15 �m, for different film thicknesses: d � 1, 10, 100, and 1000 �m.
Assume the multiply reflected waves to be perfectly coherent.

9.11. Calculate the emittance as a function of the emission angle for a doped silicon wafer of 200-�m
thickness, at l� 20 �m with n2 � 3.42 
 i0.001. Consider p and s polarizations separately, and then,
take an average. Assume the multiply reflected waves to be perfectly coherent.

9.12. This problem concerns the transmission and reflection of infrared radiation of a YBCO
(YBa2Cu3O7) film on a thin MgO substrate of 325-�m thickness, at 300 K and normal incidence. For
the YBCO film, use the properties for sample A from Kumar et al. (J. Heat Transfer, 121, 844, 1999).
For MgO, use the Lorentz model in Problem 8.26. 
(a) Plot the radiation penetration depth of the YBCO film, df(l), and that of MgO, ds(l), for 1 �m �
l � 1000 �m.

(b) Neglecting the interference effect in the MgO substrate, calculate and plot the transmittance T, the
film-side reflectance Rf, and the back-side reflectance Rs, for 1�m � l� 1000 �m, with different
film thicknesses: 0, 30, 48, 70, and 400 nm. Plot T, Rf, and Rs in terms of both wavelength (�m)
and wavenumber (cm�1).

(c) Repeat the previous calculation, considering the interference effects in the MgO substrate, for
200 �m � l � 1000 �m (50 to 10 cm�1). Plot in terms of the wavenumber only. What happens
with the interference fringes when the film thickness is 48 nm?

9.13. Calculate the normal transmittance of a 10-�m film with a refractive index n � 2.4 without any
absorption in the spectral range from 1000 to 3000 cm�1. One surface of the film is polished, and the
other surface has a roughness srms of 0.10 �m. How does the srms value affect the transmittance?
Compare your result with that shown in Fig. 9.10.
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9.14. Reproduce Example 9-2 and Fig. 9.10. Suppose the coherence spectral width ,
where is the free spectral range. Determine the fringe-averaged transmittance. Explain why the
peaks and the valleys flip after fringe averaging.

9.15. Calculate and plot the transmittance of a Fabry-Perot resonance cavity, assuming the medium
to be lossless with n2 � 2, d2 � 100 �m, and R � 0.9, for normal incidence in the wavenumber region
from 950 to 1050 cm�1. What are the free spectral range, the FWHM of the peak, and the Q-factor of
the resonator? Does the theoretically predicted FWHM match with the plot?

9.16. Group project: A reflectance Fabry-Perot cavity can be constructed by coating a SiO2 film onto
a silver substrate first and then a thin silver film onto the SiO2 film. Derive a formula for the reflectance.
Based on Kirchhoff’s law, one can calculate the emissivity of the structure. Show that the emissivity
exhibits sharp peaks close to unity at specific wavelengths for normal incidence. When the wavelength
is fixed, calculate the emissivity versus the polar angle for each polarization. Plot and show that there
exist angular lobes in the emissivity of such structures. Hint: Choose the thicknesses of the silver film
(on the order of 100 nm) and the SiO2 film (on the order of 3000 nm), and the wavelength (around
1 �m). Use the optical constants from Palik.2

9.17. Group project: Develop a Matlab code for the multilayer radiative properties based on the
matrix formulation described in the text for both TE and TM waves. Compare your results with those
calculated by using Rad-Pro, downloadable from www.me.gatech.edu/~zzhang.

9.18. Group project: Evaluate and plot the band structures of a Bragg reflector made of quarter-wave
high- and low-index materials GaAs, n � 3.49, and AlAs, n � 2.95, around the wavelength of 1064
nm. Optional: Plot the normal reflectance near 1064-nm wavelength with 7, 17, and 27 periods, assum-
ing that the substrate is GaAs.

9.19. Derive Eq. (9.60) and Eq. (9.61).

9.20. Based on Eq. (9.64), show that when the evanescent wave exists, it will decay toward negative z.
Change the subscript from I to III, and show that when the evanescent wave exists, it will decay toward
positive z.

9.21. Derive Eq. (9.71) and Eq. (9.72).

9.22. Use different effective medium formulations to compute the effective dielectric function for
silicon with a filling ratio f� 1/16 in air at l� 300 nm (n � 5.0 and k� 4.2), l� 400 nm (n � 5.6
and k� 0.39), l � 500 nm (n � 4.3 and k� 0.073), and l� 800 nm (n � 3.7 and k� 0.0066).

9.23. Consider a grating region consisting of Si, with a filling ratio of 1/6, on a semi-infinite Si sub-
strate. The height of the grating is 50 nm. Calculate the reflectance for normal incidence, using differ-
ent effective medium formulations at the corresponding wavelengths given in Problem 9.22. Compare
your results with those in Fig. 9.19.

9.24. Plot the shadowing function for a Gaussian distribution as a function of the polar angle u for
the rms slopes w � 0.05, 0.1, 0.2, and 0.3.

9.25. Calculate the BRDFs at l � 0.5 and 2 �m based on the analytical model for a gold surface 
(opaque) with a Gaussian roughness statistics. The SDF is given by

Use the optical constants from Problem 9.5 and the rms slope w � 0.1 and 0.3.

9.26. Comment on the limitations of different analytical models for the BRDF, such as the Rayleigh-
Rice perturbation theory, the Kirchhoff approximation, and the geometric optics approximation.
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Near-field optics has played a significant role in nanoscience and nanobiotechnology in the
past 20 years and continues to be an active research area, especially when dealing with field
localization and resonances in micro/nanostructures, with applications in biochemical sens-
ing and nanolithography. The preceding two chapters have laid the foundation of electro-
magnetic waves in bulk materials and nanostructures. The present chapter offers a more
detailed treatment of the energy transfer by electromagnetic waves in the near field, as well
as the coupling between near-field phenomena and far-field characteristics. The applica-
tions include nanomanufacturing, energy conversion systems, and nanoelectronics thermal
management.

Ernst Abbe in 1873 and Lord Rayleigh in 1879 studied the required angular separation
between two objects for their images to be resolved. The resolution of a conventional
microscope is diffraction limited such that the smallest resolvable distance is approxi-
mately , where is the wavelength in vacuum and n is the refractive index of the
medium. Even with an immersion oil ( ), the imaging sharpness is rather limited to
the order of wavelength. The concept of near-field imaging was first described by Synge
(Phil. Mag., 6, 356, 1928). This work elaborated the concept of using subwavelength aper-
ture as small as 10 nm in diameter to introduce light to a specimen (e.g., a stained biologi-
cal section), placed within 10-nm distance, which could move in its plane with a step size
less than 10 nm. By measuring the transmitted light with a photoelectric cell and a micro-
scope, an ultramicroscopic image could be constructed. In a subsequent paper (Phil. Mag.,
13, 297, 1932), Synge described the idea of using piezoelectricity in microscopy. Synge’s
works, however, were largely unnoticed and the idea of near-field imaging was rediscov-
ered many years later. Ash and Nicholls published a paper (Nature, 237, 510, 1972) enti-
tled “Super-resolution aperture scanning microscope.” This work experimentally
demonstrated near-field imaging with a resolution of using 10-GHz microwave radi-
ation (	 � 3 cm). In the 1980s, two groups have successfully developed near-field micro-
scopes in the visible region.1,2 The IBM group in Zurich formed the aperture through a
quartz tip coated with a metallic film on its sides,1 whereas the Cornell group used silicon
microfabrication to form the aperture.2 The fabrication process was later improved by using
metal-coated tapered optical fibers. In the early 1990s, Betzig at Bell Labs and collabora-
tors demonstrated single molecule detection and data storage capability of 45 gigabits per
square inch.3 Nowadays, near-field scanning optical microscope (NSOM), also known as
scanning near-field optical microscope (SNOM), has become a powerful tool in the study
of fundamental space- and time-dependent processes, thermal metrology, and optical man-
ufacturing with a spatial resolution of less than 50 nm. NSOM is usually combined with the
atomic force microscope (AFM) for highly controllable movement and position sensing.
An alternative approach is to use a metallic AFM tip to couple the far-field radiation with
the near-field electromagnetic waves in a subwavelength region underneath the tip. This is

l/60

n < 1.5
l0.5l/n
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the so called apertureless NSOM, which does not require an optical fiber or an aperture.
Apertureless tips allow high-intensity laser energy to be focused to nanoscale dimensions
for laser-assisted nanothermal manufacturing.4,5

Figure 10.1 illustrates three typical NSOM designs. The first is an aperture-based setup,
where a very small opening is formed on an opaque plate and collimated light is incident
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FIGURE 10.1 Schematic illustration of different NSOM setups. (a) Aperture on an opaque plate. (b)
Aperture at the end of a coated optical fiber. (c) Apertureless metallic tip. The opening or the tip is much
smaller than the wavelength 	. The electric field is highly collimated in the near field within a distance of
	 and diverges as the distance increases.

Laser

(a) Aperture (b) Fiber tip (c) Apertureless

ªl
ªl

ªl

from the above. The second is based on a tapered optical fiber whose tip serves as an aper-
ture. The third uses an apertureless metallic sharp tip, which reflects (scatters) the incident
laser light. All of the three designs have one thing in common. The light is confined to a
narrow region whose width may be much less than a wavelength. Furthermore, the elec-
tromagnetic field within one wavelength distance is very intense and highly collimated. In
the near-field region, evanescent waves dominate. Because the amplitude of an evanescent
wave decays exponentially away from the aperture or tip, the far-field, or the radiation field
diverges and becomes very weak. Understanding the nature of evanescent waves and the
localized fields is essential for the NSOM and other near-field optical devices.

Evanescent waves are also essential in energy transfer between adjacent objects,
through photon tunneling, and in surface plasmon polaritons or surface phonon polaritons.
Polaritons are elementary excitons in solids due to charge oscillations near the interface and
can interact strongly with electromagnetic waves. In this chapter, we will first use total
internal reflection to introduce evanescent waves, and then discuss polaritons or electro-
magnetic surface waves. The application to construct coherent thermal emission sources
and radiation heat transfer at nanometer distances will be presented afterward.

10.1 TOTAL INTERNAL REFLECTION, GUIDED
WAVES, AND PHOTON TUNNELING

Total internal reflection occurs when light comes from an optically denser material to
another material at incidence angles greater than the critical angle determined by Snell’s
law. As discussed in Chap. 8, the amplitude of the reflection coefficient becomes unity at
incidence angles greater than the critical angle. Although no energy is transferred from
medium 1 to medium 2, there exists an electromagnetic field in the second medium near
the surface. This electromagnetic field can store as well as exchange energy with medium



1 at any instant of time. The time-averaged energy flux must be zero across the interface.
Total internal reflection has important applications in optical fibers and waveguides. When
medium 2 is not infinitely extended but a very thin layer sandwiched between the first
medium and the third medium (which may be made of the same material as that of medium
1), photons can tunnel through the second medium into the third, even though the angle
of incidence is greater than the critical angle. This phenomenon is called photon tunneling,
radiation tunneling, or frustrated total internal reflection, and has been studied for over 300
years since Newton’s time. Detailed descriptions of the original experiments and analyses
by Isaac Newton can be found from his classical book, Opticks (reprinted by Dover
Publications in 1952). The enhanced energy transfer by photon tunneling may have appli-
cations in thermophotovoltaic energy conversion devices as well as nanothermal manufac-
turing using heated AFM cantilever tips. 

10.1.1 The Goos-Hänchen Shift

Evanescent waves can be illustrated by using the total internal reflection arrangement.
Consider a plane wave of angular frequency incident from a semi-infinite medium 1 to
medium 2, as shown in Fig. 10.2a. The wavevector , , andk�
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FIGURE 10.2 Illustration of total internal reflection. (a) Schematic of the incident, reflected, and
transmitted waves at the interface between two semi-infinite media. (b) The magnetic field distribu-
tion for a TM wave when total internal reflection occurs.

, since the parallel wavevector component must be the same as required
by the phase-matching boundary condition. The magnitudes of the wavevectors are 

(10.1a)

and (10.1b)

where and are the relative (ratio to those of vacuum) permittivity and permeability,
respectively, and c is the speed of light in vacuum (throughout this chapter). Let us assume
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that the incident wave is p polarized or a TM wave, so that the only nonzero component of
the magnetic field is in the y direction. The magnetic field of the incident wave may be
expressed as , where . For simplicity, let us
omit from now on. Recall that the Fresnel coefficients for a TM wave are
defined as the ratios of the reflected or transmitted magnetic field to the incident magnetic
field. For example, the Fresnel reflection coefficient is

(10.2)

The field in medium 1 is composed of the incident and reflected fields, and that in
medium 2 is the transmitted field. Therefore,

(10.3)

The electric fields can be obtained by applying the Maxwell equations. Similar to Sec.
8.3.1, we can write the electric and magnetic fields in both media as follows:

(10.4)

and

(10.5)

Assume that ’s and ’s are real and furthermore, . From Eq. (10.1b),

we have . When , the incidence angle is
defined but the refraction angle is not, because becomes imaginary. One can write

, where is a real positive number. In this case, and 

(10.6)

where . Following Haus,6 the magnetic field at x � 0 in medium 1
can be written as

(10.7a)

Similarly, in medium 2, Hy becomes

(10.7b)

The magnetic field at x � 0 is plotted in Fig. 10.2b with respect to , at the instance of
time when the phase of becomes zero. From this figure, one can see that the field
decays exponentially in medium 2. As a result of total internal reflection, there is a phase
shift in medium 1 so that the maximum field is shifted from the interface to . The
phase angle of the reflection coefficient is called the Goos-Hänchen phase shift,
which depends on the incidence angle or . The difference in for TE and TM waves
in a dielectric prism was used to construct a polarizer called Fresnel’s rhomb, which can
change a linearly polarized wave to a circularly polarized wave, or vice versa.7
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Example 10-1. Calculate the time-averaged Poynting vector near the interface in the case of total
internal reflection. 

Solution. Based on Example 8-1, it can be seen that the Poynting vector is
in general a function of time. The time-dependent terms that oscillate with , however, become
zero after integration. The time-averaged Poynting vector is . For z � 0,

because is purely imaginary. It can also be shown that 
(see Problem 10.2). Furthermore, 

(10.8)

Note that does not have to be continuous at the interface. Depending on whether is positive
or negative, the sign of may be the same as or opposite to . It should also be noted that 
is a sinusoidal function of z in medium 1 and decays exponentially in medium 2 as z approaches
infinity.

Newton conjectured that, for the total internal reflection of light by the boundary, the
beam of light would penetrate some distance into the optically rarer medium and then
reenter the optically denser medium. In addition, he suspected that the path of the beam
would be a parabola with its vertex in the rarer medium and, consequently, the actual
reflected beam would be shifted laterally with respect to the geometric optics prediction.
From the Poynting vector formulation given in Eq. (10.8), the energy must penetrate
into the second medium to maintain the energy flow parallel to the interface and reen-
ter the first medium so that no net energy is transferred across the interface. The actual
beams have a finite extension so that the reflected beam in the far field can be separated
from the incident beam since the Poynting vector is parallel to the wavevector. The
effect of the parallel energy flow indeed causes the reflected beam to shift forward from
that expected by the geometric optics analysis. Goos and Hänchen were the first to
observe the lateral beam shift through a cleverly devised experiment [Ann. Physik, 6(1),
333, 1947; 6(5), 251, 1949]. A schematic of this experiment is shown in Fig. 10.3, in
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FIGURE 10.3 Illustration of the Goos-Hänchen experiment.



which a glass plate was used so that the incident light was multiply reflected by the top
and bottom surfaces. In the middle of one or both of the surfaces, a silver strip was
deposited. This way, the beam reflected by the silver film (solid line) would essentially
follow geometric optics and that by total internal reflection would experience a lateral
shift. Although the lateral shift is on the order of the wavelength, a large number of
reflections (over 100 times) allowed the shift to be observed by a photographic plate.
Lotsch published a series of papers on the comprehensive study of the Goos-Hänchen
effect.8 Puri and Birman provided an elegant review of earlier works, including several
methods for analyzing the Goos-Hänchen effect.9 A quantitative study of the Goos-
Hänchen effect is presented next.

One way to model the lateral shift is to use a beam of finite width rather than an
unbounded plane wave. Another method that is mathematically simpler considers the phase
change of an incoming wave packet, which is composed of two plane waves with a slightly
different . Upon total internal reflection, the phase shift for a given polariza-
tion is a function of . The difference in the phase shift will cause the reflected beam to
exhibit a lateral shift along the interface (x direction) given as

(10.9)

where we have used . In formulating Eq. (10.9), is always taken as
positive. Equation (10.8) clearly suggests that and have the same sign when the per-
mittivity is positive and different sign when the permittivity is negative.10 When and 
have different signs, the lateral shift D will be negative, which implies that the lateral shift
is opposite to of the incident beam. For a TE wave, one can simply replace ’s by ’s
in Eq. (10.9). For two dielectrics, we have , where

are the refractive indices of medium 1 and 2, respectively. Consequently, 
Eq. (10.9) reduces to the following:

for a TE wave (10.10a)

and for a TM wave (10.10b)

At grazing incidence, , however, the shift in the direction parallel to the beam is
, which approaches a finite value and does not diverge. At the

critical angle, , , and D approaches infinity. This diffi-
culty can be removed by using the Gaussian beam incidence.11 Quantum mechanics has
also been applied to predict the lateral beam shift.8 The Goos-Hänchen effect also has its
analogy in acoustics and is of contemporary interest in dealing with negative index materi-
als, waveguides, and photon tunneling.10,12,13

10.1.2 Waveguides and Optical Fibers

Optical fibers and waveguides are essential for optical communication and optoelectronics.
There are numerous other applications such as noncontact radiation thermometry, near-
field microscopy, and decoration lightings. According to a report in 2000, the total length
of optical fiber wires that had been installed worldwide exceeded m, which
equals the distance of a round trip from the earth to the sun. Optical fibers usually operate
based on the principle of total internal reflection, as shown in Fig. 10.4. The fiber core is
usually surrounded by a cladding material with a lower refractive index. 
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The numerical aperture NA is defined according to the half angle of the acceptance
cone, within which total internal reflection occurs. It can be seen from Fig. 10.4 that 

(10.11)

For example, if and , the critical angle 72.6�, the maximum
cone angle 27�, and NA � 0.46. There are different types of waveguides, such as
graded-index waveguides and metallic waveguides, in addition to the simple dielectric
type. The cross section may be circular, annular, rectangular, or elliptical. In some
cases, the diameter of the fiber is much greater than the wavelength and the electro-
magnetic waves inside the fiber are incoherent. These devices are sometimes called
lightpipes, which are used for relatively short distances. Optical fibers in communica-
tion technology use very thin wires and transmit light with well-defined modes. In the
following, the configuration of a 1-D dielectric slab between two media will be dis-
cussed to illustrate the basics of an optical waveguide. More detailed treatments can be
found from the texts of Haus6 and Kong.7 The present author was fortunate to learn
optoelectronics and the electromagnetic wave theory through graduate courses taught
by these professors.

Consider the planar structure shown in Fig. 10.4 that is infinitely extended in the y direc-
tion. When the variation of d along the x direction is negligibly small compared to the wave-
length, the electromagnetic waves inside the waveguide are coherent. A standing wave
pattern must be formed in the z direction. This requires the phase change in the z direction,
for the round trip including two reflections at the boundary, to be a multiple of , i.e.,

(10.12)

where , and the phase shift upon total internal reflection is

(10.13)

where for TE waves and for TM waves.
The solutions of Eq. (10.12) give discrete values of or , at which

waves can propagate through the fiber for a prescribed frequency. These are called guided
modes of the optical fiber, and Eq. (10.12) may be regarded as the mode equation. The
orders of mode are identified as or for a 1-D wave-
guide. For a 2-D waveguide, the subscripts consist of two indices “ml” for each mode. As
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FIGURE 10.4 Schematic of a planar dielectric waveguide.



decreases from to , increases and higher-order modes can be excited. One might
wonder why or is not a guided mode. In this case, energy would go
through the core, cladding, and air in a straight line. Any bending in the waveguide would
result in some loss of energy transfer. On the other hand, the guided modes are much less
affected by the bending. This is why an optical fiber can transfer signals to a very long dis-
tance while being flexible.

To illustrate the solution in terms of , let us rearrange Eq. (10.12) as follows:

(10.14)

The left and right sides of Eq. (10.14) can be plotted in the same graph against , as
shown in Fig. 10.5, for two values of , assuming . The dash-dotted curvesv2d2 � v1d1vd
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FIGURE 10.5 Solutions of the mode equation, when  . The circles indicate
the intersections between the curves described by the left and right sides of Eq. (10.14).

v2d2 � v1d1

are for TE waves, and the dotted curves are for TM waves. The intersections within the cir-
cles identify the guided modes. It is noted that fewer modes are permitted with a smaller

or . In the graph with , the possible modes are only. A
fiber that supports only a single mode for a given frequency is called a single-mode fiber;
otherwise, it is called a multimode fiber.

Example 10-2. Determine the range of so that only the TE0 and TM0 waves are guided in the
planar waveguide with n1 � 1.55 and n2 � 1.42. Moreover, if , how many TE and TM
modes may be guided?

Solution. Because must be small enough so that the right-hand side of Eq. (10.14) becomes
zero at , we have , or . Finally, we find

. Moreover, from Fig. 10.5, we can estimate the highest-order moded/l � 0.5 (n2
1 � n2

2)
�1/2 � 1.3

4p2(n2
1 � n2

2)(d/l)2 � p2(k1d)2 � (k2d)2 � p2k1zd � p
d/l

d/l � 1000
d/l

TE0, TE1, TM0, and TM1v1d1d/lvd



M using and when . Hence, , or
. There will be 802 TE modes and 802 TM modes including the zeroth-

order modes.

Next, we will study the fields in a planar waveguide. Let us take a TE wave and write
in the more general terms . The electric field is nonzero only in the y direc-
tion, and the y-component of the electric field is given by

(10.15)

where the time-harmonic term is again omitted for simplicity. The magnetic fields
can be obtained as and . There are
four boundary conditions for the tangential components to be continuous at and .
We end up with a set of homogeneous linear equations of the coefficients . The
solution exists only when the determinant of the characteristic matrix becomes zero and
can be expressed in a combined equation as follows:

(10.16)

This is an equivalent expression of the mode equation. An easier way to solve Eq. (10.15)
is by considering the condition of total internal reflection at the boundaries, i.e, 

and (10.17)

The combination gives , which is nothing but Eq. (10.12). After substituting
into Eq. (10.15), boundary conditions require that 

(10.18)

Figure 10.6a shows the electric field distribution for . The decaying
fields inside the cladding are clearly demonstrated. For a cladding with the conductivity
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FIGURE 10.6 Electric field distribution in planar waveguides. For the conducting cladding, 
and the lowest-order TE mode is the first order.
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, the waves will be perfectly reflected at the interface without any phase shift and
the electric field must vanish in the cladding. Only the odd ’s are guided modes. The
first guided mode is , and the guided mode corresponds to

The electric fields for the conducting waveguide
modes are shown in Fig. 10.6b for comparison with those for the first
three modes in the dielectric waveguide. The difference lies in that no fields can penetrate
into the conducting waveguide, whereas the fields can penetrate into the dielectric cladding.

Example 10-3. Determine the energy flux, phase velocity, and group velocity of the electromag-
netic waves in a planar dielectric waveguide.

Solution. Obviously, there is no net energy flow in the z direction, and .
The second term on the right becomes zero for a TE wave; thus, . Integration
of from to gives the power transmitted per unit length in the y direction. Note that
a small portion of energy is transmitted through the cladding. The phase velocity along the x direction
is . The group velocity for a given mode is given by , which
requires the solution of Eq. (10.16) accounting for the frequency-dependent refractive index.

In Chap. 9, we introduced the concept of Fabry-Perot resonant cavities. Two- and three-
dimensional optical cavities and microwave cavities support resonance modes, which are
standing waves within the cavity. These devices are important for photonics and optoelec-
tronics. Microcavities have also been used to modify the surface radiative properties. The
quality factor, or the Q-factor, of a resonator is defined as the ratio of energy storage to the
energy dissipation. High Q-factors can be achieved with the microfabricated microcavities
for quantum electrodynamics (QED), enhancement and suppression of spontaneous emis-
sion, and biological and chemical sensing.14 A special microcavity is made of spheres or
disks, where the resonance is built up around a circumference in the form of a polygon.
Total internal reflection traps the light inside the microsphere or the disk. At a particular
wavelength, when resonance occurs, light undergoes multiple reflections, and a strong
electric field which is confined near the perimeter can be built. This is the so-called whis-
pering gallery mode (WGM), named after the whispering gallery at St. Paul’s Cathedral in
London. A whispering gallery is a circular gallery under a dome where whispers can be
heard from the opposite side of the building. Optical fibers or waveguides are commonly
used to couple the photon energy to or from the microcavities via evanescent waves.
Ultrahigh Q-factors can be achieved with WGMs. The energy coupling mechanisms have
recently been studied by Guo and Quan using a finite-element method.15

A recent development in fiber optics is the use of photonic crystals (PCs) to confine the
light into a fiber, whose cladding region is made of PCs, rather than a solid low-index mate-
rial. The fiber core may be either solid or hollow, and the PCs in the cladding region may
contain air-filled holes in silica. For this reason, these fibers are called photonic crystal fibers
(PCFs), and some are called holey fibers.16 In the stop band, waves cannot propagate inside
the PC and thus effectively confine the propagating wave to the core region, where the
modes can be guided, without using total internal reflection. One of the advantages of PCFs
over conventional optical fibers is the spectral broadening that enables high-intensity pulses
to be transmitted with less distortion or loss of the spectral information, which have impor-
tant applications such as optical coherence spectroscopy and tomography. Another advan-
tage is that the use of large guiding areas can provide low-loss high-power delivery for
imaging, lithography, and astronomy. Other potential applications range from birefringence
and nonlinear optics to atomic particle guidance.16

10.1.3 Photon Tunneling by Coupled Evanescent Waves

In the preceding sections, we clearly demonstrated that an evanescent wave exists inside
the optically rarer medium, which can be air or vacuum, and decays exponentially away

vg � (dkx /dv)�1vp � v/kx � c/(n1 sinu1)
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from the surface. Furthermore, the evanescent wave or field does not carry energy in the
direction normal to the interface. On the other hand, if another optically denser medium
is brought to close proximity of the first medium, as shown in Fig. 10.7, energy can be
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FIGURE 10.7 Illustration of photon tunneling. (a) Schematic drawing of the three layers and fields. (b)
Calculated transmittance for a TE wave, assuming and . Note the distinct differ-
ences between the interference effect and the photon tunneling phenomenon, where the transmittance
decreases with increasing d and becomes negligibly small for .d � l
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transmitted from the first to the third medium, even though the angle of incidence is greater
than the critical angle. This phenomenon, known as frustrated total internal reflection, pho-
ton tunneling, or radiation tunneling, is very important for energy transfer between two
bodies when the distance of separation is shorter than the dominant wavelength of the emit-
ting source. Frustrated total internal reflection has been known since Newton’s time and
was theoretically investigated by Hall (Phys. Rev. Ser. I, 15, 73, 1902). Cryogenic insula-
tion is a practical example when photon tunneling may be significant.17 Advances in
micro/nanotechnologies have made it possible for the energy transfer by photon tunneling
to be appreciable and even dominant at room temperature or above. This may have appli-
cations ranging from microscale thermophotovoltaic devices to nanothermal processing
and nanoelectronics thermal management.18–20

While photon tunneling is analogous to electron tunneling, through a potential barrier,
which may be explained by quantum mechanics, it can be understood by the coupling of
two oppositely decaying evanescent waves.21 Because of the second interface, a backward-
decaying evanescent wave is formed inside layer 2, the optical rarer medium. The Poynting
vector of the coupled evanescent fields has a nonzero normal component, suggesting that
the energy transmission between the media is possible as long as the gap width is smaller
than the wavelength. Beyond this wavelength, the field strength of the forward-decaying
evanescent wave is too low when it reaches the second interface and the reflected evanes-
cent field is negligible. The matrix formulation discussed in Chap. 9 can be used to calcu-
late the transmittance and the reflectance through the gap (i.e., medium 2) as if there were
propagating waves. To illustrate this, consider all three layers are dielectric. Taking the TM
wave incidence as an example, let us write the magnetic field inside medium 2 as follows:

(10.19)

where A and B are determined by the incident field and boundary conditions. When two
waves are combined, the Poynting vector of the field 
has four terms. Two of them can be associated with the power flux of each individual wave,

kSl �
1
2Re[(E1 
 E2) � (H*

1 
 H*
2)]

Hy(x, z) � (Aeik2zz 
 Be�ik2zz)eikxx, 0 � z � d



while the other two represent the interaction between the waves. After simplification, the
normal component of the Poynting vector can be expressed as

, when (10.20a)

and , when (10.20b)

Because there is no loss or absorption, is independent of z in medium 2, and the ratio
of in medium 2 to that of the incidence in medium 1 is the transmittance. When prop-
agating waves exist in medium 2 or the angle of incidence is smaller than the critical angle,
interference will occur and the energy flux in the z direction can be represented by the for-
ward- and backward-propagating waves, see Eq. (10.20a). The transmittance oscillates as
the thickness of medium 2 is increased. When evanescent waves exist in medium 2 at inci-
dence angles greater than the critical angle, the transmittance is a decaying function of the
thickness of medium 2, as shown in Fig. 10.7b. While the individual evanescent wave does
not carry energy, the coupling results in energy transfer, as suggested by Eq. (10.20b).
Equation (9.8) through Eq. (9.10), derived in the previous chapter, can be used to calculate
the transmittance and the reflectance. These equations are applicable to arbitrary electric
and magnetic properties as long as the medium is isotropic and homogeneous within each
layer. The phase shift  in these equations is purely imaginary when medium 2 is a dielectric.

