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Preface

This book is written as a textbook for an analytical-oriented microfluid
flow course with graduate students who, preferably, have already taken
an advanced fluid mechanics course. The derivations of the equations
are presented, whenever possible, in a fairly detailed manner. The
intent is that, even without the help of an instructor, students can self-
navigate through the materials with confidence and come away with a
successful learning experience. Similarly, practicing engineers who are
interested in the subject should also be able to pick up the book and fol-
low the flow of the contents without much difficulty. Some background
in modern numerical computation tools will help the readers getting
the full benefit of the two computer programs, NB2D and DSMC-IP, as-
sociated with the book. In fact, it is highly recommended that readers
do make use of these Fortran programs.

The book begins with an introduction to the kinetic theory of gas and
the Boltzmann equation to build the foundation to the later mathemat-
ical modeling approaches. With the dilute gas assumption, the nature
of the micro gas flows allows the direct application of the Chapman-
Enskog theory, which then brings in the modeling equations at the
various orders of the Knudsen number in Chapter 4. The direct simu-
lation Monte Carlo (DSMC) method and the information preservation
(IP) method are described as the numerical tools to provide solutions to
the Boltzmann equation when the Knudsen number is high. The later
chapters cover the hybrid approaches and the important surface mech-
anisms. Some examples of micro gas flows at high and low speeds are
shown. One interesting aspect of micro gas flows that is yet to see ex-
tensive examination in the literature is the characteristics of the flow
disturbances at microscales. Chapter 11 provides a detailed description
of some of our preliminary studies in this area.

Although a part of the content of the book has been used in a one-
semester graduate level microfluid dynamics course at Western
Michigan University, the book is best used as a textbook for a two-
semester course. Chapters 1 to 4 provide the introductory content for

ix
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x Preface

the basic mathematical and the physical aspects of micro gas flows. The
computer program NB2D may be used, for example, as project exercises.
The second part would emphasize the DSMC and the IP solution meth-
ods, and their parallelization. The computer program DSMC-IP can be
used for term project type of assignments. In the situation where the
analytical microfluid course is preceded by another experiment-oriented
course on microfabrication or microengineering, and the students
have already had somewhat extensive knowledge of micro gas flows,
the instructor may wish to concentrate on Chapters 2, 4, and 5 in the
lectures and leave the rest as reading assignments. When the book is
used in a 16-to-20-hour short-course setting, the instructor may wish to
highlight the materials from Chapters 2, 4, 5, and 7. It might be a good
idea to provide opportunities to run at least one of the two computer
programs onsite. Chapters 1, 3, and 10 can be assigned as overnight
reading materials.

The book does not contain extensive updates and details on the cur-
rent engineering microfluidic devices. We feel that the book’s focus is
on the fundamental aspects of mirofluid flows and there is a myriad of
readily available information on the technologies and the many differ-
ent microfluidic device applications that have been cleverly designed
and painstakingly manufactured by experts in the field. Also, since
new devices are being brought to light almost daily, we feel that what
is current at the time of this writing may become outdated within a few
years.

A portion of the work the authors have accomplished at Western
Michigan University has been performed under the support of NASA
Langley Research Center. Near the completion of the manuscript, the
second author moved to the Georgia Institute of Technology.

We appreciate the help of Dr. James Moss for reviewing a part of the
manuscript. Thanks should go to those at McGraw Hill who worked on
the book and to those who reviewed it. We should also thank Jin Su
and Yang Yang for their work on the codes. The first author (WWL)
would like to thank the unconditional support and patience of his wife,
Shiou-Huey Lee, during this writing and the love from his children,
Alex and Natalie.

William W. Liou
Kalamazoo, Michigan

Yichuan Fang
Atlanta, Georgia
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Chapter

1
Introduction

Microelectromechanical systems (MEMS) are considered one of the
major advances of industrial technologies in the past decades. MEMS
technology was derived initially from the integrated circuit (IC) fab-
rication technologies. Now, microfabrication is a diverse spectrum of
processing techniques that involve a wide range of disciplines from
chemical sciences to plastic molding. As the name suggests, MEMS cov-
ers micron-sized, electrically and/or mechanically driven devices. Com-
pared with the conventional mechanical or electrical systems, these
MEMS devices are five to six orders of magnitude smaller in size. In
fact, these dimensions are in the same range as the average diameter
of human hair (about 50 µm, 50 × 10−6m, or 50 µm). An MEMS de-
vice can be a single piece of hardware that produces outputs directly
based on the inputs from external sources. The outputs can be me-
chanical and fluidic movement, electrical charges, analog signals, and
digital signals. Often several microcomponents are integrated, such as
the lab-on-a-chip device, which performs the multistage processing of
the inputs and produces several different types of outputs, all in one
single miniature device. The small sizes of MEMS make them portable
and implantable. The manufacturing cost of MEMS is far from pro-
hibitive because of the wide use of the batch-processing technologies
that grow out of the well-developed IC industry. MEMS, therefore, of-
fer opportunities to many areas of application, such as biomedical and
information technology, that were thought not achievable using conven-
tional devices. Estimates of the potential commercial market size were
as high as billions of U.S. dollars by 2010.

Since the early work of Tai et al. (1989) and Mehregany et al. (1990)
on the surface-machined micromotors, there has been an explosive
growth of the number and the types of potential application of MEMS.

1
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2 Chapter One

Accompanying this growth is the significant increase of new journals
that are dedicated to reporting advances in the field. The universal use
of the Internet also helps disseminate new MEMS knowledge quickly
and hasten its development effectively. There are also a number of ti-
tles written by distinguished researchers in the field. [a sample of them
would include Gad-el-Hak (2002), Karniadakis and Beskok (2002), Koch
et al. (2000), Nguyen and Wereley (2002), and Li (2004)] MEMS re-
lated technologies, ranging from electrokinetics and microfabrication
to applications, can be readily found in these and many other forms of
publications and media.

As more new applications are proposed and new MEMS devices
designed, it was often found that measured quantities could not be in-
terpreted by using conventional correlations developed for macro scale
devices. Electric power needed to drive a micromotor was extraordinar-
ily high. The properties of MEMS materials, such as Young’s modulus,
have been found to differ from that of the bulk material. For MEMS that
use fluid as the working media, or a microfluidic device, for instance, the
surface mechanisms are more important than mechanisms that scale
with the volume. Overcoming surface stiction was found to be important
in the early work on micromotors. The surface tension is perhaps among
the most challenging issues in microfluidic devices that involve the use
of liquid for transporting, sensing, and control purposes. The mass flow
rate of microchannels of gas and liquid flows in simple straight mi-
crochannels and pipes were found to transition to turbulence at a much
lower Reynolds number than their counterparts at the macro scales.
Due to the miniature size, there are uncertainties in measuring the var-
ious properties of MEMS, such as specimen dimensions, with sufficient
accuracy. Nevertheless, it has become increasingly apparent that the
physical mechanisms at work in these small-scale devices are different
from what can be extrapolated from what is known from experience with
macroscaled devices. There is a need to either reexamine or replace the
phenomenological modeling tools developed from observations of macro
scale devices.

This book covers the fundamentals of microfluid flows. The somewhat
limited scope, compared with other titles, allows a detailed examination
of the physics of the microfluids from an ab initio point of view. Since the
first principle theory is far less developed for liquids, the focus in this
writing is the microfluid flows of gas. The Boltzmann equation will be in-
troduced first as the mathematical model for micro gas flows. Analytical
solutions of the Boltzmann equation can be found for a limited num-
ber of cases. The Chapman-Enskog theory assumes that the velocity
distribution function of gas is a small perturbation of that in thermo-
dynamic equilibrium. The velocity distribution function is expressed as
a series expansion about the Knudsen number. The Chapman-Enskog
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theory is therefore adequate for micro gas flows where the Knudsen
number and the departure from local equilibrium are small. It will
be shown that the zeroth-order solution of the Chapman-Enskog the-
ory leads to the Euler equations and the first-order solution results
in the Navier-Stokes equations. The linear constitutive relations be-
tween the stress and strain, and that between the heat transfer and
temperature gradient, which are used in the derivation of the Navier-
Stokes equations from the continuum point of view of gas flow, are thus
valid only for very small Knudsen number. The second-order solution of
the Chapman-Enskog theory produces nonlinear closure models for the
stresses and heat fluxes. The resulting equations were referred to as
the Burnett equations. Two forms of the Burnett equations will be dis-
cussed. For micro gas flows of higher Knudsen number, the Boltzmann
equation should be used to model the micro gas flow behavior.

The analytical solutions of these various mathematical model equa-
tions for micro gas flows can be found for simple geometry and for
limited flow conditions, some of which are discussed in the appropri-
ate chapters. For many of the complex design of microfluidic devices,
the flow solutions can only be found by numerically solving the model
equations. To this end, two computer programs are provided in the
appendix section of the book. The programs are written using the stan-
dard FORTRAN language and can be compiled in any platforms. The
NB2D code solves the Navier-Stokes equations as well as two forms of
the Burnett equation. The all-speed numerical algorithm has been used
in the numerical discretization. The density-based numerical method
has been shown to be able to handle low-speed as well as high-speed
flows, and is appropriate for gas flows commonly seen in microdevices.
The DSMC/IP1D code uses the direct simulation Monte Carlo (DSMC)
method and the information preservation (IP) method to provide sim-
ulations of the gas microflow at the large Knudsen number. The IP
method has been shown to be exceptionally efficient in reducing the
statistical scatter inherent in the particle-based DSMC-like methods
when the flow speed is low. The two computer programs will provide
the readers with numerical tools to study the basic properties of micro
gas flows in a wide range of flow speeds and in a wide range of Knudsen
number. Examples of low- and high-speed micro gas flow simulations
are also presented in later chapters. One of the unsolved problems in
conventional macro scale fluid dynamics is associated with the flow
transition to turbulence. In Chap. 11, the behavior of the flow distur-
bances in two simulated micro gas flows is described.

The book is geared toward developing an appreciation of the basic
physical properties of micro gas flows. The computer software, cou-
pled with the necessary analytical background, enable the reader to
develop a detailed understanding of the fundamentals of microfluidic
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flows and to further validate their findings using computer microflow
simulations. The knowledge can then be used in either further studies
of the microflows or in the practical design and control of microfludic
devices.
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Chapter

2
Basic Kinetic Theory

2.1 Molecular Model

In kinetic theory, the composition of a gas is considered at the mi-
croscopic level. A gas is assumed to be made up of small individual
molecules that are constantly in a state of motion. The name molecule
can mean a single-atom molecule or a molecule with more than one
atom. In each atom, a nucleus is surrounded by orbiting electrons. The
internal structure of the molecule may change during an interaction
with other molecules, such as collision. Collisions with other molecules
occur continuously as the molecules move freely in their state of mo-
tion. Collision will also happen when a surface is present in its path.
The intermolecular collision causes the magnitude and the direction of
the velocity of the molecule to change, often in a discontinuous man-
ner. If there is no collective, or macroscopic, movement, the motion of
the molecule is completely random. This freedom of movement is not
shared by liquid or solid molecules.

A molecular model for gas would then describe the nature of the
molecule, such as the mass, the size, the velocity, and the internal state
of each molecule. A measure for the number of molecules per unit vol-
ume, or number density n, would also be a parameter. The model also
describes the force field acting between the molecules. The force field is
normally assumed to be spherically symmetric. This is physically rea-
sonable in light of the random nature of the large number of collisions
in most cases. The force field is then a function of the distance between
the molecules. Figure 2.1.1 shows a typical form of the force field F (r )
between two molecules with distance r. At a large distance, the weak at-
tractive force approaches zero. The attractive force increases as the dis-
tance decreases. In close range, the force reverses to become repulsive

5
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6 Chapter Two

d

F

r

∞

Rigid sphere model

Figure 2.1.1 Sketch of spherically symmetric inter-
molecular force field.

as the orbiting electrons of the two molecules intermingle. Analyses
with nonspherically symmetric force field are complicated. In fact, it is
generally found that, the exact form of the force field is less important
than other collision parameters. The force field of a simple rigid sphere
model is shown in Fig. 2.1.1. The model assumes an infinitive repulsive
force when the molecules are in contact and zero otherwise. The contact
occurs when the distance between the centers of the molecules are the
same as the assumed diameter of the sphere d. Use of the rigid sphere
model can lead to accurate results if the diameter d is properly chosen
according to some basic properties of the gas. The internal structure of
the molecules affects the energy content of the gas. With the nuclei and
the electrons in motion, the molecule can have, for instance, rotational
and vibrational modes of energy in addition to the energy associated
with the molecular translational motion.

These molecular quantities need to be related to macroscopic proper-
ties for analyses. This is especially true when there is a general macro-
scopic movement of the gas. As will be seen in the following section, a
macroscopic property is merely the sample averaged value of the corre-
sponding molecular quantity. The motion of the molecules is then not
completely random when there is macroscopic motion.

2.2 Micro and Macroscopic Properties

In this section, we will use a simplified model to introduce the rela-
tions between the molecular behavior and the macroscopic properties
of gases. We consider an equilibrium monatomic gas of single species
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l

l
x

y

Figure 2.2.1 A planar projection
of a molecular path.

inside a cubic box at rest of length l on each side (see Fig. 2.2.1). A gas
in equilibrium would exhibit no gradients of macroscopic quantities in
space or time. The average velocity of the molecule is therefore zero.
Molecular motion is random with velocity vector c. The molecular ve-
locity components are cx, cy, and cz in the Cartesian coordinate sys-
tem (x, y, z). Again, molecules here can represent an atom, monatomic
molecules, diatomic molecules, or polyatomic gas molecules. Assuming
specular reflection at the wall, the x momentum change of a molecule
during a collision with the right, vertical side of the box is (2mcx) where
m denotes the molecular mass. If we assume that there are no inter-
molecular collisions, the rate of the momentum change, or the force Fx
exerted on the wall by the molecule, is

Fx = (2mcx)
(

1
2l/cx

)

= mc2
x

l

For a total number N molecules in the box, the total force becomes

Fx =
∑

N mc2
x

l

The pressure px on the wall then is

px = Fx

A
= Fx

l2 =
∑

N mc2
x

l3 =
∑

N mc2
x

V
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Similarly

py =
∑

N mc2
y

V
and pz =

∑
N mc2

z

V

Therefore, pressure p becomes

p = 1
3

( px + py + pz)

=
∑

N m|c|2
3V

(2.2.1)

= 2Etr

3V

where Etr is the total energy of translation of the molecules

Etr =
∑

N m|c|2
2

By using the total system mass M =∑N m = N m, we get

p = 2Etr/M
3V /M

(2.2.2)
= 2

3
ρetr

where ρ is the density and etr the molecular translational kinetic en-
ergy per unit mass, or the specific molecular translational kinetic en-
ergy. Therefore, from the kinetic theory point of view, the pressure is
proportional to the gas density and the specific translational kinetic
energy. The empirical equation of state for a thermally perfect gas can
provide pressure from the thermodynamics consideration. That is,

p = ρRT

where R represents the gas constant. The two different expressions for
pressure will give the same quantity if

T = 2etr

3R
(2.2.3)

This equation relates the temperature defined in the classical ther-
modynamics to the specific kinetic energy of molecular translational
motion in kinetic theory. Therefore, temperature, a macroscopic gas
property, can then be used as a measure of the specific molecular energy.
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We can also relate temperature and pressure to the average kinetic en-
ergy per molecule. For instance, Eq. (2.2.2) gives

p = 2
3

ρetr

= 2
3

ρ

M
(Metr)

= 2
3

ρ

M
(Nêtr) (2.2.4)

= 2
3

N
V

êtr

= 2
3

nêtr

where

êtr = 1
2N

∑
N

|c|2

denotes the average kinetic energy per molecule. Similarly, we can find
that

T = 2êtr

3k
(2.2.5)

where k is the Boltzmann constant. It is the ratio of the universal
gas constant R̂ to the Avogadro’s number N̂ . As this temperature in-
cludes only the translational kinetic energy, it is sometime referred to
as the translational kinetic temperature Ttr. For monatomic gases, the
molecule can be assumed to possess translational kinetic energy only
and the translational kinetic temperature may simply be referred to as
the temperature. For diatomic and polyatomic molecules, the rotational
and the vibrational modes can also be associated with temperature. A
general principle of equipartition of energy states that for every part
of the molecular energy that can be expressed as the sum of square
terms, an average energy of kT/2 per molecule is contributed by each
such term. For instance, in the kinetic energy of translation, there are
three such terms: c2

x , c2
y, and c2

z . Therefore, Eq. (2.2.5) shows that

êtr = 3
(

kT
2

)
Or

etr = 3
(

RT
2

)
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In general, for a gas with ξ number of square terms, the average kinetic
energy is then

e = ξ

(
RT

2

)

The number of terms that can be expressed as quadratic in some ap-
propriate variables depends on the internal structure of the molecule.
For a diatomic gas, such as air, there are two additional rotational en-
ergy that can be expressed as square terms, therefore ξ = 5 and

e = 5
(

RT
2

)

The specific heat at constant volume cv is (5/2)R and

cp = cv + R

= (7/2)R

The ratio of the specific heats

γ = cp

cv
= 7

5

which is the value normally assumed for diatomic gases. Therefore, even
though the assumptions that the molecular collision can be ignored and
the molecular interaction with the wall being specular have greatly sim-
plified the gas behavior, the results are still valid. More rigorous deriva-
tion of these results can be found in Bird (1994) and Gombosi (1994).
To estimate the molecular speed by using the macroscopic properties,
divide both sides of Eq. (2.2.1) by the total mass M, then

p
ρ

= 1
3

∑
N m|c|2

M
(2.2.6)

= |c|2
3

where |c|2 represents the mean-square molecular speed.

Note that we have defined a sample average q̄ as an average of a molec-
ular quantity q over all the molecules in the sample. That is

q̄ = 1
N

∑
N

q (2.2.7)
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For example, the average molecular velocity is

c̄ = 1
N

∑
N

c (2.2.8)

This is a macroscopic or stream velocity. The difference between the
molecular velocity and the stream velocity is called thermal or random
velocity

c′ = c − c̄ (2.2.9)

Note that

c′ = c̄ − c̄ = 0 (2.2.10)

That is, the average thermal velocity is zero.

2.3 Binary Collisions

Molecular collisions are the most fundamental process in gases. Molec-
ular collision frequently occurs. There can be any number of molecules
involved in a collision. In Sec. 2.3.1 the kinematics and the dynamics of
collision that involves only two molecules, or binary collision, will be in-
troduced. Binary collision is most relevant to most microflow analyses
with rarefied gas effects.

2.3.1 Kinematics

We will assume that the size of the molecules is small and the molecules
can be regarded as point centers of the intermolecular force. The force
is along the direction connecting the centers of the molecules and de-
pends only on the relative positions of the molecules. The force is also
assumed conservative. Consider two molecules with masses m1 and m2,
position vectors r1 and r2, in a fixed Cartesian coordinate system (see
Fig. 2.3.1). The pre-collision velocities of the molecules are c1 and c2,
respectively. The trajectories or orbits of the two particles are twisted
curves in space.

c1

c2

m1

m2

z
x

y r1 r2

Figure 2.3.1 Binary collision.
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The location of the center of mass is

rm = m1

m1 + m2
r1 + m2

m1 + m2
r2 (2.3.1)

The velocity of the center of mass is

cm = m1

m1 + m2
c1 + m2

m1 + m2
c2 (2.3.2)

In an elastic collision, the linear momentum is conserved. Therefore,

m1c1 + m2c2 = m1c∗
1 + m2c∗

2
(2.3.3)

= (m1 + m2)cm

where asterisk (∗) denotes post collision quantities. Equation (2.3.3)
shows that the velocity of the center of mass does not change in the
collision. The conservation of energy gives

m1c2
1 + m2c2

2 = m1c∗
1

2 + m2c∗
2

2 (2.3.4)

The relative location between the two molecules r is defined as

r = r1 − r2

The pre- and the post-collision velocities of m1 relative to those of m2
are

cr = c1 − c2 and c∗
r = c∗

1 − c∗
2 (2.3.5)

From Eqs. (2.3.2) and (2.3.5), one can write the pre-collision velocities
in terms of the center of mass velocity and the relative velocity

c1 = cm + m2

m1 + m2
cr and c2 = cm − m1

m1 + m2
cr (2.3.6)

Equation (2.3.6) shows that c1 − cm//c2 − cm. That is, in the center-of-
mass reference of frame, the approach velocities of the collision partner
are parallel to each other. For a spherically symmetric repulsive inter-
molecular force F

F = F er
(2.3.7)

= −dU (r )
dr

er

U (r ) is the potential of the intermolecular force and er the unit vector
along r. The conservative force field is a function of the distance between
the collision partner and is on the same plane formed by c1 − cm and
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c2 −cm. For the collision molecules, the force is equal in magnitude and
opposite in direction. That is,

F = m1
dc1

dt (2.3.8)
= −m2

dc2

dt

Or

m1
dc1

dt
+ m2

dc2

dt
= 0 = dcm

dt
(2.3.9)

Again, Eq. (2.3.9) shows that the velocity of the center of mass does not
change during the interaction. We can also find from Eq. (2.3.8) that

m1m2
dc1

dt
− m1m2

dc2

dt
= (m1 + m2)F

Or

F = m1m2

m1 + m2

dcr

dt
(2.3.10)

= mr
dcr

dt

Therefore, the motion of a particle of mass m1 with respect to that of
mass m2 is equivalent to that of a particle of reduced mass mr in a
central field of conservative force. The postcollision velocities can also
be found from Eqs. (2.3.2) and (2.3.5)

c∗
1 = cm + m2

m1 + m2
c∗

r and c∗
2 = cm − m1

m1 + m2
c∗

r (2.3.11)

Equation (2.3.11) shows that c∗
1 − cm//c∗

2 − cm. That is, in the center-
of-mass reference of frame, the post-collision velocities of the collision
partner are parallel to each other. In fact, since the force field is assumed
spherically symmetric, there is no azimuthal acceleration during the
interaction and the angular momentum L is conserved. That is,

d L
dt

= d
dt

(mr cr × r)
(2.3.12)

= 0

Therefore, cr and c∗
r lie on the same plane, commonly referred to as

the collision plane. In this accelerating frame of reference attached to
m2, the two-body problem is reduced to a one-body problem with a plane
trajectory. Moreover, it can be shown that |cr | = |c∗

r | = cr = c∗
r . First,
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summing the inner product of Eq. (2.3.3) with c1 and Eq. (2.3.3) with
c2, we get

m1c2
1 + m2c2

2 = (m1 + m2)[cm • (c1 + c2)] − (m1 + m2)c1 • c2

By using Eq. (2.3.6) to write c1 and c2 in terms of cm and cr , the equation
can be written as

m1c2
1 + m2c2

2 = (m1 + m2)c2
m + m1m2

m1 + m2
c2

r (2.3.13)

Similarly, we may also obtain

m1c∗
1

2 + m2c∗
2

2 = (m1 + m2)c2
m + m1m2

m1 + m2
c∗

r
2 (2.3.14)

Since the translation kinetic energy is conserved during the binary
collision, Eqs. (2.3.13) and (2.3.14) show that

cr = c∗
r (2.3.15)

The velocities cm and cr can be determined from the pre-collision ve-
locities c1 and c2, therefore, the post-collision velocities c∗

1 and c∗
2 can

be calculated if the angle between cr and c∗
r is known. This is called

the angle of deflection χ . The angle of deflection measures the change
of direction of the relative velocity vectors due to a collision and can be
obtained by examining the dynamics of the binary collision.

2.3.2 Dynamics and postcollision
properties

In the polar coordinate (r, φ) with its origin at r2 on the collision plane,
as shown in Fig. 2.3.2, Eq. (2.3.12) becomes

mr r 2 dφ

dt
= mr cr b (2.3.16)

r
b

cr

cr*

x

φ
φm χ

Figure 2.3.2 Collision plane.
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where b is the smallest distance between the trajectories of the mole-
cules before the collision and is called the impact parameter. Since the
intermolecular force is a short-range force that vanishes at large inter-
molecular distances, the conservation of the total energy, including the
kinetic and the potential energy, becomes

1
2

mr

(
dr
dt

)2

+ mr c2
r b2

2r 2 + U (r ) = 1
2

mr c2
r (2.3.17)

The trajectory r (φ) can be deduced by eliminating the time variables
from Eqs. (2.3.16) and (2.3.17). That is

dr
dφ

= ±r
b

√
r 2 − b2 − 2r 2U (r )

mr c2
r

(2.3.18)

The trajectory is a function of the collision parameter, the ratio of the
potential and the kinetic energies. For each r, there are two φ values,
corresponding to the approach and the departure that are symmetric
with respect to (rm, φm) described by the zero of the square term. That is

r 2
m − b2 = 2r 2

mU (rm)
mr c2

r

rm and φm are referred to as the distance and the angle of the closest ap-
proach, respectively. The symmetry in the approach and the departure
trajectories also means that for a collision with precollision velocity of
c∗

1 and c∗
2, the postcollision velocities will be c1 and c2. This is called

the inverse collision of the original, direct collision. Also as a result of
the symmetry, the angle of deflection becomes,

χ = π − 2φm (2.3.19)

Equation (2.3.18) can then be solved,

φ − φm = ±
∫ r

rm

b
r ′

(
r ′2 − b2 − 2r ′2U (r ′)

mr c2
r

)−1/2

dr ′ (2.3.20)

Since φ → 0 when r → ∞, Eq. (2.3.20) gives

φm =
∫ ∞

rm

b
r ′

(
r ′2 − b2 − 2r ′2U (r ′)

mr c2
r

)−1/2

dr ′ (2.3.21)

Therefore,

χ = π − 2
∫ ∞

rm

b
r ′

(
r ′2 − b2 − 2r ′2U (r ′)

mr c2
r

)−1/2

dr ′ (2.3.22)
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Equation (2.3.22) shows that given the intermolecular potential and
the relative speed of the approach, the deflection angle χ is determined
by the value of the impact parameter b.

For hard sphere molecular model, U = 0 for r > d12, and

φm =
∫ ∞

d12

b
r ′
(

r ′2 − b2
)−1/2

dr ′

= π

2
− cos−1

(
b

d12

)
and Eq. (2.3.19) gives

χ = 2 cos−1
(

b
d12

)
(2.3.23)

To calculate the postcollision velocities, c∗
1 and c∗

2, by using
Eq. (2.3.11), we still need to calculate c∗

r . Noting that cr = c∗
r , we will

use a new coordinate system (x′, y′, z′) with the x′ axis aligned with the
direction of cr and y′ on the reference plane, as shown in Fig. 2.3.3.

In the new coordinate system (x′, y′, z′) shown in Fig. 2.3.3, the
postcollision relative velocity can be written as

c∗′
r = (cr cos χ , cr sin χ cos ε, cr sin χ sin ε) (2.3.24)

Its components in the (x, y, z) coordinate system can be obtained by
using the direction cosines. That is

c∗
r = Xc∗′

r (2.3.25)

X is a second order tensor with components being the direction cosines
of the primed coordinate system. That is,

Xij = cos(xi, x′
j ) (2.3.26)

z

y

x
x′

y′

z′

cr

cr*

Figure 2.3.3 Collision coordinate
system.
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Since x′ is aligned with the direction of cr , its direction cosines are

X11 = ur

cr
X21 = vr

cr
and X31 = wr

cr
(2.3.27)

where ur , vr , and wr denote the components of cr in the x, y, and z
directions, respectively. Let y′ be normal to the x-axis, so that X12 = 0.
By requiring that the y′-axis be also normal to the x′-axis, we get the
other two components of Xi2

X12 = 0 X22 = wr√
v2

r + w2
r

and X32 = −vr√
v2

r + w2
r

(2.3.28)

The z′-axis is normal to both the x′- and the y′-axes. The following ex-
pressions for Xi3 can be derived. They are

X13 = −√v2
r + w2

r

cr
X23 = ur vr

cr
√

v2
r + w2

r

and X33 = ur wr

cr
√

v2
r + w2

r

(2.3.29)

In summary, the postcollision velocities can be found with the follow-
ing five steps.

Step 1. Calculate the center of mass velocity.

cm = m1

m1 + m2
c1 + m2

m1 + m2
c2 (2.3.2)

Step 2. Calculate the precollision relative velocity.

cr = m1 + m2

m2
(c1 − cm) (2.3.6)

Step 3. Calculate the deflection angle.

χ = π − 2
∫ ∞

rm

b
r ′

(
r ′2 − b2 − 2r ′2U (r ′)

mr c2
r

)−1/2

dr ′ (2.3.22)

Step 4. Calculate the postcollision relative velocity.

c∗′
r = (cr cos χ , cr sin χ cos ε, cr sin χ sin ε)

(2.3.24)
c∗

r = X c∗′
r

where the components of X tensor can be found in Eqs. (2.3.25),
(2.3.27), (2.3.28), and (2.3.29).
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Step 5. Calculate the postcollision velocities c∗
1 and c∗

2.

c∗
1 = cm + m2

m1 + m2
c∗

r and c∗
2 = cm − m1

m1 + m2
c∗

r (2.3.11)

Therefore if the nature of the molecular-collision process were known,
the motion of the gas could be completely specified. The dynamic tra-
jectory of each particle can be completely determined from their given
initial conditions. Since the number of particles in a real gas is large,
such processes are cumbersome and are seldom followed in practice.

The concept of collision cross section is important in the evaluation
of probabilities of collision in terms of the interaction potential and the
collision parameter b (see Fig. 2.3.4). The differential collision cross sec-
tion is the perpendicular (to cr ) area through which molecules with cr
are scattered to an infinitesimal velocity space solid angle d� around
c∗

r . The solid angle d� can also be written as

sin(χ )dε dχ

where ε is the angle between the collision plane and a reference plane.
For a spherically symmetric intermolecular potential, the inverse colli-
sion exists and

σd� = (bdε) db (2.3.30)

where σ is the mapping ratio and is called differential cross section.
One can also write,

σ (sin(χ )dεdχ ) = −(bdε) db

The negative sign is there to expect that the deflection angle decreases
with the increasing collision parameter b. Therefore, the differential
cross section becomes

σ = − b
sin(χ )

db
dχ

(2.3.31)

b

Ω d

εχ

Figure 2.3.4 Collision cross section and solid angle.
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The total collision cross section can be obtained by integration over all
the possible scattering directions. That is

σT =
∫ 4π

0
σd�

=
∫ π

0

∫ 2π

0
σ sin(χ ) dεdχ (2.3.32)

= 2π

∫ π

0
σ sin(χ ) dχ

For hard sphere model for gas of molecular diameter d, b = cos
(

χ

2

)
d12

σ = − b
sin(χ )

d
dχ

(
d12 cos

(χ

2

))
(2.3.33)

= d 2
12

4

and

σT = 2π

∫ π

0

d 2
12

4
sin(χ ) dχ

= πd 2
12 (2.3.34)

= πd 2

2.3.3 Molecular force field models

As described earlier, the intermolecular force field consists of attrac-
tive and repulsive portions as a function of distance between the two
molecules. The best know attractive–repulsive model is the Lennard-
Jones model.