Example 10-4. Assuming that the incident field has an amplitude of 1, determine A and B in
Eq. (10.19) for , when all three media are dielectric with .
Find an expression of the tunneling transmittance using real variables only.

Solution. The tangential fields can be written as follows for the three-layer structure shown in
Fig. 10.7a. Note that .

(10.21)

(10.22)

The continuity of tangential fields at the two interfaces allow us to determine t, r, A and B. Note that
because the incident field has an amplitude of 1, the preceding equations do not yield a set of homo-
geneous linear equations as in the case of guided waves. If we use Eq. (10.6) for , where

and for a TM wave, we can rewrite Eq. (9.7) and Eq. (9.8) to
obtain the reflection and transmission coefficients as follows:
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where we have used the relationship of Fresnel’s coefficients and set the phase shift in Eq. (9.6) to
. After matching the boundary conditions at , we have 

and (10.25)

It can be shown that the normal component of the Poynting vector is the same in media 2 and 3 (see
Problem 10.8). The tunneling transmittance becomes

(10.26a)

or (10.26b)

Clearly, the tunneling transmittance does not oscillate as d increases; rather, it decreases monoton-
ically from 1 to 0 as d is increased from 0 to infinity. Equation (10.23) through Eq. (10.25) can be
applied to TE waves by taking , which changes the Fresnel reflection coefficient rp
to rs because only the dielectric media are considered here. Equation (10.26) is convenient for cal-
culating the tunneling transmittance between dielectrics.

10.1.4 Thermal Energy Transfer between Closely Spaced Dielectrics

Energy exchange between closely spaced dielectric plates can be calculated by integrating
Planck’s function over all wavelengths as well as over the whole hemisphere using the
directional-spectral transmittance. Let us use an example to illustrate the procedure and the
effect of photon tunneling and interferences on the near-field thermal radiation. 

Example 10-5. Calculate the hemispherical transmittance between two dielectrics of n1 � n3 � 3,
separated by a vacuum gap d (n2 � 1). Use the results to calculate the radiative energy transfer
between the two media, assuming T1 � 1000 K and T3 � 300 K.

Analysis. In the far field, we can use the following formula discussed in Chap. 2 (see Example 2-6)
to calculate the net radiative heat flux:

(10.27)

The hemispherical emissivity of each surface can be evaluated using Eq. (8.86), which can be rewrit-
ten as follows, considering that the emissivity is independent of the azimuthal angle f:

(10.28)

One could average the directional-spectral emissivity over the two polarizations. However, the prefer-
able way is to calculate the hemispherical emissivity for each polarization and use it to calculate the
net heat flux by taking half of Eq. (10.27). The heat fluxes calculated for the two polarizations can then
be added to obtain the total heat flux. The results give the far-field limit, which is always smaller than

, which is the net radiative heat flux between two blackbodies. This will not be
the case in the near field when interference and tunneling effects are important.

Solution. The hemispherical transmittance can be evaluated in the similar way by integration over
the hemisphere. Note that only a small cone of radiation, originated from medium 1, will result in
propagating waves in medium 2. This half cone angle is the critical angle, which is

. Thus, we can divide the hemispherical transmittance in two parts to sep-
arately evaluate the transmittance. Keeping in mind that the transmittance is defined as the ratio of
the transmitted energy to the incident energy, we can sum the two parts to obtain the hemispherical
transmittance
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(10.29)

where (10.29a)

and (10.29b)

If , will depend on whether the incidence is from medium 1 or 3, and the resulting hemi-
spherical transmittance will be the same. We can obtain the average transmittance for the two polar-
izations, as shown in Fig. 10.8a. The propagating wave contribution shows some oscillations but
reaches a constant value when where all waves will be constructively added. At  d/	��1,
the constructive and destructive interferences cancel out so that become a constant again. TheTl,prop

d/l S 0

ucn1 2 n3

Tl,evan � 2 3
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T rlcosusinudu
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FIGURE 10.8 Radiation heat transfer between dielectric surfaces in close proximity. (a) Contributions to
hemispherical transmittance by interference and tunneling, where the transmittance is the average of both
polarizations. (b) Net heat flux as a function of the distance of separation.
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contribution of evanescent waves becomes important when and starts to dominate over that
of the propagating waves when d/	 �� 1. When , the evanescent wave or tunneling con-
tributes to nearly 90% of the transmittance when . This explains why photon tunneling is very
important for the near-field energy transfer.

Planck’s blackbody distribution function, given by Eq. (8.44), can be rewritten for each polarization
in media 1 and 3, respectively, as

(10.30a)

and (10.30b)

where 	 in �m is the wavelength in vacuum, and and
are the first and second radiation constants in vacuum. The emissive

power in a nondispersive dielectric is increased by a factor of the square of the refractive
index, as a result of the increased photon density of states. The factor 2 in the denominator is
included because only single polarization has been considered. The net radiation heat flux
from medium 1 to 3 is

C2 � 1.439 � 104 �m # K
C1 � 3.742 � 108 W # �m4/m2
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(10.31a)

and that from medium 3 to 1 is 

(10.31b)

where is obtained from Eq. (10.29). Hence, the net radiation heat transfer becomes

(10.32)

One can also separately substitute the hemispherical transmittance of propagating and evanescent
waves to Eq. (10.31). Equation (10.32) should be individually applied to TE and TM waves, and
then summed together to get the net heat flux. The integration limits can be set such that the lower
limit and the upper limit , where is the wavelength corresponding to
the maximum blackbody emissive power at the temperature of the higher-temperature medium as
expressed in Eq. (8.45). The calculated results of the near-field radiative transfer are shown in
Fig. 10.8b as a function of the separation distance d. Several important observations can be made.
(a) When , the propagating waves result in and the evanescent
waves result in . The combined net radiation heat transfer is

. (b) As the distance increases, the evanescent wave contribution  goes down
monotonically and becomes negligible when , which is about 3 �m. (c) Due to interference
effects, the energy transfer by propagating waves decreases slightly as d increases and then reaches the
far-field limit, Eq. (10.27), when d �� lmp.

If the media were conductive, the previous calculations are not appropriate because of
the large imaginary part of the refractive index or the dielectric function. In fact, the near-
field radiation heat transfer can be greatly enhanced with the presence of surface waves or
if the media are semiconductors.18–20 The treatment requires the knowledge of fluctuational
electrodynamics, which will be discussed in Sec. 10.5 at length.

10.1.5 Resonance Tunneling through Periodic Dielectric Layers

There exists a photonic analogue of resonance tunneling of electrons in double-barrier quan-
tum well structures. The geometry to illustrate resonance photon tunneling is depicted in
Fig. 10.9a, with periodic layers of thicknesses a and b, like the photonic crystal (PC) struc-
ture discussed in Sec. 9.3, with a period . For tunneling to occur, the double-
prism structure can be used so that light is incident from medium 1 with a refractive index

. The barrier of thickness b is made of another dielectric with a refractive index that is
lower than . There are N periods or unit cells in total between the end media. Light is inci-
dent at an incidence angle . Yeh performed a detailed analysis of this
phenomenon and derived the equation of transmittance,22 which can be expressed as 

(10.33)

where K is the Bloch wavevector of the PC, is the phase angle upon total internal reflection,
and is the imaginary part of the normal component of the wavevector in the lower-index
dielectric, as defined in Example 10-4. It can be seen that Eq. (10.33) reduces to Eq. (10.26a)
and Eq. (10.26b) for , where the transmittance is 1 at b � 0, and decreases monotonically
with increasing b.
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The following equation can be used to calculate :

(10.34)

where is the normal component of the wavevector in medium 1. While is real,
is in general complex. However, there exist regions or pass bands where 

so that is real. The transmittance does not oscillate in the pass bands, unlike what was
shown in Fig. 9.17, where propagating waves exist in both types of dielectrics. Here, evanes-
cent waves exist in the lower-index dielectric layers. However, the transmittance expressed
in Eq. (10.33) becomes unity when the following equation holds:

(10.35)

The denominator of this equation simply excludes the zeros in for
It turned out that in each pass band, there exist 

solutions, with different combinations of , , and the thicknesses a and b. As an example,
Fig. 10.9b illustrated the transmittance as a function of when , , 
and a/b � 0.5. Because of the narrow transmittance peaks, the plot is broken into two pan-
els, each corresponding to a pass band. For N � 2, there is only one peak in each pass band,
while for , there are four peaks. Yeh showed that the resonance frequencies corre-
spond to the guided modes in the multilayer-waveguide equations.22 Hence, the fields are
highly localized near the higher-index layer. Total internal reflection causes very high
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FIGURE 10.9 Resonance tunneling. (a) Alternative high-index (n1) and low-index (n2) multiple
dielectric layers for resonance tunneling. (b) Calculated transmittance spectra for N � 2 and N � 5, at
two wavelength regions. Calculation conditions are , , , and .u1 � 45�a � b/2n2 � 2n1 � 3
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reflection on the surfaces of the higher-index layer and produces resonances similar to
those in a Fabry-Perot cavity resonator. It should be noted that extremely sharp transmit-
tance peaks can be obtained when is close to the gap thickness b (see the upper panel).

Further investigation on resonance tunneling is needed for the application in narrow
band-pass filters. Due to the guided modes and the localized field, the magnitude of the
evanescent wave may be amplified in the forward direction in some region (see Problem
10.11). Similar to the lateral shift by total internal reflection, due to the parallel energy flow
in the high-index layer (waveguide), there must be a lateral shift of the transmitted light for
finite beams. Little has been reported in the literature about the beam shift and the field dis-
tribution in dielectric multilayer structures, when resonance tunneling occurs.

10.1.6 Photon Tunneling with Negative Index Materials

Negative index materials (NIMs), for which the permittivity and the permeability become
negative simultaneously in a given frequency region, can also be used to enhance photon
tunneling.23 The basics of NIMs has already been presented in Sec. 8.4.6. The structure is
illustrated in Fig. 10.10a with a pair of layers in between two prisms. One of the layers has

l
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FIGURE 10.10 Photon tunneling with a layer of NIM. (a) The tunneling arrangement. (b) The
field distribution in the middle layers for a TE wave.

a negative refractive index. Assume that one of the layers is vacuum and another has
, so its refractive index is exactly �1. The transmittance becomes unity when

the thickness of the NIM layer and that of the vacuum are the same, regardless of the angle
of incidence and polarization. Let us use the full notation of and without using the
refractive index. The transmission coefficient can be expressed as follows:23

(10.36)

Here, the phase angles and can be expressed as

and (10.37)f2 � k2zd2 � k3zd3f1 � k2zd2 
 k3zd3

f2f1

t �
8

j1e
�if1 
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if2

me

e � m � �1



where and are the thicknesses of layers 2 and 3, and and are the normal com-
ponent of the wavevector in media 2 and 3, respectively. Note that when tunneling occurs,

and become purely imaginary for the lossless case, as will be discussed later. For a
TE wave, the coefficients in Eq. (10.36) are

(10.38a)

(10.38b)

(10.38c)

and (10.38d)

For a TM wave, the transmission coefficient is defined based on the magnetic fields and the
coefficients can be easily obtained by substituting ’s for ’s in Eq. (10.38). The sign selec-
tion of was mentioned in Sec. 9.2.2 in the discussion of the matrix formulation. Basically,
when there exist propagating waves in medium l, ,
whose sign becomes negative in a NIM. On the other hand, if the waves become evanes-
cent in medium l, we use . Here, is always positive
in a lossless medium, even in a NIM. Assume that the prisms are made of the same mate-
rials so that properties of medium 1 and medium 4 are identical. Furthermore, layer 2 is
made of a NIM with index-matching conditions, i.e., and so that

. Eq. (10.36) can be further simplified. For propagating waves in the middle lay-
ers, and ; thus,

(10.39)

where , for TE waves, and 
for TM waves. Because media 1 and 4 are made of the same material,

the transmittance for propagating waves can be written as follows:

(10.40)

For evanescent waves, we have , where .
Now that , Eq. (10.36) can be simplified so that

(10.41)

where , with being the phase change upon total inter-
nal reflection from medium 1 and 2. The transmittance is real and always decreases
with increasing , the difference between the layer thicknesses. Although Eq. (10.39) and
Eq. (10.41) are identical because and , the use of realcos(ix) � cosh(x)sin(ix) � i sinh(x)
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variables allows us to observe the variation of transmittance with easily. When tunnel-
ing occurs, the field is highly localized near the interface between the NIM and the PIM
layers, as shown in Fig. 10.10b for a TE wave, where the fields are sum of the forward-
decaying and backward-decaying evanescent waves. The amplitude of the evanescent wave
in the NIM increases in the direction of energy flow. It can be shown that the amplitude will
still increase in medium 2, even though the NIM is placed in layer 3 and layer 2 is a vac-
uum. This corresponds to another resonance effect, which is associated with the excitation
of surface electromagnetic waves or surface polaritons, to be discussed in the next section.

The directional and hemispherical transmittances for the structure shown in Fig. 10.10a
are illustrated in Fig. 10.11 with the following parameters: n2 � �1n1 � n4 � 1.5,



NEAR-FIELD ENERGY TRANSFER 395

FIGURE 10.11 Transmittance for a four-layer structure with one middle layer being matching-index
NIM. (a) Directional transmittance. (b) Hemispherical transmittance.
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( ), and (vacuum). Both the directional and hemispherical transmit-
tances become 1 when . The hemispherical transmittance has two components due
to propagating and evanescent waves. The effects of loss and dispersion have also been
examined.24

10.2 POLARITONS OR ELECTROMAGNETIC
SURFACE WAVES

Surface plasmons, also known as surface plasmon polaritons, play an important role in
near-field microscopy, nanophotonics, and biomolecular sensor applications.25–27 Surface
plasmon polaritons represent the interaction between electromagnetic waves and the oscil-
latory movement of free charges near the surface of metallic materials. When surface plas-
mons are confined to small structures, such as the tip of a scanning microscopic probe,
quantum dots or nanoparticles, nanowires, or nanoapertures, they are referred to as local-
ized plasmons. Surface plasmons usually occur in the electromagnetic wave spectrum in
the visible or near-infrared region for highly conductive metals such as Ag, Al, and Au. In
some polar dielectric materials, phonons or bound charges can also interact with the elec-
tromagnetic waves in the mid-infrared spectral region and cause resonance effects near
the surface; these are called surface phonon polaritons, which have applications in tuning
the thermal emission properties28 and nanoscale nondestructive imaging29 In the following,
the basic mechanisms of surface polaritons will be presented, with discussions on some

d3 � d2

n3 � 1e2 � m2 � �1



important applications. Emphasis is placed on the quantitative analysis of radiative proper-
ties for layered structures. In Sec. 10.4, the superlens concept will be introduced for imag-
ing beyond the diffraction limit, and the energy streamline method will be presented for
analyzing the energy propagation direction in the near-field regime.

10.2.1 Surface Plasmon and Phonon Polaritons

Plasmons are quasiparticles associated with oscillations of plasma, which is a collection of
charged particles such as electrons in a metal or semiconductor. Plasmons are longitudinal
excitations that can occur either in the bulk or at the interface. As shown in Fig. 10.12a, the
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FIGURE 10.12 Illustration of surface plasmon polariton. (a) Charge fluctuations and the mag-
netic field at the interface between a metal and air. (b) The exponentially decaying field ampli-
tudes away from the interface.

charges oscillate along the surface, and such an excitation is called a surface plasmon or
surface plasmon polariton. The field associated with a plasmon is localized at the surface, and
the amplitude decays away from the interface, as shown in Fig. 10.12b. Such a wave prop-
agates along the surface, and therefore, it is called a surface electromagnetic wave, similar
to surface waves in fluids or the acoustic surface waves. Surface plasmons can be excited
by electromagnetic waves and are important for the study of optical properties of metallic
materials, especially near the plasma frequency, which usually lies in the ultraviolet. The
requirement of evanescent waves on both sides of the interface prohibits the coupling of
propagating waves in air to the surface plasmons. For this reason, surface waves are often
regarded as nonradiative modes. The attenuated total reflectance (ATR) arrangements are
commonly used to excite surface plasmons. When light is incident from the prism, it is pos-
sible for evanescent waves to occur simultaneously in the underneath metallic and air lay-
ers, as shown in Fig. 10.13, for the two typical configurations named after A. Otto
(prism-air-metal) and E. Kretschmann and H. Raether (prism-metal-air). A detailed dis-
cussion with historical aspects can be found from Raether.30

In addition to the requirement of evanescent waves on both sides of the interface, the
polariton dispersion relations must be satisfied. They are expressed as follows when both
media extend to infinity in the z direction:

for TM wave (10.42)

for TE wave (10.43)
k1z

m1



k2z

m2
� 0

k1z

e1



k2z

e2
� 0



Let us consider lossless media first. In order for evanescent waves to occur, we must
have and with and being positive, in order for the field

to decay toward and to decay toward .
This means that the sign of permittivity must be opposite for media 1 and 2 in order to cou-
ple a surface polariton with a TM wave. On the other hand, we will need a magnetic mate-
rial with negative permeability for a TE wave to be able to couple with a surface polariton.
NIMs exhibit simultaneously negative permittivity and permeability in the same frequency
region and are sometimes called double-negative (DNG) materials. Therefore, both TE and
TM waves may excite surface plasmon polaritons with a NIM, as predicted by Ruppin.31

When compared with Fresnel’s reflection coefficients, as can be seen from Eq. (10.2),
the condition for the excitation of surface polaritons is that the denominator of the
reflection coefficient be zero. A pole in the reflection coefficient is an indication of a res-
onance. Very often, the surface plasmon polariton is referred in the literature as a surface
plasmon resonance. Taking a TM wave for example, since and

from Eq. (10.1), we can solve Eq. (10.42) to obtain 

(10.44)

Equation (10.44) relates the frequency with the parallel component of the wavevector and
is another form of the polariton dispersion relation. It should be noted that solutions of this
equation are for both and , i.e., not only the poles
but also the zeros of the Fresnel reflection coefficient are included. For nonmagnetic mate-
rials, Eq. (10.44) becomes

(10.45)

One should bear in mind that the permittivities are in general functions of the frequency.
For a metal with a negative real permittivity, the normal component of the wavevector is
purely imaginary for any real because . Thus, evanescent waves exist in
metals regardless of the angle of incidence.
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FIGURE 10.13 Typical configurations for coupling electromagnetic waves with surface polaritons
using attenuated total reflectance arrangements. (a) The Otto configuration (prism-air-metal). (b) The
Kretschmann-Raether configuration (prism-metal-air). Note that a polar dielectric may substitute for the
metal to excite surface phonon polaritons.
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Consider either the Otto or Kretschmann-Raether configuration, and use the three-layer
structure with a middle layer, medium 1, of thickness d. From Eq. (9.7), the reflection coef-
ficient can be expressed as follows:

(10.46)

where the subscript 0 signifies the incidence medium, which is the prism, and
. When d is sufficiently large, , and the reflectance

is close to unity. When surface polaritons are excited, however, 
increases dramatically and thus it is possible for to be of the same magnitude as ,
but with an opposite phase, i.e., with a phase difference of  . At the condition of surface
plasmon resonance, the reflectance drops suddenly. Let us use an example to illustrate
the polariton dispersion curves and the effect on the reflectance in ATR arrangements.

Example 10-6. Calculate the dispersion relation between Al and air. Calculate the reflectance ver-
sus angle of incidence for both the Otto and Kretschmann-Raether configurations at ,
using Al as the metallic material. Determine the polariton propagation length at the wavelength

. Assume the prism is made of KBr with and the dielectric function of Al can
be described by the Drude model.

Solution. The Drude model parameters for Al have been given in Example 8-6. Thus, we have
, where the plasma frequency and the scatter-

ing rate . One way to calculate the dispersion relation is to assume is real
and calculate . The dispersion curves between Al and air (eair � 1) are usu-
ally plotted in a graph, for the real part of shown in Fig. 10.14a by the solid line. At very
low frequencies, the magnitude of is so large that . Note that the dash-dotted line withkx < v/ce2
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FIGURE 10.14 (a) The dispersion relation of surface plasmon polaritons between Al and air, where 
is the real part solution of Eq. (10.45). (b) Reflectance in ATR arrangements, either with Al or air as the
middle layer.
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represents the light line. On the left of this line, there exist propagating waves in air;
whereas on the right of the light line, evanescent waves occur in air because . The light line
can be considered as a wave travelling in air along the x direction. On the polariton dispersion curve,

increases quickly as increases and reaches an asymptote at , when the real part of
the dielectric function of Al approaches –1. Between , the real part of the dielec-
tric function of Al becomes negative with an absolute value less than 1. Therefore, the solution of
Eq. (10.45) has a large imaginary part, while the real part of drops to near zero, as reflected by thekx

vp/!2 � v � vp

v � vp/!2vkx

kx � v/c
kx � v/c



bending of the dispersion curve toward left and the steep rise upward. Beyond , metal
becomes transparent and the real part of the dielectric function becomes positive. Solutions beyond

correspond to zeros in the reflection coefficient and thus are not the solutions for Eq.
(10.42), which are poles of the reflection coefficient. Notice that the dotted line refers to the light
line of the prism. In the shaded region, there exist evanescent waves in air but propagating waves
appear in the prism; as a result, surface plasmons can be coupled to propagating waves in the prism. 

The reflectance is calculated from Eq. (10.46) at the wavelength , corresponding to
a wavenumber of 20,000 cm�1. As can be seen from Fig. 10.14a, at this frequency, the surface
polariton curve is very close to the light line in air. Therefore, the excitation of surface polariton is
expected to be near the critical angle between the prism and air. The reflectance would
be close to 1 at . However, as shown in Fig. 10.14b, the reflectance drops suddenly around
40� due to the excitation of surface polaritons. 

Furthermore, the reflectance dips are very sensitive to the thickness of the middle layer. In the Otto
configuration, the air thickness of 900 nm yields a sharp dip. For the Kretschmann-Raether config-
uration, on the other hand, a metallic film thickness of 24 nm yields a sharp dip in the reflectance.
If the Al film exceeds 50 nm, the reflectance is close to 1. The locations of the reflectance minimum
and the width depend on the thickness of the middle layer. 

When the surface plasmon polariton is excited, a large absorption occurs in the metal, which
results in a coupling of the electromagnetic energy to a surface wave. The propagation length of the
surface wave can be determined based on the imaginary part of , i.e., . Note that the field can be
expressed as for surface waves propagating in the positive x direction and as for sur-
face waves propagating in the negative x direction. The power is proportional to the square of the
field amplitude, and the (1/e) power decaying length or the polariton propagation length is30

(10.47)

Plugging into the values in Eq. (10.45), we obtain . Note that the Drude model somewhat
underpredicts the imaginary part of the dielectric function. If Im(e) of Al were taken as 10 at l �

, one would obtain , still much longer than the wavelength.

Another way to excite surface plasmon or phonon polaritons is by gratings. When light
is incident onto a grating at a given , the Bloch-Floquet condition given by Eq. (9.63a) in
Sec. 9.4 states that the reflected and refracted waves can have different values of the paral-
lel component of the wavevector: , where j is the diffraction order and 
is the period of the gratings. For this reason, the dispersion relation can be folded into the
region for and surface polaritons can be excited on a grating surface. As an exam-
ple, Fig. 10.15a shows the reduced dispersion relation for a binary grating made of Ag with
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FIGURE 10.15 (a) Dispersion curves for gratings. (b) Reflectance for an Ag grating.
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�m. The solid lines are the folded dispersion curves, and the dash-dotted lines,
which are also folded, correspond to an incidence angle of 30�. The intersections identify
the location where surface plasmons can be excited for a TM wave incidence, when the
magnetic field is parallel to the grooves. 

The reflectance of a shallow grating on Ag is calculated and plotted in Fig. 10.15b at
and . The grating height d � 100 nm, and the filling ratio (see Fig. 9.18

for the grating geometry). For a TE wave, no drops exist in the reflectance because surface
waves cannot be excited. The reflectance is very high for TE waves and has little difference
between  and . For a TM wave, the excitation of surface polaritons is
responsible for the dips in the reflectance. Furthermore, the frequency locations agree well
with those predicted by the dispersion curves. Note that at normal incidence, the excita-
tion frequencies are located at the intersections between the dispersion curve and the verti-
cal axis, as shown in Fig. 10.15a. These dips have also been known as Wood’s or the
Rayleigh-Wood anomalies, when a diffraction order just appears at the grazing angle; see
Hessel and Oliner (Appl. Opt., 4, 1275, 1965). The actual resonance frequency may shift
slightly from the frequency associated with the appearance or disappearance of a diffrac-
tion order, because the dispersion curve is not a straight line. The Rayleigh-Wood anomaly
may also occur for gratings whose dielectric functions have a positive real part, i.e., not
associated with surface plasmon polaritons.

It should be mentioned that many polar dielectric or semiconductor materials such as
MgO, SiC, and GaAs contain a phonon absorption band, called the reststrahlen band, where
Re(e) is negative and Im(e) is very small. The surface polariton condition described in
Eq. (10.42) can be satisfied in the infrared, and the associated excitation or resonance is called
a surface phonon polariton. In the following discussion of polaritons, the word “metal” is
used to signify a material with a negative real permittivity or a negative-e material.

Surface roughness is yet another way to excite surface waves because a rough surface
can be considered as a Fourier expansion of multiple periodic components, each acting as
a grating. Obviously, there is a large room to tune the radiative properties by surface polari-
tons with different geometries. The resonance behavior in nanoparticles or quantum dots
has enormous applications in chemical sensing and medical diagnoses. Plasmon waveguide
which is based on the resonance of nanoparticles, nanowires, and nanotips may allow elec-
tromagnetic energy transfer beyond the diffraction limit; see, for example, Maier et al.
(Nature Mater., 2, 229, 2003), Dickson and Lyon (J. Phys. Chem. B, 104, 6095, 2000), and
Stockman (Phys. Rev. Lett., 93, 137404, 2004). Mie in 1908 developed the formula to
describe scattering from small absorbing particles, and expressed the scattering coefficient
and the absorption coefficient in the limit of a small sphere, whose radius is much smaller
than the wavelength in vacuum , as

(10.48)

and (10.49)

where is the dielectric function of the surrounding dielectric medium and is that of the
absorbing sphere.32 While Eq. (10.48) has the same form as the expression of Rayleigh
scattering with the relationship of the scattering cross section, defined as ,
the scattering of metallic spheres is distinctly different from that of dielectric spheres
because the dielectric function of metals is complex and depends strongly on the wave-
length. The scattering cross section is usually a very complex function of the wavelength.
This is especially true when the resonance condition is satisfied. This resonancee2 � �2e1
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is associated with the localized surface plasmon polaritons. Geometric optics completely
failed to describe scattering and absorption of small particles. The scattering cross section
can be much greater than the actual surface area. Furthermore, the absorbed energy can
exceed that of a blackbody of the same size. In fact, the blackbody concept is misleading in
the subwavelength regime. The actual resonance condition may be complicated for differ-
ent geometries and coatings, as well as for clusters of particles or nanoparticle aggregates.
Detailed discussion about resonance in metallic and polar dielectric materials in the absorp-
tion band can be found from Bohren and Huffman;32 also see Yang et al. (J. Cem. Phys.,
102, 869, 1995), Link et al. (J. Phys. Chem. B, 103, 3073, 1999), Jin et al. (Science, 294,
1901, 2001), and Kottmann et al. (Phys. Rev. B, 64, 235402, 2001). Resonance phenomena
in small particles have been applied to surface-enhanced Raman scattering microscopy and
surface-enhanced florescence microscopy for single-molecule detection. The study of res-
onance phenomena in small particles continues to be an active research area because of the
applications in biological imaging and molecular sensing; for details, refer to Moskovits
(Rev. Mod. Phys., 57, 783, 1985), Chen et al. (Nano Lett., 5, 473, 2005), Johansson et al.
(Phys. Rev. B, 72, 035427, 2005), and Pustovit and Shahbazyan (Phys. Rev. B, 73, 085408,
2006). Surface wave scattering has been used as a technique to characterize metallic
nanoparticles.33

10.2.2 Coupled Surface Polaritons and Bulk Polaritons

Polaritons can exist on both surfaces of a thin film, resulting in a standing wave inside
the film, as shown in Fig. 10.16. Economou performed a detailed investigation of different
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FIGURE 10.16 Illustration of polaritons in a slab. 1—symmetric mode coupled surface polaritons;
2—antisymmetric mode coupled surface polaritons; and 3—bulk polariton.
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configurations of a thin-film structure;34 while Kovacs and Scott (Phys. Rev. B, 16,
1297, 1977) studied the optical excitation of surface plasma waves in layered structures.
An essential requirement for coupled surface polaritons to occur is the existence of
evanescent waves that decay in both media 1 and 3. Such a method was used in Sec.
10.1.2 for obtaining the mode equation for waveguides. A more convenient method to
derive the polariton relations is to set the denominator of the reflection coefficient to
zero. From Eq. (10.46), we can see that for the configuration shown in Fig. 10.16,

, which has poles at . This can
be expressed as follows:

(10.50)

which is the polariton dispersion relation for a slab sandwiched between two semi-infinite
media. Because , Eq. (10.50) is identical to the mode equation oftanh(ik2zd) � i tan(k2zd)
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a planar waveguide given in Eq. (10.16), when medium 3 is identical to medium 1.
Attention should also be paid to the different meanings of the subscripts in Eq. (10.16) and
Eq. (10.50). For the coupled surface polariton, however, is purely imaginary if loss is
neglected. In the case of and , Eq. (10.50) can be rewritten into two
equations:30

(10.51a)

(10.51b)

Each of them gives a dispersion curve, and the field distribution can be illustrated in Fig.
10.16 for case 1: a lower-frequency symmetric mode, where the surface charges are sym-
metric and the magnetic fields at the interfaces are in phase, and case 2: a higher-frequency
antisymmetric mode, where the surface charges are asymmetric with respect to the middle
plane and the magnetic fields at the interfaces are out of phase. Due to the coupling of sur-
face waves, the wave inside medium 2 resembles a standing wave. It should also be noted
that when , both Eq. (10.51a) and Eq. (10.51b) reduce to the surface polariton equa-
tion between two semi-infinite media. The discussion is also applicable to TE waves. The
only change is to exchange �’s and �’s in Fresnel’s reflection coefficients and hence the
dispersion relations. If medium 2 is a metal with a negative real permittivity ( ) and
media 1 and 3 are dielectric, evanescent waves must exist in the dielectric and coupled sur-
face polaritons can interact only with TM waves for . If
medium 2 is a NIM ( ), both TE and TM waves can excite coupled surface
polaritons.

If a dielectric is placed as medium 2 between two metallic media 1 and 3, resonance is
possible, even though is real, since and are imaginary in media 1 and 3. A stand-
ing wave is formed in medium 2, which is a guided mode discussed earlier. The guided
mode is a kind of polariton, called bulk polariton that exists inside the material, i.e., the
dielectric slab. The field distribution for a bulk polariton is illustrated in Fig. 10.16 as case 3.
Both TE and TM waves can excite bulk polaritons, even at normal incidence when .
Furthermore, several polariton modes may exist if the thickness d is large enough, corre-
sponding to each order of the waveguide modes. Note that as in dielectric waveguides, the
metal cladding can be replaced by a dielectric material of smaller refractive index. When
evanescent waves exist inside media 1 and 3 and propagating waves exist in medium 2,
only bulk polaritons can occur for both TE and TM waves but no surface polaritions exist.

Park et al. developed a regime for a NIM slab sandwiched between two different
dielectrics, one of which is a vacuum, as shown in Fig. 10.17a.35 The NIM is represented
by the permittivity and permeability functions given in Eq. (8.121) and Eq. (8.122). For
developing the dispersion curves, the damping terms can be assumed to be zero; therefore, 

and (10.52)

Figure 10.17b represents the regimes with and shown in the 
graph, where both and are normalized with respect to . Note that no polaritons can
be excited for because both and are positive. In the shaded region for

, both and are negative, and this entails a NIM region. Four dot-
ted lines (i), (ii), (iii), and separate nine different regions. Lines (i), (ii), and (iii)
correspond to for media 1, 2, and 3, respectively. If the two dielectrics are
identical, lines (i) and (iii) will merge and the regions in between will be eliminated. Notice
that the condition for corresponds to in any given medium. In thekz � 0v � kxc/!em
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regions on the left of line (i), is too small to excite any evanescent waves in media 1 and 3;
hence, no polaritons can exist in regions R1, R2, and R3. In regions between lines (i) and
(iii), an evanescent wave appears in medium 1 whilst a propagating wave exists in medium 3.
A surface polariton may exist only at the interface between media 1 and 2, and energy may
be transmitted from the prism into medium 3. This arrangement is similar to the double-
prism configuration if the dielectric is made of the same material as that of the prism. In
regions on the right of line (iii), evanescent waves emerge in both media 1 and 3; hence, sur-
face polaritons may exist at dual boundaries, and several bulk polaritons may also exist.

In the upper regions of line (ii), evanescent waves exist in the NIM layer. In the shaded
area, surface polaritons may be observed in region SS1 at a single boundary and in region
SD1 at dual boundaries of the NIM slab, for both polarizations. Surface polaritons may also
exist in regions SS1 and SD1 above the shaded area only for TM waves. On the other hand,
in regions between the lines and (ii), propagating waves exist in the NIM layer
because . Therefore, no polaritons may exist in region R4, whereas bulk polaritons
can occur in region BK. Below the line , medium 2 behaves like a normal metal
because and surface polaritons may occur only for TM waves at a single
boundary in region SS2 and both boundaries in region SD2.

The reflection coefficient for the four-layer structure shown in Fig. 10.17a can be
expressed as follows:

(10.53)

where and for TM waves, 
and for TE waves, and and are the 
phase terms. This analytical expression may be used as an alternate to the matrix formula-
tion for the calculation of r, and subsequently, the reflectance of the four-layer
structure. The denominator is exactly the same as that in Eq. (10.36) if the different nota-
tions are taken into consideration. Sometimes, it is more convenient to use subscript 0 for
the first medium, while in other times, it is easier to use subscript 1 instead. Some precau-
tion is necessary to identify the configuration with appropriate equations. Both Eq. (10.36)
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FIGURE 10.17 Illustration of polaritons in a NIM slab. (a) ATR arrangement. (b) Regimes of surface and
bulk polaritons.35
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and Eq. (10.53) are applicable for dissipative media, and can be combined to calculate the
absorptance or emittance of the four-layer structure. 

Figure 10.18 shows the calculated reflectance spectra for different NIM layer thicknesses,
normalized to , for both TM wave (solid curves) and TE wave (dotted curves).
The permittivity and the permeability of the NIM are modeled with , ,
and damping coefficients using Eq. (8.121) and Eq. (8.122). The
thickness of the vacuum layer is assumed to be . For the prism, , and for
the dielectric, . The incidence angle is set to so that only evanescent wavesu � 60�e3 � 2

ed � 6a � 0.25lp

ge � gm � 0.012vp

v0 � 0.4vpF � 0.56
lp � 2pc/vp

FIGURE 10.18 Reflectance of NIM slab in the ATR arrangement shown in Fig. 10.17a for both TM and
TE waves at .35u � 60�



exist in medium 3. The corresponding regions are SD1, BK, and SD2 in Fig. 10.17b. The
shaded region corresponds to the frequencies where the refractive index of the NIM is neg-
ative. Several dips, due to surface and bulk polaritons, can be clearly seen in the reflectance
spectra. Triangular and circular marks (filled for TM wave and unfilled for TE wave) rep-
resent surface and bulk polariton resonance frequencies that are obtained from the polari-
ton dispersion relations in the lossless case. While damping terms affect the width of the
dips, it is the vacuum gap distance a that affects the location of the reflectance dips strongly.
For and TE waves, there are three bulk polaritons in 0.4 � � 0.45 and two
surface polaritons in 0.45 � � 0.5. When the NIM layer thickness is reduced, the sur-
face polariton of the lower frequency, in the pass band, is converted into a bulk polariton,
while the other bulk polaritons are compressed to the vicinity of and have little effect on
the reflectance. The transition from a surface polariton to a bulk polariton occurs at 
between 0.25 and 0.5 for TE waves, and between 0.15 and 0.25 for TM waves. It is clear
that both surface and bulk polaritons affect the radiative properties significantly. More
detailed discussions can be found from Park et al.35

As mentioned earlier, waveguide modes are fundamentally the same as bulk polaritons
with a standing wave inside the guided region that propagates along a fiber or a waveguide.
Here, we have used a rather general definition of bulk polaritons. Consequently, many opti-
cal resonance phenomena can be explained with the unified theory of polaritons, including
dielectrics, polar materials, metals, semiconductors, and photonic crystals. For dielectric
waveguides, evanescent waves are required outside the guided region where the medium
has a lower refractive index. The cladding can be made of metallic materials with a high
conductivity to prevent any propagating waves from leaking outside the guided region.
Similarly, a photonic crystal (PC) waveguide uses the evanescent wave in the forbidden
band to guide the electromagnetic wave through holey fibers when the waveguide mode or
bulk polariton condition is satisfied. A Fabry-Perot resonator cavity made of two metal
films sandwiching a dielectric slab can also be explained by bulk polaritons. This structure
is called metal-dielectric-metal configuration in which bulk polaritons can be excited even
at normal incidence ( � 0). One could argue that a thin slab in air will cause interference
fringes and can be viewed as a type of Fabry-Perot resonator. The transmittance spectrum
of a dielectric thin film oscillates solely because of interference of propagating waves with-
out any evanescent wave. However, such a resonator usually does not exhibit sharp peaks.
Another example of bulk polaritons is the whispering gallery mode in dielectric spheres or
disks, as well as many 2-D and 3-D microcavities using dielectric or metallic PCs. These can
be considered as 2-D or 3-D bulk polaritons similar to the 1-D bulk polaritons, whose res-
onance conditions are standing waves inside the cavity and evanescent waves outside the
cavity. Additional examples of polariton-enhanced transmission, including resonance
transmission and absorption, will be discussed next.

10.2.3 Polariton-Enhanced Transmission of Layered Structures

Surface polaritons, coupled surface polaritons, and bulk polaritons can enhance transmission
in layered structures. Resonance tunneling through two or more barriers is an example of bulk
polaritons because propagating waves exist in the denser dielectric medium (see Fig. 10.9 in
Sec. 10.1.5). In this case, the parallel component of the wavevector must lie between 
and . In Sec. 10.1.6, we discussed photon tunneling with a NIM layer. It can be seen that
the surface plasmon polariton conditions given in Eq. (10.42) and Eq. (10.43) are always sat-
isfied at the interface between vacuum and a medium with , or . When
the phase shifts in the two layers cancel each other, complete tunneling occurs at incidence
angles greater than the critical angle with a large vacuum gap distance as shown in Fig. 10.11.
In reality, dispersion and dissipation cannot be avoided, and some examples of the transmit-
tance through NIM layers will be given later in this section. Let us ask another question first:
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Can polaritons enhance the transmittance of a metal film? The answer is positive, and there
are different configurations for this to occur. Note that any discussion that is applicable to
metals is also applicable to polar materials in the absorption band, in terms of polaritons,
despite the different strengths, frequencies, widths, and mechanisms.

The prism-air-metal-prism structure can be used to excite surface polaritons at the inter-
face between air and the metal to enable a larger tunneling transmittance for TM waves.
Furthermore, air can be placed on both sides of the metal film to form a prism-air-metal-air-
prism configuration that will enhance the transmittance by coupled surface polaritons. Of
course, air can be replaced by a dielectric with a lower refractive index as discussed in Dragila
et al. (Phys. Rev. Lett., 55, 1117, 1985).  It is possible to achieve a sharp transmittance peak,
even though the thickness of the metal exceeds the penetration depth (see Problems 10.19 and
10.20). Another configuration is possible by using a metal-dielectric-metal structure for excit-
ing bulk polaritons without using a prism. The excitation of bulk polaritons can enhance the
transmittance/absorption of the metal-dielectric-metal structure even in air for both polariza-
tions, as well as at normal incidence; see Deych et al. (Phys. Rev. E, 57, 7254, 1998), Villa et
al. (Phys. Rev. B, 63, 165103, 2001), and Wang (Appl. Phys. Lett., 82, 4385, 2003). Numerous
studies have investigated the optical properties of metal-dielectric multilayers and
semiconductor-semiconductor multiple quantum wells, where bulk polaritons dominate and
enhance the transmittance; see for example, Scalora et al. (J. Appl. Phys., 83, 2377, 1998),
Kee et al. (J. Opt. A: Pure Appl. Opt., 6, 22, 2004), Feng et al. (Phys. Rev. B, 72, 085117,
2005), Schubert et al. (Phys. Rev. B, 71, 035324, 2005), and Erementchouk et al. (Phys. Rev.
B, 71, 235335, 2005). This field of research is multidisciplinary and continues to be of great
interest to scientists and engineers in various fields. Two examples are given next for layers
with NIMs and with a paired negative-� and negative-� composite.

Fu et al. calculated the tunneling transmittance of multilayer structures with alternat-
ing vacuum and NIM gaps.24 The four-layer structure looks similar to the double-prism
configuration, shown in Fig. 10.10, except that dispersion and loss are considered using
the functional relations given in Eq. (8.121) and Eq. (8.122). Figure 10.19 shows the cal-
culated transmittance with the following parameters: , , and

. For the 6-layer structure, there are 2 vacuum and 2 NIM layers
between two dielectric prisms of , while there are 4 vacuum and 4 NIM layers in
the middle for the 10-layer structure. The total thickness of the NIM is fixed to

. The thickness of the vacuum layer is exactly the same as that of the
NIM layer in the same setup. The transmittance spectra for a TE wave at an incidence angle
of 60� are shown in Fig. 10.19a. The tunneling transmittance is greatly enhanced by reduc-
ing the individual layer thicknesses while maintaining the same total thickness. The

0.85lp � 1.7pc/vp

ed � 2.25
ge � gm � 0.0025vp

F � 0.785v0 � 0.5vp
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FIGURE 10.19 Radiative properties of multilayer structures with NIMs for TE wave.24

(a) Transmittance spectra at incidence angle . (b) Transmittance and absorptance as a
function of incidence angle at .v � 0.665vp

u � 60�



enhanced transmittance is believed to be caused by the coupled surface polaritons as well
as bulk polaritons. Figure 10.19b illustrates the transmittance and the absorptance as func-
tions of the incidence angle. Note that the critical angle between the prism and vacuum is
41.8�. While the transmittance is slightly reduced with the increased layers for propagating
waves in vacuum, the tunneling transmittance is greatly enhanced. At large incidence
angles, the absorptance also increases as the number of layers increases. Therefore, the
enhanced transmittance is due to a reduction in the reflectance.

Some studies have dealt with a paired negative-� and negative-� bilayer composite and
demonstrated unique transmission and emission properties.36,37 Consider the surface polari-
tons at the interface of such a structure without loss. Then, and ; further-
more, and are purely imaginary regardless of . For simplicity, let us model the
electric and magnetic properties of these two materials by 

and  (10.54)

and and  (10.55)

where is real positive. The dispersion relations for are shown in
Fig. 10.20a, for both polarizations, assuming , , and .
It can be seen that polaritons can be coupled with propagating waves in air, even at normal
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FIGURE 10.20 Dispersion relations and transmittance of a paired negative-� and negative-� composite in
air. (a) Dispersion relations for both polarizations between two semi-infinite lossless media. (b) Spectral
transmittance for a TE wave at different angles of incidence.

incidence. The transmittance for TE wave incidence for such a bilayer in air is shown in
Fig. 10.20b, considering losses, using and . The thicknesses
are assumed to be . Sharp transmission peaks occur near the surface
polariton resonance frequency. Furthermore, if each individual layer is used, the transmit-
tance is very small. The calculation of the transmittance for a TM wave is left as an exer-
cise. Jiang et al. (J. Appl. Phys., 98, 013101, 2005) discussed the resonance transmission of
a PC, made of alternating layers of negative-e and negative-� materials, for potential appli-
cation of high-Q filters. The application of paired single-negative (SNG) materials for
coherent emission will be discussed in Sec. 10.3.2.

a � 2d � 0.425lp

ge � gm � 0.0025vpe2 � 4



10.2.4 Radiation Transmission through Nanostructures

The cross coupling of surface plasmon polaritons between corrugated metal films has been
studied since the 1970s and employed to enhance light emission from tunnel junctions, light-
emitting diode, and organic photoluminescence; see for example, Pockrand (Opt. Commun.,
13, 311, 1975), Theis et al. (Phys. Rev. Lett., 50, 750, 1983), Inagaki et al. (Phys. Rev. B, 32,
6238, 1985), Köck et al. (Appl. Phys. Lett., 57, 2327, 1990), Gifford and Hall (Appl. Phys.
Lett., 81, 4315, 2002), and Wedge et al. (Phys. Rev. B, 69, 245418, 2004). The coupled sur-
face polaritons enable the coherent transmission of light through a narrow wavelength
region in well-defined directions and thus enhance the light emission characteristics. A
schematic of corrugated or grating-perturbed surfaces is shown in Fig. 10.21a, along with
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FIGURE 10.21 Various structures for transmission enhancement. (a) Grating or periodically
perturbed surfaces for cross coupling of surface plasmons. (b) Subwavelength hole array. (c) 1-D
periodic slit array in a metal or polar material. (d) Corrugated metallic surfaces with an aperture
for directional transmission. (e) Photonic bandgap structure for beaming light. (f) Bowtie
nanoaperture for near-field focusing and transmission enhancement.

some structures that have been studied intensively in recent years for the control of light
transmission through nanostructures. A complete discussion of light-matter interactions in
these structures is beyond the scope of this text. Therefore, only a brief review is provided
here so that interested readers can find the relevant literature for further study.

The publication of enhanced transmission of metallic films perforated with subwave-
length holes by Ebbesen et al. (Nature, 391, 667, 1998) has raised the interest of studying
transmission of light through nanostructures, including 2-D hole arrays and 1-D slit arrays,
as shown in Figs. 10.21b and c, as well as annular aperture arrays. Coupled and localized
surface polaritons and Fabry-Perot-type resonances are believed to be responsible for the
enhancement; see Porto et al. (Phys. Rev. Lett., 83, 2845, 1999), Liu and Tsai (Phys. Rev.
B, 65, 155423, 2002), García-Vidal and Martín-Moreno (Phys. Rev. B, 66, 155412, 2002),
Marquier et al. (Opt. Lett., 29, 2178, 2004), Martín-Moreno et al. (Phys. Rev. Lett., 86,
1114, 2001), and Fan et al. (Phys. Rev. Lett., 94, 033902, 2005). It should not be surprising,
though, that the location of surface polaritons may not correspond well with the actually



observed resonance behavior of the radiative properties of nanostructures, because polari-
ton relations are obtained for infinitely extended media. Lezec and Thio (Opt. Express, 12,
3629, 2004) revisited earlier measurement results and theories by comparing the enhance-
ment and suppression of perforated metallic-type films with those of dielectric-type films;
also see Thio in the January-February 2006 issue of American Scientist (p. 40) for some his-
torical events that lead them to rethink the experimental and theoretical explanations. It
appears that a full consideration of diffracted evanescent waves is necessary in order to
explain the resonance frequency. Furthermore, the interactions of periodic 2-D and 3-D
structures are similar to those of periodic layered structures, where cavity resonances and
bulk polaritons may play a significant role. We may refer to these types of interactions as
generalized bulk polaritons or cavity modes. More discussion will be given in Sec. 10.3.1.
Laroche et al. (Phys. Rev. B, 71, 155113, 2005) demonstrated resonance transmission
through a 2-D PC in the forbidden band. Chan et al. (Opt. Lett., 31, 516, 2005) theoretically
and experimentally studied the optical transmission through double-layer metallic sub-
wavelength slit arrays, and revealed resonance transmission through coupling of evanes-
cent fields.

Another type of the enhanced transmission configuration is an aperture in corrugated
surfaces, as shown in Fig. 10.21d for a metallic film and Fig. 10.21e that uses the bandgap
of PCs to beam the light. The corrugated surface serves as a funnel to guide the light into
the aperture. In either case, the transmitted light becomes highly directional and the trans-
mittance spectra exhibit sharp peaks; see Lezec et al. (Science, 297, 820, 2002), Moreno et
al. (Phys. Rev. B, 69, 121402, 2004), Kramper et al. (Phys. Rev. Lett., 92, 113903, 2004),
and Lockyear et al. (Appl. Phys. Lett., 84, 2040, 2004). These structures may be considered
as periodic slits with an infinite period or distance of separation. Circularly corrugated sur-
faces have also been used to funnel light through a subwavelength aperture. Surface
plasmon–mediated transmission through single nanoholes and double slits without corrugated
surfaces has also been studied; see Yin et al. (Appl. Phys. Lett., 85, 467, 2004), Bravo-Abad
et al. (Phys. Rev. E, 69, 026601, 2004), Popov et al. (Appl. Opt., 44, 2332, 2005), and
Schouten et al. (Phys. Rev. Lett., 94, 053901, 2005). 

Light transmission through single nanoapertures of different shapes has been of great
interest to nanolithography. The bowtie shape is illustrated in Fig. 10.21f. Such a nanoaper-
ture behaves as an antenna to collect light and focus it in the near field, especially with cou-
pled surface plasmon polaritons; see Shi et al. (Opt. Lett., 28, 1320, 2003), Matteo et al.
(Appl. Phys. Lett., 85, 648, 2004), Jin and Xu (Appl. Phys. Lett., 86, 111106, 2003), Jin and
Xu (J. Quant. Spectrosc. Radiat. Transfer, 93, 163, 2005), Sundaramurthy et al. (Nano
Lett., 6, 355, 2006), and Wang et al. (Nano Lett., 6, 361, 2006). Another type of transmis-
sion enhancement and focusing in the near field is the use of self-assembled monolayer of
nanosphere arrays for lithography; see Osamu et al. (Appl. Phys. Lett., 79, 1366, 2001), Lu
et al. (Appl. Phys. Lett., 82, 4143, 2003), and Li et al. (Nanotechnology, 15, 333, 2004).

Numerical computations are inevitable due to the complexity of the nanostructures and
the electric and magnetic properties. For simple grating structures, the rigorous coupled-
wave analysis (RCWA) discussed in Sec. 9.4.1 is an effective tool for the study of the field
distribution and radiative properties, especially for 1-D gratings, and has also been
extended to 2-D structures. The analysis of the band structures of 1-D PCs is rather straight-
forward based on the 1-D matrix formulation. In some cases, a truncated 2-D PC can be
viewed as a multilayered 1-D gratings. The transfer matrix method (TMM) is the most
commonly used technique for calculating the dispersion relations or band structures of 2-
D and 3-D PCs, as well as the transmittance and reflectance.38 On the other hand, finite-
difference time-domain (FDTD) is a commonly used technique for the study of radiative
properties of nanostructures. FDTD is a central difference scheme in both time and space
domains with the second-order accuracy.39 Finite-element method (FEM) and boundary-
element method (BEM) are other common numerical techniques used for diffraction opti-
cal devices.40,41
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10.2.5 Superlens for Perfect Imaging and the Energy Streamlines

As discussed in Chap. 8, Sec. 8.4.6, a NIM or a double-negative material (DNG) forms a
flat lens that can focus light (see Fig. 8.18). Pendry (Phys. Rev. Lett., 85, 3966, 2000) pre-
dicted that a DNG flat lens not only focuses the propagating waves but also allows com-
plete transmission of evanescent waves because of an amplifying effect of the evanescent
wave amplitude. Furthermore, a single-negative material (SNG) like a Ag film also exhibits
focusing properties in the closest proximity. Such a lens is thereafter called a perfect lens
or superlens. Many researchers are working on the fabrication of micro/nanostructures with
tailored electric and magnetic properties. Photonic crystals have also been realized with
focusing properties for electromagnetic waves (photons); see Luo et al. (Appl. Phys. Lett.,
81, 2352, 2002) and Lu et al. (Phys. Rev. Lett., 95, 153901, 2005); as well as for acoustic
waves (phonons); see Yang et al. (Phys. Rev. Lett., 93, 024301, 2004) and Li et al. (Phys.
Rev. B, 73, 054302, 2006). Researchers have also experimentally demonstrated that flat Ag
lens can focus light at nanoscale distances for nanolithographic applications.42,43

While the electromagnetic wave theory describes the tunneling phenomenon and sur-
face polaritons elegantly, the energy ray concept meets a difficulty for coupled evanescent
waves because the parallel component of the wavevector for an evanescent wave is so large
that no polar angle within the real space can be defined. On the other hand, the Poynting
vector can always be defined, and by following the traces, the energy streamline method
appears to be a promising technique for analyzing the energy flow directions in the near
field. The basic concept developed in a recent study by Zhang and Lee is described next.44

For convenience, let us consider the layered medium to be oriented along the x direction as
shown in Fig. 10.22, where media 1 and 3 are semi-infinite. If the incident wave is a TM
wave with an angular frequency �, the magnetic field in each region is given by
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FIGURE 10.22 Schematic of a three-
layer structure, where Aj and Bj (j � 1, 2,
and 3) are the coefficients of forward
and backward waves at the nearest
interface.

(10.56)

Here, A and B are the coefficients of forward and backward waves at the interface; x is rel-
ative to the origin in media 1 and 2, while in medium 3, x is relative to d; and and are
the x (normal) and y (parallel) components of the wavevector. Note that 
for this geometry. The components of the time-averaged Poynting vector can be expressed
as follows: 

k2
x 
 k2

y � emv2/c2
kykx

Hz(x,y) � SA(x)eikxx 
 B(x)e�ikxxTeikyy



(10.57)

(10.58)

Here, is the normal component of the wavevector. Note that the present
section uses a slightly different notation from that of preceding sections. The last terms in
Eq. (10.57) and Eq. (10.58) arise from the coupling between the forward and backward
waves. The direction of of the combined wave can always be defined by a polar angle

; in contrast, it is not always possible to define the angle of inci-
dence or refraction in the real space. The trajectory of for given 
and is an energy streamline, which defines the path of the net energy flow. The matrix
formulation can be used to evaluate A and B in each layer by setting and .
Note that the dependence of � is implicit in Eq. (10.57) and Eq. (10.58), since is a func-
tion of �, and furthermore, Aj and Bj depend on ’s. For TE waves, the magnetic field can
be replaced by the electric field in Eq. (10.56), and � should be replaced by � in Eq. (10.57)
and Eq. (10.58).

The energy streamlines in the prism-DNG-prism and prism-SNG-prism configurations
are shown in Fig. 10.23, for different incidence angles or ’s. The energy transport is from
the left to the right, and the trajectory of the Poynting vector in the three regions forms a
zigzag path, especially when . The x- and y-axes are normalized to the slab thick-
ness d. For simplicity, let us use ZLs to abbreviate these zigzag energy streamlines. All ZLs
are for positive values and pass through the origin. With the dielectric prism ( ),
the critical angle is . 

Causality requires that be positive; furthermore, when loss is neglected, is
independent of x. Note that is opposite to when 
, as in the DNG layer (medium 2). At , when the phase refraction angle ,
the energy refraction angle is much less than . In order to remove the singularity, the
computation for can be approximated by using an angle that is either slightly
greater or slightly smaller than . Furthermore, the dash-dotted line in the slab separates
the propagating-wave ZLs (inside the cone) from the evanescent-wave ZLs (outside the
cone). The observation that the energy paths of propagating and evanescent waves are sep-
arated by a cone provides a new explanation of the photon tunneling phenomenon based on
wave optics. Note that the tunneling phenomena have been extensively studied in quantum
mechanics on the time delay and beam shift, but the results are somewhat controversial.21

The energy transmittance through the slab, calculated by , is labeled for each
ZL. The tunneling transmittance decreases rapidly as d increases, and the ZLs are curved
when . Figures 10.23c and d are for a negative-� but positive-� slab (such as a
metal, but lossless). In this case, only evanescent waves exist in the slab because is purely
imaginary even at normal incidence. Energy is carried through medium 2 by coupled
evanescent waves, whose path can be completely described by a ZL. The transmittance
with a SNG slab is much smaller than that with a DNG slab, and the beam shift in the y
direction becomes very large, as illustrated in Fig. 10.23d. Nevertheless, Fig. 10.23a and
Fig. 10.23c look alike. When , the propagating waves and evanescent waves are
similar because both the sinusoidal and hyperbolic functions are the same under the small-
argument approximation.36 Assume that only propagating waves exist in medium 1, and
both and are real. The following approximation can be obtained for the energy inci-
dence and refraction angles in the limit :

(10.59)f1 � u1    and tanf2 � (e1/e2) tanf1
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Note that does not affect the TM wave results in the electrostatic limit, when the dis-
tance is much shorter than the wavelength. However, the effect of becomes significant
when .