Lennard-Jones (L-J) model. The Lennard-Jones 12-6 potential can be
written as

U = 4ε

[(r
δ

)−6
−
(r

δ

)−12
]

(2.3.35)

The corresponding force field is then

F = 48
ε

δ

[
1
2

(r
δ

)−7
−
(r

δ

)−13
]

(2.3.36)

where ε denotes the minimum potential value, and δ a characteris-
tic length scale taken as the distance at which the potential function
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changes its sign. This model is widely used in the simulations of dense
gas and liquid.

Inverse power law model. Most force field models neglect the long-range
attractive portion. In this case, the inverse power law model describes
the potential and the force fields as follow

U = κ

(η − 1)r η−1 F = κ

r η
(2.3.37)

where η is the power determining the “hardness” of particles, κ a con-
stant. The deflection angle χ is

χ = π − 2
∫ W1

0

[
1 − W 2 − {2/(η − 1)}(W/W0)η−1]−1/2d W (2.3.38)

where W0 = b(mr c2
r /κ)1/η−1, and the dimensionless W1 is the positive

root of the equation

1 − W 2 − {2/(η − 1)}(W/W0)η−1 = 0 (2.3.39)

Note that χ is a function of only the dimensionless impact parameter
W0, which makes the inverse power law model easy to implement. The
rigid sphere model, often referred to as the hard sphere (HS) model,
that has been used in the previous sections can be regarded as a special
case of the inverse power law with η = ∞. The use of η = 5 results in
the Maxwell model. The model can be regarded as the limiting case of a
“soft” molecule, contrasting the HS model at the other limit. For a real
monatomic molecule, the effective value of η is about 10. The HS model
is simple and easy to use. Its primary deficiency is that the resulting
scattering law is not realistic.

Variable hard sphere model. The Variable hard sphere (VHS) model was
introduced by Bird (1981) to correct the primary deficiency of the HS
model. In the VHS model, the molecule is a hard sphere with a diameter
d that is a function of cr . Generally the function can be obtained based
on a simple inverse power law α. That is

d = dref (cr,ref/cr )α (2.3.40)

where the subscript “ref” denotes the reference values at the reference
temperature T ref, and α = 2/(η − 1). σT can be expressed in terms of
reference conditions

σT = σref

(
c2

r

c2
r,ref

)−a

(2.3.41)
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For an equilibrium gas, cr is related to temperature by

c2
r = 2(2 − α)kT

mr
(2.3.42)

Combining Eqs. (2.3.41) and (2.3.42) yields an expression for σT ,
appropriate for an equilibrium gas, as

σT = σref

(
mr c2

r

2(2 − α)kT ref

)−a

(2.3.43)

The VHS model leads to a power law temperature dependence of the
coefficient of viscosity by

µ ∝ T ω (2.3.44)

where ω = 0.5 + α, and the deflection angle

χ = 2 cos−1(b/d ) (2.3.45)

The VHS model is currently the most widely used model in direct
simulation Monte Carlo (DSMC) simulations, because of its simplicity
and its effective approximation to real intermolecular potential. Typical
values of α and dref are given in Table 2.3.1 (Bird 1994).

The HS and VHS models have the same impact parameter b =
d cos(χ/2). The effective diameter d is invariant for the HS model, but
is an energy-dependent variable for the VHS model. Both models obey
the isotropic scattering law and do not correctly predict the diffusion in
flows of real gases, especially of gas mixtures.

Variable soft sphere model. The Variable soft sphere (VSS) model in-
troduced by Koura and Matsumoto (1991, 1992) took into account the
anisotropic scattering of real gases. The molecular diameter varies in

TABLE 2.3.1 Typical Values of α and d ref for VHS Molecules at 273K

Gas Gas symbol α dref × 1010 m

Hydrogen H2 0.17 2.92
Helium He 0.16 2.33
Nitrogen N2 0.24 4.17
Oxygen O2 0.27 4.07
Argon Ar 0.31 4.17
Carbon dioxide CO2 0.43 5.62

SOURCE: Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of
Gas Flows, Oxford University Press, New York, 1994.
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the same way as the VHS model, but there is a deflection exponent β

in relation to b such that

b = d cosβ(χ/2) (2.3.46)

This cosine exponent β and the diameter d are determined such that
the viscosity and diffusion coefficient are consistent with the inverse
power law potential. For the VHS model, β is 1. This model is called
variable soft sphere because χVSS is smaller than χVHS, which can be
obtained from β > 1 and cos(χVHS/2) = cosβ(χVSS/2). The VSS total
collision cross section can be expressed as

σT ,VSS = 1
S

σT ,VHS (2.3.47)

where S is the softness coefficient given by

S = 6β/[(β + 1)(β + 2)] (2.3.48)

The values of the cosine exponent β and softness coefficient S for a
large variety of molecular species are compiled in Koura and Mat-
sumoto (1991). In addition, the corresponding viscosity and diffusion
cross-section for the VSS model are also given in the reference. It was
found that the VSS model is preferable to the VHS model in flows of
gas mixtures where molecular diffusion is important.

Generalized hard sphere model. The Generalized hard sphere (GHS)
model developed by Hassan and Hash (1993) is an extension of the VHS
and VSS models. The scattering distribution is that of the hard or soft
sphere, but the variation of the total cross section as a function of the rel-
ative translational energy mimics that of the corresponding attractive–
repulsive potential. It is implemented through the parameters that de-
scribe the intermolecular potentials of the form of Eq. (2.3.22), and can
therefore make use of the existing database that has been built up from
the measured transport properties of real gases.

Larsen-Borgnakke phenomenological model. There have been molecular
models proposed for inelastic collision. The most widely used model for
inelastic collisions is the Larsen-Borgnakke phenomenological model
(Larsen and Borgnakke 1974, Borgnakke and Larsen 1975). This model
allows molecules to have continuous internal energy modes. The ex-
change of energy among translational, rotational and vibrational modes
is accounted for in distribution of post-collision velocity for the molecules
involved. The Larsen-Borgnakke model was also extended to include
the repulsive force described in the GHS model. The model is applica-
ble to binary collisions in a mixture of polyatomic gases.
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2.4 Statistical Gas Properties

An important concept brought in by the statistical consideration of the
collision between molecules is the mean free path. The mean free path λ

is defined as the average distance a molecule travels between successive
collisions. It is defined in a frame of reference that moves with the local
stream. We will consider again single species with the average spacing
between the molecules, δ, which is much larger than the diameter d of
the molecules of hard sphere. That is

δ � d (2.4.1)

Such gases are referred to as dilute gases. δ/d = 7 is commonly taken
as the limit of dilute gas assumption. The average volume a molecule
occupies is 1/n. Therefore, we can also obtain

δ = n−1/3 (2.4.2)

For the hard sphere gas considered here, a given target molecule will
experience a collision with another molecule whenever the distance
between the centers of the molecules d12 equals to d (see Fig. 2.4.1).

The target molecule then carries a sphere of influence of radius, d. A
collision will occur when the center of other field molecules lie on the
surface of this sphere. For hard sphere model, according to Eq. (2.3.34),
the total collision cross section σT becomes the area of the projection of
the sphere of influence on to a plane normal to the relative velocity vec-
tor of the colliding molecules (see Fig. 2.4.2). The relative velocity vector
cr is the velocity of the target molecule c1 and that of the field molecule
c2 or cr = c1 − c2. The number of collisions per unit time between the
target molecule and the molecules of class c2 is then the number of
molecules in the class c2 that lies within the cylindrical volume swept
by the collision cross section area. That is

�nσT cr

d

d12

Sphere of influence

Figure 2.4.1 Sphere of influence
for hard sphere model.
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σT
ct

crD t

Figure 2.4.2 Collision frequency.

where �n represents the number density of the molecules of class c2.
For hard sphere molecules, where σT = πd 2, the mean collision rate ν

is then the sum over all velocity class. Or

ν =
∑

�nσT cr
(2.4.3)

= nπd 2
(∑ �n

n
cr

)

Since �n/n represents the fraction of the field particles in the class of
cr, Eq. (2.4.3) can also be written as

ν = nπd 2cr (2.4.4)

The mean free path λ is defined as the average distance a molecule
travels between successive collisions.

It is defined in a frame of reference that moves with the local stream.
Therefore

λ = c′

ν (2.4.5)
= 1

nπd 2

c′

cr
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where c′ ≡ |c′| is the mean thermal speed. We can obtain, from
Eqs. (2.4.2) and (2.4.5), that

λ

δ
= 1

π

c′

cr

(
δ

d

)2

(2.4.6)

The ratio of c′/cr is of order unity (1/
√

2 for equilibrium monatomic
gas), and δ � d . Thus, we obtain, for dilute gas,

λ � δ � d (2.4.7)

Since the effective range of the intermolecular force field is of the or-
der of the diameter, this equation suggests that for dilute gas, the gas
molecules interact only during the collision process of relatively short
duration in time. This is an important result in the development of
kinetic theory of gas. It suggests that molecular collision is an instan-
taneous occurrence. It also suggests that molecular collisions in dilute
gas are most likely to involve only two molecules. Such a collision, as
was described in the previous section is called a binary collision.

Molecular collisions cause the velocity of the individual molecule to
vary. Therefore, the number of molecules in a particular velocity class
changes with time. For a gas in equilibrium where there is no gradient
in its macroscopic properties, the number of particle in a velocity class
remains unchanged. That is, locally, for every molecule that leaves its
original velocity class, there will be another molecule entering the veloc-
ity class. In a non-equilibrium state where there is nonuniform spatial
distribution of certain macroscopic quantity, such as the average veloc-
ity or temperature, the molecules in their random thermal motion that
move from one region to another find themselves with momentum or
energy deficit or excess at the new location. The microscopic molecular
motion thus causes the macroscopic properties of the gases to change.
The results of these molecular transport processes are reflected upon
the macroscopic non-equilibrium phenomena such as viscosity µ and
heat conduction k. Molecular collisions are responsible for establish-
ing the equilibrium state where the effects of further collisions cancel
each other. To examine the phenomenon of viscosity, we can look at a
unidirectional gas flow with nonuniform velocity in only one direction
and homogeneous in the other two directions. This is normally referred
to as a simple shear flow. Let’s say, c̄x(y) be the only nonzero velocity
component in a Cartesian coordinate system (Fig. 2.4.3).

The x momentum mc′
x of a molecule with mass m is transported in

y direction at the speed of c′
y. Locally, the sample averaged momentum

transport per unit area per unit time becomes

−nm c′
xc′

y
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x

y
cx

Figure 2.4.3 Transport process.

where n is number density. The minus sign is used since a positive c′
y

would carry a momentum deficit at the new location. If one assumes
that on an average, a molecule collides with another molecule at the new
location with distance λ apart from its original location, say from y = −λ

to y = 0 as indicated in Fig. 2.4.3, and reaches equilibrium with its new
environment. The particle of mass m will change its momentum by the
amount of

m(c̄x(y = 0) − c̄x(y = −λ))

Using the Taylor’s series expansion

m(c̄x(y = 0) − c̄x(y = −λ)) = m
(

λ
d c̄x

dy
+ λ2

2
d 2c̄x

dy2 + · · ·
)

(2.4.8)
= mλ

d c̄x

dy
+ O(λ2)

The number of such collisions per unit area per unit time can be esti-
mated by using the average thermal speed and becomes nc′. Therefore
the total momentum change −nmc′

xc′
y is

−nmc′
xc′

y = βµnc′mλ
d c̄x

dy

where βµ is a constant of proportionality. For monatomic gases, βµ ≈ 0.5.

Or

−ρc′
xc′

y = βµρc′λ
d c̄x

dy

Or

µ = βµρc′λ (2.4.9)



Basic Kinetic Theory 27

Thus, the appropriate velocity scale for viscosity is related to the molec-
ular thermal speed and the length scale is the mean free path.

2.5 Position and Velocity Distribution
Functions

The velocity of a molecule changes with time and at any instance of
time molecules have different velocities. For a realistic representation
of the behavior of gas flow containing a large number of molecules,
the distribution of the molecular velocity must be examined by using
statistical descriptions. A distribution often used in fluid mechanics is
the fluid density. In the physical space, for �N number of molecules of
mass m in a volume of �V located at xi (shown in Fig. 2.5.1), the local
mass density is

ρ(xi, t) = lim
�V →0

m�N
�V

= m lim
�V →0

�N
�V

(2.5.1)

= mn(xi, t)

where �V should be large compared with the molecular spacing. n(xi, t)
represents the local number of molecules found in a unit volume of
physical space as a function of space and time. It is called the local
number density or number density. It describes the distribution of the
number of molecules in physical space and therefore is a position dis-
tribution function. Fluid density is then related to the position dis-
tribution function of the number of molecules. For a small element
dV (≡ dx1 dx2 dx3 ≡ dx dy dz) containing dN number of molecules

dN = ndV (2.5.2)

where the functional dependence has been dropped for brevity. Multi-
plying both sides by m, we get

dM = nmdV = ρdV

x1

x2
x3

dV

Figure 2.5.1 Physical space element.
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The density is also a position distribution function for mass. We can
normalize the number density by the total number of molecules in the
region of interest N . Thus, Eq. (2.5.2) becomes

dN = N
( n

N

)
dV

(2.5.3)
= N �dV

where � represents the normalized number density or a distribution
function. Therefore, �dV represents the fraction of the molecules that
can be found in the volume dV and can be interpreted as the prob-
ability that a randomly chosen molecule will reside inside the vol-
ume dV. Equation (2.5.3) can be integrated over the entire region of
interest,

N =
∫

V
N �dV (2.5.4)

Or

1 =
∫

V
�dV (2.5.5)

Therefore the function � is also a probability density. The probability
of finding a particular molecule inside volume dV is equal to the portion
of the number of molecules in the volume dV.

The molecules can also be identified by their three velocity compo-
nents instead of their three location components in the physical space.
In the velocity space, the molecule can be represented uniquely by a
point in a Cartesian space with the velocity components as the coordi-
nates. The gas in a region of interest then is represented by a cloud of
N points in the velocity space (Fig. 2.5.2).

Following the analysis described above, we can define a velocity dis-
tribution function and its normalized form. The normalized velocity
distribution can be represented by f (ci, xi, t). That is

dN = N f dc (2.5.6)

c1

c2
c3

dc

Figure 2.5.2 Velocity space element.
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where dc ≡ dc1 dc2 dc3 denotes a differential volume in the velocity
space. The normalized velocity distribution function satisfies the nor-
malization condition,

1 =
∫

Vc

f dc (2.5.7)

Therefore f dc represents the number of particles that can be found in
a velocity space volume dc, and f the probability of finding a randomly
chosen particle resides in a unit volume in the velocity space.

As was mentioned earlier, the average property of the flow can be
obtained by sample averaging the microscopic molecular quantity. Let
us begin with Eq. (2.2.7) by defining, for any molecular quantity Q,

Q̄ = 1
N

∫
QdN ′

= 1
N

∫
QN f dc (2.5.8)

=
∫

Q f dc

For example, for Q = c = c̄ + c′

c̄ = 1
N

∫
cdN ′

= 1
N

∫ ∞

−∞
cN f dc

=
∫ ∞

−∞
c f dc

where c̄ denotes the average or the mean velocity and c′ the thermal
fluctuation velocity. Therefore,

c′ =
∫ ∞

−∞
(c − c̄) f dc

= c̄ − c̄

= 0

The product of dVdc = dx1 dx2 dx3 dc1 dc2 dc3 represents a volume in
the combination of physical and velocity space. This is called phase
space. We can then define a single particle velocity distribution function
in phase space �(ci, xi, t)

dN = �dc dV (2.5.9)
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Comparing Eq. (2.5.9) with Eq. (2.5.2), Eq. (2.5.9) gives

�(ci, xi, t) = n(xi, t) f (ci, xi, t) (2.5.10)

� then represents the number of molecules in the phase space element
dVdc.

2.6 Boltzmann Equation and Maxwellian
Distribution Function

The velocity distribution function provides a statistical description of a
gas on a molecular level. For a system of N particle, the dimension of
the phase space is 6N . The complete system is then defined by points
in the 6N dimensional phase space, which is not practical in seeking its
analytical or numerical solutions. The Boltzmann equation (Boltzmann
1872) was formulated with a single particle distribution function. The
Boltzmann equation can be derived from different points of view. In the
following, we will use a procedure similar to that used in the derivation
of conservation equations at macroscales.

The Boltzmann equation is the conservative equation to describe di-
lute gases behavior, considering that molecules move and collide with
each other constantly and randomly at the microscopic level. For sim-
plicity and clarity, monatomic gases are assumed and the molecules
with velocity distribution f (c) in the range of c and c + d c are con-
sidered. With the assumption of dilute gases, Eq. (2.4.7) holds for the
distribution of molecules in the phase space. The description of the
phase space can be decoupled into physical space and velocity space.
That is, the molecule movement in the physical space and the velocity
change in the velocity space can be considered independently as shown
in Fig. 2.6.1. For an element in the phase space dVdc shown in Fig. 2.6.1,
the local rate of change of the number molecules at an instance of time
is ∫

dV

∂

∂t
(nf )dV ′dc

If the shape of the phase element does not change with time, we obtain

∂

∂t
(nf )dVdc (2.6.1)

This change can be caused by influxes of molecules through each side
of the phase space element. The net influxes of molecules through the
physical space element dV is caused by convection of molecules across
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c

F

Collision

Physical space Velocity space

ec

dc
dSc

er

dV

Convection

Force

dSr

Figure 2.6.1 Phase space element.

the surface Sr of dV. Consider class c molecules, the number density
within dV is nfdc. The net influxes can be written as

−
∫

Sr

(nf c) • (er dS ′
r )dc

where er denotes the unit normal vector of the physical space element
dSr . The surface integral can be written as a volume integral over dV
by using the Gauss theorem.

−
∫

dV
∇ • (nf c)d V ′dc

Since the phase space is decoupled into the physical and the velocity
space and the velocity of the molecules in class c does not change in the
small physical element dV, the equation becomes

−c • ∇(nf )dVdc

Since we are considering only class c molecules, the above equation
can be written as

−c •
∂

∂x
(nf )dVdc (2.6.2)

Similarly, the flux of molecule across sides of dc can be caused by
external force per unit mass F in a similar fashion to that of velocity c
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is to the molecular fluxes across side of dV. Therefore, we can also write
the net influx through the velocity space dc as

−F •
∂

∂c
(nf )dVdc (2.6.3)

The external force F is assumed constant in the velocity space and the
number density nf is assumed constant in dc in arriving at Eq. (2.6.3).
In addition to these convective effects, the local number of molecules
can also be changed by molecular collision in the velocity space. For the
number of molecules in class c as a result of collisions, this mechanism
can be written as {

∂

∂t
(nf )

}
collision

dVdc (2.6.4)

Therefore the equation for the rate of change of the number of molecules
in the phase space element dVdc = dx1 dx2 dx3 dc1 dc2 dc3 is

∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf ) =

{
∂

∂t
(nf )

}
collision

(2.6.5)

We can further evaluate the collision term by using the binary col-
lision dynamics for dilute gas described in Eq. (2.6.4), considering the
collision between a target molecule of class c with a field particle of class
c1. According to the definition of differential collision cross section, the
volume swept by particles of class c per unit time is cr σd�, and the
number of class c1 particles per volume in the physical space is nf 1dc1.
Therefore the number of collisions for the class c particles per unit time
is nf 1 cr σ d� d c1. The total number of collision for class c particles per
unit time is the product of the total number of class c target particles
nf dV dc and the number of collisions. That is

n2 f f 1cr σ d� dc1 dV dc (2.6.6)

This is the time rate at which class c particles have decreased due to
collision. The total depletion rate then is the integration over the entire
collision cross section and the class c1 particles. Or(∫ ∞

−∞

∫ 4π

0
n2 f f 1cr σ d� dc1

)
dVdc (2.6.7)

On the other hand, collisions can also bring new particles into class c.
The rate at which class c particles are replenished due to collision can be
derived by considering the existing inverse collision and the symmetry
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between the direct collision between c and c1 and the inverse collision
between c∗ and c∗

1. The replenish rate can be written as(∫ ∞

−∞

∫ 4π

0
n2 f ∗ f ∗

1 cr σ d� dc1

)
dVdc (2.6.8)

Therefore the net increase of the number of molecules of class c becomes{
∂

∂t
(nf )

}
collision

dVdc =
∫ ∞

−∞

∫ 4π

0
n2( f ∗ f ∗

1 − f f 1)cr σ d� dc1 dV dc

(2.6.9)

The equation for the change of the number of molecules of class c
becomes

∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf )

(2.6.10)

=
∫ ∞

−∞

∫ 4π

0
n2( f ∗ f ∗

1 − f f 1)cr σ d� dc1

This is the Boltzmann equation for a simple dilute gas. The Boltzmann
equation describes the rate of change, with respect to position and
time, of one-particle distribution function. The Boltzmann equation can
also be derived by using the Liouville equation, which is a continu-
ity equation for the N -particle distribution function in a 6N dimen-
sional phase space. The Liouville equation describes in a more basic
manner the mechanics of motion. Discussions of the limitation of the
Boltzmann equation can be found in Vincenti and Kruger (1965) and
Koga (1970).

The analytical solution of the Boltzmann equation can be found for
gases that are in equilibrium. Consider a gas in equilibrium where the
number of molecules in every velocity class must be constant at all
positions and time. That is{

∂

∂t
(nf )

}
collision

= 0 (2.6.11)

Equation (2.6.9) then becomes

f ∗ f ∗
1 = f f 1 (2.6.12)

Or

ln f ∗ + ln f ∗
1 = ln f + ln f 1 (2.6.13)
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This means that ln f is a collision invariant. The collision invariants
are the momentum and the kinetic energy. Therefore the general solu-
tion for ln f is

ln f = a1

(
1
2

m(c • c)
)

+ b • mc + a2 (2.6.14)

where a’s and b are constants. It can also be written as

ln f = a1
m
2

(c + b)2 + a′
2

Or

f = Aexp
[
−βm

2
(c + b)2

]
(2.6.15)

A is a constant and β is a positive number for a bounded solution of
f. Since the argument of the exponential function appears in a square
term, indicating that the probabilities are the same for its value to be
positive and negative and the average value should be zero. That is

c + b = 0 or b = −c

This suggests that c + b = c − c̄ = c′. Therefore, Eq. (2.6.15) can be
written as

f = Aexp
[
−βm

2
(c′2)

]
= Aexp

[
−βm

2

(
c′2

1 + c′2
2 + c′2

3

)]
(2.6.16)

The normalization condition (2.5.7)

1 =
∫

Vc

f dc

requires that

1 = A
∫ ∞

−∞
exp
[
−βm

2
c′2

1

]
dc′

1

∫ ∞

−∞
exp
[
−βm

2
c′2

2

]
dc′

2

×
∫ ∞

−∞
exp
[
−βm

2
c′2

3

]
dc′

3 (2.6.17)

The integration formulas for this and other similar exponential func-
tions are given in Appendix 2A. It can be shown that Eq. (2.6.17) can
be written as

1 = A

[(
2π

βm

)1/2
]3

(2.6.18)
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The constant A can then be related to β according to the following
equation,

A =
(

βm
2π

)3/2

(2.6.19)

To calculate β, one can make use of Eq. (2.2.5), which gives

|c′|2 = 3
p
ρ

= 3RT = 3kT
m

= A
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
c′2

1 + c′2
2 + c′2

3

)
× exp

[
−βm

2

(
c′2

1 + c′2
2 + c′2

3

)]
dc′

1 dc′
2 dc′

3

The equation becomes

3kT
m

= 3A
∫ ∞

−∞
c′2

1 exp
[
−βm

2

(
c′2

1

)]
d c′

1

∫ ∞

−∞
exp
[
−βm

2

(
c′2

2

)]
dc′

2

×
∫ ∞

−∞
exp
[
−βm

2

(
c′2

3

)]
dc′

3 (2.6.20)

By using the integration formulas in Appendix 2A to evaluate the inte-
grals, we get

3kT
m

= 3
(

βm
2π

)3/2
(

1
2

(
8π

(βm)3

)1/2
)(

2π

βm

)

Therefore

β = 1
kT

and A =
( m

2πkT

)3/2
(2.6.21)

Therefore the Maxwellian distribution can be obtained by combining
Eqs. (2.6.16) and (2.6.21)

f 0 =
( m

2πkT

)3/2
exp
[
− m

2kT
c′

ic
′
i

]
(2.6.22)

This is the famous Maxwellian distribution. Formal mathematical
methods can also be used to derive the Maxwellian distribution. It is
an important development in relating the microscopic molecular motion
to macroscopic, measurable quantities. Further use of the Maxwellian
distribution can be found in Chap. 4 where the macroscopic equation
of continuity, momentum conservation, and energy conservation are
derived for equilibrium and slightly non-equilibrium gases.

The Maxwellian distribution describes the probability of finding a
randomly selected particle in a unit volume element in the velocity
space for equilibrium gases. Since the distribution is isotropic, the prob-
ability of finding a particle in a range between, says c′

1 and c′
1 + d c′

1 is
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the same as those in the other two directions. Therefore, the proba-
bility or the fraction of number of particles with a thermal fluctuation
component between c′

1 and c′
1 + d c′

1 becomes

f
c′

1
0 =

( m
2πkT

)1/2
exp
[
− m

2kT
c′2

1

]
(2.6.23)

Therefore for a single component, the Maxwellian distribution has the
form of the Gauss’s error-distribution. This curve is shown in Fig. 2.6.2.
Note that the positive value of c′

1 and the negative value of c′
1 have

equal probability of occurrence. Because the Maxwellian distribution
is isotropic and has no directional preference in the velocity space,
it then becomes interesting to examine the fraction of particles with
certain velocity magnitudes between c′ and c′ + dc′ regardless of the
direction. This is equivalent to finding the fraction of particle f 0dc that
lies in a spherical shell centered at the origin of the velocity space and
with thickness dc′. For a spherical coordinate system (c′, θ , φ) is shown
in Fig. 2.6.3.

The unit volume on the shell can be written as

c′2 sin φ dφ dθ dc′

and the particle fraction becomes

f 0c′2 sin φ dφ dθ dc′ =
( m

2πkT

)3/2
c′2 exp

[
− m

2kT
c′2
]

sin φ dφ dθ dc′

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

c′1/ 2kT  m or c′/ 2kT  m

Figure 2.6.2 Distribution functions. Solid line:√
2kT/m f

c′
1

0 ; broken line:
√

2kT/m f c′
0 .
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c1

c2

c3

c′

φ

θ

Figure 2.6.3 Spherical coordi-
nates in the velocity space.

By integration over θ ∈ (0, 2π) and φε(0, π ) and using f c′
0 to represent

the speed distribution function, we get

f c′
0 = 4π

( m
2πkT

)3/2
c′2 exp

[
− m

2kT
c′2
]

(2.6.24)

This distribution is plotted in Fig. 2.6.2. The curve has a global maxi-
mum, representing the highest probability. The corresponding c′ is the
most probable molecular thermal speed c′

mp and can be obtained by
setting the derivative to zero, which gives

c′
mp =

(
2kT

m

)1/2

(2.6.25)

The average molecular thermal speed c′ can be obtained by using
Eq. (2.4.6)

c′ =
∫ ∞

0
c′ f c′

0 d c′

= 2√
π

(
2kT

m

)1/2

(2.6.26)

= 2√
π

c′
mp

The root-mean-square molecular thermal speed
√

c′2 can be obtained
in a similar manner, which gives

√
c′2 =

√
3
2

c′
mp (2.6.27)

Note that the speed of sound is given by
√

γ kT/m. For a monatomic
gas with γ = 5/3, the speed of sound is about 0.91c′

mp.
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Appendix 2A: Some Useful Integrals

In this and later on in Chap. 4, definite integrals of the distribution
function appear in various equation derivation processes. The following
gives the integrals that are useful in these cases.∫ ∞

0
exp(−a2x2) dx =

√
π

2a∫ ∞

0
x exp(−a2x2) dx = 1

2a2∫ ∞

0
x2 exp(−a2x2) dx =

√
π

4a3∫ ∞

0
x3 exp(−a2x2) dx = 1

2a4∫ ∞

0
x4 exp(−a2x2) dx = 3

√
π

8a5
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Chapter

3
Microfluid Flow Properties

3.1 Fundamental Flow Physics

For a flow of gas formed inside or around microscaled devices, the prop-
erties of the gas are expected to vary in the flow field. As in the case
of gas flows in macroscaled devices, these changes can be caused by
the distributed type of external forcing that are, for example, electrical,
magnetic, or gravitational in nature. The momentum, heat, and chem-
ical interactions between the gas and the surfaces of the microfluidic
devices that are in contact with the gas flows can also have significant
influences on the properties of the gas flow. Due to the small molecular
weight of gases, the gravitational effects can be small in micro gas flows
of single species, similar to what has generally been observed in macro
gas flows. The effects of heat transfer through either contact surfaces or
dissipation, on the other hand, are expected to be of equal if not greater
importance in microflows. However, the difference in the length scale of
the devices that the gas flows are associated with brings in additional
concerns.

An intrinsic length scale in dilute gases is the mean free path, which
measures the average distance the gas molecules travel between col-
lisions. The ratio of the molecular mean free path of gas λ to a flow
characteristic length scale L is defined as the Knudsen number Kn.

Kn = λ

L
(3.1.1)

For gas flows found in conventional macroscale devices at atmospheric
conditions, the flow characteristic length scale can be orders of magni-
tude larger than the molecular mean free path and the Knudsen num-
ber is essentially zero. For example, the mean free path of air in one
standard atmospheric pressure is in the order of 10−8 m. The average
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diameter of the holes in the straight section of a saxophone is about
0.02 m and the opening at the curved end is about 0.1 m. As the air is
pushed through the saxophone when it is played, the Knudsen number
of the airflow is in the order of 10−6 to 10−7. This is the case in more than
just wind instruments. In fact, it is normally found in most current engi-
neering systems that operate on gases, where the physical dimensions
of the devices can be used as the flow characteristic length scales.

For microscaled devices that also operate with gases in atmospheric
conditions, the scaling relation can be quite different. For a microchan-
nel that is 1-µm deep and 1-µm wide, the Knudsen number based
on the cross-sectional dimension is then 10−2, which is four to five
orders of magnitude larger than that of the airflow in the saxophone,
a macroscale device. The Knudsen numbers of micro gas flows are sig-
nificantly larger than that in the macroscaled devices. Since the mean
free path varies inversely with gas density, the Knudsen number can be
quite large for microfluidic devices that operate in low-pressure or low-
density environment. For microflows where there are localized regions
of large gradients of flow property, the device dimension cannot be used
as the length scale for the entire flow field and different length scales
may be required to characterize the flow in these regions. In this case,
the magnitude of the Knudsen number can be even higher when a local
length scale of the flow is used, instead of the global length scale. There-
fore, for gas flows in microscaled devices, the Knudsen number can be
close to zero or large. Since new applications of MEMS technologies are
developed perhaps daily, it is difficult to estimate the upper bound.