Both positive and negative phase-time shifts were noticed by Li (Phys. Rev. Lett., 91,
133903, 2003) for an optically dense dielectric slab in air without evanescent waves. It is
worthwhile to take a look at the ZLs for the vacuum-dielectric-vacuum configuration. For
propagating waves, because the second term in Eq. (10.58) depends on x, the ZL exhibits
wavelike features for , as can be seen from Fig. 10.24a, where the solid curve is thed � l

d/l � 0.1
m2

m2
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FIGURE 10.23 ZLs for prism-DNG-prism and prism-SNG-prism configurations at various incidence
angles:44 (solid), (dotted), (dash-dotted), and (dashed). The prism has

and , so corresponds to the critical angle for DNG in (a) and (b). Only
evanescent waves exist in medium 2 for SNG in (c) and (d). The transmittance T from medium 1 to 3 is
shown for each incidence angle. 
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ZL and the dashed lines are the traces of the wavevector. The lateral shift of the energy line
is determined by the point Q rather than P. When is reduced to 0.01 as shown in
Fig. 10.24b, the ZL is almost a straight line in each medium. However, point Q becomes
closer to the x-axis than P, contrary to Fig. 10.24a. When d/	�� 1, Snell’s law determines

and Eq. (10.59) determines . The shift of Q with respect to P depends on the inci-
dence angle, which can be positive or negative. Perhaps the lateral shift of the energy path
can be understood by the energy flow parallel to the film as a result of the combined field,
similar to the Goos-Hänchen shift. The difference here is due to the fact that a plane wave
of infinite width is used to calculate the lateral shift of transmission through a thin film, as
well as tunneling. While Poynting vector traces have been presented for transmission
through nanoslits as well as for scattering around nanoparticles, the application of the
streamline method to planar layers reveals some fundamental and counterintuitive behav-
ior; see Bohren and Huffman,32 and Bashevoy et al. (Opt. Express, 13, 8372, 2005). It
appears to be more natural for the thermal engineers to deal with energy streamlines rather
than evanescent waves. This method allows the visualization of energy flow in the optical
near field.

Understanding the energy transport in the subwavelength region has an enormous
impact on near-field optics and nanolithography. Figure 10.25 shows the ZLs for the three-
layer structure made by Fang et al.43 A 35-nm-thick Ag film was evaporated over a poly-
methyl methacrylate (PMMA) followed by a photoresist (PR) coating. The source is
assumed to be at and y � 0 inside the PMMA. The properties are taken from
Fang et al., and accordingly, for the PMMA, 
for Ag, and for the PR. The solid lines are for propagating waves in thee3 � 2.59 
 0.01i

e2 � �2.40 
 0.25ie1 � 2.30 
 0.0014i
x � �40 nm

f2u2

d/l
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FIGURE 10.24 The ZL for vacuum-dielectric-vacuum configuration
at when (a) and (b) .44 Solid curves are
ZLs, and dashed lines are the wavevector direction.
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PMMA at . The dash-dotted lines correspond to or
, where is the dielectric function of the PMMA. Outside

the cone, defined by the dash-dotted lines with , evanescent waves exist
inside the PMMA. Note that evanescent waves exist in vacuum for . The use
of PMMA allows evanescent waves of the light source with much greater than to be
transmitted through. In the calculations, both the PMMA and the PR are assumed semi-
infinite, and this assumption should have little effect on the imaging properties. 

The ZLs shown in Fig. 10.25 are curved (i.e., ). The ZL graph clearly reveals
two foci, one inside the Ag film and the other at about 20 nm outside the Ag film in the PR.
It should be noticed that the foci are somewhat blurred due to losses. The actual structure
fabricated by Fang et al. was more complicated and may require an integration over the
wavevector space to fully understand the imaging properties.43 To examine the proximity
limit, the thickness of the Ag film and the distance between the source and the Ag film are
fourfold reduced without changing other conditions. As shown in Fig. 10.25b, a single
focus is formed near the Ag-PR interface, and the ZLs are nearly straight lines in each
medium. Because of the loss in the Ag film, the energy refraction angle in Ag depends on

and is slightly greater than that calculated from Eq. (10.59) based on the real parts of �’s.
The ZL method presented here provides information on the paths of light energy and can
be used to study lateral beam shifts in photon tunneling and to construct near-field images
inside and outside flat lenses made of a NIM or a silver film.

10.3 SPECTRAL AND DIRECTIONAL CONTROL
OF THERMAL RADIATION

Thermal emission is a spontaneous emission process that occurs from any objects. It is mis-
leading to think that thermal emission arises only from heated objects like an oven, a fire, or
the sun. In a vacuum environment, radiation is the only mode of heat transfer, such as in
space exploration and cryogenic systems. Measurements of the far-infrared and microwave

ky
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u1 � 41.25�
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FIGURE 10.25 ZLs for a three-layer structure, showing the imaging features for a silver lens with a thick-
ness of (a) d � 35 nm and (b) d � 8.75 nm, at the wavelength The dot represents the source,
and circles are for foci.
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emission spectrum of deep space have revealed that the cosmic background has an effective
temperature of 2.7 K. Of course, thermal radiation is very important in combustion systems
as well as in industrial furnaces for materials processing. Another application of thermal
emission is the incandescent lamp or light bulb invented by Thomas Edison in 1879.

Radiation emission is a reverse process of absorption when the transition occurs from a
higher energy level to a lower energy level. It should be noted that transition from a higher
to a lower energy level is not necessarily associated with the emission of photon, because
it can also release one or more phonons (i.e., lattice waves) as well as cause other transi-
tions. Transitions that give out photons are called radiative transitions; otherwise, they are
called nonradiative transitions. The absorption processes in solids were extensively stud-
ied in Chap. 8 (see Sec. 8.4). Thermal radiation emitted from solids is generally manifested
by a broad spectrum and quasi-isotropic angular behavior, just like absorption and reflec-
tion. By introducing thin-film coatings and multilayer structures, the emission spectrum
can be significantly modified, and wavelength selective coatings have been developed
since the 1960s for space application and solar collectors. Gratings can also modify the
emission properties. These approaches can be generalized to multidimensional complex
microstructures, including photonic crystals, for wavelength and directional control of
spontaneous emission. There are a number of applications that require spectral and direc-
tional selection of thermal radiation. Besides space application and solar energy, ther-
mophotovoltaic devices utilize a heating source or an emitter around 1500 K to generate
electricity based on the photovoltaic principle. The efficiency is often limited by the large
portion of long-wavelength photons that cannot create electron-hole pairs in the photo-
voltaic cell. Other applications may include nanoelectronics thermal control and remote
sensing technologies.

Cavity quantum electrodynamics (QED) is a field that was initiated in the 1980s to study
the spontaneous emission of atoms inside a subwavelength cavity; see Haroche and
Kleppner (Physics Today, 42, 24, January 1989). Both enhancement and inhibition of spon-
taneous emission have been theoretically and experimentally demonstrated; see
Yablonovitch et al. (Phys. Rev. Lett., 61, 2546, 1988), Lai and Hinds (Phys. Rev. Lett., 81,
2671, 1998), Bayer et al. (Phys. Rev. B, 86, 3168, 2001), Solomon et al. (Phys. Rev. Lett.,
86, 3903, 2001), and Larkin et al. (Phys. Rev. B, 69, 121403R, 2004). In recent years, there
have been a large number of publications dealing with spontaneous emission of microstruc-
tures through some controversial experiments as well as theoretical predictions; see Blanco
and García de Abajo and references therein.45 It seems quite clear that surface plasmons may
enhance transmission, suppress transmission but enhance absorption, or enhance both trans-
mission and absorption in nanostructures at the same time, depending on the coupling with
the resonance and boundary conditions. There is no doubt that spontaneous emission can be
suppressed at certain wavelengths using microstructures. The scientific community has yet
to come up with an acceptable answer to the question: “Whether spontaneous emission can
ever exceed that of blackbody radiation?” This is actually a rather ambiguous question
because it did not specify where the spontaneous emission comes from, where the emission
is detected, what the boundary conditions are, and what time duration is involved. Let us
make it more specific: If an object is at thermal equilibrium by itself, can it emit out more
energy (in any spectral range, polarization, and solid angle) to free space (far field) than a
blackbody with the identical shape and size at the same temperature? Well, one may say
that such a blackbody cannot exist if the object is smaller than the wavelength of interest.
Imagine such a blackbody could exist and emit according to the blackbody intensity

in all directions. The question is “Whether the intensity leaving the object can ever
exceed the blackbody intensity at any particular wavelength and angle of emission?” By
using intensity, we are clearly talking about the far field, not the near field.

The answer is definitely “yes” if the overall structure is less than or comparable with
the wavelength, and definitely “no” if the overall structure is much greater than the
wavelength, even though the structure is made by subwavelength features. Rather than

Ib,l(l,T)
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considering spontaneous emission toward an empty space, let us consider the thermody-
namic equilibrium in an enclosure, where the object is placed inside and is in thermody-
namic equilibrium with the enclosure. Generally speaking, stimulated emission is much
smaller than stimulated absorption (see Chap. 3, Sec. 3.6), and we can treat the net absorp-
tion as stimulated absorption subtracted by stimulated emission. At thermodynamic equilib-
rium, the net absorption of energy must be the same as the spontaneously emitted energy of
any objects inside the cavity. The density of states inside any medium is modified by its elec-
tric and magnetic properties. In the simple dielectric case, Planck’s distribution is modified
by the square of the refractive index, as can be seen from Eq. (10.30a) and Eq. (10.30b). If
the refractive index depends on wavelength, the group velocity will be different from the
phase velocity and, hence, the equilibrium distribution will further deviate from Planck’s
law. If absorption is also considered, the equilibrium distribution inside the medium will be
completely different. However, Planck’s distribution is always observed in the evacuated
region, as long as the location is away from either the object or the walls of the enclosure.
This condition or restriction implies that the enclosure must have enough room for the evac-
uated region to be much greater than the characteristic wavelength. It is impractical to have
a blackbody with a size less than the wavelength, as noted by Planck himself many years
ago.46 It has been known for some time that a large field enhancement exists near the surface
when surface polaritons are excited.30 The enhancement also exists around subwavelength
structures.32 However, the energy density in an evacuated enclosure at thermal equilibrium
is the same as Planck’s distribution, except at close vicinity of the objects, including the
walls of the enclosure.

Spontaneous emission can be viewed as a coupling of the field inside the material with
that outside the material. A small object can couple with the electromagnetic field by bend-
ing the energy streamlines or the Poynting vectors (due to coupling of the incident and
emitted fields) toward it, and hence, the object will absorb more energy than a blackbody
of the same size.32 Figure 10.26 illustrates qualitatively and somewhat exaggerated
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FIGURE 10.26 Schematic drawing of the energy streamlines for an incident
plane wave, showing the Poynting vectors of the incident field and the cross cou-
pling between the incident and scattered fields. (a) A small object with resonance
absorption. (b) A large object with subwavelength structures.

interactions of the incident field with a small object and a large object. A small object can
perturb the incoming energy streamlines by creating an additional term in the Poynting vec-
tor that arises from the coupling between the incident and scattered fields. Therefore, the
absorptance and spontaneous emission can be enhanced at the resonance wavelength, which
is structure dependent, as can be seen from Eq. (10.49) for the spherical case. On the other
hand, for a large structure, the incoming energy is limited by the projected area without any



geometric enhancement even with surface or volume micro/nanostructures. Because of
reflection and transmission, the net absorbed energy is always smaller than the energy inci-
dent on the object. Hence, it is not possible for spontaneous emission from a large object or
composite to exceed the blackbody intensity in the far field. Several recent publications sup-
port this argument with detailed calculations and careful experiments; see Pigeat et al. (Phys.
Rev. B, 57, 9293, 1998), Luo et al. (Phys. Rev. Lett., 93, 213905, 2004), Seager et al. (Appl.
Phys. Lett., 86, 244105, 2005), and Chow (Phys. Rev. A, 73, 013821, 2006).

Next, we discuss some unique features when the emission/absorption spectra or angu-
lar distributions are modified by micro/nanostructures, especially by surface electromag-
netic waves and resonance cavities. Kirchhoff’s law is valid because the overall structure
is much greater than the wavelength. In all cases, the emissivity can be calculated indirectly
from the calculation of reflectance. In some cases, the distribution of electromagnetic fields
has been explored to better understand the underlying mechanisms.

10.3.1 Gratings and Microcavities

It has been known for a long time that radiative properties, especially the directional and
spectral properties, can be modified by surface roughness and structures. An example is
that the cavities formed on the surface of the moon yield retroreflection of the visible
light, i.e., the reflected rays are nearly antiparallel to the direction of the incoming rays
from the sun. Earlier studies of surface microstructure effect on thermal radiative proper-
ties can be found, e.g., from Perlmutter and Howell (J. Heat Transfer, 85, 282, 1963),
Birkebak and Eckert (J. Heat Transfer, 87, 85, 1965), Zipin (Appl. Opt., 5, 1954, 1966),
and Torrance and Sparrow (J. Heat Transfer, 88, 223, 1966). Most of the earlier studies
dealt with rather simple geometries and did not consider diffraction. The diffraction by
subwavelength periodic gratings was investigated under a completely different field for
spectroscopic applications. The emergence of microfabrication and the increased com-
puting capabilities have led to more systematic investigations of the effect of microstruc-
tures and material properties on thermal emission and absorption characteristics. Hesketh
et al. published a series of studies on the thermal emission from periodically grooved
micromachined silicon surfaces;47 also see Hesketh et al. (Phys. Rev. B, 37, 10795, 1998;
10803, 1998). The grooves were 45 �m deep with straight ridges etched on heavily doped
p-type Si wafers, with a grating period ranging from 10 to 22 �m. Thermal emission
was measured at temperatures between 300 and 400�C in the mid-infrared wavelengths
ranging from 3 to 14 �m. Compared with smooth Si wafers, the grooved surfaces
increased the spectral emittance, whereas the observed enhancement was polarization
dependent even at normal incidence. Resonance features were observed in the emission
spectra, but their location and dependence on the grating period were significantly differ-
ent from those for TE and TM waves. The observed emittance enhancement was explained
by organ pipe resonant modes.47 Geometric optics models largely failed to predict the
observed behavior. Wang and Zemel (Infrared Phys., 32, 477, 1991; Appl. Opt., 31, 732,
1992; Appl. Opt., 32, 2021, 1993) extended this work by studying the spectral emittance
of gratings made of undoped Si. Several theories were examined, including the Bloch
wave, coupled-mode, effective medium, and waveguide methods. It was found that the
emission oscillates with wavelength for deep gratings similar to a Fabry-Perot cavity res-
onator. The effective medium theory could explain the observed directional and spectral
variation of the measured emittance. Auslender and Hava used the RCWA and performed
a parametric study to identify the conditions for nearly 100% absorptance for TE waves.48

Buckius and coworkers performed rigorous calculations using the integral equation method
as well as experiments for the reflection of 1-D and 2-D microstructured surfaces.49

As illustrated in Fig. 10.15, surface plasmons can reduce reflectance and enhance absorp-
tion for TM waves. Narrowband emission mediated by surface plasmons was demonstrated
by Kreiter et al. (Opt. Commun., 168, 117, 1999) in the near-infrared with gold diffraction

�
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gratings. The emission is also direction dependent. Greffet and coworkers showed a strongly
coherent thermal emission mediated by surface phonon polaritons.28 The SiC grating, with
a period of 6.25 �m and a height of 0.28 �m, emits thermal radiation near 11 �m in two nar-
row lobes, when heated to 800 K. The emission spectrum contains a narrowband peak at the
polariton resonance frequency for TM waves. Spectrally coherent thermal emission means
that the emission is confined in a narrow wavelength region for any given direction; this is
also referred to as temporal coherence, because coherence time and coherence length are
interrelated. A nearly monochromatic radiation will have a very long coherence length and
time. When the emission at a given wavelength is confined to a narrow angular range, it is
referred to as spatial coherence, like a collimated beam whose wavefronts will not alter sig-
nificantly as it travels. At the resonance conditions, surface plasmon or phonon polaritons
are coupled with spontaneous emission due to randomly fluctuating charges, called dipoles
in the thermal field; consequently, thermal emission is enhanced at a particular wavelength
and direction. At wavelengths where the surface mode is not excited, the radiation emitted
inside the material is either absorbed by the neighboring atoms or reflected back by the
material-air interface, yielding a very low emissivity that is typical for metallic materials in
the infrared. It should be noted that the bandwidth for spontaneous emission is far larger than
that of lasers, which operate under the principle of stimulated emission. Nevertheless, a
much longer coherence length than that of blackbody radiation or emission from plain solids
has been achieved. Coherent thermal emission is expected to have applications in remote
sensing, space thermal control, thermophotovoltaic devices, and nanoelectronics thermal
management, especially when coupled with nanoscale heat transfer.

Heinzel et al. fabricated 2-D arrays of tungsten circular pillars as near-infrared emitters
and hole arrays on gold films as wavelength-selective filters, for applications in thermopho-
tovoltaic systems.50 For these structures, the lateral period was between 1 and 2 �m, and the
thickness was between 200 and 300 nm. Theoretical modeling based on a 2-D RCWA was
performed and compared with experiments. Surface plasmons and cavity resonances were
believed to play a role in the wavelength selection. The emittance was measured in vacuum
at temperatures up to 1700 K, with a Fourier-transform spectrometer. Maruyama et al. devel-
oped 2-D microcavities using Cr-coated Si surfaces and demonstrated discrete thermal emis-
sion peaks from these structures as a result of cavity resonances and the enhanced density of
states.51 Sai et al. gave a comprehensive review of their theoretical and experimental devel-
opments of 2-D microcavities on tungsten surfaces for thermophotovoltaic emitters.51 By
using square microcavities with a period around 1 �m, a width around 0.8 �m, and a depth
of 1.6 �m, high emittance was achieved at . This is the desired feature for near-
infrared thermophotovoltaic applications. Kusunoki et al. studied the emission spectra from
microcavities made by dry etching on tantalum and tungsten surfaces, and identified surface
plasmon modes and cavity resonance modes in the mid-infrared emission spectra.52 Chen
and Zhang (Opt. Commun., 269, 411, 2007) recently proposed complex gratings to tailor the
emission spectrum of tungsten for thermophotovoltaic radiators.

Before moving into other configurations, let us further explore the resonance conditions
with the assistance of Fig. 10.27. Readers should refer to Fig. 9.18 and the discussion in
Sec. 9.4.1 for the general theory of 1-D gratings, and Sec. 10.1.2 for guided modes in a
waveguide. Consider the two 2-D rectangular grating structures, where region II is the
binary grating with a thickness d and is made of air holes or slits inside the metal. The air
portion in between the metal ridges will be referred to as cavities hereafter. Region III can
either be air (Fig. 10.27a) or a metal (Fig. 10.27b) for the filter/lens or emitter/absorber type
of applications. The Bloch wave conditions are

and (10.60)

where are the diffraction orders, and are the wavevector com-
ponents of the incident plane wave, and are the periods in the x and y directions,�x and �y
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respectively. Usually, it is the lower diffraction orders that are significant. However, a large
number of diffraction orders may need to be considered; see Chen et al. (Int. J.
Thermophys., 25, 1235, 2004). Because region I is air, we have .
Inside the cavities, we have

(10.61)

which determines the z component of the diffraction order defined by . Note that for
1-D gratings with grooves parallel to y, , and we can simply replace by 
because there is no diffraction in the y direction. In Chap. 9, we used subscript j as the dif-
fraction order in the case of 1-D gratings.

A Rayleigh-Wood anomaly mode corresponds to ; therefore, 

(10.62)

On the other hand, surface polariton conditions are determined when matches the dis-
persion relation, Eq. (10.42). Because the dispersion curve, as shown in Figs. 10.14a and
10.15a, almost merges with the light line, the Rayleigh-Wood anomaly and surface polari-
ton modes overlap, causing sharp drops in the reflectance spectra for shallow gratings, as
can be seen from Fig. 10.15b. The problem is more complex for deep gratings because one
needs to decide whether the interface between regions I and II or the interface between
regions II and III are responsible. When the cavities are open to both ends, the surface
polaritons are coupled and may divide into two modes, as discussed previously. The dielec-
tric function of region II, however, is not the same as that of the metal, unless the filling
ratio is very high (i.e., with very narrow slits or small holes). Therefore, the surface polari-
ton resonance frequencies are highly sensitive to both the filling ratio and height of the grat-
ings. Numerous papers have dealt with this situation, but a systematic parametric study is
not yet available.

Attention is turned to cavity resonances, which are important when d is on the order of
or greater than . Standing waves, or effective standing waves, need to exist in the
cavities in order to couple the incident radiation field with the gratings or through the grat-
ings. The resonance conditions are
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FIGURE 10.27 Illustration of metal gratings. (a) Both sides are open to air (hole or slit array). (b) Gratings
are made on the metal.
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, (10.63)

, (10.64)

where the phase shift upon reflection may be neglected for highly reflecting metals and 

, (10.65a)

when both sides of the cavities are open as shown in Fig. 10.27a. Here, deff is an effective
cavity length that should be on the same order as the grating height d. Because grating does
not have any physical boundaries or symmetric boundaries, it is not expected that will
be identical to d. When , it is also a Rayleigh-Wood mode ( ), which can be
coupled to the resonance mode if Eq. (10.64) and Eq. (10.65) are satisfied. For gratings
whose cavities are open on one side, as shown in Fig. 10.27b, assuming a symmetric bound-
ary condition near the top of the grating region, we have

, (10.65b)

The resonance wavelength for a mode is simply with
. When resonance occurs, there will be a strong electromagnetic

field inside the cavity; it is this confined and enhanced field that subsequently enhances
absorption and may enhance or suppress transmission (for slit or hole arrays). Intuitively,
one would match a diffracted wave with the resonance mode for the excitation. Two sim-
ple matching scenarios are (1) and such that the modes and

at normal incidence and (2) and such that the modes 
and at normal incidence. Experiments seem to agree with these predictions, con-
sidering that metal is not a perfect conductor and the fabricated gratings may not be
ideal.51,52 The case is complicated if, say, and . It is impossible
to find small numbers of to match with small numbers of . Furthermore, the res-
onance condition given in Eq. (10.65b) inherently requires that a propagating wave exist in
the z direction. This requires that in Eq. (10.61) be real. At normal incidence, a real 
implies that , assuming . However, resonance at has been
observed for square cavities ( ) as well as with very deep gratings. Note that the dif-
fracted field is a Fourier series of all diffraction orders, and it is not necessary for a single
individual mode to match with the cavity mode. It is the field of the combined diffracted
waves that must match the cavity conditions for resonance to occur. In fact, only when

and , all diffracted modes individually matches the cavity modes.
Otherwise, cavity modes rule over Bloch conditions in terms of the excitation fre-
quency. Equation (10.63) through Eq. (10.65) should be combined to determine the
wavelength of resonance modes. For a square cavity with ,

, and , Kusunoki et al. experimentally observed the modes
or in the emission spec-

trum.52 Note the symmetry between m and n. Their measured spectrum also exhibited a
strong peak near , suggesting the existence of a cavity resonance mode with

or . These modes will result in strong absorption near the top of the grat-
ing region, regardless of the boundary conditions at the bottom of the cavity. When

, corresponds to the fundamental mode, and no resonance modes exist
at longer wavelengths, unless the grating is very deep, as will be discussed next.

For a narrow-slit array or a small-hole array, it is possible to have resonance modes with
and (organ pipe mode). In an example shown by Marquier et al.

(Opt. Express, 13, 70, 2005) for a 1-D Ag slit array with , , and
, the organ pipe resonance mode is responsible for the large transmittance atd � 400 nm
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. However, deff is highly sensitive to the structure as well as the order of the
mode, making it difficult to predict the peak wavelengths in a simple formulation. For 1-D
gratings, these resonances can occur for TM waves only, because the boundary conditions
require that the parallel components of the electric field ( ) vanish at the left and
right walls of the slit. It should be emphasized that the resonance mode at is formed
by the Fourier series of all diffracted evanescent waves, together with the zeroth-order dif-
fraction mode ( and ), which is a propagating wave with the same charac-
teristics as the incident wave. More quantitative research is needed to develop reliable
regimes to characterize the absorption and transmission enhancement or suppression for
each polarization. The explanation that works for 1-D surfaces may be different from that
for 2-D surfaces. Mathematical solutions for circular and annular geometries are different
from that for a rectangular geometry. For cylindrical holes arranged in a square array, the
matching between the two coordinate systems also needs to be considered.

10.3.2 Metamaterials

While a thin film can exhibit spectral oscillations and angular lobes in the radiative emis-
sion spectra, as shown by Kollyukh et al. (Opt. Commun., 225, 349, 2003), the resonance
features are not sharp enough. The use of a 1-D dielectric Fabry-Perot resonator may intro-
duce sharp features, as suggested by Ben-Abdallah (J. Opt. Soc. Am. A, 21, 1368, 2004). A
dielectric layer can be formed on a highly reflecting metallic substrate or an opaque metal-
lic film coated onto a dielectric substrate. On top of the dielectric, a partially transmitting
mirror can be used so that an asymmetric Fabry-Perot structure can be built for emission
toward the partially transmitting mirror. Candidates of the reflecting mirror are metallic
films, photonic crystals, heavily doped Si, and SiC. For more details, see Schubert et al.
(Appl. Phys. Lett., 63, 2603, 1993), Celanovic et al. (Phys. Rev. B, 72, 075127, 2005), and
Laroche et al. (Opt. Commun., 250, 316, 2005). Metamaterials have also been proposed for
selective emitters; see Enoch et al. (Phys. Rev. Lett., 89, 213902, 2002) and Zhou et al.
(Appl. Phys. Lett., 86, 101101, 2005). Fu et al. proposed to use the paired negative-� and
negative-� bilayer to achieve coherent emission through the excitation of surface polari-
tons at all angles, for both TE and TM waves.37 The following example illustrates this con-
cept, which is promising as the development of metamaterials continues to push toward
high frequencies. 

Example 10-7. For a thin metallic-type film, with and , of thickness d, on
an opaque magnetic material, with and , calculate the emissivity, using the
functions given in Eq. (10.54) and Eq. (10.55). Assume the parameters are , ,

, , and .

Solution. Under the lossless conditions, the polariton dispersion relations are the same as
shown in Fig. 10.20 for two semi-infinite media. The directional-spectral emissivity can be cal-
culated by , because the magnetic medium is semi-infinite, where can be evalu-
ated using Eq. (10.46) for each polarization. The calculation results are shown in Fig. 10.28a at
normal direction as well as at for either TE or TM wave incidence. Reduced frequency
is used again.  It can be seen that the peak shifts toward lower frequencies for the TM wave and
higher frequencies for the TE wave as increases and the center frequency of the peak is in
good agreement with the polariton dispersion curves, shown in Fig. 10.20a. The Q-factor, defined
as with being the FWHM, is around 100. Figure 10.28b shows the angular distri-
bution of the emission at the center frequencies shown on the left figure. The emission is not dif-
fuse but rather direction selective. 

Fu et al. further proposed to use a three-layer structure with a negative-� film and a
negative-� film onto a negative-� substrate to achieve a higher Q and a spatially coherent
source. In such a case, surface polaritons at both sides of the negative-� medium can be
coupled. A temporally coherent diffuse emitter was also predicted.37
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10.3.3 Modified Photonic Crystals for Coherent Thermal Emission

Numerous recent studies utilize the unique features of modulated microstructures (i.e., pho-
tonic crystals) and nanoparticle arrays to control and improve the optical and radiative
properties for specific applications. For example, see Cornelius and Dowling (Phys. Rev.
A, 59, 4736, 1999), Pralle et al. (Appl. Phys. Lett., 81, 4685, 2002), Lin et al. (Opt. Lett., 20,
1909, 2003), Fleming (Appl. Phys. Lett., 86, 249902, 2005), Puscasu et al. (J. Appl. Phys.,
98, 013531, 2005), Fujita et al. (Science, 308, 1296, 2005), Ecoch et al. (Appl. Phys. Lett.,
86, 261101, 2005), Ben-Abdallah and Ni (J. Appl. Phys., 97, 104910, 2005), Florescu et al.
(Phys. Rev. A, 72, 033821, 2005), Laroche et al. (Phys. Rev. Lett., 96, 123903, 2006), and
Yannopapas (Phys. Rev. B, 73, 113108, 2006). In this subsection, coverage is given to the
surface electromagnetic waves coupled with a PC and the resulting coherent emission char-
acteristics. Yeh et al. showed that a PC can support surface modes or surface waves for both
the TM and TE waves in the stop band.22 If a metallic layer is coated on a 1-D PC, surface
waves can be excited by a propagating wave in air; this will result in a strong reduction in
the reflectance at the resonance frequency.53 Lee et al. predicted coherent thermal emission
based on a modified 1-D PC coated with a thin film of SiC.54 When the thicknesses and
dielectric properties are adjusted, surface waves can be excited in the stop band of the PC
by radiative waves propagating in air, for either polarization. Subsequently, the emission
from the proposed structure contains sharp peaks within a narrow spectral band and toward
well-defined directions. The geometry and the electric field distribution are illustrated in
Fig. 10.29, and will be discussed in detail next.

A PC is a heterogeneous structure, and for the PC discussed previously, ,
, and (nonmagnetic). Hence, it is inappropriate to define the equiva-

lent � and � of the PC separately by considering it as a homogeneous medium. However,
surface waves can be excited at the stop band of the PC because there exists in the PC an
effective evanescent wave, which is an oscillating field whose amplitude gradually decays
to zero as z approaches infinity. The effective evanescent wave does not carry energy into
a semi-infinite PC. Since the wavelength range corresponding to stop bands of the PC can
be scaled by changing the thickness of the unit cell, � is chosen to be 3 �m in order to
approximately match the wavelengths corresponding to the first bandgap of the 1-D PC,
shown in Fig. 9.16, with the phonon absorption band of SiC. Surface waves can be excited
at the SiC-PC interface within the SiC phonon absorption band for both polarizations. By
using the equivalent layer method53 or the supercell method proposed by Ramos-Mendieta

ma � mb � 1eb � n2
b

ea � n2
a
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FIGURE 10.28 Emissivity of a negative-� layer of thickness d on a negative-� layer (semi-infinite).
(a) Frequency dependence at fixed angles. (b) Angular dependence at fixed frequencies.



and Halevi (J. Opt. Soc. Am. B, 14, 370, 1997), it is possible to obtain dispersion relations
of surface waves between a PC and another medium similar to Eq. (10.42) and Eq. (10.43).

Figure 10.29 also shows the square of the electric field, normalized to the incident,
inside the SiC-PC structure for . The real part of the complex electric field is used
to show the actual field inside the structure. The solid line represents the field calculated
from the matrix formulation described in Sec. 9.2.2. An oscillating field exists inside the

u � 0
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FIGURE 10.29 Schematic of the SiC-coated 1-D PC (upper) and the field distribu-
tions (lower) for a TE wave incident from air.54

PC, and the amplitude of the oscillating field decays gradually toward larger z. The dots
represent the electric field obtained using the equivalent layer method, which matches the
matrix solutions at the boundaries of each unit cell.53 The upper panel corresponds to the
wavelength (	 � 	c � 11.479 �m when a surface wave is excited, and the lower panel



corresponds to (l � 11.0 �m without a surface wave. The field strength at the boundary
between SiC and the PC is enhanced by more than an order of magnitude due to excita-
tion of the surface wave. When a surface wave is excited, the incident energy is reso-
nantly transferred to the surface wave, which causes a large absorption in SiC. Because
SiC is the only material in the structure that can absorb the incident energy, it is also
responsible for the emission of radiation from the SiC-PC structure. It is interesting to
note that the maximum electric field is slightly off from the interface between SiC and
the PC, which has been observed previously. If a smooth curve connects all the dots, the
magnitude of the electric field will be maximum at the SiC-PC interface and decay grad-
ually deep into the PC. Furthermore, the Poynting vector or the energy flux toward the
positive z direction is zero inside the PC at the stop band. Therefore, the effective field
inside the PC at the stop band resembles an evanescent wave in a semi-infinite medium.
The fact that the field near the SiC-PC interface is greatly enhanced confirms the exis-
tence of a surface wave. Further, surface waves at the interface between SiC and the PC
can be excited at any angle of incidence and for both polarizations.

Figure 10.30a shows the spectral-directional emissivity spectra in the wavelengths
between 10.5 and 12.5 �m at , , and for both polarizations.54 Notice that60�30�u � 0�
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FIGURE 10.30 The directional-spectral emissivity of the SiC-PC structure when surface wave is excited.54

(a) Spectral dependence at different polar angles for both polarizations. (b) Polar plot of showing the angular
distribution of the emissivity at , 11.293, and 10.929 �m for a TE wave (s polarization).lc � 11.479
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since the emission peak values depend on the thickness of SiC, ds can be tuned to maxi-
mize the emissivity for any given emission angle and polarization states. Here, the thick-
ness of SiC is set to be , which results in a near-unity emissivity at 
for s polarization and slightly lower emission peaks at other conditions. For s polariza-
tion, as an example, very large can be seen in a narrow wavelength band centered at

, 11.293, and 10.929 �m, for emission angles of , , and , respec-
tively. The spectral emission peaks clearly indicate temporal coherence of the thermal
emission. The corresponding quality factor are 230, 185, and 133, respec-
tively, which are comparable to those for SiC gratings.28 From the solution of the surface
wave dispersion relation, assuming no absorption in SiC, the resonance wavelength can
be predicted for the given emission angle. These values are also marked as diamonds and
circles for TE and TM waves, respectively. The deviation in the emission peaks from the

Q � lc/dl

60�30�0�lc � 11.479
erl

u � 60�ds � 1.45 �m



predicted resonance frequency is due to the fact that the thickness of SiC layer is so thin
that the radiation damping effect causes a considerable shift in the emissivity peak posi-
tions from the predicted solution.30,34,35

The spatial coherence of the proposed emission source can be seen from the angular
distributions of the emissivity, shown in Fig. 10.30b at the three peak wavelengths for the
TE wave. It is important to note that the emissivity is plotted as a polar plot to clearly show
the angular lobe into a well-defined direction. However, if one considers the actual source
with finite dimensions, due to the axial symmetry of the planar structure, the coherent
emission from the SiC-PC structure exhibits circular patterns, in contrast to the antenna
shape for the grating surfaces. The emissivity at each is confined in a very narrow angu-
lar region, although the angular spread corresponding to the peak at is larger than
the other two peaks.

In order to examine the resonance modes fully, the spectral-directional emissivity is
illustrated by the contour plot in Fig. 10.31, for both polarizations, as a function of wave-
length and emission angle. Large emissivity values can be seen in a certain range of

u � 0�
lc
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FIGURE 10.31 Contour plot of the directional-spectral emissivity of the SiC-PC structure.54 (a) TE wave.
(b) TM wave.

wavelengths and emission angles. There exist three different mechanisms for the enhanced
emissivity in the SiC-PC structure. In addition to surface waves, cavity resonance can occur
for both polarizations at wavelengths near 13 �m. The emission band is flat, suggesting that
a nearly diffuse emitter can be formed with the cavity resonance mode. There also exists a
Brewster mode for the TM wave due to the small reflection coefficient near the Brewster
angle, which is located at wavelengths ranging from 10 and 10.3 �m at . More
recently, Lee and Zhang (J. Appl. Phys., 100, 063529, 2006) demonstrate spectral coher-
ence near the wavelength of 1 �m using truncated 1-D PC on Ag, which was deposited on
a silicon substrate.

10.4 RADIATION HEAT TRANSFER 
AT NANOMETER DISTANCES

Heat transfer between surfaces placed at extremely short distances has important applica-
tions in near-field scanning thermal microscopy.55–58 The concept of microscale ther-
mophotovoltaic devices has been proposed to improve the energy conversion efficiency, by
bringing the hot source very close to the receiving surface so that photon tunneling can

u � 10�



enhance the net radiant power flux.18 Negative index materials can be used to enhance pho-
ton tunneling through longer distances.23,24 The calculation of near-field radiation heat
transfer between dielectric materials is rather straightforward and has already been
described in Sec. 10.1.4. Nanoscale radiation heat transfer can be enhanced by several
orders of magnitude when absorption is considered. While many metals support surface
waves through surface plasmon polaritons, the plasma frequencies are usually much higher
than the characteristic frequencies of thermal sources. Consequently, the near-field
enhancement of thermal radiation is not very large for good conductors. On the other hand,
semiconductors and semimetals, with smaller electric conductivities, may greatly enhance
radiation heat flux at nanometer scales; see Polder and van Hove (Phys. Rev. B, 4, 3303,
1971) and Loomis and Maris (Phys. Rev. B, 50, 18517, 1994). Most of the theoretical works
were centered on the prediction of the net heat flux between two parallel metallic plates,
using a simple Drude model for the dielectric function. Several studies also considered the
nanoscale energy transfer between a sphere and a surface or between two spheres.19,59 The
use of SiC allows surface phonon polaritons to be excited, resulting in large near-field radi-
ation heat transfer that is concentrated in a very narrow wavelength band.19,59,60

This section introduces fluctuational electrodynamics, originally developed by Rytov in
the 1950s, based on the fluctuation-dissipation theorem.61 Detailed discussions will be
given on the calculation of the near-field thermal radiation between two parallel plates,
with an example based on doped silicon. The fluctuation-dissipation theorem has applica-
tions in the study of thermal conductivity of nanostructures and has also been used to study
the van der Waals forces and noncontact friction at nanometer distances; see Volokitin and
Persson (Phys. Rev. Lett., 91, 106101, 2003) and Zurita-Sanchez et al. (Phys. Rev. A, 69,
022902, 2004). Another application of fluctuational electrodynamics is that it provides the
first-principle calculation of thermal emission as well as emissivity. The method has been
used to predict the emissivity from 1-D metallodielectric photonic crystals.60

10.4.1 The Fluctuational Electrodynamics

Consider the geometry shown in Fig. 10.32a, where two media, each at equilibrium but
with different temperatures T1 and T2, are separated by a vacuum gap of width d, ranging
from several tens of micrometers down to 1 nm. For nonmagnetic, homogeneous, and
isotropic media, the complex dielectric function or relative permittivity is the only property
needed to fully characterize the optical behavior. The foundation of fluctuational electro-
dynamics is the fluctuation-dissipation theorem, under which thermal radiation is assumed
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FIGURE 10.32 Schematic drawings for the study of near-field thermal radiation in the cylindrical coordi-
nates. (a) Radiation heat transfer between two parallel plates separated by a vacuum gap. (b) The electric field
near the surface due to thermally induced charge fluctuations.
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to arise from the random movement of charges inside the medium at temperatures exceed-
ing 0 K. The fluctuated charge movement causes fluctuating electric currents that will
result in distributions of electromagnetic fields in space and time. The movement of
charges from an equilibrium position can also be viewed as dipoles illustrated in Fig.
10.32b. The electromagnetic field at any location is a superposition of contributions from
all point sources in the radiating region. The electromagnetic waves deep inside the
medium will attenuate due to absorption (i.e., dissipation) inside the medium. The follow-
ing discussion is based on the work of Fu and Zhang.20 The basic assumptions are as fol-
lows: (a) Each medium is semi-infinite and at a thermal equilibrium, presumably due to a
sufficiently large thermal conductivity of the solid. (b) Both media are nonmagnetic,
isotropic, and homogeneous, so that the frequency-dependent complex dielectric function
(relative permittivity) is the only material property that characterizes the electro-
dynamic response and thermally excited dipole emission of medium 1 or 2. (c) Each sur-
face is perfectly smooth, and the two surfaces are parallel to each other.

Because of axial symmetry, cylindrical coordinates can be used so that the space vari-
able . Consider a monochromatic electromagnetic wave propagating
from medium 1 to 2. The complex wavevectors in media 1 and 2 are , respectively,
with and , where is the magnitude of the wavevector
in vacuum. Because and are in general complex, and should be viewed as com-
plex variables of �. Only real and positive �’s are considered so that is always real. The
monochromatic plane wave can be expressed in terms of a time- and frequency-dependent
field , where j � 0, 1, or 2 refers to vacuum, medium 1, or medium 2,
respectively. The phase-matching condition requires the parallel components of all three
wavevectors to be the same. To simplify the notation, let us use for the parallel compo-
nent and for the normal component of the wavevector . Thus, and

. The spatial dependence of the field in vacuum can be expressed as

. Because its amplitude must not change along the r direction,  must be
real. Keep in mind that both r and  are positive in the cylindrical coordinates. The normal
component of the wavevector in vacuum will be real when 
and purely imaginary when . Thus, an evanescent wave exists in vacuum when

. Note that are in general complex.
The random thermal fluctuations produce a spatial-time-dependent electric current den-

sity inside the medium whose time average is zero. The current density can be
decomposed into the frequency domain using the Fourier transform, which gives .
With the assistance of the dyadic Green function , the induced electric field in
the frequency domain can be expressed as a volume integration:

(10.66)

where �0 is the magnetic permeability of vacuum, and the integral is over the region V that
contains the fluctuating sources. The physical significance of the Green function is that it
is a transfer function for a current source at a location and the resultant electric field E
at . Mathematically, the dyadic Green function satisfies the vector Helmholtz equation:

(10.67)

where k is the amplitude of the wavevector at x, and I is a unit dyadic. The corre-
sponding magnetic field can be obtained from the Maxwell equation:

. The spectral energy density of the thermally emitted H(x, v) � (ivm0)
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electromagnetic field in vacuum can be calculated from Eq. (8.19) based on the ensemble
average. Therefore,

(10.68)

where “ ” denotes the ensemble average of the random currents. The emitted energy flux
can be expressed by the ensemble average of the Poynting vector, i.e., 

(10.69)

To evaluate the ensemble average, the required spatial correlation function between the
fluctuating currents at two locations and inside the emitting medium is given as20

(10.70)

where (m � 1, 2, or 3) stands for the x, y, or z component of , is the Kronecker delta
function, and is the Dirac delta function. In Eq. (10.70), is the mean
energy of a Planck oscillator at the frequency � in thermal equilibrium and is given by

(10.71)

In Eq. (10.71), the term that accounts for vacuum fluctuation is omitted since it does
not affect the net radiation heat flux; see Milonni and Shih (Am. J. Phys., 59, 684, 1991) for
a detailed discussion about the vacuum fluctuation or zero-point energy. The calculated
energy density should be regarded as being relative to the vacuum ground energy density.61

A factor of 4 has been included in Eq. (10.70) to be consistent with the conventional defi-
nitions of the spectral energy density and the Poynting vector expressed in Eq. (10.68) and
Eq. (10.69), respectively, since only positive values of frequencies are considered here.20

The local density of states or density of modes is defined by the following relation:61,62

(10.72)

The energy density and density of states are independent of r because of the infinite-plate
assumption. The physical significance of [1/(m3 ⋅ rad/s)] is the number of modes per
unit frequency interval per unit volume. Equation (10.72) assumes that the contribution is
only from the medium and did not consider the contribution from free space as well as
that reflected by the interface. This omission is justifiable in the near-field regimes because
the contribution from free space may be orders of magnitude smaller than that from the
medium.

10.4.2 Heat Transfer between Parallel Plates

The Green function depends on the geometry of the physical system, and for two parallel
semi-infinite media sketched in Fig. 10.32a, it takes the following form:

(10.73)

where and .19,59 Note that ts and tp are the transmission coeffi-
cients from medium 1 to medium 2 for s and p polarizations, respectively, and can be cal-
culated using Airy’s formula given in Eq. (9.8). The unit vectors are ,
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field from a medium to vacuum, ts and tp can be replaced by the Fresnel transmission coef-
ficients between the medium and vacuum. The electric field can be calculated by substitut-
ing Eq. (10.70) and Eq. (10.73) into Eq. (10.66). The energy density, the energy flux, and
the local density of states can then be calculated. The local density of states in vacuum near
the surface of medium 1 can be expressed in two terms as follows:19,20

(10.74)

where (10.75a)

and (10.75b)

Here, is the Fresnel reflection coefficient and is the (far-field) reflectivity at
the interface between vacuum and medium 1, the superscripts s and p signify s polariza-
tion and p polarization, respectively. Note that and

. It should be mentioned that, in deriving Eq. (10.74), the
imaginary part of the permittivity of medium 1 in Eq. (10.70) has been combined with other
terms. No matter how small may be, such as for a dielectric, it must not be zero for
the semi-infinite assumption to hold. The contribution of propagating waves given by
Eq. (10.75a) is independent of z and exists in both near and far fields; whereas the contri-
bution of evanescent waves decreases with increasing z. In the far-field limit, the contribu-
tion of the propagating waves is responsible for thermal emission, and one can see the
directional-spectral emissivity terms, i.e., and from Eq.
(10.75a). As it gets closer and closer to the surface, the contribution of evanescent waves
near the surface may dominate when is large especially in the case of surface
phonon polaritons. Subsequently, very large energy densities exist near the surface at that
particular frequency.19,62

The spectral energy flux from medium 1 to medium 2 is calculated by projecting the
time-averaged Poynting vector from Eq. (10.69) into the z direction; thus,

(10.76)

where

Here, can be regarded as an exchange function, which provides information on the
contribution to the spectral energy flux at a given . Equation (10.76) includes the contri-
butions from both propagating and evanescent waves. The expression of is readily
obtained by replacing with since the exchange function is reciprocal,
namely, . The net total energy flux is the integration of 
over all frequencies, viz.,
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which provides an ab initio calculation of the thermal radiation that is applicable for both
the near- and far-field heat transfer. The contribution of evanescent waves with imaginary

(for ) reduces as d increases and is negligible when d is on the order of the wave-
length. The energy transfer can also be separated into contributions of propagating waves
and coupled evanescent waves (i.e., photon tunneling). 

The exchange function Z can be rewritten using the Fresnel coefficients and reflectivity
for propagating waves as

(10.78)

Substituting Eq. (10.78) into Eq. (10.76) and noting that , where u is the polar
angle in vacuum, we can evaluate the integration from to , by averaging the oscillation 
terms to obtain the far-field and incoherent limit (d �� 	): .
It can also be shown that , which
also holds for p polarization. The total energy flux in the far-field limit becomes

(10.79)

which is similar to the equation found in radiation heat transfer texts, except that angular fre-
quency is used here instead of wavelength. The wavelength integration can be obtained by con-
verting blackbody intensity from to 
While the energy flux includes the contributions by both polarizations, one should integrate for
the two polarizations separately according to Eq. (10.79). The expression of Z for the contri-
bution of evanescent waves is

(10.80)

Clearly, the exchange function decays exponentially as the distance of separation d
increases.

10.4.3 Asymptotic Formulation

At the nanometer scale, when near-field radiation dominates, especially for metallic media,
doped silicon, or polar materials in the absorption band, the exchange factor from Eq. (10.80)
can be expressed with an approximate formula. Note that at , we have
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Using the relation: Im , the spectral heat flux from 1 to 2 in the limit
can then be expressed as

where . The heat flux will be inversely proportional to in the proximity limit.

The integral approaches 1 when ; consequently, the net spectral flux

becomes

(10.82)

When , Eq. (10.75b) reduces to . By eval-

uating the integration and keeping the highest-order terms only, one obtains the following
asymptotical expression for as 

(10.83)

This equation suggests that, as z decreases, the near-field density of states increases with 
and is localized at the surface. 

10.4.4 Nanoscale Radiation Heat Transfer between Doped Silicon

Radiation heat transfer may be important when their characteristic dimensions are on the
nanometer scales. AFM cantilevers with integrated heaters and with nanoscale sharp tips
made of doped silicon have been developed for thermal writing and reading.58 These heated
cantilever tips may provide local heating for the study of radiative energy transfer between
two objects separated by a few nanometers. It is critical to quantitatively predict the near-
field radiation heat flux between doped silicon. The dielectric function of doped silicon can
be described by the Drude model, considering the effects of temperature and doping level
on the concentrations and scattering times of electrons and holes, as described in Sec. 8.4.4
of Chap. 8. 

To calculate the radiative energy flux, it is essential to evaluate the integration of the
exchange function over the wavevector ranging from 0 to infinity and the inte-
gration of the spectral energy flux over all frequencies. The integration over from 0 to 
corresponds to radiation heat transfer by propagating waves. In this range, the integrand
exhibits highly oscillatory behavior for large d. In this regard, Simpson’s rule is an effec-
tive technique in dealing with oscillatory integrands. The integration for from to
infinity corresponds to radiation heat transfer by evanescent waves, and the exchange fac-
tor is given as . For small d values, the upper limit should be on the order of

; but for large d values, 1/d would be less than . A semi-empirical criterion can be
used to set as or , whichever is larger, to ensure an integration error less than
1%. An effective way to perform the integration is to break it into several parts and evalu-
ate each part using Simpson’s rule. For example, the integration can be carried out in two
parts, and . A relative difference of 0.1% may be used
as the convergence criterion between consecutive iterations. For conventional radiation
heat transfer calculations, the lower and upper bounds of the integration over frequency
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(or wavelength) can be selected such that 99% of the blackbody emissive power falls
between the limits. For example, 99% of blackbody radiation emissive power is concen-
trated between 1.2 and 25 �m at 1000 K, and between 4 and 85 �m at 300 K. The enhance-
ment of near-field radiation heat transfer is generally greater at longer wavelengths, and as
such, the integration should be performed over a much broader spectral region. 

Figure 10.33 shows the predicted radiation heat transfer between two silicon plates.
Medium 1 is intrinsic silicon at T1 � 1000 K, whereas medium 2 is at T2 � 300 K whose
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FIGURE 10.33 Net energy flux between intrinsic silicon, medium 1 at
1000 K and medium 2 at 300 K, with different doping levels.20
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doping levels vary from intrinsic to heavily doped silicon with phosphorus as the donor
(n-type). In the calculations, the wavelength region was chosen in the range from 0.94 to
about 1880 �m ( range from 1012 to 2 � 1015 rad/s). The dotted line represents the far-
field radiation heat flux between two blackbodies, , as predicted by the
Stefan-Boltzmann law. Wien’s displacement law suggests that the dominant wavelength

for the 1000-K emitter is around 3 �m. The energy flux is essentially a constant when
the distance d is greater than 10 �m, which is the far-field regime. The net energy flux
increases quickly when due to photon tunneling. When medium 2 is intrinsic or
lightly doped, i.e, , the maximum is achieved when d � 50 nm. The
maximum net energy flux is 21.3 times that of the far-field limit and 11.7 times that of
blackbodies for intrinsic silicon, as predicted earlier when the silicon plates are treated as
dielectrics. On the other hand, for continues to increase as d is
reduced and does not saturate. Note that the results for ranging from 
are very similar to that for . The heat flux at d � 1 nm with

is 800 times greater than that between two blackbodies. 
If one of the media is a slightly absorbing dielectric, as for silicon with a carrier con-

centration less than , the Fresnel coefficients beyond the critical angle become
imaginary. There is a propagating wave in the medium and an evanescent wave in vac-
uum (corresponding to frustrated total internal reflection). If the refractive index of the
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dielectric medium is n, then will be nonzero for . However,
because the extinction coefficient is negligibly small, will be very small
beyond and will decay exponentially with increasing . Therefore, for lightly doped
silicon, the enhancement is limited to approximately and the near-
field flux becomes , as discussed previously. Because of the small
difference between the refractive indices of the two media, n is used here for both media
for simplicity. On the other hand, if is large, the integration over will have a
significant contribution to the heat flux and may even dominate the heat flux when d
reaches a few nanometers.

The enhancement of near-field heat transfer can be better understood from the energy
flux spectra shown in Fig. 10.34. The units of is expressed as rather thanW/(m2
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FIGURE 10.34 Spectral energy flux for different separation distances between silicon plates, where
medium 1 is always intrinsic, T1 � 1000 K, and T2 � 300 K.20 (a) Medium 2 is intrinsic. (b) Medium 2 is
n-type silicon with a donor concentration ND2 � 1018 cm�3.

to keep the integrity of the angular frequency units, i.e., . Notice that at
1000 K, the carrier concentration is about . The spectral flux between two black-
bodies at 1000 and 300 K, calculated from Planck’s spectral emissivity power, is also shown
for comparison. Interference becomes important at d � 10 �m and causes the wavy features
in the spectral energy flux. When the receiver is intrinsic, as Fig. 10.34a reveals, the shape of
the spectrum is similar for d � 100 nm and scaled up with times that of the black-
body. However, the slightly increased � due to phonon absorption and, in the far-infrared, due
to free carriers can result in an increase in the spectral energy flux, while the increment is not
significant enough to vary the total flux. The near-field spectral flux is greatly enhanced with
doping, as can be seen from Fig. 10.34b, especially in the far-infrared region. As mentioned
earlier, the increased energy flux in the longer wavelengths requires the integration to be car-
ried out much broader than that of blackbody spectrum. The mechanism underlying the
nanoscale enhancement is discussed next. When Eq. (10.82) is used to calculate the spectral
energy flux at d � 1 nm, the predicted values are nearly half of those obtained by integration
in the frequency region from 1012 to 1014 rad/s for the case shown in Fig. 10.34b. This is
because Eq. (10.81) is not applicable for � 1014 rad/s, where the major contribution of
evanescent waves comes for , i.e., propagating waves in silicon. Therefore,
care must be taken in applying the asymptotic expression given in Eq. (10.82).
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The enhanced thermal radiation can also be understood from the very large energy den-
sity in the vicinity of the surface. The spectral energy density near the surface of
medium 1 at 1000 K is evaluated using Eq. (10.68), and the results are shown in Fig. 10.35

u(z,v)
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FIGURE 10.35 Spectral energy density near semi-infinite silicon at T1 � 1000 K at different distances
from the surface for intrinsic and doped silicon.20
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when the medium is either intrinsic or doped silicon with . The energy
density of a blackbody enclosure is also shown for comparison. As the height ,
the energy density is greatly enhanced because the local density of states increases rapidly
as z decreases toward the nanometer regime. Furthermore, the maximum appears at a dif-
ferent wavelength when compared to the maximum for Planck’s blackbody distribution
function. The dependence of on doping can be understood by examining the term

in Eq. (10.83). Because the plasma frequency of silicon is pushed toward
shorter wavelengths by increasing the carrier concentration, increases sig-
nificantly in the spectral region from 2 to 100 �m. Although for intrinsic silicon is larger
toward longer wavelengths, the contribution to the total energy density is very small when

. Hence, the near-field energy flux may increase further when the emitter is
heavily doped.

Figure 10.36 plots the radiation heat transfer between heavily doped silicon. In
Fig. 10.36a, the 1000-K emitter is assumed to have a fixed dopant concentration of

, while the dopant concentration of the 300-K receiver varies from
. The result for (not shown) isND2 � 1020 cm�3ND2 � 1018 cm�3 to ND2 � 1021 cm�3
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slightly lower but very close to that for . As expected, the nanoscale
thermal radiation is enormous. For example, at d � 1 nm, , which is
15,000 times greater than that between two blackbodies. The effect of source temper-
ature on the net energy flux is investigated by varying , while T2 is fixed at 300 K.
The normalized energy flux from medium 1 to medium 2, with respect to that of
blackbody emissive power at T1, is shown in Fig. 10.36b with dopant concentrations

cm�3. The enhancement is greater when T1 is closer to 300 K and
reaches when T1 � 400 K, at d � 1 nm. Even at d � 10 nm, the enhancement
is significant for a number of applications, such as enhanced heating and cooling for ther-
mal control and energy conversion near room temperature. Using different parameters in
the Drude model of heavily doped silicon, Marquier et al. (Opt. Commun., 237, 379,
2004) predicted similar enhancement of near-field radiation heat transfer for heavily
doped silicon. Measurements have rarely been performed on the infrared properties of
heavily doped silicon.

For SiC, the enhanced near-field radiation has been attributed to surface phonon
polaritons.19,59,60 For doped silicon, the plasma frequency is in the infrared region.
Because of the large scattering rate 1/�, Re(�) may never be negative in the infrared; even
though it becomes negative at some frequencies, the magnitude would be much smaller
than Im(�). Therefore, the enhancement of nanoscale radiation may be understood from
the large values of the exchange function around the plasma frequency where

is large in both media. Although surface plasmon resonance condition is
not satisfied, evanescent waves are present in vacuum as well as in the media for suffi-
ciently large values. The near-field energy flux spectrum for Si exhibits a broader peak
when the doping concentration is less than , as can be seen from Fig. 10.34. The
spectral width of the heat flux peak decreases with increasing doping level but is still
much broader than that for SiC.

Example 10-8. At what distance d, would the nanoscale thermal radiation between two plates at
T1 � 400 K and T2 � 300 K, exceed that of heat conduction by air at the pressure P � 1 atm?

Solution. When d is much smaller than the mean free path, which is about 70 nm at standard
atmospheric conditions, boundary scattering or ballistic scattering dominates gas conduction. The
thermal conductivity decreases linearly as d decreases, whereas the heat flux is independent of d in
this regime. Assuming a thermal accommodation coefficient of 1, the heat transfer by gas conduc-
tion can be estimated from the theory in Chap. 4, Eq. (4.93), as
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FIGURE 10.36 Net energy flux between heavily doped silicon.20 (a) versus d for several val-
ues when , at T1 � 1000 K and T2 � 300 K. (b) The energy flux from medium 1 to
medium 2, normalized by at different T1 for T2 �300 K.sT4
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where R is the ideal gas constant, P is the pressure, is a mean temper-
ature, and cv is the specific heat at constant volume evaluated at Tm. The resulting for air at a
pressure P � 1 atm is approximately 1.1 � 107 W/m2 for T1 � 400 K and T2 � 300 K. The calcu-
lated near-field net energy transfer by radiation is at the same level when d � 3 nm with heavily doped
silicon. At d � 1 nm, the near-field radiation heat transfer can be an order of magnitude greater than
the heat transfer by air conduction at the atmospheric pressure. Because the conduction heat flux fur-
ther decreases as the pressure is reduced, nanoscale thermal radiation may dominate the heat transfer
process for scanning thermal probes and heated cantilever tips using heavily doped silicon.