At zero or extremely small Knudsen number, the physical domain
is large compared to the mean free path. For dilute gases, there are
then a large number of molecules and, for a time period that is large
compared to the mean collision time (about 10−10 s for air in standard
atmospheric condition), a large number of collisions occur among the
molecules. With sufficiently large number of molecules the statistical
variation of the number of molecules in the volume can be neglected.
Without external forcing, there is then no gradient in the macroscopic
flow properties with both time and space due to the large number of
molecular collisions. The gas is in an equilibrium state. The fraction of
molecules in a velocity class remains unchanged with time, even though
the velocity of the individual molecule varies with collisions. The veloc-
ity distribution function for equilibrium gases is represented by the
Maxwellian distribution function described in Chap. 2. A local equilib-
rium can be established when the gradient of the macroscopic prop-
erties is infinitesimal such that, with sufficiently high collision rate,
the velocity distribution of the volume of gas can adjust to the local
equilibrium state. The gas flows with such small Knudsen numbers
can be regarded as a continuous distribution of matter where the local
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macroscopic properties can be determined by the sample average values
of the appropriate molecular quantities, such as mass, velocity, and en-
ergy. Since the statistical fluctuations can be neglected, such averages
are defined. The applications of the conservation of mass, momentum,
and energy further provide a set of differential equations that regulate
the changes of these quantities. By assuming linear relationship be-
tween stress and strain, and between heat transfer and temperature,
the familiar Navier-Stokes equations can then be obtained.

For flow with high Knudsen number, the number of molecules in a sig-
nificant volume of gas decreases and there could be insufficient number
of molecular collisions to establish an equilibrium state. The velocity
distribution function will deviate away from the Maxwellian distribu-
tion and is nonisotropic. The properties of the individual molecule then
become increasingly prominent in the overall behavior of the gas as
the Knudsen number increases. The implication of the larger Knudsen
number is that the particulate nature of the gases needs to be included
in the study. The continuum approximation used in the small Knudsen
number flows becomes invalid. At the extreme end of the Knudsen num-
ber spectrum is when its value approaches infinity where the mean free
path is so large or the dimension of the device is so small that inter-
molecular collision is not likely to occur in the device. This is called
collisionless or free molecule flows.

Gas flows with similarly wide range of Knudsen number can be found
in the field of rarefied gas dynamics. In fact, in rarefied gas dynamics,
the Knudsen number is normally used as a measure of the degree of
rarefaction. That is, the larger the value of the Knudsen number, the
larger the degree of rarefaction. Rarefied gas dynamics has been studied
in several different disciplines, such as the aerospace sciences. At high
altitude, the air density is low and an adequate account of the rarefied
gas effects is important. For example, for high-speed reentry vehicles,
accurate predictions of the dynamic and thermodynamic loadings on the
vehicle are essential to the design of the thermal protection systems and
the safe operation of the vehicle.

If the dynamic similarity associated with the Knudsen number exists
between the rarefied gas flow and the gas flow in microdevices, one can
apply the findings from the rigorous rarefied gas dynamics studies to
the micro gas flows. Figure 3.1.1 shows a classical description of how the
gas-flow behavior should be studied from gas kinetic point of view (Bird
1994). The dilute gas assumption is assumed valid for δ/d > 7, which
is to the left of the vertical line of δ/d = 7. In the dilute gas region,
where the Boltzmann equation is valid, the continuum approach is as-
sumed to hold until its breakdown at Kn = 0.1. For gas with Kn > 0.1, it
is then necessary to adopt microscopic approaches, which recognize the
molecular nature of gases. Statistical fluctuations become significant in
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Figure 3.1.1 Limits of gas flow modeling approximations. (Bird, 1994)

obtaining macroscopic properties of gas by sample averaging when the
number of molecules in a typical flow volume becomes small. The limit
given here as L, a local characteristic length scale, is about ten times
as large as the side of a cubic element that contain 1000 molecules,
which correspond to statistical fluctuations with a standard deviation
of approximately three percent. Note that ρ0 and n0 represent the mass
density and the number density under standard conditions of 1-atm
pressure and 0◦C temperature. Typically, microflows have a character-
istic length scale between 100 and 1 µm (10−4 and 10−6 m). It can
be seen from Fig. 3.1 that, depending on the degree of rarefaction of
the gases, the micro gas flows can be modeled as either a continuous
medium or a plethora of discrete molecules in the dilute gas regime.
The mathematical formulations of these two modeling approaches are
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different and, as can be expected, so are the processes to find the so-
lutions to the resulting model equations. At the microscopic level, the
basic mathematical model is the Boltzmann equation discussed ear-
lier. The Navier-Stokes equations provide the mathematical model for
the micro gas flows in the continuum regime. It should be noted that,
in the dense gas regime to the right of the vertical line of δ/d = 7,
the continuum approach is valid for L in the 100-nm (10−9-m) range.
A significant level of statistical fluctuation of the macroscopic proper-
ties, however, may occur. The theory of Brownian motion was mentioned
by Bird (1994) as one example of such phenomena. This is related to
the fluid dynamics at the nanometer (10−9-m) scale.

3.2 Surface Phenomena

The interface boundary conditions of solid surfaces have long been
found to affect the overall behavior of gas flows. The no-slip bound-
ary condition on the wall is recognized as a source of vorticity to the
flow. In return, the surface experiences a skin friction force that tends
to drag it along with the average flow. The condition also demands a
conversion of gas energy from kinetic to thermal energies, resulting in
problems like aerodynamic heating for high-speed vehicles. For micro
gas flows, the Knudsen number, and the departure from equilibrium,
is large. The no-slip boundary condition, which results from an equilib-
rium assumption between the surface and the rebounding molecules,
becomes questionable. For instance, the rebounding molecules might
not have all assumed the surface velocity, thus creating a slippage over
the surface. The magnitude of the gas velocity slip tangential to the
surface can be found to depend on the gradients of the velocity and
the temperature on the wall. The fact that the macroscopic gas veloc-
ity is not the same as the surface speed at high Knudsen number has
resulted in significant difference in the micro flow quantities, such as
the pressure gradients required to drive a micro flow and the mass flow
rates. Due to the small physical scale, the surface heat transfer problem
is important to devices that operate at high speeds, such as the read
head of the computer hard-disk drive, or that with high external energy
sources from, for example, electric fields.

Gas–solid interactions are microscopic in nature. Experiments are of-
ten hindered by difficulty in securing the necessary data from various
different combinations of surfaces and gases. Mathematical models de-
veloped were often correlated using macroscopic data of limited types of
surface materials and gases. Recent advances in the use of the ab initio
simulations techniques, such as the direct simulation Monte Carlo
method and the molecular dynamics method, have greatly helped the
efforts. Multiscale, multiphysics studies of the surface phenomena are
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providing very detailed information on the interactions at the gas–solid
interface. The advanced three-dimensional molecular beam experimen-
tal methods are able to provide data to validate mathematical models.
This capability is of particular importance for micro gas sensors and
microprocessing, such as thin film vapor deposition. The gas–solid in-
terface interactions will be discussed in detail in Chap. 7.

3.3 Basic Modeling Approaches

Beyond the continuum approach that is valid only at small Knudsen
number, the gas flow is governed by the Boltzmann equation discussed
in Chap. 2. The equation regulates the molecule distribution f in the
phase space. As was shown previously, the macroscopic properties of
the micro gas flow can be obtained by sample averaging or taking a
moment of the distribution function. That is

Q =
∫

Qf dc (3.3.1)

However, the Boltzmann equation is mathematically difficult to solve
analytically. Various approximated forms of the Boltzmann equation
and its solution methods have been proposed. A method proposed
independently by Chapman and Enskog use the Knudsen number as a
parameter to seek distribution functions that depart slightly from the
equilibrium distribution. The magnitude of the Knudsen number is as-
sumed to be small. In fact, the solutions of the Boltzmann equation are
sought in the form of

f = f 0(1 + Knφ1 + Kn2
φ2 + · · ·) (3.3.2)

The series expansion method is an important development in gas
kinetic theory. At zero Knudsen number, the distribution function is
the Maxwellian distribution f 0. As the Knudsen number increases,
higher order terms need to be retained. It was found that at equilibrium,
the sample average properties of the gases could be described by the
Euler equation, with no momentum and energy transport terms. The
first-order expansion in Kn showed that the momentum and the heat
transport terms are linearly related to the rate of strain and the temper-
ature gradient, producing the same Navier-Stokes equations that can
also be derived from the continuum assumption. The Navier-Stokes
equations thus constitute appropriate mathematical model equations
for gas flows at small Knudsen number. This will be shown in Chap. 4.
The Chapman-Enskog expansion essentially validated the linear
closure model used in the continuum approach, which was proposed
as a phenomenological model. The second-order expansion produces
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nonlinear as well as high-order derivative terms of the flow properties
for the transport of momentum and energy. These belong to the various
forms of the Burnett equations.

A numerical simulation called the direct simulation Monte Carlo
method has generally been used to simulate gas flow. The method did
not solve directly the Boltzmann equation. DSMC, however, has been
shown to provide solutions to the Boltzmann equation. Computational
molecules are used in a DSMC simulation, each representing a large
number of real molecules. The movements of the molecules are de-
coupled from the collision process. Representative collisions are then
performed. The selection of the collision pairs and the distribution of
the post collision states are random. Due the statistical nature of the
method, a large number of molecules are needed to reduce the statistical
scatter. For micro gas flow with a low average flow speed, the thermal
fluctuation dominates the average flow and the number of molecules
needed for a DSMC simulation becomes impractical. The information
preservation (IP) method has been proposed for the simulation of low-
speed flows. The statistical error of the IP method is small and a sta-
tionary solution of low-speed flow can be obtained more efficiently than
that using the traditional DSMC method. In Chap. 5, both DSMC and
IP will be described.
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Chapter

4
Moment Method:

Navier-Stokes and
Burnett Equations

4.1 Introduction

The Boltzmann equation can be used to describe the micro gas flow
behavior at the microscopic level. The equation describes the rate of
change of the number of particles due to convection in the physical
and velocity space, and due to molecular collisions. In the equation,
nf, the total number of particles of a given velocity class per unit vol-
ume, is the only dependent variable. The independent variables are
the time, the phase space variables, including the three physical co-
ordinates and the three velocity components. For a one-dimensional
problem in the physical space, there are three independent variables.
The number of the independent variables becomes five and seven in
the two-dimensional and three-dimensional problems, respectively. The
mathematical difficulty associated with the dimensions of the problem
is further compounded by the integral form of the nonlinear collision
term. As a result, it is not yet possible to find analytical solutions to
the Boltzmann equation for realistic, complex flow problems such as
those in microdevices. Direct numerical solutions would require dis-
cretization in the seven independent variables. The mathematical and
the numerical efforts will be quite involved.

On the other hand, it is possible to develop equations that describe
the macroscopic quantities of microflows by using the microscopic
Boltzmann equation. For a certain limited class of microflows at small
Knudsen number, it will be shown that the approximate forms of these
moment equations bear much resemblance to the equations used in the
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continuum fluid mechanics, i.e., the Euler and the Navier-Stokes equa-
tions. In this chapter we will discuss a reduced set of equations that are
valid in the limit of zero or small Knudsen number. For micro gas flows
that operate in the continuum and transition regimes, these equations
can be used to model the gas flow behavior.

4.2 Moment Equations

The Boltzmann equation can be written as

∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf ) =

{
∂

∂t
(nf )

}
collision

(4.2.1)

where the collision term can be written for binary collisions,

∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf ) =

∫ ∞

−∞

∫ 4π

0
n2( f ∗ f ∗

1 − f f 1)cr σd�dc1

(4.2.2)

The average property of the flow can be obtained by sample averaging
the microscopic molecular quantity. Let us begin by defining, for any
molecular quantity Q,

Q = 1
N

∫
QdN ′

= 1
N

∫
QNf dc (4.2.3)

=
∫

Qf dc

For example, for Q = c = c̄ + c′,

c̄ = 1
N

∫
cdN ′

= 1
N

∫ ∞

−∞
cNf dc (4.2.4)

=
∫ ∞

−∞
cf dc

where c̄ denotes the average or the mean velocity and c′ the thermal
fluctuation velocity. Therefore

c′ =
∫ ∞

−∞
(c − c̄) f dc

= c̄ − c̄ (4.2.5)
= 0
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Multiplying the Boltzmann by any molecular property Q, we get

Q
∂

∂t
(nf ) + Qc •

∂

∂x
(nf ) + QF •

∂

∂c
(nf )

=
∫ ∞

−∞

∫ 4π

0
Qn2( f ∗ f ∗

1 − f f 1)cr σd�dc1

To use the definition of Q, we integrate the above equation over the
velocity space, which becomes∫ ∞

−∞
Q

∂

∂t
(nf )dc +

∫ ∞

−∞
Qc •

∂

∂x
(nf )dc +

∫ ∞

−∞
QF •

∂

∂c
(nf )dc

=
∫ ∞

−∞

∫ ∞

−∞

∫ 4π

0
Qn2( f ∗ f ∗

1 − f f 1)cr σd�dc1dc

The terms on the left hand side of the equation can be further reduced
as is shown in the following equations.∫ ∞

−∞
Q

∂

∂t
(nf )dc = ∂

∂t

∫ ∞

−∞
Qnf dc

= ∂

∂t
(nQ)

∫ ∞

−∞
Qc •

∂

∂x
(nf )dc = ∂

∂x

[∫ ∞

−∞
Qc(nf )

]
dc

= ∂

∂x
(nQc)

∫ ∞

−∞
QF •

∂

∂c
(nf )dc =

∫ ∞

−∞
F •

∂

∂c
(Qnf )d c −

∫ ∞

−∞
nF •

∂

∂c
(Q) f dc

= −nF •
∂Q
∂c

Therefore, the moment equations or equations of transfer can now be
written as

∂

∂t
(nQ) + ∂

∂x
(nQc) − nF •

∂Q
∂c

= �[Q] (4.2.6)

where �[Q] represents the collision integral

�[Q] =
∫ ∞

−∞

∫ ∞

−∞

∫ 4π

0
Qn2( f ∗ f ∗

1 − f f 1)cr σd�dc1dc
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For a binary elastic collision, the mass, momentum, and the kinetic
energy of the particle remain unchanged. Now let Q be the collision
invariants, m, mc, and 1

2 m |c|2, respectively. Say, Q = m

nQ = nm = ρ

nQc = nmc̄ = ρc̄

nF •
∂Q
∂c

= 0

Equation (4.2.6) becomes

∂

∂t
(ρ) + ∂

∂x
(ρc̄) = 0

Or in index notation

∂

∂t
(ρ) + ∂

∂xi
(ρc̄i) = 0 (4.2.7)

where the summation convention has been used.

For Q = mc, the molecular momentum

nQ = ρc̄

nQc = ρcc

nF •
∂(mc)

∂c
= ρF

Equation (4.2.6) becomes

∂

∂t
(ρc̄) + ∂

∂x
(ρcc) − ρF = 0 (4.2.8)

where the momentum flux tensor can be written as the sum of the
contribution from the average motion and that from the thermal fluc-
tuation,

ρcc = ρ(c̄ + c′)(c̄ + c′)

= ρc̄c̄ + ρc′c′

The pressure tensor ρc′c′ or ρc′
ic

′
j can be written in terms of the viscous

stress tensor τi j . That is,

− ρc′
ic

′
j = τi j − pδi j , p = 1

3
ρc′

kc′
k (4.2.9)
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Substituting Eq. (4.2.9) into Eq. (4.2.8), we obtain

∂

∂t
(ρc̄i) + ∂

∂xj
(ρc̄i c̄j ) = ρFi − ∂

∂xj
(ρc′

ic
′
j )

(4.2.10)
= ρFi − ∂p

∂xi
+ ∂τi j

∂xj

Similarly, for Q = 1
2 m |c|2, the translational molecular kinetic energy

nQ = nm
2

|c|2

= ρ

2

∫ ∞

−∞
[(c̄ • c̄) + 2(c̄ • c′) + (c′ • c′)] f dc (4.2.11)

= ρ

2

(
c̄2 + c′2) = ρ

2

(
c̄2

k + c′2
k

)
where

c̄2
k = c̄k c̄k and c′2

k = c′
kc′

k

The energy flux becomes

nQc = nm
2

|c|2 c

= ρ

2

∫ ∞

−∞
[(c̄ • c̄) + 2(c̄ • c′) + (c′ • c′)](c̄ + c′) f dc (4.2.12)

= ρ

2

(
c̄2

kc̄i + c̄ic′2
k + 2c̄j c′

ic
′
j + c′

ic
′
j c

′
j

)
The change of kinetic energy due to work done by external forcing is

nF •
∂Q
∂c

= ρ

2
F •

∂(c • c)
∂c

= ρF • c̄

= ρFj c̄j

Therefore the moment equation for Q = 1
2 m |c|2 becomes

∂

∂t

[ρ
2

(
c̄2

k + c′2
k

)]+ ∂

∂xi

[ρ
2

(
c̄2

kc̄i + c̄ic′2
k + 2c̄j c′

ic
′
j + c′

ic
′
j c

′
j

)]− ρFic̄i = 0

(4.2.13)
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The equation can be further reduced by subtracting from it the equa-
tion for the average kinetic energy ρ

2 c̄2
i , which can be obtained by mul-

tiplying Eq. (4.2.10) by c̄i. Eq. (4.2.13) then becomes

∂

∂t

(ρ

2
c′2

k

)
+ ∂

∂xi

(ρ

2
c̄ic′2

k

)
= τi j

∂ c̄i

∂xj
− p

∂ c̄j

∂xj
− qi,i (4.2.14)

where the heat transfer flux vector is defined as

qi = ρ

2
c′

ic
′
j c

′
j

The moment Eq. (4.2.7), (4.2.10), and (4.2.14) describe the changes of the
macroscopic properties of the microflow. They are the density, the aver-
age velocity, and the kinetic energy. Their derivations are based on first
principles and they are exact conservation laws for these quantities.
At this point, the forms of the viscous stress tensor ρc′

ic
′
j and the heat

transfer flux vector qi terms are not known. In order to form a closed
set of equations, these higher order moments should be related to the
lower order moments in the equation. This is then a closure problem.
The relations between the viscous stress tensor and the heat flux vec-
tor with the lower-order moments are then called constitutive relations.
When these closure relations are derived by physical or phenomenolog-
ical approximations, the resulting closed set of conservation equations
can then be used for mathematical modeling of the microfluid flows.

We can consider the gas in local equilibrium where the velocity dis-
tribution function is isotropic. The local equilibrium situation requires
that the local relaxation time for translational nonequilibrium is neg-
ligible compared with the characteristic time of the flow. As described
in Chap. 2, the velocity distribution function in equilibrium gas is the
Maxwellian distribution,

f 0 =
( m

2πkT

)3/2
exp
[
− m

2kT
c′

kc′
k

]
Let’s look at the shearing components (i �= j ) of the viscous stress
tensors first. Say, i = s, j = t, where s and t denote two different index
values.

−ρc′
sc′

t = τst

= −ρ

∫ ∞

−∞
c′

sc
′
t f dc

= −ρ
( m

2πkT

)3/2
∫ ∞

−∞
c′

s exp
[
− m

2kT
c′

sc
′
s

]
dc′

s

∫ ∞

−∞
c′

t

× exp
[
− m

2kT
c′

tc
′
t

]
dc′

t

∫ ∞

−∞
exp
[
− m

2kT
c′

uc′
u

]
dcu

= 0
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since the first and the second integrals are zero. Note that s �= t �= u.
That is, the three symbols denote different values among 1, 2, and 3. In
locally equilibrium gases, the shearing viscous stresses are then zero.
For the normal stresses, i.e., i = j = s,

τss = −ρc′
sc′

s + p

= −ρ

∫ ∞

−∞
c′

sc
′
s f dc + p

= −ρ
( m

2πkT

)3/2
∫ ∞

−∞
c′2

s exp
[
− m

2kT
c′

sc
′
s

]
dc′

s

×
∫ ∞

−∞
exp
[
− m

2kT
c′

tc
′
t

]
dc′

t

∫ ∞

−∞
exp
[
− m

2kT
c′

uc′
u

]
dcu + p

where s �= t �= u. Or

τss = −ρ
( m

2πkT

)3/2
[

π1/2

2(m/2kT )3/2

] [
π1/2

(m/2kT )1/2

] [
π1/2

(m/2kT )1/2

]
+ p

= 0

Therefore, there is no viscous stresses in equilibrium gases. For the
heat flux term, say for i = s and s �= t �= u,

qs = ρ

2

∫ ∞

−∞
c′

sc
′
j c

′
j f dc

= ρ

2

( m
2πkT

)3/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
c′3

s exp
[
− m

2kT
c′

sc
′
s

]
dc′

s

×
∫ ∞

−∞
exp
[
− m

2kT
c′

tc
′
t

]
dc′

t

×
∫ ∞

−∞
exp
[
− m

2kT
c′

uc′
u

]
dc′

u

+2
∫ ∞

−∞
c′

s exp
[
− m

2kT
c′

sc
′
s

]
dc′

s

×
∫ ∞

−∞
c′

t exp
[
− m

2kT
c′

tc
′
t

]
dc′

t

×
∫ ∞

−∞
exp
[
− m

2kT
c′

uc′
u

]
dc′

u

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0

since the leading integrals in each of the two terms inside the bracket
are zero. Therefore for locally equilibrium gas flows, the viscous stress
tensor and the heat flux vector do not appear in the moment equations.
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The moment equations then form a closed set of equations and are
equivalent to that of the Euler equations.

4.3 The Chapman-Enskog Expansion

For nonequilibrium gas flows, Chapman and Enskog independently pro-
posed solution methods for the Boltzmann equation. The Chapman-
Enskog method uses a power series expansion of the distribution func-
tion from the equilibrium state. Solutions of the Boltzmann equation
in the various order of the expansion parameter can then be obtained.
A summary of the historical development of the Chapman-Enskog
method can be found in Chapman and Cowling (1970).

We begin with the nondimensionalized form of the Boltzmann equa-
tion

ξ

[
∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf )

]
(4.3.1)

=
∫ ∞

−∞

∫ 4π

0
n2( f ∗ f ∗

1 − f f 1)cr σd�dc1

where cr , L, L/cr , c−3
r , nr , and νr /nr have been used to nondimensional-

ize the velocity, length, average flow time, f, n, and the collision volume
terms. Also,

ξ = (cr /νr )
L

If the thermal speed
√

c′
kc′

k is used as the reference velocity, ξ becomes
the Knudsen number. As was discussed earlier, the Knudsen number
can be used as a measure for the level of departure from equilibrium
state. For often seen microflows in the continuum and in the transi-
tional regimes, the flows are not highly nonequilibrium and the Knud-
sen number is small. For such small Knudsen numbers, the form of
Eq. (4.3.1) warrants a perturbation approach where the solutions are
sought in the various order of the small parameter, in this case, the
Knudsen number. Note that, for brevity, we have used in Eq. (4.3.1) the
same notations as its dimensional counterpart, with the understanding
that the quantities in Eq. (4.3.1) are nondimensional.

For small values of ξ , or small departure from equilibrium, the
Chapman-Enskog method assumes a power series expansion of the dis-
tribution function f using ξ .

f = f 0(1 + ξφ1 + ξ2φ2 + · · ·) = f 0(1 + �1 + �2 + · · ·) (4.3.2)
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Note that in the limit of near equilibrium (ξ → 0), f → f 0 and the
Maxwellian distribution function is recovered. As was shown in the
previous section, for equilibrium gases, the viscous stress tensor and
the heat flux vector assume the value of zero and the moment equa-
tions are equivalent to the Euler equations. The first-order approxi-
mation of the Chapman-Enskog expansion of the Boltzmann equation
will result in a viscous tensor that is related to the rate of strain of
the average flow and a heat flux vector that is related to the tem-
perature gradient. Therefore, the first-order Chapman-Enskog expan-
sion of the Boltzmann equation produces an equivalent of the Navier-
Stokes equations. The second-order expansion of Chapman-Enskog of
the Boltzmann equation will result in, when used with the moment
equations, the so call Burnett equations. The viscous stress tensor
and the heat flux vector in the Burnett equations contain nonlinear
function of the mean flow gradients. Moment equations with higher-
order Chapmann-Enskog expansion are called super Burnett equations
(Shavaliev 1978). These equations are mathematically complex and are
rarely used.

The process of the Chapman-Enskog expansion of the original
Boltzmann equation (Chapman and Cowling 1970) is rather involved
and will not be shown here. Instead, in the following, we will demon-
strate how the Chapman-Enskog expansion proceeds by using a mod-
eled Boltzmann equation. The model equation, known as the Krook
equation, uses the Bhatnagar, Gross, and Krook (BGK) approximation
model for the collision term in the Boltzmann equation. The resulting
Krook equation is physically sound. The Chapman-Enskog solution of
the Krook equation is relatively more straightforward than that for the
Boltzmann equation. It will be shown that the first-order Chpaman-
Enskog expansion results in the Navier-Stokes equations. The conven-
tional Burnett equations will then be introduced. The results of appli-
cation of the Burnett equations and the Navier-Stokes equations are
described in Sec. 4.5, and Chap. 9.

4.3.1 The Krook equation

The evaluation of the nonlinear collision integral term poses a great
difficulty to finding a solution of the Boltzmann equation. A simplified
model proposed by Bhatnagar, Gross, and Krook (1954) BGK for this
term greatly simplifies the equation. BGK model approximates the col-
lision integral in the following manner

{
∂

∂t
(nf )

}
collision

= nν( f 0 − f )
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and the resulting Boltzmann equation, or the Krook equation, becomes

∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf ) = nν( f 0 − f ) (4.3.3)

The nondimensionalized form can be written as

ξ

[
∂

∂t
(nf ) + c •

∂

∂x
(nf ) + F •

∂

∂c
(nf )

]
= nν( f 0 − f )

Again, we have continued to use the notations in the nondimension-
alized form as the corresponding quantities in the dimensional form
with an understanding that they are now representing dimensionless
quantities. Using the Chapman-Enskog expansion and retaining the
first-order expansion in ξ from both sides of the equation, we obtain

∂

∂t
(nf 0) + ci

∂

∂xi
(nf 0) + Fi

∂

∂ci
(nf 0) = −nνφ1 f 0

The first-order expansion function φ1 can then be written as

φ1 = − 1
nν f 0

⎡
⎢⎢⎣ ∂

∂t
(nf 0)︸ ︷︷ ︸

A

+ ci
∂

∂xi
(nf 0)︸ ︷︷ ︸

B

+ Fi
∂

∂ci
(nf 0)︸ ︷︷ ︸

C

⎤
⎥⎥⎦ (4.3.4)

which can be explicitly, though not straightforwardly, determined. In
fact, it can be shown that successive higher order expansion function
φm+1 can be related to the next lower order function φm, i.e.,

φm+1 = − 1
nν f 0

[
∂

∂t
(nf m) + ci

∂

∂xi
(nf m) + Fi

∂

∂ci
(nf m)

]
(4.3.5)

To proceed with the first-order solution to find φ1, we note first that the
nondimensional Maxwellian distribution f 0 can be written as

f 0 =
(

1
2πT

)3/2

exp
[
−c′

kc′
k

2T

]

where the temperature T has been normalized by mc2
r

k . Since the
Maxwellian distribution function depends on c and T, which are func-
tions of xi and t, the differential terms in Eq. (4.3.4) need to be ex-
panded using the chain rule. For convenience, the three terms in the
square bracket have been designated as terms A, B, and C in Eq. (4.3.4).
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The nondimensional form of the moment equations for equilibrium
gases will be used in the following derivation and can be written as

∂

∂t
(n) + ∂

∂xi
(nc̄i) = 0 (4.3.6)

∂

∂t
(c̄i) + c̄i

∂

∂xj
(c̄j ) = Fi − 1

n
∂p
∂xi

+ 1
n

∂τi j

∂xj
(4.3.7)

∂

∂t
(T ) + c̄i

∂

∂xi
(T ) = 2

3n
τi j

∂ c̄i

∂xj
− 2

3
p
n

∂ c̄j

∂xj
− 2

3n
qi,i (4.3.8)

since 1
2 c′2

i = 3
2

k
m T . The terms in A in Eq. (4.3.4) can be grouped in the

following manner:

∂

∂t
(nf 0) =

⎛
⎜⎜⎜⎝ ∂

∂n︸︷︷︸
A1

∂n
∂t︸︷︷︸
A2

+ ∂

∂ c̄j︸︷︷︸
A3

∂ c̄j

∂t︸︷︷︸
A4

+ ∂

∂T︸︷︷︸
A5

∂T
∂t︸︷︷︸
A6

⎞
⎟⎟⎟⎠nf 0

and the A1 to A6 terms can be evaluated by using f 0 and (4.3.6–8).

A1 :
∂

∂n
(nf 0) = f 0

A2 :
∂n
∂t

= −c̄k
∂n
∂xk

− n
∂ c̄k

∂xk

A3 :
∂

∂ c̄j
(nf 0) = ∂

∂ c̄j

{
n
(

1
2πT

)3/2

exp
[
− (|ck − c̄k|)2

2T

]}

= n

{(
1

2πT

)3/2

exp
[
− (|ck − c̄k|)2

2T

]
c′

j

T

}

= nf 0
c′

j

T

A4 :
∂ c̄j

∂t
= −c̄k

∂ c̄j

∂xk
− 1

n
∂p
∂xj

+ 1
n

∂τ j k

∂xk
+ Fj

A5 :
∂

∂T
(nf 0) = ∂

∂T

{
n
(

1
2πT

)3/2

exp
[
−c′

kc′
k

2T

]}

= n
(

−3
2

)
T −1 f 0 + n

(
−c′

kc′
k

2

)(
− 1

T 2

)
f 0

= nf 0

(
c′

kc′
k

2T 2 − 3
2T

)

A6 :
∂T
∂t

= −c̄k
∂

∂xk
(T ) + 2

3n
τkl

∂ c̄k

∂xl
− 2

3
p
n

∂ c̄k

∂xk
− 2

3n
qk,k
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Similarly, the B term can be written as

c̄i
∂

∂xi
(nf 0) = c̄i

⎛
⎜⎜⎜⎝ ∂

∂n︸︷︷︸
A1

∂n
∂xi

+ ∂

∂ c̄j︸︷︷︸
A3

∂ c̄j

∂xi
+ ∂

∂T︸︷︷︸
A5

∂T
∂xi

⎞
⎟⎟⎟⎠nf 0

Terms in the square bracket that are the same terms as those that
appear in group A are marked as such. By using the relation derived in
A, the term C becomes

Fi
∂

∂ci
(nf 0) = −Fi f 0

c′
i

T

By substituting the terms A, B, and C into Eq. (4.3.4), we can find the
first-order expansion function

φ1 = −1
ν

[
c′

i

(
c′

kc′
k

2T
− 5

2

)
∂(ln T )

∂xi
+ 1

T

(
c′

ic
′
j − 1

3
c′

kc′
kδi j

)
∂ c̄j

∂xi

]
(4.3.9)

Or

�1 = ξφ1 = −ξ

ν

[
c′

i

(
c′

kc′
k

2T
− 5

2

)
∂(ln T )

∂xi
+ 1

T

(
c′

ic
′
j − 1

3
c′

kc′
kδi j

)
∂ c̄j

∂xi

]
(4.3.10)

Therefore the first-order Chapman-Enskog solution of the Krook equa-
tion becomes

f = f 0(1 + ξφ1)

= f 0

{
1 − ξ

ν

[
c′

i

(
c′

kc′
k

2T
− 5

2

)
∂(ln T )

∂xi
+ 1

T

(
c′

ic
′
j − 1

3
c′

kc′
kδi j

)
∂ c̄j

∂xi

]}
(4.3.11)

Note that the shear stress tensor and the heat flux vector are of order
ξ and therefore do not contribute to the φ1 function.