The radiation heat transfer coefficient can be defined as in analogy
to Newton’s law of cooling. It can be seen from Fig. 10.36a that for heavily doped silicon,

at d � 1 nm and at d � 10 nm. It is important
to verify whether the local-equilibrium assumption is valid. Assume that the near-field
radiation penetration depth is 100 nm and the thermal conductivity for doped silicon is
100 . For a heat flux of , the temperature drop would be 1 K within the
radiation penetration depth. Therefore, the local-equilibrium assumption should still be
valid. However, for a wafer of 100-�m thickness, the temperature drop would be 1000 K.
The preceding calculations suggest that indeed near-field radiation can be an effective way
of heating and cooling. As an alternative to the parallel-plate configuration, it is possible to
pattern one of the silicon wafers with a 2-D array of truncated cones or pyramids to remove
heat locally for thermal control in nanoelectronics, for example.

Experimental investigations of near-field radiative energy transfer are very limited. Tien
and coworkers63 and Hargreaves64 were among the first to measure the energy flux of two
parallel plates at cryogenic temperatures. Kutateladze et al. performed similar measure-
ments.65 The smallest separation distance was about 1.5 �m. Xu et al. used an STM stage
with an indium needle that has a flat tip surface of 100-�m diameter.56 Müller-Hirsch et al.
investigated the heat transfer between a tungsten tip and a planar thermocouple in the sub-
strate by cooling the substrate.57 While the proximity effect was observed at distances down
to 10 nm or so, it was difficult to quantitatively determine the absolute heat flux between the
tip and the substrate, as well as to accurately measure the temperatures of the tip and the sub-
strate.56.57 Further research is needed to quantitatively demonstrate near-field heat transfer
enhancement with different materials, including doped silicon, at the nanoscale distances.
Another interesting question is the coupling between near-field radiation and thermionic
and field-emission effects for cooling and direct energy conversion.

10.5 SUMMARY

This last chapter of the book, while a little bit long, described a field that is clearly associ-
ated with radiation heat transfer but with its foundations deeply within physical optics,
electrodynamics, and perhaps quantum electrodynamic and quantum mechanics. The
research has so far largely been performed in the areas of nanooptics, nanophotonics, nano-
materials, and nanooptoelectronics. The aspects of fabrication and specific applications
were not sufficiently covered, because the focus has been on the fundamental mechanisms
that are generally applicable to any given devices or systems. Nevertheless, through the ref-
erences cited at the end of the chapter, together with those cited in the texts, readers will be
able to access the literature database to obtain further information about any specific topic.
It is hoped that this chapter will bridge gaps between different disciplines and provide a
solid foundation for the readers to appreciate this exciting and dynamic field, which is
believed to be a new frontier in nanoscale heat transfer.
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PROBLEMS

10.1. For incidence from glass with n � 1.5 to air, calculate the Goos-Hänchen phase shift � for both
TE and TM waves. Plot � as a function of the incidence angle .
10.2. Show that the normal component of the time-averaged Poynting vector is zero in both media
when total internal reflection occurs. Prove Eq. (10.8).
10.3. Calculate the Goos-Hänchen lateral shift upon total internal reflection from a dielectric with
n � 2 to air. Plot the lateral shift for both TE and TM waves as a function of . Discuss the cause and
the physical significance of the lateral beam shift.
10.4. A perfect conductor can be understood based on the Drude free-electron model by neglecting the
collision term. The dielectric function becomes , where is the plasma frequency. For
radiation incident from air to a perfect conductor, calculate the phase shift when for TE and
TM waves as a function of the incidence angle. Use Eq. (10.9) to calculate the lateral beam shift for a TM
wave and modify it for a TE wave. Do you expect a sign difference between the TE and TM waves?
10.5. For a planar waveguide with and , with a thickness of d � 200 nm, how
many total modes are there in the waveguide at nm, �m, and ?
10.6. Derive Eq. (10.16) by setting the determinant of the characteristic matrix to be zero.
Sometimes, it is desirable to plot the solutions of Eq. (10.16) in curves that relate to . These curves
are called waveguide dispersion relations. Given , , and , plot the dis-
persion curves for the first four TE modes. Explain why the group velocities are different for different
modes, even though the refractive indices are independent of wavelength.
10.7. In an asymmetric dielectric waveguide, the guided region (refractive index ) is sand-
wiched between two different materials ( and ). Show that the mode equation can be
expressed as where and are the phase angles upon
total internal reflection by media 2 and 3, respectively. If the thickness of the guided region is 
find the wavelength region where the fiber is a single-mode fiber ( only). Find the wavelength region
where the fiber allows only and modes to be guided, i.e., single mode for each polarization.
10.8. Using Eq. (10.20b) and Eq. (10.25) to show that the normal component of the Poynting vec-
tor in medium 2 is not a function of z in the case of photon tunneling (see Fig. 10.7a). Prove that the

in medium 3 is the same as that in medium 2. Can you separate the incident power from the reflected
power at the interface between media 2 and 3?
kSlz

TM0TE0

TE0

d � 3 �m,
d3d22k1zd 
 d2 
 d3 � 2mp, for m � 0,1,2,c,

n3 � 2.5n2 � 1.5
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d � 300 �mn2 � 1.3n1 � 1.6
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4 � 4
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10.9. For thermal radiation originated from medium 1 with a refractive index of to air, what
is the critical angle? If medium 3 is close to medium 1 to form an air gap of width d, plot the
directional-spectral transmittance at different angles as a function of . Calculate the hemispherical
transmittance for s polarization, for both propagating and evanescent waves, and plot it against .

10.10. Two dielectric materials 1 and 3 are placed in close vicinity at cryogenic temperatures, sepa-
rated by a vacuum gap of thickness d. Given , , and , calculate the net
radiative energy transfer when . Plot the radiative energy transfer from 1 to 3 and that from
3 to 1, as a function of d.
10.11. In the resonance tunneling setup discussed in Sec. 10.1.5 and shown in Fig. 10.9a, show
that for N � 2 the transmittance can be expressed as , where

. For , , and , find the wave-
lengths where resonance tunneling occurs. Plot the transmittance spectra for the TM wave, and deter-
mine the FWHM of each peak. [Discussion: It is interesting to find out the field distribution and
localization in the three middle layers. The amplitude of the evanescent wave may either increase or
decrease in the forward direction. One can use the matrix formulation to solve the field distribution to
demonstrate the growth of evanescent waves in this arrangement. Discuss the lateral beam shift of the
transmitted beam due to the parallel energy flow in the central layer.] 
10.12. Derive Eq. (10.39) through Eq. (10.41), with layer 3 being a NIM and layer 2 being a PIM,
with the same absolute values of refractive index. How will the field distribution in Fig. 10.10b change
if the two middle layers switch positions?

10.13. Refer to photon tunneling with negative index layers. Consider two dielectric prisms of
refractive index , sandwiching three middle layers of thicknesses . Media
2 and 4 are vacuum with , while the middle layer, medium 3, is made of a NIM
with , i.e., . Show that when the incidence angle is greater than the critical
angle, the transmission coefficient can be expressed as follows: , 
where , is the phase angle upon total internal reflection from medium 1 to 2, and

. Plot the transmittance as a function of , at incidence angles of for
each polarization. Derive the expression for the transmittance of propagating waves. Calculate the
hemispherical transmittance for a chosen polarization, and plot it as a function of for both the
propagating and evanescent waves in vacuum. 

10.14. Calculate the real and imaginary parts of based on the surface plasmon polariton relation
given in Eq. (10.45) for Al, as in Example 10-6. What is for nm? Assuming that the prism
has an index of refraction , find the incidence angle that would yield . Calculate the
reflectance for Al in the ATR arrangements at nm. Discuss whether the obtained reflectance dip
in the angular distribution of the reflectance agrees with that predicted by the surface plasmon polariton.
Calculate the polariton propagation length at this wavelength.

10.15. Studies suggest that the surface plasmon dispersion relation described in Eq. (10.45) can be
solved by assuming that is real but . The real part of � corresponds to the surface
polariton resonance frequency, while the imaginary part corresponds to the bandwidth. Develop a
computer program to solve and for Al. Assume that the Al film of thickness 24 nm is adja-
cent to the prism with . For , calculate the reflectance spectrum near the reso-
nance frequency of the surface polariton, and compare the bandwidth with the calculated .

10.16. Examine Fig. 10.15 to confirm whether the surface polariton resonance frequencies predicted
by the dispersion relation agree with the reflectance dips for a TM wave incident on a grating. Note
that one of the dips in the dotted line ( ) overlaps with that of the solid line ( ) near 12,000
cm�1. Hence, there are three notable dips in the reflectance at and five notable dips at .
10.17. Discuss why a nanoparticle can absorb more energy than a blackbody of the same size. Is it pos-
sible for a nanoparticle of radius to emit more energy than , where T is the temperature of the
spherical particle? Furthermore, is it possible for a nanoaperture to transmit more energy than the product
of the incident energy flux (i.e., radiance) times its area? Why or why not?
10.18. Reproduce some cases in Fig. 10.18 under the same conditions for and .
To examine the effect of a, recalculate the reflectance spectra with for the same
d. Compare your results with those of Park et al.35

10.19. Based on the dielectric function model of SiC, at , and
, which correspond to a radiation penetration depth of 0.448 �m. If a film of

SiC with a thickness of d � 1.8 �m is sandwiched between two prisms of the same dielectric con-
stant , calculate the transmittance as a function of the incidence angle. Considering aed � 2.89
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 1.953i
es � �3.256 
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prism-air-SiC-prism arrangement, where the width of the air gap is , calculate the trans-
mittance again. You should see a peak near 43� with a transmittance around 0.3 for a TM wave.
Verify that the transmittance enhancement is due to surface plasmon excitation, by calculating the
angle-dependent reflectance.
10.20. Consider a prism-air-Al-prism configuration with for both prisms, air gap width

, and aluminum thickness . Use the dielectric function of Al from Example 8-6
to calculate the transmittance and the reflectance at for a TM wave at the incidence angle

. Discuss the effect of the air gap width.
10.21. First reproduce Fig. 10.20b, i.e., the transmittance of SNG bilayer for a TE wave. Then, cal-
culate the transmittance for a TM wave under the same conditions.
10.22. Consider two thin films with negative-� (thickness a) and negative-� (thickness d) onto a negative-
� substrate which is opaque. Such a layered structure may exhibit coherent emission to air. The struc-
ture is basically air-NGE-NGM-NGE, where NG stands for negative, E for permittivity, and M for
permeability. The electric and magnetic properties can be modeled with Eq. (10.54) and Eq. (10.55),
using , , , and . 
(a) Let and . For p polarization, calculate the emissivity of this structure at

for between 0.5 and 0.9. Then calculate the angular distribution of the emissivity at
.

(b) Let and . Repeat the calculation of the emissivity spectrum at for
p polarization. Then, calculate the angular distribution of the emissivity at .

10.23. Reproduce Fig. 10.24, and discuss the features of energy streamlines for the radiative trans-
fer through a dielectric film. Switch the vacuum and the dielectric regions so that the structure becomes
dielectric-vacuum-dielectric, with d/	 � 0.1 and 0.01. Show the ZLs for both propagation and evanes-
cent waves in air. 
10.24. For the transmittance through the bilayer structure, shown in Fig. 10.20b, develop the energy
streamlines at and incidence at the frequencies corresponding to the transmittance peaks. 
10.25. A 2-D grating is made of microcavities with the following parameters: ,

, and , on a perfectly conducting metal. What is the largest wavelength
at which the cavity resonance mode can be excited? List other possible modes, i.e., excitation wave-
lengths. Discuss the dependence on polarization, as well as potential anisotropic emission and absorp-
tion between , where is the azimuthal angle. Optional: Use FDTD or BEM
software to confirm your results.
10.26. Calculate nanoscale heat transfer between two SiC plates with a vacuum gap as a function of
the gap width. Assume that and , and use the dielectric function of SiC at
room temperature. Plot and discuss the spectral energy transfer in the near field. 
10.27. Team Project: It is proposed to use an asymmetric Fabry-Perot cavity for coherent thermal
emission in the near-infrared, by depositing a 1.5-�m SiO2 coating onto a smooth Al substrate and then
depositing a 15-nm Al film atop the SiO2 later. Assume that the refractive index of SiO2 is n � 1.5 and
is independent of frequency. Calculate the emissivity for a TM wave at in the fre-
quency range from 5000 to 12,000 cm–1. Locate some of the peaks, and calculate the angle-dependent
emissivity. If possible, plot the directional-spectral emissivity in a contour, showing the dependence
on wavenumber and emission angle. See Lee and Zhang (J. Appl. Phys., 100, 063529, 2006).
10.28. Team Project: Develop the matrix formulation for 1-D multilayer structures, and use it to
reproduce Figs. 10.30 and 10.31.
10.29. Team Project: Consider the radiation heat transfer between two plates at

, separated by a vacuum gap of width d. The dielectric function of the
plates can be modeled as a Drude model: . Choose different val-
ues of and to calculate the near-field and far-field radiation heat transfer. Comment on the effect
of each parameter. [Hint: You probably want to set in the near-infrared, say, at 8000 cm�1, and

to start with.]g < 0.01vp

vp

gvp

e1(v) � e2(v) � 1 � v2
p/(v2 
 ivg)

T1 � 800 K and T2 � 300 K 

u � 30� and 60�

T2 � 300 KT1 � 600 K

ff � 0� and f � 45�

d � 5 �mWx � Wy � 4.5 �m
�x � �y � 6 �m

60�30�

v/vp � 0.5425
u � 30�a � 0.3lpd � 0.1lp

v/vp � 0.8383
v/vpu � 30�

a � 0.55lpd � 0.1lp

e2 � 4ge � gm � 0.0025v0 � 0.5vpF � 0.785

u � 47�
l � 180 nm

d � 30 nma � 120 nm
ed � 2.45

a � 5 �m
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PHYSICAL CONSTANTS

Avogadro’s constant NA 6.022 � 1026 kmol�1

Boltzmann’s constant kB 1.381 � 10�23 J/K
Electric permittivity (vacuum) �0 1/�0 c2

0 � 8.854 � 10�12 C2/(N ⋅ m2)
Electron charge (absolute value) e 1.602 � 10�19 C (coulumb)
Electron mass me 9.109 � 10�31 kg
Magnetic permeability (vacuum) �0 4
 � 10�7 N/A2 (exact)
Planck’s constant h 6.626 � 10�34 J ⋅ s
Proton mass mp 1.673 � 10�27 kg
Speed of light in vacuum c0 2.998 � 108 m/s (299,792,458 m/s,

exact)
Standard acceleration of gravity gn 9.80665 m/s2 (exact)
Stefan-Boltzmann constant �SB 5.670 � 10�8 W/(m2 ⋅ K4)
Universal gas constant 8.314 kJ/(kmol ⋅ K)

CONVERSION FACTORS

1 atm � 760 mmHg � 101.325 kPa (standard atmosphere, exact)
1 eV � 1.602 � 10�19 J (electron volt)

SI PREFIXES

Reference: http://physics.nist.gov/cuu/index.html

R

Power 10�21 10�18 10�15 10�12 10�9 100 109 1012 1015 1018 1021

Prefix zepto atto femto pico nano — giga tera peta exa zetta
Symbol z a f p n — G T P E Z 

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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B.1 SOME USEFUL FORMULAE

B.1.1 Series and Integrals

Binary equation:

(B.1)

Geometric series:

( ) (B.2)

Using the Taylor expansion, we can write

(B.3)

(B.4)

Integrate . This integral may be evaluated by a transformation from

Cartesian coordinates to polar coordinates:

� 6
0�r�`
0�f �2p

 e�r2
rdrdf � 3

`

0
e�r22prdr � p 3

`

0
e�tdt � p

a 3
`

�`

e�x2
dxb a 3

`

�`

 e�y2
dy b� 6

�`�x�`
�`�y�`

e�(x2
y2)dxdy

3
 

`

 �`

 e�x2
dx

(�1 � x � 1 )ln (1 
 x) � x �
x2

2



x3

3
�

x4

4

  c

ex � 1 
 x 

x 2

2!



x 3

3!

  c

x � 01 
 e�x 
 e�2x 
 e�3x 
 c �
1

1 � e�x


 c 
 NaN�1b 
 aN � a
N

M�0

N!
M!(N � M)!

aM bN�M

(a 
 b)N � bN 
 NabN�1 

N(N � 1)

2!
a2bN�2 


N!
3!(N � 3)!

a3bN�3
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Therefore, (B.5)

It can be seen that . It should be noticed that , but 

Furthermore, ( ) (B.6)

Another type of important integral equation is the following:

(B.7)

where (B.8)

Here, is the Riemann zeta function defined as

(B.9)

The values of are given in the following table for several n values:

Examples are , , and

B.1.2 The Error Function 

The error function is defined as

(B.10)erf(x) �
2

2p
3

x

0
 e�x2

dx

3
`

0

x3

ex � 1
dx �

p4

153
`

0

x2

ex � 1
dx � 2.404c3

`

0

x

ex � 1
dx �

p2

6

z(n)

z(n) � 1 

1
2n 


1
3n 


1
4n 
 cc

z(n)

3
`

0

xn�1

ex � 1
dx � (n � 1)!z(n)

3
`

0

xnex

(ex � 1)2 dx � n 3
`

0

xn�1

ex � 1
dx

n � 0, 1, 2,c3
`

0
xn
2e�ax2

dx �
n 
 1

2a 3
`

0
xne�ax2

dx

3
`

0
xe�ax2

dx �
1

2a

3
 

`

 �`

xe�ax2
dx � 03

 
`

 �`

 e�ax2
dx � 2p/a

3
 
`

 �`

 e�x2
dx � 2p

n 1 2 3 4 5 6 7 8

1.202... 1.037... 1.008...
p8

9450
p6

945
p4

90
p2

6`z(n)



The complementary error function is . The error function can only be
evaluated numerically. As shown in the following table, erf(x) changes with x almost lin-
early for x � 0.5 but approaches to unity rapidly as x increases.

B.1.3 Stirling’s Formula

Stirling’s formula is an approximation of the logarithm of a factorial for large numbers.
Note that

More complicated analysis results in the same approximation for large x. Stirling’s formula
is then

(B.11)

The relative error of this approximation is 13.8% for x � 10 and less than 1% for x � 100.
Therefore, it is applicable for very large x.

B.2 THE METHOD OF LAGRANGE MULTIPLIERS

The method of Lagrange multipliers is a procedure for determining the maximum/minimum
point in a continuous function subject to one or more constraints. Consider a continuous
function . At the maximum/minimum point, 

(B.12)

Therefore, if are independent, we must have

(B.13)

If they are dependent and related by m constraint equations (or constraints), then

(B.14)

that is, (B.15)

Multiplying �j to the jth equation in Eq. (B.15) and adding them to Eq. (B.12), we obtain

(B.16)a
n

i�1
a 'f
'xi


 a
m

j�1
bj

'cj

'xi

bdxi � 0

dcj � a
n

i�1

'cj

'xi

dxi � 0, j � 1, 2,c, m

cj(x1, x2,c, xn) � 0, j � 1, 2,c, m

(m � n)

'f

'xi

� 0, i � 1, 2,c, n

xi’s

df � a
n

i�1

'f

'xi

 dxi � 0

f(x1, x2,c, xn)

ln x! < xln x � x

� a
x

n�1
ln n < 3

 
x

1
ln xdx � xln x � x � 1 < xln x � x

ln x! �  ln 1 
 ln 2 
 ln 3 
  c 
 ln x

erfc(x) ; 1 � erf(x)
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x 0 0.01 0.1 0.2 0.5 1 2 3

0 0.0113 0.1125 0.2227 0.5205 0.8427 0.9953 0.99998 1erf(x)
`



where are called Lagrangian multipliers.  For Eq. (B.16) to hold, we must have

(B.17)

The n equations allow the determination of m and n�m independent variables.

Example B-1. Determine the positive values of that will maximize the function
, subject to the constraint , where a, b, and c are posi-

tive constants.

Solution. The constraint equation may be rewritten as 
.

Adding the preceding two equations and setting the coefficients to zero, we have 
and ; that is, , , and

. Dividing the product of the three equations, , by each equation
gives , , and . Solving for and sub-
stituting , , and into the constraint equation, we obtain . Therefore,

, , and . Thus, the maximum of the given function under the speci-
fied constraint is .

B.3 PERMUTATION AND COMBINATION

This section discusses several permutation and combination problems that are directly
related to the derivation of equilibrium distributions of different types of particles, such as
molecular gases, electrons in a conductor, electrons and holes in semiconductors, photons
in a thermodynamic equilibrium, and phonons in crystalline solids.

Case 1. How many ways are there to arrange N distinguishable objects in a row? 

There are N objects to select for the first place, for the second, for the
third, and so on. The number of permutations of N objects is therefore given by

(B.18)

Case 2. How many ways are there to choose and then arrange a subset of N objects out
from a group of g distinguishable objects ( )? 
An equivalent problem is How many ways are there to put N distinguishable objects
into g distinguishable boxes with a limit that each box can at most have one object

? There are g ways of placing the first object, ways of placing the sec-
ond, ways of placing the third, . . . , and ways of placing the Nth
object. Therefore, the number of permutations of g objects taken N at a time is given by

(B.19)gPN � g(g � 1)(g � 2)???(g � N 
 2)(g � N 
 1) �
g!

(g � N)!

g � N 
 1g � 2
g � 1(N � g)

N � g

NPN � N!

N � 2N � 1

fmax � 8abc/323 < 1.54abc

z � c/23y � b/23x � a/23
b � �4abc/23z2/c2y2/b2x2/a2

bb2 � 16a2b2c2(z2/c2)b2 � 16a2b2c2 (y2/b2)b2 � 16 a2b2c2 (x2/a2)
b3 � �64a2b2c2xyzb � �4c2xy/z

b � �4b2xz/yb � �4a2yz/x8xy 
 2bz/c2 � 08xz 
 2by/b2 � 0,
8yz 
 2bx/a2 � 0, 

bdc �
2bx

a2
dx 


2by

b2
dy 


2bz

c2
dz � 0

df � 8yzdx 
 8xzdy 
 8xydz � 0

(z/c)2 � 1 � 0
c(x, y, z) � (x/a)2 
 (y/b)2 


(x/a)2 
 (y/b)2 
 (z/c)2 � 1f(x, y, z) � 8xyz

x, y, and z

bj’s

'f

'xi
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m

j�1
bj
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� 0, i � 1, 2,c, n
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Case 3. How many ways are there to put N distinguishable objects into g distinguish-
able boxes (without regard to order within the boxes)?

Because each box can contain any number of objects, there are g ways of placing each
object. Hence, the number of ways is

(B.20)

Here, g can be smaller than, equal to, or greater than N. Note that this is equivalent to
the permutation problem with repetition: How many ways are there to arrange N
objects taken from g types of objects (each type has more than N identical objects) by
allowing repetition?

Example B-2 

(a) How many 4-digit integers can be made from the numbers 1, 2, . . . , and 9, allowing no repeated
usage of any number? 

(b) Same as (a) but the number can be repeatedly used. 

(c) Same as (b) with the possible inclusion of zero.

Solution. (a) There are . (b) There are . (c)
There are , because the first digit must be nonzero in a 4-digit
integer.

Example B-3 

(a) How many ways are there to place 3 different books on 5 shelves without considering their order
on each shelf?

(b) Same as (a) but each shelf cannot have more than one book. 

Solution. (a) Since each shelf can have any number of books and each book can go to any shelf,
the ways to put the books are (b) In this case, there are ways
only.

Case 4. How many ways are there to choose N objects from g distinguishable objects
without caring about their order ( )? 
This is a combination problem. Because the order to arrange the objects is not considered,
the number of combinations of N objects taken from a group of g objects is then given by

(B.21)

It can be noted that the product of Eq. (B.21) and Eq. (B.18) gives Eq. (B.19). An equiv-
alent problem is How many ways are there to put N indistinguishable objects into g dis-
tinguishable boxes with a limit of at most one object in each box? We learned from Case
2 that there are ways of placing N distinguishable objects in g boxes. Now
that the N objects are indistinguishable, the number of ways is reduced by a factor of N!.

Case 5. How many ways are there to place N distinguishable objects into r distinguish-
able boxes such that there are N1 objects in the first box, N2 in the second, . . . , and Nr

in the rth box?

Because the order within each box is not considered, we must divide the total number
of arrangements N! by the number of arrangements in each box, keeping in mind that

. Therefore, the number of ways is

(B.22)
N!

N1!N2 ! # # # Nr!
�

N!

q
r

i�1

 Ni!

N1 
 N2 
 c 
 Nr � N

g!/(g � N)!

gCN �
g!

N!(g � N)!

N � g

5 � 4 � 3 � 605 � 5 � 5 � 125.

9 � 10 � 10 � 10 � 9000
9 � 9 � 9 � 9 � 65619 � 8 � 7 � 6 � 3024

gN
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Case 6. How many ways are there to put N indistinguishable objects into g distinguish-
able boxes without limiting the number of objects in each box? 
The answer to this problem is not so straightforward as compared with previous cases.
The order within each box does not matter since the objects are indistinguishable. Let us
use a dot for each object and use slashes to separate them into g groups such that:

Each arrangement corresponds to one way of placing N indistinguishable objects in g
distinguishable boxes. Although the slashes are identical, their order makes the “boxes”
distinguishable. Note that the dot and slash are symbols: each occupies one location.
The question becomes How many ways are there to select slash locations out from

total locations? Said differently, How many ways are there to select N dot
locations out from total locations? The answer is equivalent to the combina-
tion problem given in Case 4, except that there are total locations, i.e., 

(B.23)

B.4 EVENTS AND PROBABILITIES

If an evenly cast coin is tossed, the probability of ending up with a head or tail would each
be 0.5. Denoting the occurrence of head as event A and that of tail as event B, we can write
the probability of each event as and In general, the probability of
any event is between 0 and 1, i.e.,

(B.24)

If , it is an impossible event, and if , it is a certain event. If A* is used for
anything but A, then . Two events may be dependent or independent. If
one tosses the coin twice, the result of the second toss is independent of that of the first.
Similarly, if one throws two dice, the result of each die is independent of that of the other.
On the other hand, if two balls are drawn sequentially from a box containing three red and
four yellow balls, the probability of the second ball being red depends upon whether the
first ball is red or yellow. If A and B are independent events, then the probability for both
A and B to happen is

(B.25)

while the probability of either A or B to happen is

(B.26)

Example B-4. What is the probability for the sum of the numbers on the faces to be 7 if two dice
are thrown?

Solution. The numbers on the six faces of each die are 1, 2, 3, 4, 5, and 6. Therefore the total num-
ber of combinations is 36. The combinations that yield 7 are (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1).
Thus, there are 6 out of 36 combinations that will give a sum of 7. The probability of getting 7 as
the sum of the numbers on the faces is then . It can be shown that the probability of get-
ting 8 is 

Consider an experiment for which the probability of event A to occur is �. For a single
trial, the probability is � for event A and for anything but A. For N trials, the prob-
ability for event A to occur M times is given by the following equation:

1 � f

p(8) � 5/36.
p(7) � 1/6

p(A or B) � p(A) 
 p(B) � p(A) � p(B) � 1 � p(A*) � p(B*)

p(A and B) � p(A) � p(B)

p(A) 
 p(A*) � 1
p(A) � 1p(A) � 0

0 � p(A) � 1

p(B) � 0.5.p(A) � 0.5

(N 
 g � 1)!
N!(g � 1)!

N 
 g � 1
N
g�1

N
g�1
g�1

??/?????/?/??? c c //???

g � 1
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(B.27)

which is equal to the corresponding coefficient of the binomial equation, Eq. (B.1), by set-
ting and .

Example B-5. Toss three coins; what are the probabilities for getting all tails, one head and two
tails, two heads and one tail, and all heads?

Solution. Here and . Notice that

We have , , , and .

Example B-6. Calculate the probability for the number 4 to show up on the face more than twice
in 6 tosses of a fairly weighted die.

Solution. The probability for the number 4 to appear in any single toss is Using Eq.
(B.27), we have

Therefore, .