4.3.2 The Boltzmann equation

For comparison, a rigorous solution of the first-order Chapman-Enskog
expansion of the original form of the Boltzmann equation can be shown
to result in a distribution function

f = f 0(1 + ξφ1) = f 0

{
1 − ξ

n

[
A(|ĉ′|, T )ĉ′

i

√
2T

∂(ln T )
∂xi

+ B(|ĉ′|, T )
(

ĉ′
i ĉ′

j − 1
3

ĉ′
kĉ′

kδi j

)
∂ c̄j

∂xi

]}
(4.3.12)
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where ĉ′ = c′/
√

2T . It can be seen that functional form of the first-
order velocity distribution for the Boltzmann equation is similar to that
for the Krook equation shown above. A(|ĉ′|, T ) and B(|ĉ′|, T ) are deter-
mined by integral equations with closed-form solutions that exist only
for Maxwellian molecules. Burnett (1935) introduced a series solution
for A(|ĉ′|, T ) and B(|ĉ′|, T ) by using the Sonine polynomials. The solu-
tion process is mathematically involved. Interested readers are referred
to Vincenti and Kruger (1965) for the derivation.

Second-order expansions of the Chapman-Enskog method, or

f = f 0(1 + ξφ1 + ξ2φ2) (4.3.13)

of the Boltzmann equation was carried out by Burnett (1935). Again,
the expansion process is complex and beyond the scope of this writing.
In the following, we will examine the constitutive relations for ρc′

ic
′
j

and qi,i that can be derived from Eq. (4.3.11) and obtain a closed set of
conservation equations for microfluid flows. The Burnett equations will
then be introduced.

4.4 Closure Models

We will frist examine the closure model for the viscous tensor. Nondi-
mensionally, it can be written as

τi j = −nc′
ic

′
j + pδi j

4.4.1 First-order modeling

An expression for the pressure tensor in terms of the sample averaging
and the distribution function obtained with the Chapman-Enskog ex-
pansion of order ξ can be written as τ

(1)
i j , the contribution to τi j from

the first-order terms of ξ . Likewise, the terms that are in the order
of ξ2 are represented by τ

(2)
i j , which will be described later. τ

(1)
i j can then

be written as

τ
(1)
i j = −n

∫ ∞

−∞
c′

ic
′
j f dc + pδi j

= −n
∫ ∞

−∞
c′

ic
′
j f 0(1 + ξφ1)dc + pδi j

= −n
∫ ∞

−∞
c′

ic
′
j f 0dc + pδi j + n

∫ ∞

−∞
c′

ic
′
j f 0

×
{

ξ

ν

[
c′

s

(
c′

kc′
k

2T
− 5

2

)
∂(ln T )

∂xs
+ 1

T

(
c′

sc
′
t − 1

3
c′

uc′
uδst

)
∂ c̄t

∂xs

]}
dc
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= nξ

ν

∫ ∞

−∞
c′

ic
′
j f 0c′

s

(
c′

kc′
k

2T
− 5

2

)
∂(ln T )

∂xs
dc (4.4.1)

+ nξ

ν

∫ ∞

−∞
c′

sc
′
t f 0

1
T

(
c′

sc
′
t − 1

3
c′

uc′
uδst

)
∂ c̄t

∂xs
dc

= nξ

νT

∫ ∞

−∞
c′

ic
′
j f 0

(
c′

sc
′
t − 1

3
c′

uc′
uδst

)
∂ c̄t

∂xs
dc

= nξ

νT
2

15

o
Sij

∫ ∞

−∞
f 0|c′|4dc

where the strain rate tensor Sij is defined as

Sij = 1
2

(
∂ c̄i

∂xj
+ ∂ c̄j

∂xi

)

and the corresponding traceless tensor
o

Sij is defined as

o
Sij = 1

2

(
∂ c̄i

∂xj
+ ∂ c̄j

∂xi
− 2

3
∂ c̄k

∂xk
δi j

)

Note that a tensor equation has been used in deriving Eq. (4.4.1)∫ ∞

−∞
c′

ic
′
j f 0

(
c′

sc
′
t − 1

3
c′

uc′
uδi j

)
∂ c̄t

∂xs
dc = 2

15

o
Sij

∫ ∞

−∞
f 0|c′|4dc

Substituting the Maxwellian distribution and writing the equation in
the Cartesian coordinate system, we obtain

τ
(1)
i j = nξ

νT
2

15

o
Sij{∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
1

2πT

)3/2

exp

[
−c′2

1 + c′2
2 + c′2

3

2T

]

×
[
c′4

1 + c′4
2 + c′4

3 + 2(c′2
1c′2

2 + c′2
2c′2

3 + c′2
3c′2

1)
]

dc1dc2dc3

}

The triple integration can be evaluated and the results are

τ
(1)
i j = nξ

νT
2

15

o
Sij

[
(3)
(

6
8

)
π1/2(2T )5/2(π1/2(2T )1/2)2

+ (3)(2)(π1/2(2T )3/2)2π1/2(2T )1/2
]

(4.4.2)

= 2nξT
ν

o
Sij
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Or if we use the dimensional form of the viscous stress tensor,

τ
(1)
i j = 2nkT

ν

o
Sij (4.4.3)

The Chapman-Enskog’s first order expansion of the Krook equation
thus produces a constitutive relation for viscous tensor that is equiva-
lent to that used in the Navier-Stokes equation of the continuum ap-
proach. That is,

τ
(1)
i j = 2µ

o
Sij (4.4.4)

where

µ = nkT
ν

Similarly, it can be shown that the heat flux vector can be written as

q(1)
i = ρ

2
c′

ic
′
j c

′
j

= −5
2

(
k
m

)
nkT

ν

∂T
∂xi

(4.4.5)

= −K
∂T
∂xi

where the thermal conductivity K is

K = −5
2

(
k
m

)
nkT

ν

Instead, if the first-order Chapman-Enskog expansion for the original
Boltzmann equation is used, one would obtain similar linear constitu-
tive relations with

µ = 2kT
15

∫ ∞

−∞
B(|ĉ′|, T )|ĉ′|4 f 0dc

and

K = 2k2T
3m

∫ ∞

−∞
A(|ĉ′|, T )|ĉ′|4 f 0 dc

The transport properties µ and K thus depend on A(|ĉ′|, T ) and B(|ĉ′|,
T ). For inverse-power repulsive force gas models where the intermolec-
ular potential is proportional to r −α, the transport properties were
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found to depend on temperature. The transport properties µ and K
can be written as

µ = µr

(
T
T r

)(α+4)/2α

(4.4.6)

and

K = Kr

(
T
T r

)(α+4)/2α

(4.4.7)

where µr , Kr , and T r denote reference quantities. For Maxwellian
molecules with α = 4, the transport properties depend linearly on tem-
perature, which was also found in the first-order expansion of the Krook
equation shown above.

4.4.2 Second-order modeling

Burnett (1935) used the second-order expansion of the Chapman-
Enskog theory to find an approximate solution to the Boltzmann equa-
tion. By retaining a higher-order term in the expansion, the solution
would then be applicable to microflow problems of higher Knudsen num-
bers. Compared with the first-order constitutive relations derived in
the previous section, the closure models thus obtained contain higher-
order derivatives of the average quantities and are nonlinear. The re-
sulting set of moment equations is called the original Burnett equa-
tions. Chapman and Cowling (1970) used the substantial derivative of
the Euler equation in the original Burnett equations and obtained the
“conventional” Burnett equations. The conventional Burnett equations
were found (Fiscko and Chapman, 1988) to exhibit instability with fine
computational meshes in the order of the mean free path in a normal
shock problem. To enhance the stability of the conventional Burnett
equations, linear stress and heat flux terms selectively lifted from the
super Burnett equations were added by Zhong (1991) and the resulting
equations are called the “augmented” Burnett equations. Balakrishnan
and Agarwal (1996) developed the “BGK”-Burnett equations by using
the second-order Chapman-Enskog expansion of the Krook equation.
Linear analyses show that the additional stress and heat flux terms
make the equations unconditionally stable at high Knudsen number.
It should be noted that Woods (1979) demonstrated that the Burnett
equations can also be derived without using the Chapman-Enskog
expansion.

The second-order closure relations have been found to describe bet-
ter the physics of flows in the continuum transitional regime than the
first-order closure incorporated in the Navier-Stokes equations. The
derivation of the various second-order models are more complex than
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that for the first-order closure shown in the previous section. In the
following, the constitutive relations used in the conventional, the aug-
mented, and the BGK-Burnett equations are shown. Micro Couette flow
solutions obtained by using the various forms of the Burnett equa-
tions can be found in the literature (Xue et al., 2001; Lockerby and
Reese, 2003). In a later chapter, the numerical solutions of conventional
and the augmented Burnett equations for the micro Poisuelle flow will
be shown. The all-Mach number numerical algorithm used will be
described in the last part of this chapter.

For a gas near thermodynamic equilibrium, the constitutive relations
for the viscous stress and heat flux terms in the conventional Burnett
equations can be written in the following forms:

τi j = τ
(1)
i j + τ

(2)
i j + O(Kn3)

(4.4.8)
qi = q(1)

i + q(2)
i + O(Kn3)

where

τ
(2)
i j = −µ2

p

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1
∂ c̄k

∂xk

o
Sij +ω2

⎡
⎣−

o
∂

∂xi

(
1
ρ

∂p
∂xj

)
−

o
∂ c̄k

∂xi

∂ c̄j

∂xk
−2

o
o

Sik
∂ c̄k

∂xj

⎤
⎦

+ ω3

o

R
∂2T

∂xi∂xj
+ω4

1
ρT

o
∂p
∂xi

∂T
∂xj

+ω5
R
T

o
∂T
∂xi

∂T
∂xj

+ω6

o
o

Sik
o

Skj

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4.9)

q(2)
i = −µ2

p

⎧⎪⎪⎨
⎪⎪⎩

ϑ1
1
T

∂ c̄k

∂xk

∂T
∂xi

+ ϑ2
1
T

[
2
3

∂

∂xi

(
T

∂ c̄k

∂xk

)
+ 2

∂ c̄k

∂xi

∂T
∂xk

]

+ ϑ3
1
ρ

∂p
∂xk

o
Ski +ϑ4

∂
o

Ski

∂xk
+ ϑ5

1
T

∂T
∂xk

o
Ski

⎫⎪⎪⎬
⎪⎪⎭

(4.4.10)

The coefficients ω′s and ϑ ′s are determined by gas models. For
Maxwellian gas molecules with a repulsive force ∼ r −5, the coefficients
are (Chapman and Cowling 1970) shown in Table 4.1.

TABLE 4.4.1 Maxwellian Gas Model Coefficients

ω1 = 4
3

(
7
2 − ω

)
ω2 = 2
ω3 = 3
ω4 = 0
ω5 = 3ω

ω6 = 8

ϑ1 = 15
4

(
7
2 − ω

)
ϑ2 = −45/8
ϑ3 = −3
ϑ4 = 3
ϑ5 = 3

(
35
4 + ω

)
ω = 1
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The other gas model for which the coefficients have been calculated
is the hard-sphere gas. The constitutive relations for the individual
components of the viscous stress tensor and the heat flux vector can
be obtained by expanding the index notation. The following equations
show their three-dimensional forms in the Cartesian coordinate system.
Note that a short-hand notation is used where, for example,

ux ≡ ∂u
∂x

and Tyy ≡ ∂2T
∂y2 (4.4.11)

τ (2)
xx = −µ2

p

[
a1u2

x + a2
(
u2

y + u2
z

)+ a3
(
v2

x + w2
x

)+ a4
(
v2

y + w2
z

)
+ a5

(
v2

z + w2
y

)+ a6(uxvy + uxwz) + a7(uyvx + uzwx) + a8vywz

+ a9vzwy + a10 RTxx + a11 R(Tyy + T zz) + a12
RT
ρ

ρxx

+ a13
RT
ρ

(ρyy + ρzz) + a14
RT
ρ2 ρ2

x + a15
RT
ρ2

(
ρ2

y + ρ2
z

)
+ a16

R
ρ

Txρx + a17
R
ρ

(Tyρy + Tzρz) + a18
R
T

T 2
x

+ a19
R
T

(
T 2

y + T 2
z

)]
(4.4.12)

τ (2)
yy = −µ2

p

[
a1v2

y + a2
(
v2

x + v2
z

)+ a3
(
u2

y + w2
y

)+ a4
(
u2

x + w2
z

)
+ a5

(
u2

z + w2
x

)+ a6(uxvy + vywz) + a7(uyvx + vzwy) + a8uxwz

+ a9uzwx + a10 RTyy + a11 R(Txx + T zz) + a12
RT
ρ

ρyy

+ a13
RT
ρ

(ρxx + ρzz) + a14
RT
ρ2 ρ2

y + a15
RT
ρ2

(
ρ2

x + ρ2
z

)
+ a16

R
ρ

Tyρy + a17
R
ρ

(Txρx + Tzρz) + a18
R
T

T 2
y

+ a19
R
T

(
T 2

x + T 2
z

)]
(4.4.13)

τ (2)
zz = −µ2

p

[
a1w2

z + a2
(
w2

x + w2
y

)+ a3
(
u2

z + v2
z

)+ a4
(
u2

x + v2
y

)
+ a5

(
u2

y + v2
x

)+ a6(uxwz + vywz) + a7(uzwx + vzwy) + a8uxvy

+ a9uyvx + a10 RT zz + a11 R(Txx + Tyy) + a12
RT
ρ

ρzz
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+ a13
RT
ρ

(ρxx + ρyy) + a14
RT
ρ2 ρ2

z + a15
RT
ρ2

(
ρ2

x + ρ2
y

)
+ a16

R
ρ

Tzρz + a17
R
ρ

(Txρx + Tyρy) + a18
R
T

T 2
z

+ a19
R
T

(
T 2

x + T 2
y

)]
(4.4.14)

τ (2)
xy = τ (2)

yx

= −µ2

p

[
b1(uxuy + vxvy) + b2(wxwy + vzwx + uzwy) + b3(uxvx + uyvy)

+ b4uzvz + b5(vxwz + uywz) + b6 RT xy + b7
RT
ρ

ρxy

+ b8
R
T

TxTy + b9
RT
ρ2 ρxρy + b10

R
ρ

(ρxTy + ρyTx)
]

(4.4.15)

τ (2)
xz = τ (2)

zx

= −µ2

p

[
b1(uxuz + wxwz) + b2(vxvz + vxwy + uyvz) + b3(uxwx + uzwz)

+ b4uywy + b5(vywx + uzvy) + b6 RTxz + b7
RT
ρ

ρxz

+ b8
R
T

TxTz + b9
RT
ρ2 ρxρz + b10

R
ρ

(ρxTz + ρzTx)
]

(4.4.16)

τ (2)
yz = τ (2)

zy

= −µ2

p

[
b1(vyvz + wywz) + b2(uyuz + uzvx + uywx) + b3(vywy + vzwz)

+ b4vxwx + b5(uxvz + uxwy) + b6 RT yz + b7
RT
ρ

ρyz

+ b8
R
T

TyTz + b9
RT
ρ2 ρyρz + b10

R
ρ

(ρyTz + ρzTy)
]

(4.4.17)

q(2)
x = −µ2

ρ

{
c1uxx + c2(uyy + uzz) + c3(vxy + wxz) + c4

1
T

uxTx

+ c5
1
T

(vyTx + wzTx) + c6
1
T

(uyTy + uzTz)

+ c7
1
T

(vxTy + wxTz) + c8
1
ρ

uxρx + c9
1
ρ

(vyρx + wzρx)

+ c10
1
ρ

[(uyρy + uzρz) + (vxρy + wxρz)]
}

(4.4.18)
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q(2)
y = −µ2

ρ

{
c1vyy + c2(vxx + vzz) + c3(uxy + wyz) + c4

1
T

vyTy

+ c5
1
T

(uxTy + wzTy) + c6
1
T

(vxTx + vzTz)

+ c7
1
T

(uyTx + wyTz) + c8
1
ρ

vyρy + c9
1
ρ

(uxρy + wzρy)

+ c10
1
ρ

[(vxρx + vzρz) + (uyρx + wyρz)]
}

(4.4.19)

q(2)
z = −µ2

ρ

{
c1wzz + c2(wxx + wyy) + c3(uxz + vyz) + c4

1
T

wzTz

+ c5
1
T

(uxTz + vyTz) + c6
1
T

(wxTx + wyTy)

+ c7
1
T

(uzTx + vzTy) + c8
1
ρ

wzρz + c9
1
ρ

(uxρz + vyρz)

+ c10
1
ρ

[(wxρx + wyρy) + (uzρx + vzρy)]
}

(4.4.20)

The coefficients a′s, b′s and c′s are related to the ω′s and ϑ ′s, and are
given in App. 4A.

For the augumented Burnett equations, the viscous stress tensor and
the heat flux vector are denoted by τ

(a)
i j and q(a)

i , respectively.

τ
(a)
i j = −µ3

p2

⎧⎨
⎩3

2
ω7 RT

o

∂

∂xj

(
∂2c̄i

∂xk∂xk

)⎫⎬
⎭ (4.4.21)

q(a)
i = −µ3

p2

{
ϑ7 R

∂

∂xi

(
∂2T

∂xk∂xk

)
+ ϑ6

RT
ρ

∂

∂xi

(
∂2ρ

∂xk∂xk

)}
(4.4.22)

where ω7 = 2/9
ϑ6 = −5/8
ϑ7 = 11/16

The constitutive relations for the augmented Burnett equations then
become

τi j = τ
(1)
i j + τ

(2)
i j + τ

(a)
i j + O(Kn3) (4.4.23)

qi = q(1)
i + q(2)

i + q(a)
i + O(Kn3) (4.4.24)
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4.5 A Numerical Solver for
the Burnett Equations

The three-dimensional, steady Burnett equations written in a gener-
alized nonorthogonal coordinate system (ξ, η, ζ ) can be expressed in a
strong conservation form as

∂

∂ξ

(
Ẽ − Ẽ (1)

v − Ẽ (2)
v − Ẽ (a)

v

)+ ∂

∂η

(
F̃ − F̃ (1)

v − F̃ (2)
v − F̃ (a)

v

)
+ ∂

∂ζ

(
G̃ − G̃(1)

v − G̃(2)
v − G̃(a)

v

) = 0 (4.5.1)

where the vector Ẽ, F̃ , G̃, Ẽ (1)
v , F̃ (1)

v , G̃(1)
v , Ẽ (2)

v , F̃ (2)
v , G̃(2)

v , Ẽ (a)
v , F̃ (a)

v , and
G̃(a)

v are defined as

Ẽ = (ξx E + ξyF + ξzG)/J

F̃ = (ηx E + ηyF + ηzG)/J

G̃ = (ζx E + ζyF + ζzG)/J

Ẽ (k)
v = (ξx E (k)

v + ξyF (k)
v + ξzG(k)

v

)
/J (4.5.2)

F̃ (k)
v = (ηx E (k)

v + ηyF (k)
v + ηzG(k)

v

)
/J

G̃(k)
v = (ζx E (k)

v + ζyF (k)
v + ζzG(k)

v

)
/J

In the expressions above, k ≡ 1, 2, and a, which represent, respectively,
the first-order, the second-order, and the augment Burnett terms. ξ, η,
and ζ denote the generalized spatial coordinates, and x, y, and z are
the physical Cartesian coordinates. J represents the transformation
Jacobian. E, F, and G are the convection flux vectors.

E =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p
ρuv
ρuw
(ρEt + p)u

⎤
⎥⎥⎥⎥⎦ F =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv
ρv2 + p
ρwv
(ρEt + p)v

⎤
⎥⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw
ρw2 + p
(ρEt + p)w

⎤
⎥⎥⎥⎥⎦

(4.5.3)
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E (k)
v , F (k)

v , and G(k)
v represent the viscous flux vectors.

E (k)
v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

τ (k)
xx

τ (k)
xy

τ (k)
xz

φ(k)
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F (k)
v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

τ (k)
yx

τ (k)
yy

τ (k)
yz

φ(k)
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

G(k)
v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

τ (k)
zx

τ (k)
zy

τ (k)
zz

φ(k)
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5.4)

where

φ(k)
x = uτ (k)

xx + vτ (k)
xy + wτ (k)

xz + q(k)
x

φ(k)
y = uτ (k)

xy + vτ (k)
yy + wτ (k)

zy + q(k)
y

φ(k)
z = uτ (k)

xz + vτ (k)
yz + wτ (k)

zz + q(k)
z

ρ , p, u, v, and w are the density, pressure, and Cartesian velocity com-
ponents, respectively. The total internal energy is defined as

Et = e + (u2 + v2 + w2)/2 (4.5.5)

with e being the thermodynamic internal energy. The details of the
transformation, the metrics, and the Jacobian are given in App. 4B
and 4C.

4.5.1 Numerical method

Microflows are characterized by high Knudsen numbers and low Mach
numbers. As the value of the Knudsen number in a microflow is typi-
cally higher than 0.001, the rarefied gas effect can be important. The
compressible form of the Burnett equations should be used. Many of the
computational methods developed for the compressible Navier-Stokes
equations are ineffective for low-Mach-number flows. This is due to the
round-off error caused by the singular pressure gradient term in the
momentum equations and the stiffness caused by the wide disparities
in eigenvalues. To circumvent these two problems for the current mi-
croflow calculations, an all-Mach-number formulation of Shuen et al.
(1993) is adopted in the two-dimensional Burnett equations code NB2D.
A brief description of the numerical algorithm is given below.

In the all-Mach-number formulation, the system’s eigenvalues are
rescaled and the pressure variable is decomposed into a constant
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reference pressure p0 and a gauge pressure pg. The resulting Burnett
equations can be written as

�
∂

∂τ ∗ Q̂ + ∂

∂ξ

(
Ẽ − Ẽ (1)

v − Ẽ (2)
v − Ẽ (a)

v

)+ ∂

∂η

(
F̃ − F̃ (1)

v − F̃ (2)
v − F̃ (a)

v

)
(4.5.6)

+ ∂

∂ζ

(
G̃ − G̃(1)

v − G̃(2)
v − G̃(a)

v

) = 0

where the primitive variable vector Q̂ and the preconditioning matrix
� are

Q̂ = ( pg, u, v, w, h)T/J

� =

⎛
⎜⎜⎜⎜⎝

1/β 0 0 0 0
u/β ρ 0 0 0
v/β 0 ρ 0 0
w/β 0 0 ρ 0

H/β − 1 ρu ρv ρw ρ

⎞
⎟⎟⎟⎟⎠

τ ∗ denotes a pseudo time and β a parameter for rescaling the eigen-
values of the new system of equations. h(= e + p/ρ) is the specific en-
thalpy and H the total specific enthalpy. Equation (4.5.6) is the form of
the Burnett equations to be solved numerically. Since only steady-state
problems are of interest, numerical solutions of Eq. (4.5.6) are obtained
when the numerical iteration from an initial condition in pseudo time
has converged.

In the linearization of Eq. (4.5.6), the convective terms and the
Navier-Stokes-order terms of the viscous stresses and heat fluxes are
treated implicitly. The Burnett-order terms are treated explicitly. After
the linearization and applying a first-order forward finite differencing
in time, Eq. (4.5.6) can be expressed in the following form[

� + �τ ∗
(

∂ A
∂ξ

− ∂

ξ
Rξξ

∂

ξ

)
+ �τ ∗

(
∂ B
∂η

− ∂

η
Rηη

∂

η

)
(4.5.7)

+ �τ ∗
(

∂C
∂ζ

− ∂

ζ
Rζ ζ

∂

ζ

)
+ �τ ∗D2

]p

�Q̂ = −�τ ∗RHSp

where

RHSp =
[

∂
(
Ẽ − Ẽ (1)

v

)p

∂ξ
+ ∂
(
F̃ − F̃ (1)

v

)p

∂η
+ ∂
(
G̃ − G̃(1)

v

)p

∂ζ

]

−
[
∂
(
Ẽ (2)

v + Ẽ (a)
v

)p

∂ξ
+ ∂
(
F̃ (2)

v + F̃ (a)
v

)p

∂η
+ ∂
(
G̃(2)

v + G̃(a)
v

)p

∂ζ

]
+ Dex
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and

�Q̂ = Q̂
p+1 − Q̂

p

The superscript p denotes a counter for the numerical iteration in the
pseudo time with time step �τ ∗. A, B, and C are the convective term
Jacobians. Rξξ , Rηη, and Rζ ζ are the viscous Jacobians of the Navier-
Stokes-order terms. The expressions for these Jacobians can be found
in Shuen et al. (1993). Second-order accurate central differencing is
used to discretize the spatial derivative terms in Eq. (4.5.7) for both the
explicit and the implicit operators. To enhance the numerical stability
of the centrally discretized equations, second- and fourth-order artificial
dissipation terms can be used. The artificial dissipation terms are
treated explicitly and are represented by Dex. There are additional
second-order derivatives in the Burnett-order terms of the viscous
stresses and the heat fluxes. In the generalized nonorthogonal coor-
dinates, this requires transformations of the second-order derivatives
when calculating the right-hand-side terms of Eq. (4.5.7). The transfor-
mation equations used in the NB2D code for the second-order deriva-
tives are given in App. 4B.

As it is in the conventional CFD for the Navier-Stokes equations,
the boundaries of the microflow impose additional constraints to the
Burnett equations and determine the numerical solutions. For a solid
boundary, the no-slip velocity boundary conditions are normally used
in the Navier-Stokes solutions, where the fluid particles are essentially
assumed “stick” to the wall. For microflows, the no-slip boundary con-
ditions, as is described later in Chap. 7, become increasingly question-
able with the increase of Knudsen number of the flow. The details of
the boundary conditions for the velocity and temperature of microflows
will be discussed in Chap. 7. These velocity-slip and temperature-jump
boundary conditions implemented explicitly in the NB2D code are in
the following form.

u p+1 − uw =
[

2 − σv

σv
λ

(
∂u
∂y

)
w

]p

(4.5.8)

T p+1 − T w =
[

2 − σv

σv

2γ

γ + 1
λ

Pr

(
∂T
∂y

)
w

]p

(4.5.9)

The boundary conditions [Eqs. (4.5.8) and (4.5.9)], the wall pressure
condition, and the discretized Burnett Eq. (4.5.7) form a close set of
linear equations that can be written as

M�Q̂ = b (4.5.10)

The lower–upper symmetric Gauss-Seidel (LU-SGS) scheme (Yoon and
Jameson, 1988) was applied to solve the resulting system of linear
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equations. The coefficient matrix M is first decomposed using the LU
decomposition. Or

(L + D)D−1(U + D)�Q̂ = b

where L, U, and D represent the nonzero, off-diagonal lower, off-diagonal
upper, and the diagonal parts of M, respectively. The solution vector at
the new pseudo time level Q̂

p+1
is solved using the following steps.

Step 1 : (L + D)�Q̂
∗ = b

Step 2 : (U + D)�Q̂ = D(�Q̂
∗
) (4.5.11)

Step 3 : Q̂
p+1 = Q̂

p + �Q̂

4.5.2 An example of NB2D results

The NB2D code results are presented for microflows in a two-
dimensional channel (Fig. 4.5.1) of 20 µm in length and 4 µm in height.
For the velocity inflow option, the inflow velocities uin and vin, and
temperature T in are given as the inflow condition. At the downstream
boundary, the outlet pressure pout is assigned. The isothermal wall tem-
perature is T w. The operating conditions are:

uin = 133 m/s, vin = 0, T in = 300 K, T w = 300 K, h = 4 µm

The gas constants used are γ = 1.4, Pr = 0.72, R = 287.04 m2/(s2K),
respectively. The Reynolds number is 9.75. The mean free path of the
free stream is 1.782 × 10−7m, which gives a Knudsen number of

Microchannel flow

Tw

V∞

T∞

y

x

peh

Tw

Figure 4.5.1 Simulated microchannel.
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0.0445. The first-order slip conditions were used in the calculations.
Figure 4.5.2 shows a comparison of the velocity profiles obtained from
the Navier-Stokes equations, the conventional Burnett equations,
and the augmented Burnett equation, at the same downstream
location. The nonuniform grid is 85 × 35 and the spacing between the
wall and the first grid point away from the wall is 1.18 × 10−7m. The
slip boundary conditions have shifted the velocity profiles by nearly
an equal amount. There is a good agreement between the solutions.
Figure 4.5.3 shows a comparison of the temperature distributions at
the same streamwise station. There is a jump of the temperature
between that of the wall and the gas temperature. There is a difference
of about one degree between the temperature distributions obtained
by using the no-slip boundary conditions and the slip boundary con-
ditions. The three sets of equations are also predicting essentially the
same temperature distribution, particularly in the center portion of the
channel. Figure 4.5.4 shows the streamwise development of the wall
slip velocity. The wall slip velocity increases from 5 to about 18 m/s
at the end of the domain with the Navier-Stokes equations. This is
about the same for the conventional Burnett and the Augment Burnett
equations.

x (m/s)
0 50 100 150 200

0

1E−06

2E−06

3E−06

4E−06

Augmented Burnett Eq. with no-slip
Conventional Burnett Eq. with no-slip
Navier-Stokes Eq. with no-slip
Augmented Burnett Eq. with slip
Conventional Burnett Eq. with slip
Navier-Stokes Eq. with slip

y 
(m

)

Figure 4.5.2 Streamwise velocity distributions.
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T (K)
285 290 295 300

0
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2E−06

3E−06

4E−06
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)

Augmented Burnett Eq. with no-slip
Conventional Burnett Eq. with no-slip
Navier-Stokes Eq. with no-slip
Augmented Burnett Eq. with slip
Conventional Burnett Eq. with slip
Navier-Stokes Eq. with slip

Figure 4.5.3 Temperature distributions.
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Figure 4.5.4 Streamwise development of the wall slip velocities.
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Appendix 4A: Coefficients for Maxwellian
Molecules

The coefficients in the conventional Burnett-order viscous stress and
heat flux terms for Maxwellian molecules are:

a1 = 2
3

ω1 − 14
9

ω2 + 2
9

ω6 a2 = 1
3

ω2 + 1
12

ω6

a3 = −2
3

ω2 + 1
12

ω6 a4 = −1
3

ω1 + 7
9

ω2 − 1
9

ω6

a5 = 1
3

ω2 − 1
6

ω6 a6 = 1
3

ω1 + 2
9

ω2 − 2
9

ω6

a7 = −2
3

ω2 + 1
6

ω6 a8 = −2
3

ω1 − 4
9

ω2 + 4
9

ω6

a9 = 4
3

ω2 − 1
3

ω6 a10 = −2
3

ω2 + 2
3

ω3

a11 = 1
3

ω2 − 1
3

ω3 a12 = −2
3

ω2

a13 = 1
3

ω2 a14 = 2
3

ω2

a15 = −1
3

ω2 a16 = −2
3

ω2 + 2
3

ω4

a17 = 1
3

ω2 − 1
3

ω4 a18 = 2
3

ω4 + 2
3

ω5

a19 = −1
3

ω4 − 1
3

ω5

b1 = 1
2

ω1 − 5
3

ω2 + 1
6

ω6 b2 = −ω2 + 1
4

ω6

b3 = 1
2

ω1 − 2
3

ω2 + 1
6

ω6 b4 = 1
4

ω6

b5 = 1
2

ω1 + 1
3

ω2 − 1
3

ω6 b6 = −ω2 + ω3

b7 = −ω2 b8 = ω4 + ω5

b9 = ω2 b10 = −1
2

ω2 + 1
2

ω4

c1 = 2
3

ϑ2 + 2
3

ϑ4 c2 = 1
2

ϑ4

c3 = 2
3

ϑ2 + 1
6

ϑ4 c4 = ϑ1 + 8
3

ϑ2 + 2
3

ϑ3 + 2
3

ϑ5

c5 = ϑ1 + 2
3

ϑ2 − 1
3

ϑ3 − 1
3

ϑ5 c6 = 1
2

ϑ3 + 1
2

ϑ5
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c7 = 2ϑ2 + 1
2

ϑ3 + 1
2

ϑ5 c8 = 2
3

ϑ3

c9 = −1
3

ϑ3 c10 = 1
2

ϑ3

Appendix 4B: First-Order and Second-Order
Metrics of Transformation

In the computation of the Burnett equations, a finite difference method
and a general body-fitted nonorthogonal grid are used. The governing
equations (4.2.7), (4.2.10), and (4.2.14) and the constitutive equations
(4.4.23) and (4.4.24) written in Cartesian coordinate system (x, y, z)
are transformed into a general nonorthogonal computational coordinate
system (ξ , η, ζ ). The equations of the grid transformation are

⎧⎨
⎩

x = x(ξ, η, ζ )
y = y(ξ, η, ζ )
z = z(ξ, η, ζ )

(4B.1)

Applying the chain rule to Eq. (4B.1) yields the first-order transfor-
mation

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x
∂

∂y
∂

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎡
⎣ ξx ηx ζx

ξy ηy ζy
ξz ηz ζz

⎤
⎦
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂ξ

∂

∂η

∂

∂ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4B.2)

where ξx, ηx, ζx, ξy, ηy, ζy, ξz, ηz, and ζz represent the first-order metrics
that will be derived in the following.

Taking the first-order derivative of Eq. (4B.1) with respect to x, y,
and z, respectively, leads to

⎡
⎣ xξ xη xζ

yξ yη yζ

zξ zη zζ

⎤
⎦
⎛
⎝ ξx

ηx
ζx

⎞
⎠ =

⎛
⎝1

0
0

⎞
⎠ (4B.3a)

⎡
⎣ xξ xη xζ

yξ yη yζ

zξ zη zζ

⎤
⎦
⎛
⎝ ξy

ηy
ζy

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠ (4B.3b)

⎡
⎣ xξ xη xζ

yξ yη yζ

zξ zη zζ

⎤
⎦
⎛
⎝ ξz

ηz
ζz

⎞
⎠ =

⎛
⎝0

0
1

⎞
⎠ (4B.3c)
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By solving the equations set of (4B.3) and denoting the transforma-
tion Jacobian J as

J −1 = ∂(x, y, z)
∂(ξ, η, ζ )

= xξ (yηzζ − yζ zη) − xη(yξ zζ − yζ zξ ) + xζ (yξ zη − yηzξ )

(4B.4)

the first order transformation metrics can be obtained,

ξx = J (yηzζ − yζ zη) (4B.5a)

ηx = J (yζ zξ − yξ zζ ) (4B.5b)

ζx = J (yξ zη − yηzξ ) (4B.5c)

ξy = J (xζ zη − xηzζ ) (4B.5d)

ηy = J (xξ zζ − xζ zξ ) (4B.5e)

ζy = J (xηzξ − xξ zη) (4B.5f)

ξz = J (xη yξ − xξ yη) (4B.5g)

ηz = J (xζ yξ − xξ yζ ) (4B.5h)

ζz = J (xξ yη − xη yξ ) (4B.5i)

There are also second-order derivatives in the constitutive equations
(4.4.23) and (4.4.24) for the viscous stress and heat flux terms. They
can be obtained through the chain rule based on the first order trans-
formation.

∂2

∂x2 = ξ2
x

∂2

∂ξ2 + η2
x

∂2

∂η2 + ζ 2
x

∂2

∂ζ 2 + 2ξxηx
∂2

∂ξ∂η
+ 2ξxζx

∂2

∂ξ∂ζ

+ 2ηxζx
∂2

∂η∂ζ
+ ξxx

∂

∂ξ
+ ηxx

∂

∂η
+ ζxx

∂

∂ζ
(4B.6)

∂2

∂y2 = ξ2
y

∂2

∂ξ2 + η2
y

∂2

∂η2 + ζ 2
y

∂2

∂ζ 2 + 2ξyηy
∂2

∂ξ∂η
+ 2ξyζy

∂2

∂ξ∂ζ

+ 2ηyζy
∂2

∂η∂ζ
+ ξyy

∂

∂ξ
+ ηyy

∂

∂η
+ ζyy

∂

∂ζ
(4B.7)

∂2

∂z2 = ξ2
z

∂2

∂ξ2 + η2
z

∂2

∂η2 + ζ 2
z

∂2

∂ζ 2 + 2ξzηz
∂2

∂ξ∂η
+ 2ξzζz

∂2

∂ξ∂ζ

+ 2ηzζz
∂2

∂η∂ζ
+ ξzz

∂

∂ξ
+ ηzz

∂

∂η
+ ζzz

∂

∂ζ
(4B.8)



Moment Method: Navier-Stokes and Burnett Equations 77

∂2

∂x∂y
= ξxξy

∂2

∂ξ2 + ηxηy
∂2

∂η2 + ζxζy
∂2

∂ζ 2 + (ξxηy + ξyηx)
∂2

∂ξ∂η

+ (ξxζy + ξyζx)
∂2

∂ξ∂ζ
+ (ηxζy + ηyζx)

∂2

∂η∂ζ
+ ξxy

∂

∂ξ

+ ηxy
∂

∂η
+ ζxy

∂

∂ζ
(4B.9)

∂2

∂x∂z
= ξxξz

∂2

∂ξ2 + ηxηz
∂2

∂η2 + ζxζz
∂2

∂ζ 2 + (ξxηz + ξzηx)
∂2

∂ξ∂η

+ (ξxζz + ξzζx)
∂2

∂ξ∂ζ
+ (ηxζz + ηzζx)

∂2

∂η∂ζ
+ ξxz

∂

∂ξ

+ ηxz
∂

∂η
+ ζxz

∂

∂ζ
(4B.10)

∂2

∂y∂z
= ξyξz

∂2

∂ξ2 + ηyηz
∂2

∂η2 + ζyζz
∂2

∂ζ 2 + (ξyηz + ξzηy)
∂2

∂ξ∂η

+ (ξyζz + ξzζy)
∂2

∂ξ∂ζ
+ (ηyζz + ηyζx)

∂2

∂η∂ζ
+ ξyz

∂

∂ξ

+ ηyz
∂

∂η
+ ζyz

∂

∂ζ
(4B.11)

The second-order metrics can be obtained by taking further derivatives
of Eq. (4B.3a–3c) with respect to x, y, and z. For example, taking deriva-
tive of Eq. (4B.3a) with respect to x yields⎡

⎣ xξx xηx xζ x
yξx yηx yζ x
zξx zηx zζ x

⎤
⎦
⎛
⎝ ξx

ηx
ζx

⎞
⎠+

⎡
⎣ xξ xη xζ

yξ yη yζ

zξ zη zζ

⎤
⎦
⎛
⎝ ξxx

ηxx
ζxx

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ (4B.12)

with

( )ξx = ( )ξξ ξx + ( )ξηηx + ( )ξζ ζx (4B.13a)

( )ηx = ( )ξηξx + ( )ξηηx + ( )ηζ ζx (4B.13b)

( )ζ x = ( )ξζ ξx + ( )ηζ ηx + ( )ζ ζ ζx (4B.13c)

and the final results for the second-order mesh metrics with respect to
x are

ξxx = −(a1ξx + b1ξy + c1ξz) (4B.14)

ηxx = −(a1ηx + b1ηy + c1ηz) (4B.15)

ζxx = −(a1ζx + b1ζy + c1ζz) (4B.16)
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where

a1 = xξξ ξ
2
x + xηηη

2
x + xζ ζ ζ

2
x + 2xξηξxηx + 2xξζ ξxζx + 2xηζ ηxζx

b1 = yξξ ξ
2
x + yηηη

2
x + yζ ζ ζ

2
x + 2yξηξxηx + 2yξζ ξxζx + 2yηζ ηxζx

c1 = zξξ ξ
2
x + zηηη

2
x + zζ ζ ζ

2
x + 2zξηξxηx + 2zξζ ξxζx + 2zηζ ηxζx

Similarly, the other second-order metrics with respect to y are

ξyy = −(a2ξx + b2ξy + c2ξz) (4B.17)

ηyy = −(a2ηx + b2ηy + c2ηz) (4B.18)

ζyy = −(a2ζx + b2ζy + c2ζz) (4B.19)

where

a2 = xξξ ξ
2
y + xηηη

2
y + xζ ζ ζ

2
y + 2xξηξyηy + 2xξζ ξyζy + 2xηζ ηyζy

b2 = yξξ ξ
2
y + yηηη

2
y + yζ ζ ζ

2
y + 2yξηξyηy + 2yξζ ξyζy + 2yηζ ηyζy

c2 = zξξ ξ
2
y + zηηη

2
y + zζ ζ ζ

2
y + 2zξηξyηy + 2zξζ ξyζy + 2zηζ ηyζy

ξzz = −(a3ξx + b3ξy + c3ξz) (4B.20)

ηzz = −(a3ηx + b3ηy + c3ηz) (4B.21)

ζzz = −(a3ζx + b3ζy + c3ζz) (4B.22)

where

a3 = xξξ ξ
2
z + xηηη

2
z + xζ ζ ζ

2
z + 2xξηξzηz + 2xξζ ξzζz + 2xηζ ηzζz

b3 = yξξ ξ
2
z + yηηη

2
z + yζ ζ ζ

2
z + 2yξηξzηz + 2yξζ ξzζz + 2yηζ ηzζz

c3 = zξξ ξ
2
z + zηηη

2
z + zζ ζ ζ

2
z + 2zξηξzηz + 2zξζ ξzζz + 2zηζ ηzζz

ξxy = −(a4ξx + b4ξy + c4ξz) (4B.23)

ηxy = −(a4ηx + b4ηy + c4ηz) (4B.24)

ζxy = −(a4ζx + b4ζy + c4ζz) (4B.25)

where

a4 = xξξ ξxξy + xηηηxηy + xζ ζ ζxζy + xξη(ξxηy + ξyηx) + xξζ (ξxζy + ξyζx)

+ xηζ (ηxζy + ηyζx)

b4 = yξξ ξxξy + yηηηxηy + yζ ζ ζxζy + yξη(ξxηy + ξyηx) + yξζ (ξxζy + ξyζx)

+ yηζ (ηxζy + ηyζx)
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c4 = zξξ ξxξy + zηηηxηy + zζ ζ ζxζy + zξη(ξxηy + ξyηx) + zξζ (ξxζy + ξyζx)

+ zηζ (ηxζy + ηyζx)

ξxz = −(a5ξx + b5ξy + c5ξz) (4B.26)

ηxz = −(a5ηx + b5ηy + c5ηz) (4B.27)

ζxz = −(a5ζx + b5ζy + c5ζz) (4B.28)

where

a5 = xξξ ξxξz + xηηηxηz + xζ ζ ζxζz + xξη(ξxηz + ξzηx) + xξζ (ξxζz + ξzζx)

+ xηζ (ηxζz + ηzζx)

b5 = yξξ ξxξz + yηηηxηz + yζ ζ ζxζz + yξη(ξxηz + ξzηx) + yξζ (ξxζz + ξzζx)

+ yηζ (ηxζz + ηzζx)

c5 = zξξ ξxξz + zηηηxηz + zζ ζ ζxζz + zξη(ξxηz + ξzηx) + zξζ (ξxζz + ξzζx)

+ zηζ (ηxζz + ηzζx)

ξyz = −(a6ξx + b6ξy + c6ξz) (4B.29)

ηyz = −(a6ηx + b6ηy + c6ηz) (4B.30)

ζyz = −(a6ζx + b6ζy + c6ζz) (4B.31)

where

a6 = xξξ ξyξz + xηηηyηz + xζ ζ ζyζz + xξη(ξyηz + ξzηy) + xξζ (ξyζz + ξzζy)

+ xηζ (ηyζz + ηzζy)

b6 = yξξ ξyξz + yηηηyηz + yζ ζ ζyζz + yξη(ξyηz + ξzηy) + yξζ (ξyζz + ξzζy)

+ yηζ (ηyζz + ηzζy)

c6 = zξξ ξyξz + zηηηyηz + zζ ζ ζyζz + zξη(ξyηz + ξzηy) + zξζ (ξyζz + ξzζy)

+ zηζ (ηyζz + ηzζy)

Appendix 4C: Jacobian Matrices

The inviscid Jacobian matrices can be written as

A = ∂Ẽ

∂Q̂
B = ∂F̃

∂Q̂
C = ∂G̃

∂Q̂
(4C.1)
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A = ∂

∂Q̂

[
1
J

(ξxE + ξyF + ξzG)
]

= ξx
∂

∂Q̂

(
E
J

)
+ ξy

∂

∂Q̂

(
F
J

)
+ ξz

∂

∂Q̂

(
G
J

)
(4C.2)

B = ∂

∂Q̂

[
1
J

(ηxE + ηyF + ηzG)
]

= ηx
∂

∂Q̂

(
E
J

)
+ ηy

∂

∂Q̂

(
F
J

)
+ ηz

∂

∂Q̂

(
G
J

)
(4C.3)

C = ∂

∂ Q̂

[
1
J

(ζxE + ζyF + ζzG)
]

= ζx
∂

∂Q̂

(
E
J

)
+ ζy

∂

∂Q̂

(
F
J

)
+ ζz

∂

∂Q̂

(
G
J

)
(4C.4)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CpU
Rh

ρα1 ρα2 ρα3 −ρU
h

α1 + CpuU
Rh

ρ(U + α1 u) ρu α2 ρu α3 −ρuU
h

α2 + CpvU

Rh
ρv α1 ρ(U + α2v) ρv α3 −ρvU

h

α3 + CpwU
Rh

ρw α1 ρw α2 ρ(U + α3w) −ρwU
h

Cp HU
Rh

ρ(uU + α1 H ) ρ(vU + α2 H ) ρ(wU + α3 H ) ρU
(

1 − H
h

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4C.5)

where

U = α1u + α2v + α3w (4C.6)

For the Jacobian matrix A, the α′s are

α1 = ξx α2 = ξy α3 = ξz (4C.7)

Cp denotes the specific heat at constant pressure. For the Jacobian B,
α1 = ηx, α2 = ηy, and α3 = ηz. Similarly for the Jacobian C, the α′s are
α1 = ζx, α2 = ζy, and α3 = ζz.
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The viscous Jacobians, Rξξ = ∂Ẽ(1)
v /∂Q̂, Rηη = ∂F̃(1)

v /∂Q̂, and Rζ ζ =
∂G̃(1)

v /∂Q̂ can be written in the following forms:

Rξξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 µ

(
1
3

α2
1 + �

)
µα12 µα13 0

0 ρvα1 µ

(
1
3

α2
2 + �

)
µα23 0

0 µα13 µα23 µ

(
1
3

α2
3 + �

)
0

0 πu πv πw
µ

Pr
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4C.8)

where

α1 = ξx α2 = ξy α3 = ξz

α12 = 1
3

α1α2 α13 = 1
3

α1α3 α23 = 1
3

α2α3 (4C.9)

� = α2
1 + α2

2 + α2
3

πu = µ

[
u
(

1
3

α2
1 + �

)
+ vα12 + wα13

]

πv = µ

[
v
(

1
3

α2
2 + �

)
+ uα12 + wα23

]
(4C.10)

πw = µ

[
w
(

1
3

α2
3 + �

)
+ uα13 + vα23

]
Rηη can obtained by setting α1 = ηx, α2 = ηy, and α3 = ηz and Rζ ζ by
setting α1 = ζx, α2 = ζy, and α3 = ζz.
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Chapter

5
Statistical Method: Direct

Simulation Monte Carlo
Method and Information

Preservation Method

5.1 Conventional DSMC

5.1.1 Overview

DSMC (direct simulation Monte Carlo) is a direct particle simulation
method based on kinetic theory (Bird 1963; 1965a,b; 1976; 1978; 1994).
The fundamental idea is to track thousands or millions of randomly
selected, statistically representative particles, and to use their motions
and interactions to modify their positions and states appropriately in
time. Each simulated particle represents a number of real molecules.
The primary approximation of DSMC is the uncoupling of the molecular
motions and the intermolecular collisions over small time intervals that
are less than the mean collision time. The DSMC computation is started
from some initial conditions and followed in small time steps that can
be related to physical time. Collision pairs of molecule in a small com-
putational cell in physical space are randomly selected based on a prob-
ability distribution after each computation time step. Complex physics
such as radiation, chemical reactions, and species concentrations can
be included in the simulations without invoking nonequilibrium ther-
modynamic assumptions that commonly afflict nonequilibrium contin-
uum flow calculations. The DSMC technique is explicit and time march-
ing, and therefore can produce unsteady flow simulations. For steady
flows, DSMC simulation proceeds until a stationary flow is established
within a desired accuracy. The macroscopic flow quantities can then be
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obtained by time averaging the cell-based values. For unsteady flows,
ensemble averaging of many independent Monte Carlo simulations can
be carried out to obtain the final results within a prescribed statistical
accuracy.

A significant advantage of DSMC is that the total computation
required is proportional to the number of molecules simulated N, in con-
trast to N 2 for the molecular dynamics (MD) simulations. In essence,
particle motions are modeled deterministically while collisions are
treated statistically. The backbone of DSMC follows directly from classi-
cal kinetic theory, and hence the applications of this method are subject
to the same limitations as the theory. These limitations are the funda-
mental assumption of molecular chaos and dilute gases. DSMC has been
shown to be accurate at the Boltzmann equation level for monatomic
gases undergoing binary collisions (Bird 1970, 1994).

The statistical error of a DSMC solution is inversely proportional to
the square root of the sample size N. A large sample size is needed to
reduce the statistical error. The primary drawback of DSMC is the sig-
nificant computer resources required for simulating a practical flow.

Bird (1963) first applied the DSMC method to a homogeneous gas
relaxation problem, and then to a study of shock structure (Bird 1965b).
The detailed principles of DSMC can be found in Molecular Gas Dynam-
ics (Bird 1976) and the recent edition Molecular Gas Dynamics and the
Direct Simulation of Gas Flows (Bird 1994).

Since its introduction, significant research has been performed and
reported on improving the accuracy of the DSMC method as well as
expanding its application to various fluid flow problems. Improved and
more complex physical molecular models have also been developed for
DSMC. The original hard sphere (HS) molecular model has been ex-
tended to the more realistic variable hard sphere (VHS) model (Bird
1981), variable soft sphere (VSS) model (Koura and Matsumoto 1991,
1992), and generalized hard sphere (GHS) model (Hash and Hassan
1993; Hassan and Hash 1993). The Borgnakke-Larsen (BL) phenomeno-
logical model (Borgnakke and Larsen 1975) was introduced in 1975
to handle inelastic binary collisions of polyatomic gases. The BL colli-
sion model accounts for the vibrational and rotational nonequilibrium
and it has been widely used. In 1987, Bird proposed a radiation model
for use in radiative nonequilibrium flows. This model was used suc-
cessfully in predicting the radiative heating on the Aero-Assist Flight
Experiment (AFE) vehicle (Moss et al. 1988). A model for dissociation-
recombination interactions was introduced by Nanbu (1991). Boyd et al.
(1992) proposed a vibrational relaxation method for use with the VHS
model. Methods for ternary reactions, or three-body collisions, have
also been proposed, even through binary collisions prevail in most flow
problems. Several collision-sampling techniques were also developed.
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These include the time counter (TC) method (Bird 1976) and the no time
counter (NTC) method (Bird 1989). Some of the molecular models were
described in Chap. 2.

The accuracy of the gas-surface interaction model has also been im-
proved. The boundary condition models initially used by Bird and ear-
lier researchers are simple and provide only an approximation to real
gas–surface interactions. More advanced boundary conditions for
DSMC calculations, such as the Maxwell models, Cercignani-Lampis
(C-L) and Cercignani-Lampis-Lord (CLL) models can be found in
Maxwell (1879), Cercignani and Lampis (1971), Cercignani (1988), Lord
(1991, 1992), and Collins and Knox (1994). DSMC has been combined
with the Monotonic-Lagrangian-Grid (MLG) algorithm, allowing the
grid to automatically adapt to the local number density of the flowfield
(Oh et al. 1995). DSMC has also been improved with the information
preservation (IP) method, effectively reducing the statistical scatter
for low-speed flows (Fan and Shen 1998, 2001; Cai et al. 2000; Sun
and Boyd 2002). The statistical scatter associated with DSMC has also
been reduced by another technique of DSMC-filter (Kaplan and Oran
2002) where it involves a postprocessing operation by employing a filter
to extract the solution from a noisy DSMC calculation. The filters called
flux-corrected transport, uses a high-order, nonlinear monotone convec-
tion algorithm. Simulations show that filtering removes high-frequency
statistical fluctuations and extract as solution from a noisy DSMC
calculation for low-speed Couette flows. All the above efforts have im-
proved the computational accuracy and versatility of DSMC. A sum-
mary of these works is listed in Table 5.1.1.

In the last three decades, DSMC has been primarily used in the simu-
lations of hypersonic rarefied-gas flows. The results have been validated
well with many experimental data and DSMC has been widely accepted

TABLE 5.1.1 Summary of Significant Research Efforts on DSMC Methodology

DSMC model Author Year

BL Borgnakke et al. 1975
VHS Bird 1981
Radiation Bird; Moss et al. 1987; 1988
NTC Bird 1989
Dissociation Nanbu 1991
Vibrational relaxation Boyd 1992
VSS Koura and Matsumoto 1991; 1992
GHS Hash and Hassan 1993
Boundary conditions Collins and Knox 1994
DSMC-MLG Oh et al. 1995
DSMC-IP Fan and Shen; Sun and Boyd 1998; 2002
DSMC-filter Kaplan and Oran 2002
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as an important numerical method in rarefied-gas flows. DSMC has
been used for different applications. Campbell (1991) used DSMC to
investigate the plume/free stream interactions applicable to a rocket
exhaust plume at high altitudes. Celenligil et al. (1989) simulated the
flow for blunt AFE configuration. Boyd et al. (1992) studied the flow
of small nitrogen nozzles and plumes using DSMC and compared the
numerical results with Navier-Stokes equations solutions and exper-
imental data. Carlson and Wilmoth (1992) used the DSMC to solve
the type IV shock-interaction problem at a scramjet cowl lip. Drags on
spheres at hypersonic speeds were calculated for flows in continuum-
transition regime and compared to experimental data by Dogra et al.
(1992). Celenligil and Moss (1992) used a three-dimensional version of
DSMC to study a delta wing configuration and found good agreement
with wind-tunnel data. A comprehensive review of the applications of
DSMC can be found in Oran et al. (1998).

5.1.2 Methodology

The procedures involved in applying DSMC to steady or unsteady flow
problems are presented in Fig. 5.1.1 (Bird 1976). Execution of the
method requires the physical domain to be divided into computational
cells. The cells provide geometric boundaries and volumes required
to sample macroscopic properties. It is also used as a unit where only
molecules located within the same cell, at a given time, are allowed
for collision. The cell dimensions, �xd, must be such that the change
in flow properties is small (Bird 1976). This requires that �xd must
be much smaller than the characteristic length of the geometry, or less
than λ/3 in general. It is also important that the selection of a time step,
�td, should be less than the molecular mean collision time. Simulation
results have been found independent of the time step increment as long
as the spatial and temporal requirements are satisfied. The core of the
DSMC algorithm consists of four primary processes: move the particles,
index and cross-reference the particles, simulate collisions, and sample
the flow field. These procedures are uncoupled during each time step.
A general implementation of the DSMC method can be summarized as
follows.

1. Initialization: A DSMC simulation keeps track of the time-
dependent movement of a huge amount of molecules. Like a contin-
uum CFD calculation, the DSMC simulation proceeds from a set of
prescribed initial condition. The molecules are initially distributed in
the computational domain. These simulated molecules, each represent-
ing a large number of real gas molecules, are assigned random veloci-
ties, usually based on the equilibrium distribution. For an equilibrium
stationary problem, the initial condition does not affect the final DSMC
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Start

Stop

Read data

Initialize molecules 
and boundaries

Move molecules within ∆td
Compute interactions with boundary

Set constants

Unsteady flow: Average runs 
Steady flow: Average samples after
 establishing steady flow

Reset molecule indexing

Computing collisions

Sample flow properties

Print final results

Interval > ∆ts?

Time > tL?

No

No

Yes

Yes

Unsteady flow:
Repeat until
required sample
obtained

Figure 5.1.1 DSMC flow chart. (Bird 1976.)

solution, but will affect the computing time. Physically correct molecu-
lar sizes and weights are used in the calculation of gas properties. The
position, velocity, collision cross section, and temperature of molecules,
and the boundary conditions determine the subsequent evolution of
the system. Therefore, for unsteady problems, the solution may be de-
pendent on the particular choice of the initial, boundary, and input
conditions (Oran et al. 1998).

2. Movement: The simulated representative molecules are moved for
a convection time step of �td. This molecular motion is modeled deter-
ministically. This process enforces the boundary conditions and samples
macroscopic flow properties along solid surfaces. Modeling molecule-
surface interactions requires applying the conservation laws to indi-
vidual molecules instead of using a velocity distribution function. Such
treatment of the boundary conditions allows DSMC to be extended
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to include physical effects such as chemical reactions, catalytic walls,
radiation effects, three-body collisions, and ionized flows, without major
modifications in the basic procedure. When a simulated molecule moves
across boundary, computational boundary condition is employed. Spec-
ular reflection is used for symmetric boundary. Maxwellian diffusive
model or Cercignani-Lampis-Lord model are usually used for the sur-
face boundary, which are described in detail in Chap. 7. When a molecule
moves out of an exit boundary, all its properties are taken out of the
subsequent simulations. At the inlet/outlet boundary, new molecules
are also allowed to enter the computational field. The molecule num-
ber and the location, velocity, and internal energy of the molecule are
randomly determined based on time interval �td and the macroscopic
flow properties at the inlet/outlet boundary.

3. Indexing and cross-referencing: After all the simulated molecules
have completed their movement of a time step �td, they are in new lo-
cations in space and may be in a different field cell. New molecules may
be introduced from an inlet boundary. Therefore, simulated molecules
must be reindexed and tracked based on their spatial coordinates and
associated field cells (computational grids). A scheme for molecular ref-
erencing is a prerequisite to the selection of collision partners and the
sampling for the macroscopic properties of the flow field in the follow-
ing steps. Efficient indexing and tracking schemes are keys to practical
DSMC applications that involve large-scale information processing. To
improve the accuracy and computing efficiency, subcells, such as virtual
subcells, static subcells, and transient subcells, have been proposed for
the DSMC method.

4. Collision: With the simulated particles appropriately indexed, the
molecular collision is considered. The collision process is modeled sta-
tistically, which is different from that in deterministic simulation meth-
ods such as MD. Only the particles within a given computational cell
are considered to be possible collision partners. Within each cell, a
representative set of collisions occurs and collision pairs are selected
randomly. The postcollision molecular velocities are determined and
the particles move accordingly in the next time step. Uncoupling the
molecular motions and the intermolecular collision requires that �td
be smaller than the mean collision time. There are several collision-
sampling methods that have been applied successfully. The currently
preferred model is the no-time-counter (NTC) technique (Bird 1994)
used in conjunction with the subcell technique (Bird 1986). The sub-
cell method calculates local collision rates based on the individual cell
but restricts possible collision pairs to within subcells. The procedure
improves accuracy by ensuring that collisions occur only between two
near neighbors.
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5. Sampling: The macroscopic flow properties are sampled after
repeating step 2 to step 4 for a large time interval. The velocity of the
molecules in a particular cell is used to calculate macroscopic quantities
at the geometric center of the cell. Since these steps do not depend on
the sampling process, the computational time can be reduced through
sampling the flow properties every nth time step. The time-marching
DSMC procedures are explicit and, therefore, always produce unsteady
flow simulation. For a steady flow problem, a DSMC simulation pro-
ceeds until steady flow is established at a sufficiently large time tL,
and the desired steady result is the time average of all values sam-
pled after the simulation has reached a steady state. For an unsteady
flow, an ensemble of many independently performed simulations may
be collected. An ensemble average property can then be obtained by
averaging the instantaneous results in the sample over an area of a
volume element.

5.1.3 Binary elastic collisions

The DSMC implementation of the binary elastic collision kinetics, dis-
cussed in Chap. 2, is described in this section. In such a collision, two
scattering angles, χ and ε, are defined for DSMC simulations. χ denotes
the deflection angle and, as has been defined previously, represents the
angle between the precollision relative velocity and the postcollision rel-
ative velocity. ε is the azimuthal impact angle measured between the
collision plane and some reference plane. For hard sphere collisions
(HS and VHS), both scattering angles, χ and ε, are uniformly dis-
tributed. The molecule diameter d and the impact parameter b are
related by b/d = cos(χ/2). For VSS collisions, a parameter β is used to
characterize the anisotropy of the deflection angle as

(
b
d

)1/β

= cos
(χ

2

)
(5.1.1)

The parameters must be used for computing the postcollision relative
velocity c∗

r as a function of the precollision relative velocity cr and the
postcollision relative speed c∗

r . For elastic collision, c∗
r is simply the mag-

nitude of cr

cr = |c1 − c2| (5.1.2)

whereas, for inelastic collisions it may be different. The procedure for
computing c∗

r is as follows.
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First, the azimuthal impact angle ε is computed using a random frac-
tion R f ,1 as

ε = 2π R f ,1 (5.1.3)

Second, the deflection angle χ is computed using another random frac-
tion R f ,2

cos χ = 2R1/β

f ,2 − 1 (5.1.4)

sin χ =
√

1 − cos2 χ (5.1.5)

Next, a set of Cartesian coordinates (x′, y′, z′) is introduced with x′ in the
direction of cr . The vector g1 representing c∗

r in this coordinate system
(x′, y′, z′) is

g1 = (cr cos χ , cr sin χ cos ε, cr sin χ sin ε) (5.1.6)

The precollision relative velocity cr has components of (ur , vr , wr ) in the
original Cartesian coordinates (x, y, z). The direction cosines of x′ are
(ur /cr , vr /cr , wr /cr ) in the original coordinates. Since the orientation of
the reference plane is arbitrary, the y′-axis may be chosen to be normal
to the x-axis. The direction cosines of y′ are then (0, wr (v2

r + w2
r )−1/2,

−vr (v2
r +w2

r )−1/2). Those of z′ are ((v2
r +w2

r )1/2/cr , −ur vr (v2
r +w2

r )−1/2/cr ,
−ur wr (v2

r + w2
r )−1/2/cr ). So, the coordinate transformation from (x′, y′, z′)

to (x, y, z) is a second-order tensor gT of

gT =

⎡
⎢⎣ur /cr vr /cr wr /cr

0 wr
(
v2

r + w2
r

)−1/2 −vr
(
v2

r + w2
r

)−1/2(
v2

r + w2
r

)1/2
/cr −ur vr

(
v2

r + w2
r

)−1/2
/cr −ur vr

(
v2

r + w2
r

)−1/2
/cr

⎤
⎥⎦

(5.1.7)

The components of c∗
r in the original coordinate system can be obtained

through the product of vector g1 with the tensor gT , as

c∗
r = g1 · gT (5.1.8)

and the required expressions of c∗
r are

u∗
r = cos χur + sin χ cos ε

(
v2

r + w2
r

)1/2 (5.1.9a)

v∗
r = cos χvr + sin χ (cr wr cos ε − ur vr sin ε)/

(
v2

r + w2
r

)1/2 (5.1.9b)

w∗
r = cos χwr − sin χ (cr vr cos ε − ur wr sin ε)/

(
v2

r + w2
r

)1/2 (5.1.9c)
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From the conservations of momentum and energy, the postcollision
velocities of the two collision molecules can be obtained as

c∗
1 = cm + m2

m1 + m2
c∗

r (5.1.10a)

c∗
2 = cm − m1

m1 + m2
c∗

r (5.1.10b)

where cm is the velocity of the center of mass of the pair of collision
molecules given by

cm = m1c1 + m2c2

m1 + m2
(5.1.11)

5.1.4 Collision sampling techniques

Several collision-sampling techniques are discussed by Bird (1994).
In this section, two of the most popular techniques, the time counter
(TC) and the no time counter (NTC) sampling, are outlined. Both meth-
ods use acceptance–rejection statistics described by Bird (1976) to
select the collision partners. The acceptance–rejection technique uses
random numbers to determine whether a randomly selected pair of
molecules will interact. The details of this technique will be described
in App. 5A.