B.5 DISTRIBUTION FUNCTIONS AND THE
PROBABILITY DENSITY FUNCTION

Figure B.1 shows a plot of a surface roughness distribution (histogram) measured by using
an atomic force microscope (AFM) for an unpolished silicon wafer within a 50 �m � 1 �m
area with a total of 512 � 10 � 5120 data points. The vertical axis records the number of
points with height between and . Let N be the total number of data points and the

number of points with a height greater or equal to but less than . Then, ,

and average and variance (mean-square deviation) are obtained, respectively, from

and (B.28)

The average is the mean surface height, and the square root of the variance is the root-
mean-square (rms) roughness. The rms value associated with a set of measurements is
called the standard deviation. If we randomly pick a point, the probability for it to have a
height between and is

(B.29)p(xi�1, xi) � Ni /N
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For large N, we may expect a continuous distribution function,

where , and is called a distribution function. By definition, 

and (B.30)

The average and variance of the distribution can then be expressed as

and (B.31)

The average of , , is in general different from , and is given as

(B.32)

The distribution function may be normalized by dividing N to obtain

(B.33)F(x) ;
f(x)
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N 3
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FIGURE B.1 Histogram of surface roughness for a silicon surface measured using an AFM.



where , the normalized distribution function, is called the probability density function
(PDF). It is related to the probability by

,  , and (B.34)

Furthermore, it can be shown that

, , and (B.35)

Example B-7. Under certain conditions, the x-component velocity U of N particles in a fixed
volume obeys the following distribution (the Gaussian distribution or normal distribution):

where , and A and ! are positive constants. Determine the following: (a) the number
of particles N in the volume; (b) the probability density function ; (c) the average velocity ;
(d) the variance ; and (e) the average of .

Solution. Using the definitions and formulations given earlier, we have

(a)

(b) (c)

(d) (e) because

Discussion. The general form of the Gaussian probability density function is

It is a bell-shaped graph centered around with . It has two inflection points at
, at which the second-order derivative becomes zero. If the Gaussian statistics is used to

describe the variations of a set of experimental measurements, the standard deviation is called the
standard uncertainty. The probability for a measurement to fall within is 68%, and
increases to 95% within . The expanded uncertainty is usually defined based on the
95% confidence interval, which is approximately for Gaussian statistics.2s
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U 2uvar

UF(U)
U � (�`,`)

f(U) � Aexp a� U2

2s2
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3
 

`

 �`

(x � x)2F(x)dx � uvar3
 

`

 �`

xF(x)dx � x3
 

`

 �`

F(x)dx � 1

d

dx
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x

�`
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B.6 COMPLEX VARIABLES

A complex quantity z may be expressed in terms of a real component and an
imaginary component so that

(B.36)

where , and are both real. The most convenient way to understand a com-
plex variable is to use the complex plane shown in Fig. B.2. The expression of a complex

x and yi � 2�1

z � x 
 iy

y � Im(z)
x � Re(z)
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FIGURE B.2 Illustration of the complex plane and complex
quantity.

number is very similar to a 2-D vector. Notice that is the magnitude
or complex modulus and is the phase or complex argument of z. It
is obvious that and . By defining 

(B.37)

we can also express the complex quantity in terms of its magnitude and phase as follows:

(B.38)

The complex conjugate is defined as

(B.39)

Hence, (B.40)

Most of the algebra for real variables can be readily transformed to complex algebra. For
example, if and , then

and (B.41)AB � rArBei(fA
fB)A � B � (Ar � Br) 
 i(As � Bs)

B � Br 
 iBs � rBeifBA � Ar 
 iAs � rAeifA

zz* � x2 
 y2 � r2 � |z|2

z* � x � iy � re�if

z � reif

eif � cosf 
 i sinf

y � rsinfx � r cosf
f � arg|z| � tan�1(y/x)

r � |z| � 2x2 
 y2



It can be shown that 

and (B.42)

Furthermore,

(B.43)

Example B-8. Suppose , where the real number . First, evaluate , and
then, . 

Solution: Clearly, z is in the second quadrant of the complex plane and 
is in the fourth quadrant. Alternatively, we can write , where 

for small . Hence, .
Finally, . However, if we use ,
we will end up with . This example shows that multiple solutions often exist in com-
plex algebra. Which solution should be accepted depends on the particular physical problem. Care
must be taken when using a computer to do complex calculations to ensure that the final solution is
physically meaningful. 

Sometimes, we may deal with problems involving a complex quantity z with a complex
magnitude and a complex phase such that

(B.44)

It can be considered as the multiplication of two complex quantities such that
, and . Alternatively, we can write

and . Note that
, which is not equal to 1 unless is 0.

Complex functions can be defined when z is a complex variable. The deriva-
tive and the integration can also be performed. In addition to the difficulty in dealing with
multiple solutions, singularities are frequently involved.

B.7 THE PLANE WAVE SOLUTION

The wave equation is a hyperbolic equation. In the 1-D case, it is given as

(B.45)

where x is the spatial coordinate and t is the time. It can be verified that the following is a
solution of the wave equation:

(B.46)

as long as . Equation (B.46) is only one solution, not a general expression of the solu-
tion of Eq. (B.45), that we choose to illustrate the nature of the wave equation. Let us fur-
ther simplify the problem by taking only positive values of . Figure B.3 showsA, k, v, and c

k � v/c

u(x,t) � Acos(kx � vt)

'2u

'x2 �
1
c2

'2u

't2

f � f(z)
bs|eib| � e�bs
Im(z) � are�bssinbr 
 ase�bscosbrRe(z) � are�bscosbr � ase�bssinbr

arg(z) � arg(a) 
 br|z| � e�bs2ar2 
 as2

z � aeib

b � br 
 ibsa � ar 
 ias

x � 2z2 � z

y < (1 
 d2)ei(2p�2d)x � y1/2 � 21 
 d2e�id < 1 � id � � z

y � (1 
 d2)ei2f < (1 
 d2)ei(2p�2d) � (1 
 d2)e�i2ddtan �1(�d) < p � d

f �z � 21 
 d2eif(1 � d2) � i2d
y � 1 � i2d � d2 �

x � y1>2 y � z2dV 1z � �1 
 id

An � rneinf � rn[cos(nf) 
 i sin(nf)]

(AB)* � A*B*(A � B)* � A* � B*
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the spatial dependence of a wavefunction at and . Clearly, A is the amplitude
of the wave. The period in space, which is the wavelength , is related to k by

(B.47)

Therefore, k is called the wavevector because it is a vector in the 3-D coordinates with a
magnitude k. The wavenumber is defined as the number of waves per unit length, i.e.,

. From the time dependence, we can see that the period . The frequency
is the number of periods (cycles) per unit time; hence, , with a unit Hz. Therefore,

is called the angular frequency with units rad/s. Notice that is
called the phase. The speed of propagation is determined by the movement of the constant
phase plane, i.e., 

(B.48)

We have just shown that c is the speed of propagation of the wave or the phase speed. In a
3-D case, the wave equation is written as

(B.49)

where . The solutions for a given frequency is 

(B.50)

where is called the wavevector and . It
should be noted that from , we get . It can be shown that Eq. (B.50)ln � cv � kc

k � 2p/l � (k2
x 
 k2

y 
 k2
z)

1/2k � kxx
^ 
 kyy

^ 
 kzz
^

u(r,t) � Aeik?r�ivt

=2 �
'2

'x2 

'2

'y2 

'2

'z2

=2u �
1
c2

'2u

't2

vp � adx

dt
b
b

�
v

k
� c

b � kx � vtv � 2pn
n � 1/T

T � 2p/vn � 1/l

k �
2p
l

l
t � dtt � 0
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FIGURE B.3 Illustration of a wavefunction and the phase speed.



represents a plane wave whose constant phase plane is always perpendicular to k, and this
wave propagates in the k direction. Furthermore,

, , and

or the gradient (B.51)

Similarly, (B.52)

In the preceding discussion, u is treated as a scalar. Frequently, we will need to deal
with a vector as the function, such as the electric field E. Then, the wave equation can be
written as

(B.53)

Its solution can be expressed as 

(B.54)

where the amplitude A is a vector. It can be shown that

, , and

Thus, the divergence is (B.55)

the curl is (B.56)

and (B.57)

Equation (B.54) can be called the solution of a monochromatic wave (single frequency).
When multiple frequencies are involved, the speed is frequency dependent in a disper-
sive medium. In such a case, waves of different frequency will travel with a different speed. A
wave group or wave packet contains waves of more than one frequency. The group velocity of
the wave packet represents the velocity of energy carried by the wave packet and is given by

(B.58)

The functional relation is called a dispersion relation. In the 1-D case or an
isotropic medium, we have

(B.59)

If the phase speed is constant, i.e., the dispersion relation is linear, the group velocity
is the same as the phase velocity because .vg � dv/dk � c � v/k � vp

c � v/k

vg � dv/dk

v � v(k)

vg �
dv

dk
� x^

dv

dkx


 y^
dv

dky


 z^
dv

dkz

=2E � �k2E

= � E � ±
x^ y^ z^

'

'x

'

'y

'

'z

Ex Ey Ez

≤ � i°
x^ y^ z^

kx ky kz

Ex Ey Ez

¢ � ik � E

= ? E �
'Ex

'x


'Ey

'y


'Ez

'z
� ik ? E

'

'z
Ez � ikxEz

'

'y
Ey � ikyEy

'

'x
Ex � ikxEx

E(r,t) � A exp(ik ? r � ivt)

=2E �
1
c2

'2E

't2

=2u � �k2u

=u � ax^ '
'x


 y^
'

'y

 z^

'

'z
bu � iku

'

'z
u � ikxu

'

'y
u � ikyu

'

'x
u � ikxu
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Example B-9. Consider light propagating in a glass whose refractive index ,
where is a very small coefficient. Find the dispersion relation, the phase speed, and the group
speed as functions of .

Solution. The speed of light in a medium , where n is the refractive index. Therefore,
. The dispersion relation is given by . The

group speed , where is called the
group index.

Some useful vector operators and identities are given for convenience as follows:

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

and (B.69)

If A is a constant matrix, say , then Eq. (B.68) and Eq. (B.69) reduce respectively to

The divergence theorem or Gauss’s theorem is expressed as

(B.70)

which states that the integral of the divergence over the entire volume is equal to the
surface integral over the enclosed surface. The curl theorem or Green’s theorem states
that

(B.71)

In this equation, it is assumed that C is a closed, piecewise smooth curve that bounds the
surface area A. The equation converts a surface integration of the curl of a vector to a line
integration of the vector. Both the divergence theorem and the curl theorem can be consid-
ered special cases of the Stokes theorem.

6
A

(= � E) ? n dA � 3
C

E ? dr

9
V

= ? E dV � 6
A

E ? n dA

=(K ? B) � K � (= � B) 
 (K ? =)B

= � (K � B) � K(= ? B) � (K ? =)B

A � K

=(A ? B) � A � (= � B) 
 (A ? =)B 
 B � (= � A) 
 (B ? =)A

= � (A � B) � (B ? =)A � B(= ? A) 
 A(= ? B) � (A ? =)B

= ? (A � B) � B ? (= � A) � A ? (= � B)

= � (fA) � f= � A 
 =f � A

= ? (fA) � f= ? A 
 A ? =f

= � (= � A) � =(= ? A) � =2A

A ? (B � C) � B ? (C � A) � C ? (A � B) �  det (A B C)

A � (B � C) � (C � B) � A � (A ? C)B � (A ? B)C

A � B � �B � A

A ? B � B ? A

ng � n 
 vdn/dvvg(v) � (dk/dv)�1 � c0/(1.5 
 3av2) � c0/ng

1.5v 
 av3 � c0kvp(v) � v/k � c � c0/(1.5 
 av2)
c � c0/n

v
a

n � 1.5 
 av2
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B.8 THE SOMMERFELD EXPANSION

In the free-electron theory discussed in Chap. 5, the integration often includes the Fermi-Dirac
function

(B.72)

where and are the electron energy and chemical potential, respectively, is the
Boltzmann constant, and T is absolute temperature. Unless the temperature is very high,

, where itself is a weak function of temperature, i.e., . At ,
the chemical potential is called the Fermi energy . However, the chemical poten-
tial is often called Fermi level or Fermi energy as well in many texts. It can be seen that
at very low temperatures, when e � mF, and 
when e � mF, as illustrated in Fig. 5.5a. Thus, 

(B.73)

When , is essentially the same as , except when .
The following approximation is often used since when ,

(B.74)

Let us now consider the derivative

(B.75)

The derivative is nonzero only when . When , the peak at 
goes to infinity. Note that

Therefore, is a Dirac delta function, i.e.,

, (B.76)

Hence, , (B.77)

The preceding equation is exact only at absolute zero temperature. A difficulty arises when
the integrand contains terms such as . When this is the case, higher-
order terms must be retained. Sommerfeld in 1927 developed an expansion to handle the
integral. A detailed discussion can be found from the work of McDougall and Stoner
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kBT V m3
`

0
G(e)

'fFD

'e
de < �G(m)

kBT V m
'fFD

'e
< �d(e � m)

'fFD/'e

3
`

0

'fFD

'e
de � 3

`

0
d(fFD) � fFD P`0 � 0 � 1 � �1

e � mT S 0Ze � m Z � kBT

'

'e
fFD (e,T) � �

1
kBT

e(e�m)/kBT

[e(e�m)/kBT 
 1]2

3
m

0

G(e)de � 3
mF

0
G(e)de 
 (m � mF)G(mF) 
 c

kBT V m
Ze � m Z � kBTfFD(e,0)fFD(e,T)kBT V m

3
`

0
G(e)fFD(e,0) de � 3

mF

0
G(e) de

fFD(e,0) � 0,fFD(e,0) ; fFD(e,T S 0) � 1,
m

mF � m(0)
T S 0 Km � m(T)mkBT V m

kBme

fFD(e,T) �
1

e(e�m)/kBT 
 1

MATHEMATICAL BACKGROUND 459



(Phil. Trans. Roy. Soc. London A, 237, 67, 1938). The approximations necessary for the
free-electron model of metals are discussed next. When T � 0 K, Eq. (B.73) can be written
in terms of an expansion as follows: 

(B.78)

where and 

Example B-10. When , show that

(B.79)

and (B.80)

Solution. We will use Eq. (B.78) by dropping the term with . Therefore,

since . The proof of Eq. (B.80)

is similar, and it is left as an exercise.

Another useful equation is 

(B.81)

If we neglect , then

(B.82)
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Absorbing, dissipative, or lossy medium, 
290, 308

Absorptance or absorptivity, 48,
308–309, 335

Absorption, 69, 80, 92, 215
by free carriers, 315, 323, 325
fundamental or interband, 236, 314, 322
intraband or intersubband, 322
local absorption distribution, 352
phonons or lattice vibrations, 166,

318, 323
Absorption bands, 320, 323
Absorption coefficients, 50, 293, 400
Absorption edge, 314, 321
Absorption spectra of gases, 80
Acceptance cone, 383
Acceptors, 199, 233
Accommodation coefficients, 125,

176, 178
energy or thermal, 125, 130, 436
momentum or velocity, 125

Acoustic mismatch model (AMM), 220, 
271, 274

Acoustic waves, 139, 162, 165
Acoustically thick or thin limits, 264
Active medium, 94
Adiabatic availability, 32
Adiabatic process, 28
Advection, 44
Affinity, 172
Airy’s formulae, 337
Ampere law, 286
Angle of incidence, 306
Angular frequency, 287, 298, 306, 379
Anharmonic vibration, 91, 147
Anisotropy, 177, 286, 367, 371

Anomalous dispersion, 319
Anomalous skin effect, 318
Antireflection coating, 335, 340, 350
Anti-Stokes, 224, 225
Aperture, near field, 377, 408
Aperture, numerical, 383
Apertureless NSOM, 378
Atomic binding, 199

covalent bonds, 200
hydrogen bonds, 200
ionic bonds, 199
metallic bonds, 200
molecular bonds, 200

Atomic emission, 88
Atomic force microscope (AFM), 14, 132, 

277, 371, 431
artifacts, 365, 371
contact mode, 367
heated cantilever, 12, 277
tapping mode, 367

Atomic theory, 5, 195
Atomistic simulation, 21, 182, 185,

200, 253
Atomistic smoothness, 186, 271, 273
Atoms, 4, 5, 196
Attenuated total reflectance (ATR),

396, 403
Aufbau principle, 196
Autocorrelation function, 364, 367
Autocorrelation length, 274, 345, 363
Autocovariance function, 345
Average collision distance, 108
Average phonon speed, 141, 162, 258
Averages

ensemble, 102, 428
local, 102
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Averages (Cont.):
spectral, 339
time, 290–291

Avogadro’s constant, 38, 443

Ballistic, 123, 131, 165, 184, 247,
258, 276

Ballistic-diffusion approximation, 269
Balmer series, 89
Band structures

allowable band, 197
conduction band, 197
extended-zone scheme, 214
forbidden band, 197
of photonic crystals, 352, 356
reduced-zone scheme, 214
valence band, 197

Bandgap, 197, 207, 213
direct or indirect, 207, 216, 224, 322

Bandgap absorption, 198, 322
See also absorption, interband

Beam divergence, 334, 342
Bidirectional reflectance, 312, 362
Bidirectional reflectance distribution

function (BRDF), 312, 362–372
measurements, 368–372
microfacet slope method (MSM), 364
Monte Carlo method, 364
out-of-plane, 371–372
reciprocity, 313
surface generation method (SGM), 364

Binding energy, 199–200, 227
Biomolecule imaging, 17
Birefringence, 386
Blackbody

cavity, 294, 299
concept, 295
enclosure, 294

Blackbody radiation
cosmic background, 299
dilute, 303
solar radiation, 297
spectral distribution, 296

Bloch-Floquet condition, 358, 399
Bloch formula, 157
Bloch theorem, 210
Bloch (wave) condition, 353, 418
Bloch wavevector, 354, 391

Body or volume forces, 3, 46, 116, 121
Bohr radius, 88–90
Bolometer, 236, 284
Boltzmann constant, 39, 67, 68, 75
Boltzmann transport equation (BTE),

116, 178
Chapman-Enskog method, 117
Collision term, 117 
See relaxation-time approximation

Boltzons, 66
Born–von Kármán periodic

conditions, 148
Bose-Einstein condensate, 63, 69
Bose-Einstein distribution function, 64,

140, 295
Bose-Einstein (BE) statistics, 62, 66
Bosons, 66, 69
Boundary conditions in electrodynamics,

307, 354, 360, 379, 421
Boundary conditions, periodic, 87, 148
Boundary element method (BEM),

357, 409
Boundary layers, 44, 114, 122

thermal, 44
velocity, 44

Boundary scattering, 156, 163, 174
Boyle’s law, 105
Bragg reflectors, 9, 327, 355
Bravais lattices, 201–203

conventional unit cells, 201
non-Bravais lattice, 206
translational symmetry, 201
types of, 202

Brewster angle, 266
Brewster mode, 425
Brewster window, 250, 257
Brightness temperature, 300
Brillouin zone, first, 209
Brownian motion, 94, 121
Buckminsterfullerene, 11
Built-in potential, 238

Cantilever, See atomic force microscope
Carbon nanotubes (CNTs), 2, 12, 15

field emission, 231
multi-walled—(MWNT), 154, 186
single-walled— (SWNT), 12,

154, 186
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Carbon nanotubes (CNTs) (Cont.):
specific heat, 153
structure, 208
thermal conductivity, 185, 186

Casimir force, 440
Casimir limit, 266
Cattaneo equation, 250, 253
Causality, principle of, 248, 262, 292,

314, 411
Cavity resonance, 327, 417, 425
Central equation in electronic band

theory, 211
Characteristic functions in

thermodynamics, 33
Characteristic lengths, 3, 122, 247, 276
Characteristic temperatures

Einstein temperature, 138
for rotation, 76, 79
for translation, 76
for vibration, 76, 80
See Debye temperature

Characteristic wavelengths, 61, 166,
275, 297

See de Broglie wavelength
See most probable wavelength
See also thermal wavelength

Charge neutrality, 233
Chemical bonds, See atomic binding
Chemical etching, 7, 11, 368, 418
Chemical potential, 28, 34, 68, 161, 184
Chemical vapor deposition (CVD), 10, 12, 

333, 346
Christiansen wavelength, 320
Classifications of solids, 195–201

amorphous, 199
conductors, 197
dielectric, 291
insulators, 197
metals (alkali, noble, or transition),

147, 198
See crystals
See semiconductors

Coherence, 342–344
degree of, 341
function, 342
spatial, 417–418
spectral width, 342
temporal, 417–418

Coherent emission, 92
coherent thermal emission, 418,

421, 422
for spontaneous radiation, 415

Collision, 106, 117
Collision frequency (or rate), 106
Collision time, 106
Complementary-metal-oxide-

semiconductor (CMOS), 8, 360
Complex conductivity, 292
Complex planes, 327, 454
Complex refractive index, 291–292, 327
Complex variables, 454
Conductance quantization, See quantum

conductance
Conduction band, 197, 215, 232, 322
Conductors, 197, 199
Conservative equations, 45–46, 117–119,

221–225, 286, 290, 323
Constitutive equations, 118, 254,

286, 319
Constraints, 25, 64, 447
Contact resistance, thermal, 44, 271
Continuity equation, 45, 119, 286
Continuum assumption, 1, 121
Continuum regime, 122
Corpuscular theory, 5
Correlation function, spatial, 428
Cosmic background radiation, 298,

331, 415
Coulomb’s force, 88
Coupled transport processes, 172
Creation or annihilation reactions, 95
Critical angle, 274, 310, 383, 387
Critical point, 35

critical pressure, 36
critical temperature, 36

Crystal momentum, 220
Crystal structures

benzene-ring structure, 154
body-centered cubic (bcc), 201, 204
cesium chloride structure, 206, 207
diamond structure, 206, 207
face-centered cubic (fcc), 201, 204
hexagonal close-packed (hcp), 203, 204
sodium chloride structure, 206, 207
zincblende structure, 206, 207
See also Bravais lattices
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Crystal, types of, 199–200
covalent, 200
ionic, 199
molecular, 200
polycrystalline, 200

Current density, electrical, 155

Damping coefficients, 155, 316,
319, 328

Dark current, 241
de Broglie wavelength, 61, 85, 146
Debye model, 139–143
Debye temperature, 140, 264, 268, 273
Defect (or impurity) scattering, 156, 163, 

223, 235
Degeneracy, 61, 66, 80, 144, 154
Degrees of freedom, 75, 79

diatomic gases, 75
polyatomic gases, 75
vibrational modes, 75

Density of modes, 428
Density of states (DOS), 120

for electrons, 145, 160
local DOS, 428, 434
in 1-D or 2-D solid, 150
for phonons, 141, 149, 165
quantization, 154, 158, 163
in semiconductors, 232

Dielectric functions, 291, 314–329
insulators, 319
metals, 315
metamaterials, 326
semiconductors, 321
superconductors, 325

Diffraction elements, 356
Diffraction grating, See gratings, 48
Diffraction limit, 17, 146, 377, 396
Diffraction order, 358, 399
Diffuse emitter, 48
Diffuse-gray surface, 48, 267
Diffuse mismatch model (DMM), 274
Diffuse surface, 48, 266, 313
Diffusion, 108, 238

electrons, 238
heat, See heat diffusion, 110
mass, 112
momentum, 109

Diffusion coefficient, binary, 112, 118

Diffusion length, 238
thermal, 238

Diffusivity (mass, momentum,
or thermal), 45, 114

Digital voltmeter/multimeter
(DVM), 168

Dimensionality for solids, 151
Dipole moment, 319
Dipoles, 310

electric dipoles, 310, 314
induced dipoles, 310
magnetic dipoles, 310
thermally excited dipoles, 418, 427

Dirac delta function, 161, 313, 326,
428, 459

Direct simulation Monte Carlo, 115, 124
Discharge glow by ionization of gas

molecules, 229
Discrete ordinates method

(SN approximation), 50, 269
Dispersion relation, 149, 457
Dissipative, 290, 308
Dissipative structure, See nonequilibrium

thermodynamics
Distribution functions, 66, 102,

116, 451
equilibrium, 105, 117
free-path, 107–108
Gaussian or normal, 73–74, 364,

376, 453
isotropic, 104
molecular, 102, 106
nonequilibrium, 119, 257, 264
normalized, 97, 452
Planck’s, 295

Donor, 198, 233
Doping concentration, 233
Doppler shift, 69
Double negative (DNG) materials,

327, 397
Drift velocity, 155, 194, 234, 235
Drude model for free carriers, 155, 315,

323, 326, 328
Drude-Lorentz theory, 155–156
Dual-phase-lag model, 254–255, 257
Duality between electric and magnetic

quantities, 309, 402
Dulong-Petit law, 138, 265
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Effective mass, 216, 232, 317, 323
Effective medium approximation

(EMA), 362
Effective medium formulation, 357, 359
Effective medium theory (EMT), 361
Effective temperature, 252, 259, 266

electrons, 259
nonequilibrium, 252, 265, 269
phonons or lattice, 259

Effective thermal conductivity, 175–182,
270–271

Eigenchannel, 185
Eigenfunction, 85, 148, 360
Eigenvalue, 83, 91, 355
Einstein coefficients, 93
Einstein model of specific heat, 138, 143
Einstein relation, 238
Electrical conductivity, 155, 161
Electrical resistivity, 158
Electrochemical potential, 167, 184
Electromagnetic spectra, 4, 92, 298
Electromagnetic surface waves, 

See surface waves
Electromagnetic waves, 285–294
Electromotive force (emf), 168
Electron configuration, 196
Electron microscopy, 6, 12, 146
Electron-phonon coupling constant, 259
Electron-phonon scattering, 156–157
Electron spin degeneracy, 144, 184, 196
Electron tunneling, 3, 14, 230
Electronic band structures, 157,

209, 214
Electronic transitions, 89, 92

bound-bound, 92
bound-free, 92
free-free, 92
interband, 215, 314, 316, 322
intraband, 215, 314, 322

Electrostatic force, 199, 200
Electrostatic limit, 412
Electrostatic potential, 167–168, 184
Emission of photons

atomic, 88
diffuse, 48
fluorescence, 238
luminescence, 237
phosphorescence, 238

Emission of photon (Cont.):
radiative transitions, 49, 237, 415
spontaneous, 92, 386
stimulated, 92
thermal, 48, 295, 426

Emissive power, 47–48, 295–297
Emissivity or emittance, 48, 311–312,

422, 424
Energy, 26
Energy density

near-field, 427, 434
phonon, 265
photon, 93, 290, 295

Energy levels, 58, 85, 89, 183
Energy storage modes, 75, 80
Energy streamlines, 410–414
Enthalpy, definition, 32
Entropy, 27

definition in statistical mechanics, 67
entropy intensity, 301

Equation of phonon radiative transfer
(EPRT), 263–271

generation by irreversibility, 27
of mixing, 54
radiation entropy, 301–305

Equation of radiative transfer (ERT),
50, 269, 303

Equation of state, 37
Equilibrium, 27, 29

chemical, 30
mechanical, 30
stable-equilibrium state principle, 27
thermal, 30

Equipartition principle, 78, 138, 146
Error function, 364, 446

complementary, 249, 446
E-S graph, 31
Eucken’s formula, 111
Euler relation, 34
Evanescent waves, 293, 359, 378, 386,

409, 429
effective evanescent wave, 422

Ewald-Oseen extinction theorem, 310
Exponential attenuation or decay, 107,

293, 310, 380
Exponential integral, 51, 179, 267
Extinction coefficient, 291
Extinction theorem, 310
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Fabry-Perot interferometer, 347–348
Fabry-Perot resonator, 386, 393, 405,

417, 421
Faraday’s law, 286
Fermat’s least-time principle, 283
Fermi-Dirac function, 144–145, 232
Fermi-Dirac (FD) statistics, 62, 65
Fermi energy or level, 69, 145, 215
Fermi function, See Fermi-Dirac function
Fermi velocity, 146, 156
Fermions, 66, 69
Fick’s law, 112, 238
Field emission, 229–232
Figure of merit (ZT), 172
Filling ratio, 362
Finesse, 348

See also Q-factors
Finite element method (FEM),

357, 386
Finite-difference time domain

(FDTD), 357, 409
First law of thermodynamics, 26
Fluctuating current, 427–428
Fluctuational electrodynamics, 312, 426
Fluctuation-dissipation theorem, 426
Fluxes

charge, 160, 166
definition of, 103
entropy, 43, 173
heat or energy, 42, 104,

161, 429
momentum, 104
particle, 103

Fourier transform infrared (FTIR)
spectrometer, 80, 334, 341, 346

Fourier’s law, 42, 110, 120
Free electron gas, 62, 143
Free molecule flow, 121, 131
Free spectral range, 338
Fresnel’s coefficients, 307, 309,

337, 380
Fresnel’s rhomb, 380
Friction factor, 45
Frustrated total internal reflection, 379
Fullerene, 11, 154
Full-width-at-half-maximum (FWHM),

348, 421
Fundamental absorption process, 314

Fundamental relation in
thermodynamics, 28

Gain medium, 94
Galvanometer, 168
Gauss’s law, 286
Gauss’s theorem, 286, 458
General dielectric, 287
Generation of electron-hole pairs, 237
Geometric optics, 342, 344, 371, 381
Geometric optics approximation, 363
Giant magnetoresistive (GMR) effect,

12, 195
Gibbs free energy, 33
Gibbs relation, 28
Gibbs-Duhem relation, 34
Goos-Hänchen shift, 379–382
Gratings, surface relief, 357

complex gratings, 417
diffraction order of, 358, 399
grating equation, 358–359
surface plasmon excitation in, 399
Wood’s anomaly, 400