The probability of collision between two molecules in a homogeneous
gas is proportional to the product of their relative speed cr and total
collision cross-section σT , as shown in Chap. 2. The total collision rate
Nc per unit volume of gases is

Nc = 1
2

n2σT cr (5.1.12)

which could be used to establish the number of collisions in each cell at
a time step �td in a homogeneous gas is then Nc�td . In the DSMC pro-
cedures, this number can be calculated. The mean value of the product
of cr and σT is calculated for each cell, and the maximum value could
be recorded. The collision pairs could then be chosen by the acceptance-
rejection method, with the probability P of a particular pair being given
by the ratio of their product of cr and σT to the maximum of the product
in the cell.

P = σT cr

(σT cr )max
(5.1.13)
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The TC technique assigns an incremental time δt to each collision.
For HS and VHS molecules, δt is given by

δt = 2
NmσT cr

(5.1.14)

where Nm is the number of simulated molecules in a cell. Sufficient
collisions are simulated in each cell for the sum of all δt to equal to the
convection time step �td . The TC technique is very efficient. Its com-
putational cost is directly proportional to Nc. It has been found that TC
technique predicts correct collision rates for moderate nonequilibrium
flows. However, for flows with extreme nonequilibrium regions, such as
strong shock fronts, it gives an inaccurate collision rate (Bird 1989). The
TC technique allows the acceptance of unlikely collision pairs, result-
ing in an incorrect incremental time δt. This problem was corrected
by the NTC technique. In NTC method, the procedures are similar to
those in the TC technique, except that the summation of collision incre-
mental time δt is replaced by the summation of the number of collision
pairs until it reaches the number of allowed collisions, Ncp, which is
given by

Ncp = NmN̄mSm(σT cr )max�td

2Vc
(5.1.15)

where Sm is the number of real molecules a simulated molecule rep-
resents, and Vc the cell volume. The computational cost of the NTC
method remains directly proportional to Nm. It is the most widely used
collision-sampling technique for DSMC and is also used in the IP1D
program in App. 5C.

5.1.5 Cell schemes

The DSMC method uses field-cell systems for the sampling of the macro-
scopic flow properties and for the selection of collision partners. The
macroscopic properties are assumed uniform in the cell and, as a re-
sult, the cell dimensions should be small in comparison with the length
scale of the macroscopic flow gradients. The molecules in the cell are
regarded as representative of those at the position of the cell, and the
relative locations of molecules within the cell are ignored in the selec-
tion of collision partners.

Primitive implementations of the DSMC method choose the collision
partners from any location in the same flow field cell and satisfactory
results have been obtained as long as the fundamental constraints
of DSMC are met. The sampled density is used to establish the col-
lision rate and it is desirable to have the number of molecules per
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cell as large as possible, generally around 20. On the other hand, in
the selection of collision partners, it is desirable to have this number
as small as possible to reduce the mean separation of collision pairs.
Meiburg (1986) questioned the validity of the method, claiming that,
by allowing molecules of a cell to collide, DSMC could not support a
rotational component within the cell. In response to the claim, Bird in-
troduced the concept of subcells. In this scheme, subcells are created
by further subdividing a flow-field cell and sorting molecules within
that cell into the subcells. The standard collision methodology was then
modified such that candidate collision pairs are formed at random from
within the same subcell if possible. This reduces the separation distance
between collision pairs, effectively increasing the spatial resolution of
the simulation at minimal additional computational cost.

In widely used G2/A3 codes of Bird (1992), subcells were a fixed
element of the flow field grid. The subcell resolution was the same for
all flow field cells in a given region, and the subcell resolution was
specified as a preprocessing input and held static during a simulation.
This requires that the user specifies the ratio of the real-to-simulated
molecules such that both the cells and the subcells are adequately pop-
ulated. This is an important limitation on the number of subcells. The
limitation is not about sufficient statistical representation, rather the
ability to even form a collision pair from within the same subcell. When
the number of molecules is small in a subcell, it becomes likely that
there will be less than two molecules in the subcell. Searching in the
neighboring subcells for a collision partner can add an additional layer
of complexity to the collision algorithm. The problem can be more trou-
blesome for three-dimensional problems. For example, for each direc-
tion being bisected, there will be a total of 23 subcells per cell. In a best-
case scenario, 16 molecules are needed in a field cell to maintain an
average of two molecules per subcell. Often, there will be subcells with
fewer than two molecules. This would require the implementation of
an even more complex search algorithm than that for two-dimensional
problems.

As an alternative, Bird (2000) devised transient-adaptive subcells to
address the under-populated problems associated with the use of sub-
cell. The subcell resolutions are determined dynamically for each flow
field cell based on the number of molecules in the cell. The subcell res-
olution is such that there are as many subcell as molecules. Dynamic
subcells provide obvious advantages over static subcells, in terms of
both usability and efficiency. However, the design of an appropriate
search methodology to locate a second collision partner is still a rele-
vant issue, since on an average there are fewer than two molecules in
a subcell.
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The static or transient-adaptive subcell scheme cannot guarantee
that a subcell would have less than two molecules in it on occasion.
LeBeau et al. (2003) proposed the use of virtual subcells. It simply
involves picking the first collision partner at random, and then locating
the nearest other molecule in the flow-field cell as the second partner.
The method introduces a N 2-like search algorithm to the procedure
and additional computational cost. Only in cases where the molecule
number N is kept small in each flow-field cell the virtual subcell scheme
is computationally competitive with the true subcell methods.

5.1.6 Sampling of macroscopic properties

The macroscopic properties of a flow field are sampled from field cells,
and the value represents the flow property at the cell center. For a
steady state problem of monatomic molecules, the flow field is usually
sampled after flow has transitioned from the initial state to a station-
ary state. The transition usually takes a few thousands time steps.
The flow density and velocity can be obtained through the following
equations:

N =
Nt∑
i=1

Ni (5.1.16)

ρ = 1
Nt

NFnum

�V
m (5.1.17)

U = 1
N

Nt∑
i=1

Ni∑
j =1

cu, j (5.1.18)

V = 1
N

Nt∑
i=1

Ni∑
j =1

cv, j (5.1.19)

W = 1
N

Nt∑
i=1

Ni∑
j =1

cw, j (5.1.20)

Where Ni is the number of molecules in the sampled field cell at the
i-th sampling time step, N the total number of molecules sampled dur-
ing the total time steps of Nt in the field cell, �V the volume of the
sampled field cell, Fnum the number of real molecules each simulated
particle represents (weight factor), m mass of the simulated molecule.
cu, j , cv, j , and cw, j are the molecular velocity component in the x-, y-,
and z-directions, respectively, of the jth molecule sampled at the ith
time step. ρ is flow density. U, V, and W are the mean flow velocity in
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the x, y, and z directions, respectively. The thermal temperatures Tx,
Ty, and Tz in the x-, y-, and z-directions can be obtained as

Tx = m
k

⎧⎪⎨
⎪⎩

1
N

Nt∑
i=1

Ni∑
j =1

c2
u, j −

⎛
⎝ 1

N

Nt∑
i=1

Ni∑
j =1

cu, j

⎞
⎠2
⎫⎪⎬
⎪⎭ (5.1.21a)

Ty = m
k

⎧⎪⎨
⎪⎩

1
N

Nt∑
i=1

Ni∑
j =1

c2
v, j −

⎛
⎝ 1

N

Nt∑
i=1

Ni∑
j =1

cv, j

⎞
⎠2
⎫⎪⎬
⎪⎭ (5.1.21b)

Tz = m
k

⎧⎪⎨
⎪⎩

1
N

Nt∑
i=1

Ni∑
j =1

c2
w, j −

⎛
⎝ 1

N

Nt∑
i=1

Ni∑
j =1

cw, j

⎞
⎠2
⎫⎪⎬
⎪⎭ (5.1.21c)

The flow temperature and pressure can be obtained as

T = 1
3

(Tx + Ty + Tz) (5.1.22)

p =
(

1
Nt

NFnum

�V

)
kT (5.1.23)

From Eqs. (5.1.16–23), it can be seen that only the number of
molecules Ni and the following six summations are necessary to be
saved to obtain the macroscopic flow properties of flow property of den-
sity, pressure, temperature, and velocity during sampling procedure.

Nt∑
i=1

Ni∑
j =1

cu, j

Nt∑
i=1

Ni∑
j =1

cv, j

Nt∑
i=1

Ni∑
j =1

cw, j

(5.1.24)
Nt∑
i=1

Ni∑
j =1

c2
u, j

Nt∑
i=1

Ni∑
j =1

c2
v, j

Nt∑
i=1

Ni∑
j =1

c2
w, j

The aerothermodynamic properties on the surface are sampled from
the momentum flux and energy flux on the surface. For example, the
pressure on the surface pw can be obtained by sampling the difference
between the normal momentum flux on the surface before and after
gas–surface interaction per area �A during sampling time ts.

pw = Fnum

ts · �A

Ns∑
j =1

m
(
cr

n, j − ci
n, j

)
(5.1.25)

where cn the normal component of molecular velocity, Ns the total num-
ber of molecules impacting the surface element during sampling time ts.
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The superscripts “i” and “r ” denote the values of before and after impact-
ing the wall element, respectively. The shear stress τw on the surface
can be obtained as

τw = Fnum

ts · �A

Ns∑
j =1

m
(
cr

t, j − ci
t, j

)
(5.1.26)

where ct is the molecular velocity of the tangential component. And
heat transfer rate can be obtained by sampling the difference of energy
fluxes. That is,

qw = Fnum

ts · �A

⎡
⎣ Ns∑

j =1

(
1
2

mc2
j

)i

−
Ns∑
j =1

(
1
2

mc2
j

)r
⎤
⎦ (5.1.27)

5.2 DSMC Accuracy and Approximation

5.2.1 Relationship between DSMC and
Boltzmann equation

The general form of the Boltzmann equation for a simple dilute gas,
Eq. (2.6.10) described in Chap. 2, defines the relationship between the
velocity distribution function and its dependent variables. It is the gov-
erning equation for gases in the entire transition regime of interest in
this study. The Boltzmann equation is derived from the fundamental
principles of classical kinetic theory and is restricted to dilute gas flows
in molecular chaos.

The DSMC method, on the other hand, is derived from the same first
principles as the Boltzmann equation, but not from the equation it-
self. Due to its ties to classical kinetic theory, the DSMC method is
subject to the same restrictions of dilute gas and molecular chaos.
Unlike the Boltzmann equation, however, the DSMC method does not
require the existence of inverse collisions that are dictated by sym-
metry considerations of binary dynamics. This allows the application
of the method to some complex phenomena, such as ternary chemical
reactions, that are inaccessible to the Boltzmann equation.

A derivation of the Boltzmann equation from DSMC procedures could
be obtained for hard sphere molecules based on the NTC collision tech-
nique. The left-hand side of Eq. (2.6.10) states that the quantity nf
remains constant in the phase space in the absence of collisions if one
moves along with a group of molecules in a Lagrangian manner. Simi-
larly, the DSMC procedures trace the paths of the simulated molecules
in the phase space, and the processes are consistent with the Boltz-
mann formulation. Any discrepancy between DSMC and the Boltz-
mann equation would be from the collision term on the right-hand side.
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The collision term conventionally comprises the gain and loss integrals.
The loss term represents the rate of scattering by collision out of the
phase space element dc dr per unit volume of this element. This rate of
scattering may be derived from the DSMC procedures by the following
arguments.

The spatial cell in the simulated flow may be treated as the element
dv of physical space, and the set of Nm molecules in the cell defines
the velocity distribution function f. The number of molecules of class c
within the cell at time t is nf dc dv, or Nm f dc. Now consider a collision
between a molecule of this class and one of class c1. The probability of
finding a molecule in class c1 is f 1dc1, with f 1 being of f at velocity
c1, and the collision rate for such collisions is

ν = (Nm f dc)( f 1dc1)
�t

(5.2.1)

For HS molecules, the increment of time �t contributed by such a col-
lision to a counter for class c molecules is given from Eq. (5.2.1) by

�t = 1
nσT cr

(5.2.2)

and substituting Eq. (5.2.2) into Eq. (5.2.1) yields to

ν = n2σT cr f f 1dc1 dc dv (5.2.3)

Finally, the rate of molecules per unit volume scattering out of class
c, i.e., the loss term, is obtained by substituting the definition of σT ,
integrating class c1 in Eq. (5.2.3) over the velocity space, and dividing
by dc dv. The resulting expression∫ ∞

−∞

∫ 4π

0
n2( f f 1)cr σd�dc1 (5.2.4)

is identical to the loss term of the Boltzmann equation. The gain term in
the Boltzmann equation can be derived in a similar manner as that for
the loss term through the existence of inverse collisions for the simple
monatomic gas model. The DSMC method selects collision partners and
replaces their precollision velocity components by appropriate postcol-
lision values. Therefore, the correct gain term is automatically obtained
without requiring the existence of inverse collision. This holds irrespec-
tive of the existence of inverse collisions, indicating that the DSMC
method is less restrictive than the Boltzmann equation.

Since the procedures of the DSMC technique are consistent with the
formulation of the Boltzmann equation, the results of DSMC provide
accurate solutions to the Boltzmann equation as long as the numerical
approximations are kept within allowable bounds.
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5.2.2 Computational approximations
and input data

Two distinct types of errors are associated with a DSMC simulation.
The first type is caused by the computational approximations inherent
to the method. These include errors due to the finite cell sizes in the
physical space, the finite size of the time step, the ratio of actual to
simulated molecules, and the various aspects in the implementation
of the boundary conditions. The second type of error is the result of
uncertainties, or inadequacies, in the physical model input parameters.
These include uncertainties about the type of species modeled, their
interaction cross-sections, and the other aspects of boundary conditions
and interactions.

When the cell size in physical space is large, macroscopic gradients
are typically underpredicted. For accurate DSMC simulations, cell di-
mensions must be smaller than λ in each spatial direction. Another com-
putational approximation involves the time interval over which molec-
ular motions and collisions are uncoupled. The effects of the time step
are negligible if the time step �td is smaller than the mean collision
time of molecules. DSMC procedures are not subject to a stability crite-
rion such as the Courant-Friedrichs-Lewy (CFL) condition of continuum
CFD. Disturbances propagate at sound or shock speed throughout the
DSMC computational domain, even though the ratio of spatial cell size
to time step may be a smaller value.

Large values of the ratio Sm of the actual to simulated molecules
are typical in most applications. This can lead to unacceptable levels of
statistical scatter in a single independent computation. To reduce the
scatter to acceptable levels, a large ensemble average is needed. Typical
values of Sm used may range from 109 to 1018 for a three-dimensional
computation. In problems involving chemical reactions or thermal radi-
ation, large value of Sm is particularly problematic. Important physical
effects, caused by only a few molecules, may not be simulated properly.
In these cases, special remedies, such as those proposed by Bird (1994)
and Boyd (1996) are required.

The errors associated with various models and input data are not
easily summarized as those inherent to the method itself. Input data for
the molecular models may consist of the type of molecular gas-surface
interactions or the total collision cross-section. The errors associated
with various molecular models and input data are complex and can not
be analyzed readily.

Similar to continuum CFD, DSMC results are strongly influenced by
the treatment of surface interactions. The DSMC method relies on gas-
surface interaction models that are simple, fast, and accurate for a wide
range of engineering problems. The primary types of molecular-surface
interactions invoked in DSMC have been briefly described earlier.
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The thermal accommodation coefficient aT is an input parameter, which
is usually determined experimentally. Another input data is the total
collision cross-section σT , which is the equivalent of chemical reactions
in continuum CFD. The models for σT may range from the simplest
hard-sphere model to complex models for inelastic collisions that ac-
count for vibrational and rotational nonequilibrium (Borgnakke and
Larsen 1975). The HS model is more or less adequate for idealized
monotonic gas computations but not for real gases. The VHS model
(Bird 1992) corrects the primary deficiency in the hard-sphere model,
namely, an inaccurate representation of the total collision cross sec-
tion, while retaining its simplicity in implementation. The VSS model
(Koura and Matsumoto 1991; 1992) further refines the VHS model by
improving postcollision scattering dynamics. The GHS model (Hash
and Hassan 1993) extends the VHS model to allow relaxation of the
internal modes.

5.3 Information Preservation Method

5.3.1 Overview

IP development and applications. The DSMC method (Bird 1994) is one
of the most successful numerical approaches for simulating rarefied gas
flows. With appropriate outflow boundary conditions, it can also be used
to simulate microflows. However, the statistical scatter associated with
DSMC prevents its further applications to microflow of extremely low
speeds. The information preservation (IP) method has been developed
to overcome this problem of DSMC.

Fan and Shen (1998) first proposed an IP scheme for low-speed rar-
efied gas flows. Their method uses the molecular velocities of the DSMC
method as well as the preserved information velocities that record the
collection of an enormous number of molecules that a simulated particle
represents. The information velocity is based on an inelastic collision
model, and sampled in the same manner as that for the macroscopic
flow velocity. IP has been applied to low-speed Couette, Poiseuille, and
Rayleigh flows in the slip, transition and free-molecular flow regimes
with very good agreement with the corresponding analytical solutions
(Fan and Shen 2001). They showed that the IP scheme could reduce com-
putational time by several orders of magnitude compared with a regular
DSMC simulation. This scheme has also been applied in the simulation
of low-speed microchannel flows (Cai et al. 2000) and the flow around
a NACA0012 airfoil (Fan et al. 2001) with isothermal wall conditions.

The model formulation described in the above IP applications is not
general. Sun and Boyd (2002) developed a general two-dimensional IP
method to simulate subsonic microflows. The preserved macroscopic
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information is first solved in a similar manner to that for the micro-
scopic information in the DSMC method and is then modified to include
pressure effects. With modeling for gas energy transport included, the
IP method has been successfully applied to simulate high-speed Couette
flow, Rayleigh flow, and the flow over a NACA0012 airfoil.

Statistical scatter in DSMC. IP addresses the statistical scatter inherent
in the DSMC method. Statistical scatter also imposes serious limitation
in the application of DSMC. To illustrate this fact, Fan and Shen (2001a)
considered the DSMC simulation of a uniform flow with velocity U. The
macroscopic velocity uc, sampled in a field cell, can be decomposed as

uc = 1
N

N∑
i=1

ci

(5.3.1)

= U + 1
N

N∑
i=1

ct,i

where N is the sample size in the field cell, ci is the molecular velocity
of the ith particle. According to kinetic theory, ci consists of the mean
flow velocity U and the thermal velocity ct,i. The thermal part ct,i is
random and obeys the Maxwellian distribution in an equilibrium gas.
The DSMC method collects ci and uses it to compute both the molec-
ular trajectory and field velocity uc. Equation (5.3.1) shows that it
is the explicit term 1

N

∑N
i=1 ct,i that makes uc different from the ex-

act value of U. This thermal velocity term is the major contributing
source to statistical scatter in the DSMC method. As has been shown
in Chap. 2, the most probable thermal speed is about 1.2 times that
of the speed of sound for monatomic, ideal gas. Therefore, for high-
speed hypersonic flows, the statistical scatter is small. For low-speed
microflows, on the other hand, the DSMC scatter can become large.
The IP techniques have been proposed to reduce the statistical scatter
of DSMC.

IP of Fan and Shen. Based on the above kinetic analysis of molecular
velocity ci, Fan and Shen (1998) first proposed an IP technique. They
assigned each simulated molecule in the DSMC method two types of
velocities. One is the molecular velocity ci to compute the molecular
motion following the same steps in the DSMC method. The other is
the information velocity vip,i. vip,i is the collective velocity of the
enormous number of real molecules that a single simulated molecule
represents, and therefore corresponds to U. The information velocity
is different from macroscopic velocity, which actually is the average
of molecular velocities over all the real molecules represented by the



Statistical Method 101

simulated molecules in the DSMC method. The IP technique employs
the information velocity to compute the macroscopic velocity,

uc = 1
N

N∑
i=1

vip,i = U (5.3.2)

Therefore, the statistical scatter source 1/N
∑N

i=1 ct,i in the DSMC sam-
pling Eq. (5.3.1) does not appear in the IP sampling Eq. (5.3.2). For
instance, for a uniform flow of velocity U, the macroscopic velocity cal-
culated by using Eq. (5.3.2) is the exact value of U regardless of the
sample size.

The IP technique of Fan and Shen (1998) used the DSMC simulation
particles as a carrier and preserved the mean flow velocity U as the in-
formation velocity of the simulated molecules. This technique does not
affect the DSMC procedures. Particles move along their trajectories and
recalculate their translational velocities and internal energy with ev-
ery collision or wall interaction. The IP method also uses the molecule
distribution and molecular collision in the DSMC procedures to pre-
serve the information velocity, although by different rules. In addition
to molecular collision, the IP technique also considered the pressure
gradient as an external force that caused changes to the particle veloci-
ties. Arguing that the field cell can be regarded as a control volume from
a macroscopic point of view, Fan and Shen used the following equations
for the conservation of mass and momentum of the preserved variables,

∂

∂t
nc + ∇ · (nv̄ip,i)c = 0 (5.3.3)

∂

∂t
(v̄ip,i) + [∇ p/(nm)]c = 0 (5.3.4)

where nc is the number density of molecules in a cell control volume,
∇ p the pressure gradient in the cell, and i the index to the molecules
in the cell. In the IP molecular collisions, the preserved information
velocities are divided equally. This collision model is primitive. Sun
and Boyd (2002) has suggested an improved model and it is described
in Sec. 5.3.4.

The original IP technique of Fan and Shen (1998) was based on an
isothermal assumption that variations of the translational tempera-
ture are small and can be neglected. This assumption holds well for
low-speed microflows. Sun and Boyd (2002) modified the approach to
consider the translational temperature change in a general form and
developed an improved collision model. The following discussions will
focus on the IP method of Sun and Boyd (2002).
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5.3.2 IP governing equations

Gas flows can generally be described by the density, velocity, and tem-
perature in the flow field. In the IP scheme of Sun and Boyd (2002), each
simulated particle has the following information: location, microscopic
velocity, internal energy, macroscopic density, macroscopic velocity, and
macroscopic temperature. Because the particle’s location, microscopic
velocity, and internal energy are handled by the DSMC method, only
the preserved macroscopic information requires modeling.

To clarify the connection between the macroscopic information and
the microscopic properties of particles in gas flows, two sets of velocities
are defined for a particle i : the molecular velocity ci and the preserved
macroscopic velocity vip,i. With the mean velocity of the flow field writ-
ten as c0, they hold the following relationship with scatter c′

i, c′′
i , and

c′′′
i as

ci = c0 + c′
i (5.3.5)

vip,i = c0 + c′′
i (5.3.6)

c′′′
i = c′

i − c′′
i (5.3.7)

Therefore,

ci = vip,i + c′′′
i (5.3.8)

The information preserved equations (IPE) can be obtained by sub-
stituting Eq. (5.3.8) into the moment Eqs. (4.2.7), (4.2.10), and (4.2.14)
without an external force.

∂

∂t
ρ + ∇ · (ρv̄ip,i) = 0 (5.3.9)

∂

∂t
(ρv̄ip,i) + ∇ · (ρciv̄ip,i) = −∇ p + ∇ · τ ip (5.3.10)

∂

∂t

(
1
2

ρ
(
v2

ip,i + ξ RT ip,i
))+ ∇ ·

(
1
2

ρ
(
v2

ip,i + ξ RT ip,i
)
ci

)
= ∇ · hip − ∇ · ( pv̄ip,i) + ∇ · (v̄ip,i · τ ip) (5.3.11)

where

τ ip = −(ρc′
ic

′′′
i − pI) (5.3.12)

p = nkT̄ i (5.3.13)

hip = −1
2

ρc′
ic′′′2

i (5.3.14)

Equation (5.3.12) gives the viscous stress tensor, Eq. (5.3.13) the pres-
sure, and Eq. (5.3.14) the heat transfer vector. Equations (5.3.9–11)
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correspond to the transfer equation for molecular quantity Q in the con-
servative form for the preserved mass (Q = m), the preserved momen-
tum (Q = mvip,i), and the preserved energy

[
Q = 1

2 m(v2
ip,i + ξ RT ip,i)

]
.

Note that T ip,i in Eq. (5.3.11) is defined by

T ip,i = c′′′2
i /(ξ R) (5.3.15)

which is different from the thermal temperature T = c′2
i /(ξR). The

thermal temperature T can be obtained from the preserved information
T ip,i,

T = T̄ ip,i + v2
ip,i − v̄2

ip,i

ξR
(5.3.16)

by writing the average of the total molecular energy as 1
2 c2

i = 1
2 (c2

0 +
ξ RT ) from Eq. (5.3.5) and 1

2 c2
i = 1

2 (v2
ip,i +ξ RT̄ ip,i) from Eq. (5.3.8), with

the assumption that v̄ip,i = c0.

5.3.3 DSMC modeling for the information
preservation equations

Equations (5.3.9) to (5.3.11) are the governing equations for the IP vari-
ables. They are, however, not a closed set of equations and closure mod-
els are needed. Direct mathematical modeling for some of the terms in
the IPE Eqs. (5.3.9)–(5.3.11), such as the viscous stresses and the heat
fluxes, are very difficult. Attempts to model the information tempera-
ture have been made (Fan and Shen et al. 2001; Sun 2001). Sun and
Boyd (2002) have reported some success in high-speed Couette flows
and NACA0012 flows.

In the DSMC procedures, the transport of particle mass, momen-
tum, and energy are caused by particle movement, particle collision,
and external force (if it exists). As was shown earlier, these processes
are consistent with the Boltzmann equation. According to IPE, these
mechanisms also cause the transport of the preserved mass, momen-
tum, and energy for each simulated particle. The convective terms in
IPE Eqs. (5.3.9) to (5.3.11) are in the same form as the convective terms
in Eqs. (4.2.7), (4.2.10), and (4.2.13), which describe the particle move-
ment in the DSMC procedure. That means, the particle movement in IP
can be described by the particle movement in the DSMC procedures. As
a result, the IP technique uses the DSMC movement as its carrier for
the preserved information in the simulation of gas flows. This, however,
is not to say that the amount of the transfer of the preserved informa-
tion as a result of the particle movement is the same as that of the
molecular momentum and energy transfer.
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The molecular collision gives rise to the viscous stress and the heat
flux effects in DSMC as well as IP. As shown in kinetic theory, the
viscous stress

τDSMC = −(ρc′
ic

′
i − pI) (5.3.17)

and heat transfer flux

hDSMC = −1
2

ρc′
ic′2

i (5.3.18)

are accurately calculated in DSMC simulations. To account for their
difference, the viscous stress and heat transfer flux in the IP technique
can be written as

τ ip = τDSMC + �τ ip (5.3.19)

hip = hDSMC + �hip (5.3.20)

Fan and Shen (1998, 2001) showed that, for low-speed rarefied gas
flows where only factors affecting the momentum transport were con-
sidered, the preserved information velocities obtained in the IP simula-
tion agreed well with the DSMC solutions. Therefore, the difference in
the viscous stress between DSMC and IP approaches could be neglected
in momentum transport. That is, �τ ip = 0. The difference in the energy
transport �hip has been considered by Sun and Boyd (2002) and their
model is described in section 5.3.4.

With the use of the particle movement simulated in the DSMC pro-
cedure as the information carrier, the convection term of preserved
momentum can be completely accounted for in the DSMC procedure
if �τ ip = 0. The convection term of preserved energy contains third-
order correlations, much more complicated than that for the preserved
momentum. Usually, it is different from the convection term of particle
energy in Eq. (4.2.13). If we take the difference between the convection
terms of Eqs. (5.3.11) and (4.2.13) and combined it into �hip as energy
flux, the second term in the left-hand side of Eq. (5.3.11) can be taken
off in the DSMC procedures. Therefore, IPE for the correction of the
preserved mass, momentum, and preserved energy transport can be
reduced to

∂

∂t
ρ = −∇ · (ρv̄ip,i) (5.3.9a)

∂

∂t
(ρcvip,i) = −∇ p (5.3.21)

∂

∂t

(
1
2

ρc
(
v2

ip,i + ξ RT ip,i
)) = ∇ · (�hip,c) − ∇ · ( pv̄ip,c) (5.3.22)
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where the viscous dissipation term has been assumed negligible in en-
ergy transport. Equations (5.3.9a), (5.3.21), and (5.3.22) are referred to
as the control equations in IP. Equation (5.3.9a) forces the mass con-
servation of preserved mass based on cell average. Equations (5.3.21)
and (5.3.22) account for the microscopic mechanisms for simulated par-
ticles in a sense of preserved information that are not included in the
DSMC procedure, yet still contribute to the rate of change of the pre-
served momentum and energy. It can be seen that the transport of the
preserved momentum and energy in IP results from additional factor
of the pressure gradient, which is true because the pressure gradient
effect is always considered from macroscopic point of view. In these
control equations, the quantities on the right-hand side and the den-
sity ρc on the left-hand side are field properties of the cell where the
simulated particles stay at the calculation time t. All these variables
can be calculated, except for the first term on the right-hand side of
Eq. (5.3.22), ∇ · (�hip,c). The energy flux �hip,c needs physical model-
ing. In principle, modeling �hip,c should include the difference in the
convection terms of energy Eqs. (5.3.11) and (4.2.13) and the difference
in disturbance energy diffusion based on thermal fluctuation. That is,

�hip,c = −1
2

ρ
(
v2

ip,i − c2
0

)+ ξ R(T ip,i − T ) ·ci − 1
2

ρ
(
c′

ic′′2
i −c′

ic′2
i

)
(5.3.23)

It can be seen from Eqs. (5.3.22) and (5.3.23) that the particle movement
has an additional effect on the preserved energy transport in IP.

5.3.4 Energy flux model for the preserved
temperature

Kinetic theory for stationary monatomic gases shows that the average
internal energy of the molecules crossing a surface element exceeds
that in a spatial element by a factor 4/3 (see App. 5B for details). That
is, these molecules have an average translational energy of 2kT for
stationary gases with temperature T. However, the average transla-
tional energy is 3

2 kT for all the spatial molecules. This is because the
probability for fast molecules to cross a surface element per unit time is
greater than the corresponding probability for slower molecules. Phys-
ically, it can be understood that molecules crossing a surface element
carry an additional energy of 1

2 kT on an average. That is, their pre-
served average translational energy can be modeled as

1
2

c′′′2
i = 3

2
R(T + T a) (5.3.24)
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where

T a = 1
3

T (5.3.25)

for the preserved velocity v̄ip,i = 0. In the DSMC procedure, the field
is sampled based on field cells. Therefore, the term ∇ · (�hip,c) in
Eq. (5.3.22) corresponds to the additional energy transport carried by
the molecule crossing its cell interface from the viewpoint of preserved
information.

Sun and Boyd (2002) proposed an approximate model to describe
the additional energy transport for the IP technique, where a flow of
two monatomic gases separated by a plate is considered as shown in
Fig. 5.3.1. The temperature on the left side of the plate is T1 and the
right side is T2. The particles preserve the macroscopic temperature
information with T1 or T2, and the averaged translational energy with
3
2 kT1 and 3

2 kT2 for the two groups of particles, respectively. The two
gases mix together after the plate is suddenly removed. Some molecules
described by T1 move to the other side, transfer energy of 3

2 kT1 plus
an additional 1

2 kT1 to the other side on an average, and vice versa.
Assuming that number of particles crossing in each direction is equal,
the net energy flux based on the moving particles is 3

2 k(T1−T2) plus the
additional 1

2 k(T1 − T2). This process is modeled by assuming that the
T1 particles transfer 3

2 kT1 plus an additional 1
2 k(T1 −T ref) to the other

side, and the T2 particle transfer 3
2 kT2 plus an additional 1

2 k(T2 −T ref)
to the other side, where T ref is a reference temperature. Therefore, the
IP approach captures the net energy flux across an interface from a
viewpoint of macroscopic average.

In the energy model, a particle carries an additional energy when it
crosses a field cell interface. The additional energy is “borrowed” from
all the other particles in the same cell, which means other particles

12
3

2
1 kT= 22

32
2
1 kTcm i

2cm i =

Figure 5.3.1 Stationary monatomic gases separated by a plate. (Sun and Boyd 2002.)
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need to share this energy to satisfy the conversion of energy. The addi-
tional energy is taken as 1

2 k(T − T ref), where T ref is very close to the
preserved temperature T of the particle. The part 1

2 kT ref, in the addi-
tional energy of one particle, is balanced by another particle such that
the net flux across an interface can be appropriately modeled. For the
stationary gas flow, the number of particles crossing each direction is
the same, and the reference temperature can be taken as the tempera-
ture on the interface that a particle crosses, which can be interpolated
from the preserved temperatures of two neighboring cells. Then the
effect of the additional energy 1

2 kT ref of a particle can be balanced by
another particle that crosses the same interface from the other direc-
tion. For the steady flow with small bulk velocity, however, the number
of particles crossing in each direction is not the same, but very close.
The additional energy 1

2 kT ref of most particles crossing an interface
can be balanced by other particles crossing the same interface from the
other side, and the additional energy 1

2 kT ref of the particles that are not
balanced needs to be balanced by another means. Statistically, there is
another molecule leaving a computational cell from one interface when
a molecule enters the cell through another interface for steady flows.
Therefore the additional energy 1

2 kT ref of the particles that enter a cell
from one interface and are not balanced by the above means can be ap-
proximately balanced by particles leaving the cell from other interfaces
because the difference of the reference temperatures (the flow temper-
atures on different interfaces) is relatively small. Hence, the additional
energy transfer model can model the net energy flux approximately for
steady flows. For unsteady flows, the model can also be a good approxi-
mation if the frequency is low or the temperature variation is small. In
the implementation, the IP method dedicates an additional variable T a
for particles to describe the additional energy 1

2 k(T −T ref) as 1
2ξkT a. As

stated earlier, the additional energy is borrowed from other particles, so
a new variable T a,c is preserved for cells to record the borrowed energy
as 1

2ξkT a,c. At the end of each time step, the borrowed energy is evenly
provided by all the particles in the cell to maintain the conservation
of energy.

5.3.5 IP implementation procedures

In general, the IP method preserves macroscopic information in the in-
dividual particles simulated in the DSMC procedures, and updates the
preserved information every several time steps of particle movement
and particle collision. IP obtains flow field information by sampling the
preserved information. This procedure is illustrated in Fig. 5.3.2.

In the IP technique, each particle has the following information: parti-
cle’s location, particle’s microscopic velocity, internal energy, preserved
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Start

Stop

Read data

Initialize molecules 
and boundaries

Move molecules within ∆td
Compute interactions with boundary

Set constants

Reset molecule indexing

Compute collisions

Sample flow properties

Print final results

N > Niteration?
No

Yes

Initialize molecule 
and cell information

Model additional 
energy transport

Model IP collision

Modify information: 
 Update molecular information 
 Sample the cell information

Figure 5.3.2 DSMC-IP flowchart.

velocity vip,i, preserved temperature T ip,i, and preserved additional
temperature T a,i, as well as the following information for each com-
putational field cell: the preserved density ρc, preserved velocity vc,
preserved temperature T c, and preserved additional cell temperature
T a,c. They are initialized by the ambient condition with the preserved
additional temperature set as zero. Next, all particles update preserved
information according to Eqs. (5.3.91), (5.3.21), and (5.3.22), along with
the kinetic processes modeled by the DSMC procedure. Basically, the
IP implementation is based on the DSMC procedures, as shown in
Fig. 5.3.2. In the DSMC-IP flowchart, the key steps for IP are shown
in dash-lined boxes. In each time step, one movement, collision, and
modification step are executed to update the information preserved in
the simulated particles and field cells. The collision and movement step
are decoupled as a particle collision step and a particle movement step
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according to the regular DSMC procedures. A general implementation
of the IP technique can be summarized as follows:

1. Initialization: The information velocity vip,i and temperature T ip,i
of simulated particles and the information density ρc, temperature T c,
and velocity vc of computational field cells are set as the initial flow
condition, while the particle additional temperature T a,i and cell ad-
ditional temperature T a,c are assigned to zero. The molecular veloc-
ity, position, and internal energy are initialized as in the usual DSMC
procedures.

2. Particle movement: Particles move with their molecular velocity
in the usual DSMC procedures. However, the preserved information of
particles may change when they interact with interfaces. Possible types
of particle–interface interaction are:
2a. Migration between cells. When particle i moves from cell k to an-

other, momentum and energy transfer occur, and additional energy
transfer is required as described in the above energy flux model.
The preserved additional energy for the particle i and the cell k is
adjusted as

T ′
a,i = (T i − T ref)/ξ (5.3.26)

T ′
a,c,k = T a,c,k + T a,i − T ′

a,i (5.3.27)

where T ref is the interface temperature interpolated from the pre-
served cell temperatures of neighboring cells, and T a,c,k the addi-
tional temperature in cell k.

2b. Inflow and outflow. If a particle leaves the computational domain,
its preserved information are discarded. New particles that enter
the computational domain are assigned information according to
the boundary condition with T a,i = 0.

2c. Reflection from a wall. The preserved information of particles col-
liding with a wall is assigned with the collective behavior of a large
number of real molecules. That is, the normal velocity component
is reversed in a specular reflection, and the preserved velocity and
temperature of the reflected particles are set as the wall velocity and
temperature in a diffuse reflection. Also, the preserved additional
temperature is changed.

Specular reflection

T ′
a,i = −T a,i (5.3.28)

T ′
a,c,k = T a,c,k + T a,i − T ′

a,i (5.3.29)



110 Chapter Five

Diffuse reflection

T ′′
a,i = (T i − T ref)/ξ (5.3.30)

T ′
a,c,k = T a,c,k + T a,i − T ′′

a,i (5.3.31)

T ′
a,i = (T w − T ref)/ξ (5.3.32)

Here, T ′′
a,i represents the additional temperature of the particle

before impacting the wall, and T ref = √
T i · T w the constant gas

temperature of collisionless flow between two plates with one at T i
and the other at T w (Sun and Boyd 2002).

2d. Reflection from a symmetric boundary. The normal velocity com-
ponent is reversed, and the parallel velocity component remains
unchanged, when a particle reflects from a symmetric boundary.

3. Particle collision: When particles collide with their collision part-
ner, their molecular momentum and energy transfer is modeled in the
usual DSMC collision procedure. In the algorithm, the indices of the
simulated particles are reset before the collision step. In the collisions,
changes in the preserved velocity and temperature should be appro-
priately considered. A collision results in an equilibrium state for the
particles; hence the preserved information of these particles tends to
be the same after collisions. A simple collision model is proposed as

v′′
ip,1 = v′′

ip,2 = (v′
ip,1 + v′

ip,2
)
/2 (5.3.33)

T ′′
ip,1 = T ′′

ip,2 = (T ′
ip,1 + T ′

ip,2

)
/2 + (v′

ip,1 − v′
ip,2

)2
/(4ξ R) (5.3.34)

T ′′
a,1 = T ′′

a,2 = (T ′
a,1 + T ′

a,2

)
/2 (5.3.35)

Equations (5.3.33) and (5.3.34) conserve the information momentum
and energy, respectively, for collision molecules. To improve the accu-
racy in calculating the flow viscosity and thermal conductivity, a phe-
nomenological collision model for IP has been proposed by Sun and Boyd
(2002).

After the procedures of particle movement and collision are consid-
ered, the additional energy preserved by the cell k is shared by all the
particles (N p) in the cell, and the additional energy preserved will be
reset. That is,

T ′
ip,i = T ip,i + T a,c,k/Np (5.3.36)

T ′
a,c,k = 0 (5.3.37)
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4. Particle information modification: The preserved information of
particles is modified with the pressure field during the modification
step. Equations (5.3.21) and (5.3.22) are solved by a finite volume
method.

vt+�t
ip,i − vt

ip,i = − �t
ρc�V

∮
cell

pc ds (5.3.38)

(
v2

ip,i

2
+ ξ RT ip,i

2

)t+�t

−
(

v2
ip,i

2
+ ξ RT ip,i

2

)t

(5.3.39)
= − �t

ρc�V

∮
cell

pcv̄ip,c · ds

Here, �V is the volume of a field cell, and d ⇀s the surface area
vector of the cell. The information on the cell surface is linearly
interpolated using the information of the neighboring cells. To avoid
statistical effects due to number density fluctuation of particles in a
cell in Eqs. (5.3.38) and (5.3.39), the density ρc is replaced with the
ratio of real mass of total represented molecules in the cell to the vol-
ume of the cell.

Note that Eqs. (5.3.38) and (5.3.39) are the Lagrangian inviscid fluid
dynamics equations. Therefore, this step of IP updates the macroscopic
information of simulated particles according to the inviscid fluid
dynamics with Lagrangian method.

5. Cell information update: After modifying particles with their pre-
served information, the preserved information for cells is updated by
averaging the information of all the Np particles in the cell.

v′
c =

Np∑
i=1

(
vip,i

Np

)
(5.3.40)

T ′
c =

Np∑
i=1

(
T ip,i + T a,i

Np

)
(5.3.41)

ρ ′
c = ρc − �t

�V

∮
cell

ρcv̄ip,c · ds (5.3.42)
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6. Flow property sampling: The flow properties are obtained by using
time average of the preserved information. The flow velocity, tempera-
ture, and density are obtained as

Vf =
Nstep∑
t=1

(
vc,t

Nstep

)
(5.3.42)

T f = 1
Nstep

Nstep∑
t=1

⎡
⎢⎣T c,t + 1

ξ R

⎛
⎜⎝Np,t∑

i=1

v2
ip,i

Np,t
−
⎛
⎝Np,t∑

i=1

vip,i

Np,t

⎞
⎠2
⎞
⎟⎠
⎤
⎥⎦ (5.3.43)

ρf =
Nstep∑
t=1

(
ρc,t

Nstep

)
(5.3.44)

And the flow fluxes properties on the wall, such as the pressure, shear
stress, and heat transfer, can be given as

pw = pc + 1
ts · �A

Ns∑
j =1

m
(
vr

ip,n, j − vi
ip,n, j

)
(5.3.45)

τw = 1
ts · �A

Ns∑
j =1

m
(
vr

ip,τ, j − vi
ip,τ, j

)
(5.3.46)

qw = 1
ts · �A

⎡
⎣ Ns∑

j =1

(
1
2

mv2
ip, j + ξ

2
k(T ip, j + T a, j )

)i

−
Ns∑
j =1

(
1
2

mv2
ip, j + ξ

2
k(T ip, j + T a, j )

)r
⎤
⎦ (5.3.47)

where Ns is the total number of molecules compacting the wall element
during the sampling time ts, �A the area of the wall element, pc the
cell pressure close to the wall element. The subscript “n” represents the
normal component of the molecule information velocity, and “τ ” the tan-
gential component. The superscript “r” and “i” denote the values before
and after the collision with the wall element, respectively.

Steps 2 to 5 are repeated until the flow reaches a stationary state,
following the similar procedures of the usual DSMC method. Step 6 is
used to obtain the macroscopic properties of the simulated flow.
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5.4 DSMC-IP Computer Program
and Applications

5.4.1 IP1D program

In App. 5C, a Fortran 90 code, called IP1D.F90, has been written to
apply Fan’s IP, Sun’s IP, and a conventional DSMC method to Couette
flows in a monatomic gas. The geometry is one-dimensional with a unit
depth in the z-direction and two plane, diffusively reflecting walls that
are normal to the x-axis. When compiling, there are two options to
choose the different IP techniques, macro “IPFAN” for Fan’s IP and
macro “IPSUN” for Sun’s IP. The conventional DSMC method is used
if neither option is selected. Again, the IP technique does not affect
the DSMC solution. IP1D.F90 becomes a DSMC solver when the lines
inside the IP macros are removed.

In the implementation, the HS molecule model is used for the DSMC
elastic binary collision process. In the gas-surface interaction, the
Maxwellian diffuse reflection model is considered. In the calculation,
this program employs normalized variables with length normalized
by the mean free path in the initial gas λ0 = 1/(

√
2πd 2n). A Knudsen

number is defined as the ratio of λ0 to the distance h between the lower
and upper boundaries so that the distance is effectively the inverse
Knudsen number of the flow. Temperature and density are normalized
by their values in the initial gas. Velocity is normalized by

√
2R. And

the time step �t is a value that factor, dtr, times the mean collision time
of molecules in the initial gas, tc,0. That is,

�t = dtr · tc,0 (5.4.1)

In the demonstration code, dtr is set 0.2. The mean collision time is

tc,0 =
(

1
2

√
π/
√

T 0

)
(λ0/

√
2R) (5.4.2)

for HS molecule model. To improve the DSMC efficiency and accuracy,
the transient subcells (Bird 2000) is used.

Parameters mnm, mcell, mmc, and ndiv are defined in the module
dimHeader that sets the maximum number of simulated molecules,
the maximum number of field cells, the maximum number of molecules
in a cell, and the number of subcells in each field cell, respectively.
Global variables associated with the calculation are declared in mod-
ule calculation, molecular species properties in module species, other
molecular properties in module molecules, flow properties of each field
cell in module flowField, and variables for field and surface sampling
in module sampling. The variables in subroutine inputData set the
data for a particular run of the program. The main program Couette
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contains an inner loop over the number nis of time step between flow
samples and a second loop over the number nso of sample between
the output files for the flow field, wall properties, and the updating
of the restart file couette.res. Files FieldS.dat and FieldU.dat are
the DSMC long-time averaged and instantaneous solution, respectively.
FieldIPS.dat and FieldIPU.dat are the IP long-time averaged and in-
stantaneous solutions, respectively. The program stops after 10*NPT
cycles have been completed. Apart from these loops, the main program
calls subroutines that are modularized for the standard DSMC and IP
procedures.

Subroutine setInitialState is called with the parameter nql equals
to 1 for a new run, which is set in the subroutine inputData. Or, sub-
routine readRestart is called with nql equals to 0. With the program
restarting from a previous calculation, subroutine clearSteadySam-
ple is called to clear and initialize the field and wall samplings for
long-time average quantity when variable nqls equals to 1. The sub-
routine setInitialState sets the physical constants and normalizing
parameters for length, time, and velocity. It also initializes the flow
field and individual molecule. The flow field is divided into ncy cells
of uniform width cy, and each of these is divided into ndiv equal-
width subcells. The locations and velocity components of the simulated
molecules are set randomly according to the initial state of the gas.
Finally, the molecules are sorted in the order of field cells and subcells
by calling indexMols. Because the flow is one-dimensional, only the y-
coordinate is stored for each molecule. All three-velocity components are
saved, since the collisions are computed as three-dimensional events.

Subroutine moveMols moves the molecules through distances ap-
propriate to the time interval dtm. The information velocity pvip and
information temperature ptip of the simulated molecules evolve with
the momentum and energy transport, respectively, while molecular ve-
locities do not change. When a molecule collides with the surface at
y = 0 and y = ybn, the Maxwellian reflection model is implemented
in subroutine reflect. Assuming all the impacting molecules are diffu-
sively reflected with Maxwellian distribution, the velocity components
of the reflected molecule are

v = [− ln(R f )]1/2
√

2kT/m (5.4.3)

u = a sin b (5.4.4)

w = a cos b (5.4.5)

where
a = [− ln(R f )]1/2

√
2kT/m (5.4.6)

b = 2π R f (5.4.7)
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where R f denotes random fraction. The gas properties on the surface
are sampled before and after the reflection. The information veloci-
ties of reflected molecules are set to zero. The information temperature
and the additional temperature for the reflected molecule and field cell
are set according to the general IP step 2c. After the molecules com-
plete their movement for the time interval dtm, the molecule numbers
are re-sorted in a cross-referencing array ir in the order of the field
cells. Molecules from the same cells are potential collision pairs. Based
on the new cross-reference, subroutine aEnergy1 calculates the addi-
tional information temperature for the molecules and cells according to
Eqs. (5.3.26) and (5.3.27) in the general IP step 2a.

The NTC method and transient subcells technique are employed in
subroutine collisions to determine the appropriate set of collisions.
In the selection of collision pairs, the acceptance-rejection method is
applied. The acceptance rate of the collision pairs is sampled as,

cr

(cr )max
(5.4.8)

based on the HS molecular collision model. The maximum value of the
relative speed is initially set to the most probable speed of the molecules
at the initial temperature. Binary collision Eqs. (5.1.3) to (5.1.5) and
(5.1.9) to (5.1.11) for HS model are used to compute the postcollision
components of the molecular velocity. There is a parameter ipcol that
determines the collision model for IP technique. With ipcol equal to 1,
the simple collision model shown in Eqs. (5.3.33) to (5.3.35) is applied to
calculate the information velocity, information temperature, and addi-
tional information temperature of the collision molecules. The improved
collision model proposed by Sun and Boyd (2002) is also implemented
with ipcol equal to 2.

Subroutine aEnergy2 distributes the additional information energy
of a cell to all molecules in the cell according to Eqs. (5.3.36) and (5.3.37)
in the general IP step 3, after the procedures of particle movement and
collision. Subroutine IPupdate updates the right-hand-side terms of
Eqs. (5.3.40) and (5.3.42), which will be used to calculate mass, momen-
tum, and energy transport effects on the number density, information
velocity, and information temperature of molecules in the next time
step.

The flow properties in each cell are sampled in subroutine sample-
Flow, which includes IPsample. The output files for the flow field
and wall properties are generated in subroutine output according to
Eqs. (5.3.43) and (5.3.45), and the equations are identified in the com-
ment. Double precision is used for variables such as the total number
of collisions and long-time average samplings that are expected to vary
beyond the limit of single precision arithmetic.
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As mentioned earlier, the data that affect the dimensions of the arrays
is set in the module dimHeader. The test case sets the maximum
number of molecules to 1M (mnm = 1,000,000), maximum number of
cells 60 (mcell = 60) with 10 subcells per cell, and maximum number
of molecules per cell 0.2M (mmc = 200,000). The input parameters are
read from a file couette.in. There, the total number of the simulated
molecules is 1M. The initial flow has the Knudsen number of 0.01 at
temperature 300K and pressure 1 atm. The gas properties of argon are
set in subroutine inputData. The flow is sampled every other time step
and the output files are updated at intervals of 100 samples.

5.4.2 IP1D applications to
microCouette flows

The first application of the program is to validate the DSMC solutions
by using a continuum slip flow model (Liou et al. 2003). The model
solves the Navier-Stokes (NS) equations with Maxwell-Smoluchowski
slip boundary conditions to determine the slip velocity components and
the temperature jump at the upper and lower surface. A microCouette
flow between two plane surfaces is simulated. The upper and lower plate
move at a speed of 0.5Uw in the opposite directions. Uw is set to the most
probable molecular speed at the surface temperature T w = 1000K. The
gap between the two plates is 60 λ, where λ denotes the mean free path
of the initial argon gas. The Knudsen number based on the initial gas
state is about 0.017. Figure 5.4.1 shows a comparison of the vertical
distributions of velocity u normalized by Uw. The velocity profiles agree
well and both show a slight departure from a linear distribution.

Both the DSMC and NS solutions exhibit the expected compressibil-
ity effects. Because of viscous heating, the initial pressure increases to a
steady value around 1.05 atm, an increase of about 5 percent, as shown
in Fig. 5.4.2. The pressure is uniform across the flow, while the temper-
ature increases from the surface to the center of the channel. The rise
in the central portion of the flow is over 7 percent of wall temperature.
The comparison of the DSMC and NS temperature profiles are shown
in Fig. 5.4.3. The temperature jump on both surfaces is about 0.8 per-
cent over the wall temperature for both the DSMC and NS simulations.
Generally, the pressure and temperature distributions of DSMC agree
well with those of NS solution. The compressibility effects calculated by
the DSMC method are somewhat higher than those by the continuum
slip flow model.

The program has also been applied to compare the microCouette
solutions of the DSMC and Sun’s IP method. Fan’s IP does not cal-
culate the temperature, with the assumption of isothermal flow fields.
As a result, the velocity solutions obtained by Fan’s IP approach do
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Figure 5.4.1 Comparisons of the velocity profiles in the microCouette flow simu-
lated by DSMC and NS, at Kn = 0.017.
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Figure 5.4.2 Comparisons of the pressure profiles in the microCouette flow simu-
lated by DSMC and NS, at Kn = 0.017.
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Figure 5.4.3 Comparisons of the temperature profiles in the microCouette flow
simulated by DSMC and NS, at Kn = 0.017.
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Figure 5.4.4 Comparisons of the velocity profiles in the microCouette flow simu-
lated by DSMC and IP, at Kn = 0.01.
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Figure 5.4.5 Comparisons of the temperature profiles in the microCouette flow
simulated by DSMC and IP, at Kn = 0.01.

not differ significantly from those by Sun’s IP. Therefore, only Sun’s IP
solutions are shown in the following numerical experiments. The flow
parameters are largely the same as the simulated cases described ear-
lier, except that the wall temperature and the initial gas temperature
are both set to 300K and the plate gap is 100 λ(Kn = 0.01). Figure
5.4.4 shows the comparison of velocity profiles. It can be seen that the
velocity profiles obtained by the IP method agree very well with those
by the DSMC method. As shown in Fig. 5.4.5, the temperature distri-
bution simulated by the IP method agrees well with the DSMC method
near the surfaces. Near the center, the temperature obtained by the IP
technique is about 0.2 percent higher than that of the DSMC method.
Apparently, the collision model used in the current IP technique may
need further improvement.

5.5 Analysis of the Scatter of DSMC and IP

To compare the velocity scatter of DSMC and IP, monatomic gas is
considered for convenience and the velocity is normalized by a factor√

R. The mean x-component velocity Ũ and the standard deviation σũ
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of the molecular velocity ũi of the total number N of particles in a field
cell are

Ũ =
N∑

i=1

ũi/N (5.5.1)

σ 2
ũ =

N∑
i=1

(ũi − Ũ )2/N (5.5.2)

In the DSMC method, the temperature is sampled by

T = 1
3

(
σ 2

ũ,DSMC + σ 2
ṽ,DSMC + σ 2

w̃,DSMC

)
(5.5.3)

where σũ,DSMC, σṽ,DSMC, and σw̃,DSMC represent the standard deviation of
the DSMC velocity components in the x, y, and z directions, respectively.
From Eq. (5.3.16), it can be obtained that

T = T̄ ip,i + 1
3

(
σ 2

ũ,ip + σ 2
ṽ,ip + σ 2

w̃,ip

)
(5.5.4)

where σũ,ip, σṽ,ip, σw̃,ip are the standard deviation of the IP information
velocity components in the x, y, and z directions, respectively. In com-
parison, the standard deviation of the DSMC velocity is basically from
the thermal fluctuations and its value is in the order of gas tempera-
ture. The standard deviation of the IP velocity can be interpreted as
the statistical error deducted by the thermal fluctuation. It can be very
small value if the information temperature T̄ ip,i is well modeled.

In the following, the statistical scatters are observed in numerical ex-
periments with the micro-Couette flows of Kn = 0.01 introduced above.
All the data is obtained after 34,300 time steps, when the flow ap-
proaches the stationary state. Table 5.5.1 gives the mean velocities U
and V, and the standard deviations σu and σv of the molecular velocity
of the particles in the different field cells from the DSMC method. These

TABLE 5.5.1 Mean Velocity and Standard Deviation in Different
Cells from the DSMC Method, T = 300K, Kn = 0.01

y/λ N U (m/s) V (m/s) σu (m/s) σv (m/s)

0.8333 0.174E + 05 171.0540 2.4154 355.3231 354.0095
7.5000 0.169E + 05 143.3956 0.0586 354.9523 358.5170

14.1667 0.166E + 05 123.8581 3.1054 359.4852 360.6309
20.8333 0.166E + 05 102.4277 0.9865 357.8456 356.9699
27.5000 0.165E + 05 80.0715 1.1626 360.3816 363.7546
34.1667 0.166E + 05 54.0752 3.3344 365.5974 360.1658
40.8333 0.165E + 05 28.4963 −2.3811 366.5619 364.0483
49.1667 0.164E + 05 7.5551 0.1943 363.1191 363.5411
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data are sampled in one time step. From the table it can be seen that
the standard deviations of the molecular velocity are in the same order
of magnitude as the flow temperature in the cells. In the middle cells,
the deviations are at least two orders of magnitude higher than the
signals. Many more particles are needed in these cells in one time step
to suppress the noise. Table 5.5.2 shows the counterpart of Table 5.5.1
from the IP method. It is seen that the noise is decreased by two orders
of magnitude in the x direction, and even higher orders of magnitude
in the y direction.

Figure 5.5.1 compares the particle velocity phases obtained by the
DSMC and IP methods at the cell near the lower surface (y/λ = 0.8333).
Notice that the velocity phase from the IP method has been magnified
by 40 times to compare with that from the DSMC method. The velocity
phase for the IP method is compact, more than 40 times smaller and
narrower than the DSMC results. In the DSMC method, it spreads
almost homogeneously from its center as shown in Fig. 5.5.1b.

Figure 5.5.2 gives the statistical fluctuations of the mean velocity U
in the cell close to the lower plate (y/λ = 0.8333). The mean velocities
are obtained by 100 independent runs. Twelve hundred particles are
sampled for each run in Fig. 5.5.2a, while the sample size in Fig. 5.5.2b
is 10,000 per cell. In both Figs. 5.5.2a and 5.5.2b, the IP velocities are
very smooth, while there are large fluctuations in the DSMC velocities.
However, the DSMC fluctuations decrease significantly with the larger
sample size. Eight more sets of velocity fluctuations obtained with eight
more different sample sizes from 100 to 10,000 particles per cell. By
using statistical analysis of these velocity fluctuations, the velocity sta-
tistical scatter is obtained as 25.04 and 0.54 m/s with sample size of
100 particles per cell, in the DSMC and IP solution, respectively. Sam-
pling with 10,000 particles per cell, the statistical scatters become 2.64
and 0.05 m/s, for the DSMC and IP solutions, respectively. The prop-
erties of velocity statistical scatter associated with the DSMC and IP

TABLE 5.5.2 Mean Velocity and Standard Deviation in Different Cells
from the IP Method, T = 300K, Kn = 0.01

y/λ N U (m/s) V (m/s) σu (m/s) σv (m/s)

0.8333 0.174E + 05 169.6835 0.2722 7.0119 0.7678
7.5000 0.169E + 05 146.0909 0.0591 7.2623 1.0833

14.1667 0.166E + 05 123.0724 1.7150 7.3453 1.8157
20.8333 0.166E + 05 100.1639 0.0286 7.3023 0.8141
27.5000 0.165E + 05 77.2525 −2.6594 7.4039 1.0565
34.1667 0.166E + 05 54.5685 0.7335 7.4090 1.7231
40.8333 0.165E + 05 31.6614 −0.9568 7.3574 1.1672
49.1667 0.164E + 05 3.2754 −2.4789 7.3608 1.9621
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Figure 5.5.1 Comparison of the velocity phases in the cell at y/λ = 0.8333,
T = 300K, Kn = 0.01. (a) DSMC method; (b) IP method. Sample size is
17370.
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Figure 5.5.2 Comparison of the statistical fluctuation in DSMC and IP ve-
locities in the cell at y/λ = 0.8333, T = 300K, Kn = 0.01. (a) Sample size
is 1200 particles per cell; (b) Sample size is 10,000 particles per cell.
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Figure 5.5.3 Comparison of the statistical scatter associated with the
DSMC and IP method obtained from microCouette flows. T = 300K,
Kn = 0.01.

method are plotted in Fig. 5.5.3. It can be seen that velocity scatter
in the IP solutions is always about two orders of magnitude lower than
that associated with the DSMC solutions, when sampled with the equal
number of particles per cell.

Appendix 5A: Sampling from a Probability
Distribution Function

As general probabilistic modeling of physical processes, the DSMC
simulation requires the generation of representative values of vari-
ables that are distributed in a prescribed manner. This is done through
random numbers, which is assumed to be a set of successive random
fractions R f and uniformly distributed between 0 and 1. If the prob-
ability distribution function (PDF) has a cumulative distribution func-
tion (CDF), which can be inversed into an explicit form, the inverse-
cumulative method can be applied to sample its representative values;
otherwise, the acceptance-rejection method may be used.