Gray medium, 50, 267
Gray surface, 48, 266
Green’s function, dyadic, 427–428
Green’s theorem, 286, 458
Ground-state energy, 31, 77, 91
Group velocity, 217, 265, 288,

386, 457
Guided modes in a waveguide, 383

Hagen-Ruben equation, 316
Hall effect, 193

quantum, 195
semiconductor, 235

Hamiltonian operator, 83, 210
Harmonic oscillator, 77
Heat capacity, 36
Heat carriers, 110
Heat conduction, 42, 110

ballistic, 131, 184, 258, 264
diffusive, 42, 110
by electrons, 158
nonequilibrium, 258, 263
non-Fourier, 250, 254, 257, 263
by phonons, 162
regimes, 275–277
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Heat diffusion, 110
equation, 42, 119, 250
kinetic description, 110

Heat equations
hyperbolic, 250, 253, 262
lagging, 250, 254
parabolic, 42, 119, 250
See dual-phase-lag model
See Jeffrey’s equation
See also two-temperature model

Heat interaction, 28
Heat reservoir, 37
Heat transfer, 41

conduction, 42
convection, 44
evaporative cooling, 114
free molecule, 129
in microchannel, 124
near-field radiation, 428
radiation, 46

Heat wave, 251
Helmholtz equation, 427
Helmholtz free energy, 33
Hermite polynomials, 90
Heterogeneous state, 33
Heterogeneous structures, 6, 10, 15, 

182, 229
Heterojunction, 9, 240
Highest entropy principle, 27, 32, 68
Histogram, 365, 451–452
Hot electrons, 228
Hot-film shear-stress sensors, 121
Hot spots (local heating), 7, 137
Hottel’s zonal method, 50
Hot-wire anemometers, 121
Huygens’ principle, 5, 283
Hydrodynamic equations, 46, 117
Hydrogen atom, 88
Hydrogen molecules, ortho- and para-, 98
Hydrogen technologies, 16

Ideal gas, 38, 102, 105
Information technology, 6
Infrared radiation, discovery of, 283
Insulators, 197, 198, 291
Integrated circuits, 4, 6, 17, 240
Intensities

blackbody, 48

Intensities (Cont.):
entropy, 302
optical, 341
phonon, 263
radiation, 47
Raman, 225

Interference, 284, 333, 337, 341,
387, 390

Intermolecular forces, 57, 72, 102,
115, 134

Intermolecular potential, 115, 124, 200,
275

Internal energy, 27
International Temperature Scale (ITS), 30
Ionization energy, 196, 198, 233
Irradiance, 297, 312

total solar irradiance (TSI), 297
Irreversible thermodynamics, 172–173

Jeffrey’s equation, 254, 275
Joule heating, 170, 290

Kapitza resistance, See thermal boundary
resistance

Kinetic temperature, 105
Kinetic theory, 57, 101, 111, 116, 155, 

162, 174
Kirchhoff’s approximation, 363
Kirchhoff’s law, 49, 284
Knudsen number, 122
Kramers-Kronig dispersion relations,

314–315
Kretschmann-Raether configuration, 

396–398
Kronecker delta, 104, 428
Kronig-Penney model, 213

electron, 174–182
molecular flow, 122, 129
phonon, 174, 264

Lab-on-a-chip, 11
Lagging behavior, 254
Lagrangian multipliers, 68, 448
Laguerre polynomials, associated, 88
Landauer’s formulation, 184
Laser ablation, 333
Laser cooling (and) trapping, 69,

302, 305
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Lasers, 8
diode laser, 368
history, 8
population inversion, 94
principle, 94
quantum well, 9
semiconductor, 9–10, 236
types, 9
ultrafast, 3, 8, 258, 261

Latent heat, 35–37
Lattice Boltzmann method, 123
Lattice, See Bravais lattice
Lattice constant, 148, 202, 204, 207

for photonic crystals, 353
Lattice vibrations or lattice waves, 138, 

139, 217
Lattice wavevector, 148
Left-handed materials (LHMs),

See metamaterials
Legendre polynomials, associated, 88
Length scales, 2, 3, 247, 275
Lennard-Jones potential, 115
Lewis number, 113
Light-emitting diodes (LEDs), 10,

208, 241
Light line, 356, 398, 403
Liouville equation, 116
Lithography, 7, 17, 238

deep-UV, 8
dip-pen nano-, 15
e-beam nano-, 11
focused-ion beam (FIB), 11
photolithography, 7, 8
x-ray lithography, 8

Local equilibrium, 3, 119, 160
Local heating, 7
Lorentz force, 194, 235
Lorentz number, 158, 186
Lorentz oscillator model, 318–321, 328
Loss or lossy medium, 290, 327
Lowest energy principle, 32
Lyman series, 89

Mach number, 122
Macroscale regime, 105, 276
Macrostate, 59
Magnetic materials, 292, 326
Matthiessen’s rule, 156, 163, 176

Matrix formulation, 348, 354, 386
Maximum kinetic energy, 227
Maxwell equations, 285, 287, 427

in inhomogeneous media, 357
See also electromagnetic waves

Maxwell relations, thermodynamic,
37, 53

Maxwell-Boltzmann distribution, 64, 232
Maxwell-Boltzmann (MB) statistics,

62, 66
Maxwell’s displacement current, 286
Maxwell’s velocity distribution, 73
Mayer relation, 39
Mean free path, 3, 105

bulk, 174, 177
distribution, 107
effective, 156, 163, 175
electron, 106, 156
molecule, 106
phonon, 163
photon, See penetration depth

Mechanistic length, 3, 174
Melting temperature or melting point, 35, 

140, 159
Memory effect, 254
Memory function, 255
Metal-oxide-semiconductor field-effect

transistor (MOSFET), 7, 195, 240
Metamaterials, 292, 326–329,

393–405, 421
Michelson interferometer, 5, 341
Microcavity, optical, 417
Microchannel, 11, 121, 125
Microelectromechanical systems

(MEMS), 1, 10, 121
Microelectronics, 6–8, 238–240
Microfabrication or micromachining,

10, 11
Microfluidics, 121–129

regimes, 122
Micro-heat pipes, 121
Micro/nanostructures, 1, 4, 121
Micro-particle image velocimetry, 121
Microscale regimes, 105, 276
Microscopy, optical, 4, 377
Microstate, 59
Microwave, 219, 292, 298, 316, 327
Miller indices for crystal planes, 205
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Miniaturization, 1, 3, 6, 10
Mobility, 234–235
Modes

for energy storage in ideal gases,
75, 80

of interaction, 26
optical fiber, 384
optical cavity, 418–420
phonon, 154, 219
quantum confinement, 183, 186
waveguide, 383

Modified Fourier equation, See Cattaneo
equation

Molecular beam epitaxy (MBE),
9, 333

Molecular chaos, 102
Molecular dynamics simulation, 57, 82,

124, 185, 277
Molecular electronics, 17
Molecular hypothesis, 101
Molecular weight, 38
Molecule, 4–5

C60, 11
diameter of, 107
DNA, 14, 18

Momentum flux, 104, 109
Momentum space, See velocity space
Monochromatic radiation, 46
Monochromatic (radiation) temperature, 

266, 302
Monochromator, 334, 371
Monte Carlo methods, 50

direct simulation Monte Carlo
(DSMC), 115, 124

for phonons, 277
for surface scattering, 364

Moore’s law, 7
Most probable microstate, 59
Most probable wavelength, 273, 297

Nanoaperture, 395, 409
Nanocontact, 185
Nanocrystals, 4, 148, 153
Nanoelectromechanical systems (NEMS), 

1, 121, 185
Nanoelectronics, 2, 8, 377
Nanofluidics, 121
Nanofluids, 1, 15, 24

Nanoindentation, 15
Nanolithography, 15, 409

See also lithography
Nanoparticles, 17, 148, 153, 400
Nanophotonics, 10, 395
Nanostructures, other, 4, 12, 121,

170, 305, 333, 400
Nanotechnology, 1, 19
Nanowires, 3, 12, 16, 151, 172,

185, 395
National Nanotechnology Initiative

(NNI), 19
Navier-Stokes equation, 46, 118, 122
Near-field

optics, 377, 413
radiative transfer, 3, 389, 431

Near-field scanning optical microscopes
(NSOMs), 4, 17, 377–378

Nearly free electron model,
See one-electron model

Negative absolute temperature, 98
Negative absorption, 93
Negative index materials (NIM),

See metamaterials
Negative refractive index, 326, 328
Nernst theorem, 31
Neutron scattering, 143, 149, 219, 225
Newton’s law of cooling, 45
Newton’s law of motion, 57, 124, 155
Newton’s law of shear stress, 45, 110
Newton’s prism, 5, 283
Nonabsorbing, nondissipative, or lossless

medium, 286, 308
Nonequilibrium thermodynamics, 174
Nonmagnetic materials, 286, 287, 292
Nonradiative transitions, 237, 415
Nuclear spin degeneracy, 79, 88, 98
Number density

electrons and holes, 232
electrons in a metal, 145
molecules, 39, 102
phonons, 141
photons (occupation number), 295

Nusselt number, 45, 128

Occupation number, 295
Ohm’s law, microscopic, 155, 286

at high frequencies, 292
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One-electron model, 210
Onsager reciprocity, 173
Onsager’s theorem, 172
Optical communication, 10,

382–383
Optical constants, 291

See also complex refractive index
Optical fiber, 10, 382

applications, 10
holey or photonic crystal, 386
modes, 383
principle, 310, 383

Optical path length, 50
Optical properties, 292, 333, 357,

396, 406
complex refractive index, 291–292
See absorption
See dielectric functions
See emission
See also radiative properties

Optical tweezers, 301
Optically thick limit, 51, 264
Optically thin limit, 51
Optoelectronics, 8, 236–242, 382, 386
Organ pipe resonance modes, 417, 420
Oscillator strength, 319
Otto configuration, 397

Partial coherence, 340–346
coherent limit, 337, 342
complex degree of coherence, 341
incoherent limit, 334, 342, 383
mutual coherence function, 341

Participating media, 50
Partition function, 67, 75, 79, 98
Pauli’s exclusion principle, 62, 192, 196
Peclet number, 128
Peltier effect, 168–169
Penetration depth, radiation, 106, 293

for phonons, 264
Perfect gas, 39
Perfect lens, See superlens
Periodic microstructures, 333, 352, 356,

408, 409, 417
Periodic potential, 209, 211
Permeability, magnetic, 286, 292, 379
Permittivity, electric, 286, 291, 379
Permutation, 448

Perpetual motion, 26
Perpetual-motion machine of the first kind

(PMM1), 26
Perpetual-motion machine of the second

kind (PMM2), 29
Phase diagrams, 35–36
Phase lag, 254–255
Phase-matching condition, 348, 354,

379, 427
Phase rule, Gibbs, 34
Phase shift, thin film, 337
Phase space, 59, 71
Phase velocity, 287, 456
Phonon branches, 165, 217

acoustic, 154, 166, 218
optical, 166, 218

Phonon dispersion relations, 165,
218, 219

Phonon modes, 141, 154, 166
axial, 153
longitudinal, 219
planar or surface, 153
transverse, 219
twisting or torsional, 154

Phonon-phonon scattering, 162, 221–222
four-phonon processes, 222
normal or N-processes, 221, 257,

262, 275
three-phonon processes, 221
umklapp or U-processes, 221, 257, 262

Phonons, 139, 217, 221
absorption or emission of, 224, 322–323
dispersion, 217
phonon gas, 137
polarization, 149, 165
radiative, 263
scattering, 221

Photoconductivity, 236
Photocurrent, 240–241
Photoelectric effect or photoemission,

5, 94, 226
Photon tunneling, 378, 386, 405, 425
Photonic crystal fibers (PCFs), 386
Photonic crystals, 352–356, 422

Bloch wavevector, 354, 391
effective evanescent wave, 422
pass band, 355
stop band, 355
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Photons, radiation quanta
momentum, 61, 93
photon gas, 294

Photovoltaics, 15, 240, 241
Piezoelectricity, 14, 121
Planck’s constant, 48
Planck’s law for blackbody radiation,

48, 63, 285, 294
derivation, 294
limitations, 305, 415–416

Plane waves, 306, 455
angle of incidence, 306
constant-amplitude planes, 293, 337
constant-phase planes, 293, 337
group front, 288
plane of incidence, 306
transverse electric (TE), 306
transverse magnetic (TM), 309
wavefront, 283, 287

Plasma frequency, 316, 328, 435
Plasma oscillation, 317, 396
Plasmon, See surface plasmon
p-n junction, 238–240
Poiseuille flow, 126, 128
Polariton dispersion relations, 396, 402
Polaritons, 396

bulk polaritons, 404, 409
coupled surface polaritons, 401
localized surface plasmon polaritons, 

395, 401
phonon polaritons, 395, 400
surface plasmon, 396–397
surface polaritons, 396
See also surface waves

Polarization, 288–290
circularly polarized, 289
co-polarization, 366, 367
cross-polarization, 366, 367
depolarization, 365
elliptically polarized, 290
linearly polarized, 289
longitudinal, 141, 154
parallel or p-polarized, 309
perpendicular or s-polarized, 306
propagation length, 399
randomly polarized, 290
unpolarized, 290
vibration ellipse, 289

Polarization vector, 319
Polychromatic light or radiation,

288, 339
Polymethyl methacrylate (PMMA),

15, 413
Positive index materials (PIM), 326
Potential barrier, 229
Potential well, 84
Potentiometer, 168
Poynting vector, 290, 308, 352, 411, 428
Prandtl number, 45, 111, 128 
Pressure, 28, 104, 301
Principal angle, 310
Principal values of integral, 315
Probability, 450–451
Probability density function (PDF), 61,

83, 107, 453
Properties, thermodynamic, 25, 33

additive, 26, 27
extensive, 34
intensive, 33
specific, 34

Pseudopotential method, 214
Pulse heating, 258
Pump-and-probe method, 260

Q-factors, 348, 386, 421
Quantization, 81, 85, 92

of conductance, 185
of specific heat, 153

Quantum computing, 8, 185
Quantum conductance, 182–187

thermal, 186
Quantum confinement, 149, 172, 183

electron density of states, 183
phonon density of states, 149–151

Quantum dots (QDs), 10, 17, 148,
183, 400

Quantum efficiency, 237, 241
Quantum electrodynamics (QED),

cavity, 10, 386, 415
Quantum number, 85, 89, 196
Quantum size effect, 148, 182

second quantum size effect, 153
on specific heat, 148–154
See also quantum conductance

Quantum states, 61, 85
Quantum theory, 58, 85
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Quantum tunneling, See electron tunneling
and photon tunneling

Quantum wells, 9, 85, 149, 151, 183
multiple quantum wells, 9, 172

Quantum wires, 183

Radiance, 47, 300, 312
See also intensities, radiation

Radiance temperature, 300, 303
Radiation detectors, 10, 236

bolometer, 236, 284
charge-coupled devices (CCD), 10
MCT, 208, 236
nonequilibrium or nonthermal, 236
photoconductive, 236
photodiode, 368
photomultiplier tube (PMT), 225
photovoltaic, 240
thermal or bolometric, 236
thermopile, 284

Radiation jump (or slip), 269, 270
Radiation pressure, 53, 301
Radiation tunneling, See photon tunneling
Radiative cooling, 225, 302
Radiative equilibrium, 265, 267
Radiative properties, 48, 308–309,

312–313, 334–340
bidirectional, 312–313
directional, 48
directional-hemispherical, 48
hemispherical, 48
normal, 311
spectral, 47, 48
spectral and directional control,

414–425
spectrally averaged, 342
specular, 345
total, 47, 48

Radiative thick limit, 264, 268
Radiative thin limit, 264, 266
Radiometer, cryogenic, 298 
Radiosity, 267, 268
Rad-Pro software, 324, 352
Raman scattering, 219, 224, 401

anti-Stokes shift, 224
Stokes shift, 224

Raman spectroscopy, 80, 224
micro-Roman, 277

Rapid thermal processing, 7, 300,
333, 362

Rarefied gas dynamics, 121
Rayleigh scattering, 49, 400
Rayleigh-Jeans formula, 285, 296
Rayleigh-Rice perturbation theory, 363
Rayleigh-Wood anomaly, 400, 419
Ray-tracing method, 334, 351, 364
Reciprocal lattice, 209
Reciprocal lattice space, 149, 209
Reciprocal lattice vector, 209, 211
Recombination or annihilation, 237

Auger effect, 237
multiphonon emission, 237
nonradiative, 237
radiative, 237
recombination lifetime, 237

Reflectance or reflectivity, 48
in ATR configuration, 398, 403–404
with a metallic grating, 399
by a microfacet, 366
for multilayer structures, 347–352
for photonic crystals, 357
from rough surfaces, 362–371
between semi-infinite media, 308, 309
for a thick film, 334–335
for a thin film, 335–337

Reflection, 285, 306
diffuse, 313
Lambertian surface, 313
specular or mirror-like, 48, 307

Reflection coefficient of electrons, 228
Reflection coefficients for electromagnetic

waves, 307, 309, 337, 398
Refraction, 285, 306
Refractive index, 288, 291
Relativity, special theory of, 94–95
Relaxation time, 106, 117, 156, 162, 253

energy relaxation time, 162
momentum relaxation time, 162
second relaxation time, 276

Relaxation-time approximation, 117, 119, 
160, 253

Resonance frequency, 90, 319, 328
for a harmonic oscillator, 90
in metamaterials, 328
for phonon oscillators, 319
of polaritons, 407, 418
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Resonance tunneling, 391–393, 405
Rest energy, 60, 94
Reststrahlen band, 320, 400
Retardation time, 254, 261
Retroreflection, 369, 471
Reynolds number, 45, 121, 128
Richardson constant, 228
Richardson-Dushman equation, 228
Riemann zeta function, 446
Rigid rotor, 86
Rigorous coupled-wave analysis (RCWA),

358–360, 409
Roughness statistics, 345, 363

anisotropy, 367, 371
autocorrelation length, 363
Gaussian surface, 345,

364, 376
height statistics, 364, 451
microfacets, 364
power spectral density (PSD), 363
rms roughness, 363, 451
shadowing function, 364

Sackur-Tetrode equation, 73
Saturated liquid, 35
Saturated vapor, 36
Saturation dome, 36
Scalar scattering theory, 345
Scanning electron microscope

(SEM), 12
Scanning near-field optical microscope

(SNOM), See NSOM
Scanning probe microscopes (SPMs), 1, 4
Scanning thermal microscope (SThM),

15, 277
Scanning tunneling microscope (STM),

14, 231
Scattering

albedo, 50
cross-section, 106, 400
diffuse, 176, 178
elastic, 180, 272
inelastic, 178, 305
phase function, 50
probability, 117
specular, 180

Scattering coefficient, 50, 400
Scattering matrix (S-matrix), 185

Scattering rate, 107, 156, 162,
221–223, 316

Scatterometer, optical, 368
Schmidt number, 113
Schrödinger equation, 61, 82

one-electron model, 210
solutions, 84, 91
time-dependent, 83

Second law of thermodynamics, 27, 252
Clausius statement, 29, 30
Kelvin-Planck statement, 29
See entropy

Second relaxation time, 276
Second sound, See temperature wave, 253,

257, 276
Seebeck effect, 167
Self-assembly, self-organization,

12, 18, 174
Semiconductor, 197

electrical conductivity, 234
extrinsic, intrinsic, 198
n-type, p-type, 198, 199, 238
wide band, 198

Semimetal, 197, 198, 208
Shear stresses, 45, 104, 109
Simpson’s rule, 431
Single-negative (SNG) material, 407,

410, 412
Size effect

classical, See boundary scattering
See quantum conductance
See quantum size effect
See specific heat
See thermal conductivity

Slip boundary condition, 126
Slip flow, 123, 126
Slope distribution function (SDF),

364, 367
Smith shadowing function, 364, 365
Snell’s law, 272, 307, 335
Solar cells, dye-sensitized, 16
Solid angle, 47, 265, 312, 369
Solid-state energy conversion

devices, 15, 166, 229
Sommerfeld constant, 147
Sommerfeld expansion, 145, 459
Specific heat, 36

constant pressure, 36
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Specific heat (Cont.):
constant volume, 36
ratio, 39

Specific heat of nanostructures, 148
carbon nanotubes, 154
graphene, graphite, 154
nanocrystals, 153
nanoparticles, 153
nanowires, 151, 153
quantum wells, 151
second quantum size effect, 153
thin films, 151

Specific heat models, 39–40, 137
electron contribution, 143
ideal gases, 39
ideal incompressible liquids, 40
ideal incompressible solids, 40
lattice contribution, 138–143

Spectral energy density, 295, 428
Spectral heat flux, 47, 265, 429
Specularity (parameter), 180, 273
Speed, 60, 74, 146

average, 74, 146
distribution, 73–74
root-mean-square, 74, 164
of sound, 53, 166, 191

Spherical coordinates, 47
Spherical harmonic method

(PN approximation), 50, 269
Standard conditions, 38, 57
Standard deviation, 81, 85, 97, 368
Standing waves, 85, 148, 383, 386,

401, 419
State principle, stable-equilibrium, 27
Statistic hypothesis, 102
Statistical ensembles, 81

canonical, 81, 92
fluctuations, density, 81
grand canonical, 81
microcanonical, 81

Steam table, 41
Stefan-Boltzmann constant, 48, 296

measurement, 298
one dimensional, 186
for phonons, 264

Stefan-Boltzmann law, 48, 284, 296
Stokes’ hypothesis, 46, 118
Sublimation, 36

Superconductivity, 63, 69, 168
BCS theory, 325
Cooper pairs, 69
crystal structure, 206, 208
high-Tc, 69, 169, 325
magnetic resonance imaging

(MRI), 12
SQUIDs, 12
Thermal conductivity, 177
two-fluid model, 325–326

Superfluidity, 63, 69
liquid helium, 69, 257
l-point or transition, 69, 257
second sound, 257
two-fluid model, 257

Superlattices, 9, 85, 148, 172, 182
Superlens, 410
Supermolecule, 200
Surface scattering, 345, 364, 368
Surface-enhance fluorescence microscopy,

401
Surface-enhance Raman microscopy

(SERS), 401
Surface forces, 3, 109, 212
Surface plasmon, 396
Surface realization or generation, 364

rejection method, 365
spectral method, 364

Surface roughness, 345, 367
See also roughness statistics

Surface topography, 367
AFM measurements, 365, 367
anisotropic surface, 365, 367
spatial resolution, 365
stylus profiler, 367

Surface-to-volume ratio, 121, 153
Surface waves, electromagnetic, 285, 378,

395, 422
Suspended MEMS bridges, 186

T 3 law, 143, 265
Temperature, 28

absolute zero, 31
kinetic temperature, 105
scale, 30
of the sun, 397
thermodynamic, 28
of the universe, 299
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Temperature jump, 123–127, 269, 270
Temperature measurement,

See thermometry
Temperature pulse, 251
Temperature wave, 251, 257, 262

negative entropy generation, 252
speed of propagation, 251

Thermal boundary resistance (TBR), 262,
271, 273–274, 277

Thermal conductivity, 42, 119
classical size effect, 174–178
derivation from BTE, 119
effective for rarefied gases, 131
ideal gases, 111
insulators, 162–166
across layered structures, 262–271
metals, 158–162
nanotubes, 186
quantum size effect, 286
superlattices, 172, 182
along a thin film, 178
along a thin wire, 181

Thermal creep, 126
Thermal diffusion

average speed, 249, 257
infinite-speed paradox, 248–249, 281
See heat diffusion

Thermal equilibrium, 27, 30, 415
Thermal fluctuations, 427
Thermal metrology, 277
Thermal radiation, 46, 283, 426
Thermal resistance, 44, 172, 268–271
Thermal time constant, 261
Thermal velocity of electrons, 224, 235 
Thermal wave, 251
Thermal wavelength of phonons,

151, 166
Thermalization time, 261
Thermionic emission, 227–229,

231, 436
Thermionic refrigeration, 229
Thermocouple, 168, 284
Thermocouple junction, 168
Thermodynamic cycles, 26

Carnot, 40, 172, 284, 302
Rankine, 40

Thermodynamic equilibrium, 27,
68, 304

Thermodynamic probability, 59, 66, 69
Thermodynamic processes, 26

adiabatic, 28
irreversible, 26
quasi-equilibrium or quasi-static, 29
reversible, 26
spontaneous, 26

Thermodynamic systems, 25
closed, 28
constituents, 25
environment or surroundings, 25
isolated, 26
open, 28
parameters, 25

Thermoelectric devices, 15, 170
figure of merit, 172
with nanostructured materials, 172
thermal efficiency, 171

Thermoelectric effect or thermoelectricity,
15, 166

absolute thermopower, 169
cooling or refrigeration, 170
power generation, 170
thermoelectric voltage, 168

Thermometry, 30, 298
absolute, 298
lightpipe, 7
radiation, 298
Raman, 277

Thermophotovoltaics (TPV), 15, 240,
379, 418, 425

Thermopower, See thermoelectric effect
Thermoreflectance, 260, 277
Thin films, 3–4, 9, 333

radiative properties, 335, 337
specific heat, 151
thermal conductivity, 174, 268

Thin-film optics, 336, 342, 347
Third law of thermodynamics, 31, 69
Thompson effect, 169
Tight-binding model, 214
Time-harmonic, 287, 290, 357, 385
Total internal reflection, 310,

378, 383
Transfer matrix method (TMM), 409
Transistors, 6, 240

field-effect transistor (FET), 240
MOSFET, 7
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Transition flow, 121
Transmission coefficients

for electromagnetic waves, 307,
309, 337

for phonons, 272
in quantum conductance, 185
in quantum tunneling, 230–231

Transmission electron microscope
(TEM), 12

high-resolution, 12
Transmission enhancement

with the excitation of polaritons,
405–407

by nanostructures, 408–409
by photon tunneling, 386–389
by resonance tunneling, 391–393

Transmission probability, 230–231
Transmissivity, internal, 335
Transmittance, 48

including surface roughness,
344–346

of multilayer thin films, 347–352
with phonons, 272–273
spectrally averaged, 339, 342
of a thick film, 335
of a thin film, 337

Transport equations, 108, 116
Triple point, 35
Two-phase mixture, 34
Two-relaxation-time approximation,

257, 276
Two-temperature model, 258, 261

Ultra-shallow junction, 8
Ultraviolet catastrophe, 297
Uncertainty principle, 61, 85
Unit cells, 201

basis, 201, 206
conventional unit cell, 201
lattice, See Bravais lattice
lattice points, 201
primitive unit cell, 201

Universal gas constant, 38, 443

Vacuum fluctuations, 
See zero-point energy

Valence band, 197, 215, 232, 322
Valence electrons, 196, 201, 216

van der Waals force, 115, 200
Velocity

bulk or mean, 109, 118
distribution, 73, 104
random or thermal, 109, 118

Velocity slip, 124, 127
Velocity space, 60
Vertical cavity surface emitting laser

(VCSEL), 9
Very-large-scale integration (VLSI), 7
Vibration-rotation spectrum, 49, 80
Virial theorem, 124
Viscosity, 45, 110

dynamic, 110
kinematic, 45
microscopic description, 110

Volumetric entropy generation rate, 173, 303
Volumetric heat capacity, 158, 256,

259, 265
Volumetric thermal energy

generation rate, 42
von Klitzing constant, 195

Waves
acoustic, 162, 165, 271, 288
backward, 349
evanescent, 293
forward, 349
homogeneous, 293
inhomogeneous, 293
packet, 457
propagating, 293
standing, 85, 148
surface waves, 285, 396
wave optics, 342, 344
See also plane waves

Wavefront, 251, 283
Wavefunctions, 82–84, 91, 211, 212, 230
Waveguides, 382–386

conducting, 386
dielectric, 386
guided mode, 383
plasmon, 400

Wavenumber, 80, 298
Wave-particle duality, 6, 60, 82, 220
Wavevector, 221, 287

in electromagnetic wave, 287, 291
lattice wavevector, 148, 211
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Wavevector (Cont):
wavevector space or k-space, 149,

209, 288
Weak-potential assumption, 211, 213
Whispering gallery mode (WGM), 386
Wiedemann-Franz law, 158, 162,

180, 182
Wien’s displacement law, 166, 297
Wien’s formula, 285, 296
Wigner-Seitz primitive cell, 205, 209
WKB approximation, also BWK or

KWB, 230
Wood’s anomaly, See Rayleigh-Wood

anomaly
Work function, 227, 229
Work interaction, 28, 302

X-ray crystallography, 201

X-ray diffraction, 245
X-ray lithography, 8
X-ray photoelectron spectroscopy

(XPS), 227
X-ray properties, 4, 317

Young’s double-slit experiment, 5,
284, 341

Zeolites, 220
Zero absolute temperature, See third law of

thermodynamics
Zero-entropy states, 32
Zero-point energy, 91, 149, 428
Zeroth law of thermodynamics, 30, 262
ZnO nanobelts and nanowires, 12,

13, 16, 201
Zone edge, 210, 212
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