Inverse-cumulative method

It is assumed that the distribution of variable x may be described by
a normalized probability distribution function f (x), and the variable
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ranges from a to b. The total probability is∫ b

a
f (x)dx = 1 (5A.1)

The cumulative distribution function is defined as

F (x) =
∫ x

a
f (x′)dx′ (5A.2)

The representative value of x can be sampled by generating a random
fraction R f and setting it equal to the cumulative density function F (x)
in the form of

Fx = Rf (5A.3)

Usually, the value x is obtained through an explicit form of the inverse
function F −1(x), if it is possible to invert Eq. (5A.3) to get an explicit
function for x.

In the DSMC simulations, there are usually three examples using
the inverse-cumulative method to sample the value x.

Example 5A.1 The variable x is uniformly distributed between a and b. This
distribution is encountered when setting a random initial or inflow condition
for the space and velocity distribution of particles in equilibrium flow. For
this case f (x) is a constant and the normalization condition of Eq. (5A.2)
gives

f (x) = 1
b − a

(5A.4)

Therefore, from Eq. (5A.2),

F (x) = x − a
b − a

(5A.5)

and Eq. (5A.3) gives

x − a
b − a

= R f (5A.6)

Rearrange Eq. (5A.6) to give

x = a + R f (b − a) (5A.7)

Example 5A.2 The variable x is distributed between a and b such that the
probability of x is proportional to x. This distribution is encountered when
setting a random radius in an axially symmetric flow. For this case f (x) is

f (x) ∝ x (5A.8)
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and, again the normalization condition of Eq. (5A.2) gives

f (x) = 2x
b2 − a2

(5A.9)

Therefore, from Eq. (5A.2),

F (x) = x2 − a2

b2 − a2
(5A.10)

and the representative value of x is taken as

x = [a2 + R f (b2 − a2)]1/2 (5A.11)

The similar distribution when x is proportional to x2 in a spherical flow is

x = [a3 + R f (b3 − a3)]1/3 (5A.12)

Example 5A.3 The variable x is distributed between 0 and ∞, with its prob-
ability distribution function

f (β2x2) = exp(−β2x2) (5A.13)

where β is a coefficient that varies with temperature. This distribution is used
in the gas-interface diffusive reflection model where to sample the reflected
velocities. The cumulative density function is

F (β2x2) = 1 − exp(−β2x2) (5A.14)

And, noting that R f is equivalent to 1 − R f , Eq. (5A.13) gives

x = [− ln(R f )]1/2/β (5A.15)

Acceptance–rejection method

Unfortunately, it is impossible to invert Eq. (5A.3) to obtain an explicit
form of function like Eq. (5A.7) for x in many realistic distributions of
function f (x). Alternatively, a representative value of x can be gener-
ated by using the acceptance–rejection algorithm through the following
five steps:

Step 1: Normalize the distribution function f (x) by its maximum
value f max to give

f ′
x = f (x)/ f max (5A.16)

Step 2: Choose a value of x at random on the basis of x being uni-
formly distributed between its limits; i.e., from Eq. (5A.7).

Step 3: Calculate the normalized distribution function f ′
x with the

chosen x.
Step 4: Generate a second random fraction R f .
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Step 5: If f ′
x > Rf , then accept the chosen x and stop; otherwise, go

back to step 2 and repeat the procedures until x is accepted.
In a DSMC simulation, the thermal velocity components and internal

energy of an equilibrium gas are generated by the acceptance–rejection
method from its specified velocity distribution function and internal
energy distribution function, respectively. The acceptance–rejection
method is also used to determine the choosing of collision pairs in the
procedure of molecular collision.

Appendix 5B: Additional Energy Carried
by Fast Molecules Crossing a Surface

The flux of molecular quantities across a surface element is considered
in an equilibrium gas. The stream velocity c0 is inclined at the angle θ to
the unit normal vector e to the surface element, as shown in Fig. 5B.1.
Without loss of generality, Cartesian coordinates are chosen such that
the stream velocity lies in the yz-plane, with the x-axis in the negative
e direction.

Each molecule has velocity components

u = c0 cos θ + u′ v = c0 sin θ + v′ w = w′ (5B.1)

The flux of quantity Q across the surface element along the positive
x-direction is

nQu = n
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
Quf du dv dw (5B.2)

c0

e

y

z

x

q

Figure 5B.1 Coordinate system
for the analysis of molecular flux
across a surface element.
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For an equilibrium gas, the Maxwellian distribution function f 0 is sub-
stituted into Eq. (5B.2), and the Q-flux across the element per unit area
per unit time can be obtained as

nQu = nβ3

π3/2

∫ ∞

−∞

∫ ∞

−∞−c0

∫ ∞

cos θ

Q(c0 cos θ + u′)

× exp[−β3(u′2 + v′2 + w′2)]du′dv′dw′ (5B.3)

The number flux Ṅx of molecules across the surface element is obtained
with Q = 1 in Eq. (5B.3).

Ṅx = n
√

kT/m√
2π

[exp(−s2) + √
πs(1 + erf(s))] (5B.4)

where

s = c0 cos θ
√

m/(2kT ) (5B.5)

The translational energy flux q̇x,tr to the element is obtained by setting
Q = 1

2 mc2 in Eq. (5B.3) to give

q̇x,tr = nm(
√

2kT/m)3

4
√

π

{(
2 + s2

cos2 θ

)
[exp(−s2)

+ √
πs(1 + erf(s))] + 1

2
√

πs(1 + erf(s))
}

(5B.6)

And the averaged translational energy per molecule crossing a surface
element is obtained through dividing Eq. (5B.6) by Eq. (5B.4) to give(

1
2

mc2
i

)
ci ·n> 0

= q̇x,tr

Ṅx
= 3

2
kT + 1

2
mc2

0 + (1 + ξa)
1
2

kT (5B.7)

where

ξa =
(

1 + exp(−s2)√
πs[1 + erf(s)]

)−1

(5B.8)

Comparing with kinetic theory equation
( 1

2 mc2
i

) = 3
2 kT + 1

2 mc2
0 for all

the molecules in an equilibrium state with mean flow velocity c0 and
temperature T, the additional internal energy Ea carried by a molecule
crossing the surface on average can be obtained as

Ea = (1 + ξa)
1
2

kT (5B.9)
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For stationary equilibrium monatomic gases, ξa becomes 0 with c0 → 0.
The additional internal energy is

Ea = 1
2

kT (5B.10)

and (
1
2

mc2
i

)
ci ·n> 0

= 2kT
(

1
2

mc2
i

)
= 3

2
kT

Therefore the ratio of
( 1

2 mc2
i

)
ci ·n> 0 to

( 1
2 mc2

i

)
becomes 4/3. That

is, the averaged internal energy of the molecules crossing a surface
element exceeds that in a spatial element by a factor 4/3 for stationary
monatomic gases.

Appendix 5C: One-Dimensional DSMC-IP
Computer Program

IP1D input data: couette.in
1, 0 !nql,nqls
1000000 !nmi
0.01, 300, 1.0 !kn,ftmp,pref
1.0, 1.0 !svf,tr
0.2 !dtr
60 !ncy
2 !nis
50 !nso
10 !nsi
300 !npt

IP1D makefile
#=======================================================
# -DIPFAN Fan's IP only
# -DIPSUN Sun's IP, compiled together with -DIPFAN
#=======================================================
CC=pgf90
OPTFLAGS := -O -r8
EE=IP1D
#---------------------------------------------------------
DFLAG1 = -DIPFAN
DFLAG2 = -DIPSUN
#---------------------------------------------------------
$(EE): $(EE).o

${CC} ${OPTFLAGS} ${DFLAG1} ${DFLAG2} -o $(EE).x $(EE).o
mv ${EE}.x ../

$(EE).o: $(EE).F90
${CC} ${OPTFLAGS} ${DFLAG1} ${DFLAG2} -c $(EE).F90

clean:
rm -r *.o *.mod

run:
./${EE}.x > output &
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Source code of IP1D.F90
!_____________________________________________________________________
!| |
!| program CouetteIP |
!| |
!| : written for micro-Couette flows by DSMC-IP method |
!| : 1D version 1.0 |
!| : June, 2004 |
!| |
!| : by Dr. Yichuan Fang and Dr. William W. Liou |
!| : Department of Mechanical and Aeronautical Engineering |
!| : Western Michigan University |
!| : Kalamazoo, MI 49008 |
!|____________________________________________________________________|
!=======================================================================

module dimHeader

!--DECLARE THE DIMENSION SIZE

integer,parameter :: mnm = 1000000, mcell = 60, mmc = 200000, ndiv = 10

!--MNM the maximum number of molecules
!--MCELL the maximum number of cells
!--MMC the maximum number of moleucles in a cell
!--NDIV
! the optimum NDIV is set when there are about 2 molecules per subcell
end module dimHeader

!-----------------------

module calculation

!--DEFINES THE VARIABLES ASSCOCIATED WITH THE CALCULATION

real,parameter :: pi = 3.141592654, spi = 1.77245385, dpi = 6.283185308
double precision,parameter :: boltz = 1.3805d-23

integer :: npr
real :: dtm,time,dtr,fmct,ranf
double precision :: totcol,clsep

!--NPR the number of output intervals
!--DTM the time step
!--TIME the flow time
!--TOTCOL the cumulative number of collisions
!--CLSEP the cumulative collision separation
!--FMCT the mean collision time in reference gas
!--RANF random fraction
!--BOLTZ Boltzmann constant K (J/K)
end module calculation

!-----------------------

module species

!--DECLARE THE SPECIES PROPERTIES OF SIMULATED MOLECULES

real,dimension(5) :: sp
real,dimension(6) :: spm
integer :: ispr,ispf
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real :: mfp,gasR
!--SP(I) I=1 the molecule diamter
! I=2 the reference temperature (K)
! I=3 the viscosity-temperature index
! I=4 the reciprocal of the VSS scattering parameter
! I=5 the molecule mass
!--SPM silimar with SP
! I=6 the GAMA function part
!--ISPR the number of degrees of rotational freedom
!--ISPF the number of degrees of freedom
end module species

!-----------------------

module molecules

!--DECLARES THE VARIABLES REPRESENT THE SIMULATED MOLECULES
! AND SETS THE NUMBER OF SIMULATED MOLECULES

use dimHeader
real,dimension(mnm) :: pp
real,dimension(3,mnm) :: pv
integer,dimension(2,mnm) :: ir,iro
integer,dimension(3,mmc) :: irs
integer :: nm,nmi,msc
real :: cxs
#ifdef IPFAN

real,dimension(3,mnm) :: pvip
#ifdef IPSUN

real,dimension(2,mnm) :: ptip
#endif
#endif

!--PP(N) y position coorddinates
!--PV(1,N),PV(2,N),PV(3,N) u,v,w velocity components
!--IR(1,N) the cell in which the molecule lies
!--IR(2,L) the molecule numbers in order of cells(cross-reference array)
!--NM the number of molecules
!--NMI,MNM initial and maximum number of molecules
!--MSC the number of sub-cells in a cell
!--CXS the collision cross-section
!--PVIP(J,N)
! J=1,2,3 u,v,w IP velocity components
!--PTIP(J,N)
! J=1,2 for T and Ta of IP-energy preserver
end module molecules

!---------------------------

module flowField

!--DEFINES THE VARIABLES ASSOCIATED WITH THE FLOW

use dimHeader
!
real,dimension(3,mcell) :: cell
integer,dimension(2,mcell) :: icell
integer,dimension(2,ndiv) :: isc
integer,dimension(2) :: nscn
integer :: ncy,ncell,nis,nso,nsi,npt
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real :: cvol,area,ybn,cy,rcy,dcrit,tr,tw,svf,fvel,vmpf,vmpw, &
ftmp,fden,pref,kn

#ifdef IPFAN
real,dimension(3,mcell) :: caip,cvip
real,dimension(mcell) :: cpip,cnip

#ifdef IPSUN
real,dimension(2,mcell) :: ctip
real,dimension(mcell) :: ceip

#endif
#endif

!--CELL(N,M) relates to cell N
! N=1 the lower y coordinates of the cell
! N=2 the maximum value of relative velocity in collisions
! M=3 the remainder when collisions are computed
!--ICELL(N,M)
! N=1 the start address -1 in IR( 2 of molecules in cell N
! N=2 the number of molecules in cell M
!--ISC(N,J)
! N=1 the start address -1 of transient subcell J molecules in IRS(1
! N=2 the number of molecules in transient subcell J
!--NSCN(M)
! the relative row of the subcells in the first layer of adjacent &

sub cells
!--NCY the number of cells in the y direction (cell rows)
!--NCELL the number of cells
!--CY the cell dimensions in the y directions
!--RCY the reciprocal cell dimension in the y directions
!--CVOL the volume of a cell
!--YBN data items to set magnitude of flowfield
!--FDEN,FTMP initial number density and temperature
!--VMPF,MFP reference molecular speed and free path
!--TR,TW temperature ratio, surface temperature
!--FVEL velocity of upper wall
!--VMPW most probable mulecular speed at the surface
!--DCRIT critical distance to cope with round-off error
!--CVIP(J,M) IP velocity in cell M
!--CAIP(J,M) IP velocity acceleration in cell M
!--CEIP(M) IP energy increase by pressure work
!--CPIP(M) IP pressure in cell M
!--CNIP(M) number density in cell M
!--CTIP(J,M) IP temperature in cell M
! J=1,2 for T and Ta
end module flowField

!------------------------

module sampling

!--DECLARES THE VARIABLES USED FOR SAMPLING THE FLOW PROPERTIES

use dimHeader

integer :: nsamp,nsamps,nstep
real :: timi,timis
double precision,dimension(7,mcell) :: cs,scs
real,dimension(2,7) :: surf
double precision,dimension(2,7) :: ssurf
#ifdef IPFAN

double precision,dimension(8,mcell) :: csip,scsip
real,dimension(2,2:7) :: surfip
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double precision,dimension(2,2:7) :: ssurfip
#endif

!--NSAMP the number of samples in the unsteady sampling
!--NSAMPS the number of samples in the steady sampling
!--CS(I,N) the samples in cell N
! I=1 the sampled sum of molecules
! I=2,3,4 the sampled sums of u,v,w
! I=5,6,7 the sampled sums of the square of u,v,w
!--SCS similar to CS for the steady sampling
!--SURF(L,I) sampled properties on the wall
! L=1,2 the lower, upper wall
! I=1 the number sum to the wall
!--SSURF similar to SURF for steady sampling
!--TIMI,TIMIS start time for unsteady, steady sampling
!--NSTEP the number of time steps
end module sampling

!------------------------

module wcontrol
integer :: iwrite,ires
character(len=7) :: fp = './RUN1/'
character(len=40) :: fname
end module wcontrol

!=======================================================================
! MAIN PROGRAM
!=======================================================================

program COUETTE

use molecules
use flowField
use calculation
use sampling

implicit none

integer :: n,m,nql,nqls,ierr
!--N,M working integers
!--NQL 0,1 for continuing, new calculation

call inputData(nql,nqls)
if(nql == 1) then

call setInitialState
call clearSteadySample

else
call readRestart
if(nqls == 1) call clearSteadySample

endif

do while (npr < 10*npt)
npr = npr + 1
write(*,*) 'OUTPUT INTERVAL:',npr
do n = 1, nso

do m = 1, nis
nstep = nstep + 1
write(*,*) ' TIME',time/fmct,' COLS',totcol,' MOLS',nm
write(*,*) ' SEP',clsep/totcol
time = time + dtm
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call moveMols
call indexMols

#ifdef IPSUN
call aEnergy1

#endif
call collisions

#ifdef IPFAN
#ifdef IPSUN

call aEnergy2
#endif

call IPupdate
#endif

end do
if(n == nsi) call clearSample
call sampleFlow

end do
call output
call writeRestart

end do

end program COUETTE

!-----------------------------------------------------------------------

subroutine setInitialState

use species
use molecules
use flowField
use calculation
use sampling

implicit none

real :: a,b,eta,yheight,rmu,re
integer :: j,n,nrow

!eta = 999999.9 !HS MOLECULE
!eta = 7.452 !VHS MOLECULE
!eta = 5.0 !MAXWELL MOLECULE
spm(1) = pi*sp(1)**2
spm(2) = sp(2)
spm(3) = sp(3)
!spm(3) = 0.5*(eta+3)/(eta-1)
spm(4) = sp(4)
spm(5) = sp(5)/2.0
!spm(6) = ggam(2.5-spm(3)) ! USED IN VHS OR VSS

nm = nmi
ncell= ncy
tw = ftmp*tr
pref = pref*101325.0
fden = pref/(boltz*ftmp)
vmpf = sqrt(ftmp)
vmpw = sqrt(tw)
fvel = svf*vmpw

!--MFP mean free path of molecules at the initial state
mfp = 1.0/(sqrt(2.0)*fden*spm(1))
yheight = mfp/kn
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area = nm/(fden*yheight)
gasR = boltz/sp(5)
rmu = 5.0/16.0*spi*mfp*vmpf*sqrt(2.0*gasR)*fden*sp(5)
re = sp(5)*fden*fvel*sqrt(2.0*gasR)*yheight/rmu

!-- -- NORMALIZED PARAMETERS --
!- cross-section
cxs = spm(1)/(mfp**2)
fmct = 0.5*spi/vmpf
dtm = dtr*fmct
ybn = 1.0/kn
cy = ybn/float(ncy)
rcy = 1.0/cy
dcrit = cy/3.0e+6
area = area/mfp**2
fden = fden*mfp**3
cvol = area*cy

open(2,file='couette.out',status='unknown')
write(2,*) 'Length scale: ',yheight
write(2,*) 'Pressure: ',pref/101325.0
write(2,*) 'Kn :',kn
write(2,*) 'Re :',re
write(2,*) 'Viscosity: ',rmu
write(2,*) 'R: ',gasR
write(2,*) 'Temperature: ',ftmp
write(2,*) 'Mean free path: ',mfp
write(2,*) 'Molecules per cube mean free path: ',fden
write(2,*) 'Molecule mass: ',sp(5)
close(2)

time = 0.
npr = 0.
nsamp = 0
nsamps = 0
nstep = 0
totcol = 1.
clsep = 0.
surf = 0.
ssurf = 0.

#ifdef IPFAN
cnip = 1.
cpip = 0.5*cnip*ftmp
caip = 0.
cvip = 0.
pvip = 0.

#ifdef IPSUN
ctip(1,:) = ftmp
ctip(2,:) = 0.
ceip = 0.
ptip(1,:) = ftmp
ptip(2,:) = 0.

#endif
#endif

do n = 1, ncy
cell(2,n) = 4.0*vmpf
cell(3,n) = 0.0

end do
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!--SET THE INITIAL STATE OF THE MOLECULES
do n = 1, nm

call random_number(ranf)
pp(n) = ranf*ybn
call random_number(ranf)
a = sqrt(-log(ranf))
call random_number(ranf)
b = dpi*ranf
pv(2,n) = a*sin(b)*vmpf
pv(3,n) = a*cos(b)*vmpf
call random_number(ranf)
a = sqrt(-log(ranf))
call random_number(ranf)
b = dpi*ranf
pv(1,n) = a*sin(b)*vmpf

#ifdef IPFAN
do j = 1, 3
pvip(j,n) = 0.

end do
#endif
end do

call indexMols

msc = ndiv
nscn(1) = -1
nscn(2) = 1

do n = 1, ncy
cell(1,n) = (n-1)*cy

end do

write(*,*) 'INITIAL STATE SET'

end subroutine setInitialState

!-----------------------------------------------------------------------

subroutine inputData(nql,nqls)

use species
use molecules
use flowField
use calculation

implicit none

integer :: nql,nqls,rsize
integer,allocatable :: rseed(:)

open(2,file="couette.in",status="old")
read(2,*) nql,nqls
if(nql==0) then

close(2)
return

endif
read(2,*) nmi
read(2,*) kn,ftmp,pref
read(2,*) svf,tr
read(2,*) dtr
read(2,*) ncy
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read(2,*) nis
read(2,*) nso
read(2,*) nsi
read(2,*) npt
close(2)

!--PROPERTIES FOR AR
sp(1) = 3.659e-10 ! DSMC: DIAMETER FOR HS MODEL
!sp(1) = 4.170e-10 ! DSMC: DIAMETER FOR VHS MODEL
!sp(1) = 3.963e-10 ! IP: DIAMETER FOR HS MODEL
!sp(1) = 4.283e-10 ! IP: DIAMETER FOR VHS MODEL
sp(2) = 273.0 ! REFERENCE TEMPERATURE
sp(3) = 0.81 ! VISCOSITY-TEMPERATURE INDEX
sp(4) = 1.0 ! RECIPROCAL OF THE VSS SCATTERING PARAMETER
sp(5) = 6.63e-26 ! MASS

ispr = 0
ispf = 3

!--INITIALIZE RANDOM SEED
call random_seed(SIZE = rsize)
allocate(rseed(rsize))
rseed = 100
call random_seed(PUT = rseed(1:rsize))

end subroutine inputData

!-----------------------------------------------------------------------

subroutine moveMols

use molecules
use flowField
use calculation
use sampling
use species

implicit none

real :: a,dti,dts,y,yi,dy
integer :: n,k,m,is

n = 0
do while (n < nm)

n = n+1
dts = dtm
yi = pp(n)
dy = pv(2,n)*dts
y = yi+dy
if(y > ybn) then

is = 2
dti = dts*(ybn-yi)/dy

else if(y <= 0.0) then
is=1
dti = dts*(-yi)/dy

else
is = 0
dti = dts

endif

#ifdef IPFAN
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m = ir(1,n)
a = pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2
do k = 1, 3
pvip(k,n) = pvip(k,n) + caip(k,m)*dti

end do
#ifdef IPSUN

a = pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2 - a
ptip(1,n) = ptip(1,n) + (ceip(m)*dti-a)*(2.0/ispf)

#endif
#endif

if(is == 0) then
pp(n) = y
dts = 0.0

else
call reflect(is,n)
dts = dts - dti

endif
end do
end subroutine moveMols

!-----------------------------------------------------------------------

subroutine reflect(nd,n)

use molecules
use flowField
use sampling
use calculation
use species

implicit none

integer,intent(in) :: nd,n
real :: a,b,yi,sgn,Tref,Tabs
integer :: k,m

!-- ND 1 for lower wall, 2 for upper wall
!
if(nd == 1) then

yi = 0.
sgn = 1.

else if(nd == 2) then
yi = ybn
sgn = -1.0

end if

!- --SAMPLE WALL INCIDENT--
if(npr >= 10) then

pv(1,n) = pv(1,n) - sgn*fvel/2.0
surf(nd,1) = surf(nd,1) + 1.0
ssurf(nd,1) = ssurf(nd,1) + 1.0
surf(nd,2) = surf(nd,2) + pv(1,n)
surf(nd,3) = surf(nd,3) - pv(2,n)
ssurf(nd,2) = ssurf(nd,2) + pv(1,n)
ssurf(nd,3) = ssurf(nd,3) - pv(2,n)
a = 0.5*( pv(1,n)**2 + pv(2,n)**2 + pv(3,n)**2 )
surf(nd,4) = surf(nd,4) + a
ssurf(nd,4) = ssurf(nd,4) + a

#ifdef IPFAN
pvip(1,n) = pvip(1,n) - sgn*fvel/2.0
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ssurfip(nd,2) = ssurfip(nd,2) + pvip(1,n)
ssurfip(nd,3) = ssurfip(nd,3) - pvip(2,n)
a = 0.5*( pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2 )

#ifdef IPSUN
a = 0.5*( pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2 ) &

+ 0.25*ispf*( ptip(1,n) + ptip(2,n) )
#endif

ssurfip(nd,4) = ssurfip(nd,4) + a
#endif
end if
!- --GAS-SURFACE MODEL--
call random_number(ranf)
a = sqrt(-log(ranf))*vmpw
call random_number(ranf)
b = dpi*ranf
pv(1,n) = a * sin(b)
pv(3,n) = a * cos(b)
call random_number(ranf)
pv(2,n) = sgn*sqrt(-log(ranf))*vmpw

#ifdef IPFAN
pvip(1,n) = 0.0
pvip(2,n) = 0.0
pvip(3,n) = 0.0

#ifdef IPSUN
m = ir(1,n)
Tref = sqrt(ptip(1,n)*Tw)
Tabs = (ptip(1,n)-Tref)/ispf
ctip(2,m) = ctip(2,m)+ptip(2,n)-Tabs
!ctip(2,m) = ctip(2,m)-Tabs
ptip(2,n) = (Tw-Tref)/ispf
ptip(1,n) = Tw

#endif
#endif

call boundaryIR(nd,n)

!- --SAMPLE WALL REFLECTION--
if(npr >= 10) then

surf(nd,5) = surf(nd,5) + pv(1,n)
surf(nd,6) = surf(nd,6) + pv(2,n)
ssurf(nd,5) = ssurf(nd,5) + pv(1,n)
ssurf(nd,6) = ssurf(nd,6) + pv(2,n)
a = 0.5*( pv(1,n)**2 + pv(2,n)**2 + pv(3,n)**2 )
surf(nd,7) = surf(nd,7) + a
ssurf(nd,7) = ssurf(nd,7) + a

#ifdef IPFAN
ssurfip(nd,5) = ssurfip(nd,5) + pvip(1,n)
ssurfip(nd,6) = ssurfip(nd,6) + pvip(2,n)
a = 0.5*( pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2 )

#ifdef IPSUN
a = 0.5*( pvip(1,n)**2 + pvip(2,n)**2 + pvip(3,n)**2 ) &

+ 0.25*ispf*( ptip(1,n) + ptip(2,n) )
#endif

ssurfip(nd,7) = ssurfip(nd,7) + a
#endif
end if

pv(1,n) = pv(1,n) + sgn*fvel/2.0
#ifdef IPFAN
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pvip(1,n) = pvip(1,n) + sgn*fvel/2.0
#endif

end subroutine reflect

!-----------------------------------------------------------------------

subroutine boundaryIR(nd,n)

!- -- Avoid changing the additional information --
! -- for particles interacting with boundaries --

use molecules
use flowField

implicit none

integer,intent(in) :: nd,n

!- -Surface B.C.-
if(nd==1) ir(1,n) = 1
if(nd==2) ir(1,n) = ncy

!- -I/O B.C.-
end subroutine boundaryIR

!-----------------------------------------------------------------------

subroutine indexMols

use molecules
use flowField
use calculation

implicit none

integer :: l,m,n,nrow

iro = ir
do m = 1, ncell

icell(2,m) = 0
end do
do n = 1, nm

nrow = (pp(n)+dcrit)*rcy + 1
if(nrow < 1) then
write(*,*) 'nrow =',nrow
write(*,*) n,pp(n),dcrit,rcy
pause
end if
if(nrow > ncy) nrow = ncy
m = nrow
ir(1,n) = m
icell(2,m) = icell(2,m) + 1

end do

n = 0
do m = 1, ncell

if(icell(2,m) > mmc) then
write(*,*) ' THE',icell(2,m),'MOLECULE IN CELL',m, &
'EXCEEDS SPECIFIED MMC'

do n = 1, icell(2,1)
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l = ir(2,n)
if(n < 1000 ) write(72,*) n, pp(l),pv(2,l)

end do
stop

endif
icell(1,m) = n
n = n + icell(2,m)
icell(2,m) = 0

end do
do n = 1, nm

m = ir(1,n)
icell(2,m) = icell(2,m) + 1
l = icell(1,m) + icell(2,m)
ir(2,l) = n

end do

end subroutine indexMols

!-----------------------------------------------------------------------
#ifdef IPSUN

subroutine aEnergy1
!-- -- Calculate the additional energy for particles and --
! -- cells owing to the particle movement(convection) --
use molecules
use flowField
use species
implicit none
integer :: l,m,n
real :: a,Tref

do n = 1, nm
m = iro(1,n)
l = ir(1,n)
if(m.ne.l) then

call refEnergy(m,l,Tref)
a = ptip(2,n)
ptip(2,n) = (ptip(1,n)-Tref) / ispf
ctip(2,m) = ctip(2,m) + a - ptip(2,n)

end if
end do
end subroutine aEnergy1

!----------------------------

subroutine aEnergy2
!-- -- Distribute the additional energy of a cell --
use molecules
use flowField
implicit none
integer :: n,nc,k,k1,k2
real :: a

do nc = 1, ncell
a = ctip(2,nc) / icell(2,nc)
k1 = icell(1,nc) + 1
k2 = icell(1,nc) + icell(2,nc)
do k = k1, k2

n = ir(2,k)
ptip(1,n) = ptip(1,n) + a

end do
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ctip(2,nc) = 0.0
end do
end subroutine aEnergy2

!----------------------------

subroutine refEnergy(c1,c2,Tref)
!-- -- Reference energy at the inter\kern.5ptface where --
! -- a particle leaves its cell through --
use flowField
implicit none
integer, intent(in) :: c1,c2
real, intent(out) :: Tref

Tref = ( ctip(1,c1) + ctip(1,c2) ) / 2.0

end subroutine refEnergy

#endif

!-----------------------------------------------------------------------

subroutine collisions

use molecules
use flowField
use calculation
use sampling
use species
implicit none
integer :: i,j,jj,jjj,k,kk,l,m,mm,n,nc,nsel,nrow,nmol,nsc,kc,nns,ipcol
real :: a,b,c,avn,asel,vr,vrr,sep,cu,ck
real, dimension(3) :: vrc,vccm,vrcp
real, dimension(2) :: trc,tccm,trcp
!--I,J,JJ,JJJ,K,L,M,MM,N,NNS,KC working integers
!--NC cell number
!--NSC sub-cell number
!--NMOL the number of molecules in a cell
!--IPCOL IP collision type control parameter
!--AVN average number of molecules in a cell
!--ASEL,NSEL the real<integer number of selections
!--VRC components of the pre-collision relative velocity
!--VRCP components of the post-collision relative velocity
!--VCCM components of the center of mass velocity
!--VR,VRR relative speed and square of relative speed

do nc = 1, ncell
nmol = icell(2,nc)
if(nsamp > 0) then
avn = cs(1,nc) / nsamp

else
avn = nmol

end if
asel = 0.5*nmol*avn*cxs*cell(2,nc)*dtm/cvol + cell(3,nc)
nsel = asel
cell(3,nc) = asel - nsel

!-- SET THE TRANSIENT SUB-CELLS IN THIS CELL
do n = 1, nmol
m = icell(1,nc) + n
mm = ir(2,m)
irs(3,n) = mm
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nrow = ndiv*(pp(mm)-cell(1,nc)+dcrit)*rcy + 1
if(nrow > ndiv) nrow = ndiv
if(nrow < 1) nrow = 1
irs(2,n) = nrow

end do
!-- SUB-CELL HAS BEEN DETERMINED
! SET THE INDEXING TO THE SUB-CELLS

do n = 1, msc
Isc(2,n) = 0

end do
do n = 1, nmol

mm = irs(2,n)
isc(2,mm) = isc(2,mm) + 1

end do
m = 0
do n = 1, msc

isc(1,n) = m
m = m + isc(2,n)
isc(2,n) = 0

end do
do n = 1, nmol

mm = irs(2,n)
isc(2,mm) = isc(2,mm) + 1
k = isc(1,mm) + isc(2,mm)
irs(1,k) = n

end do

do i = 1,nsel
call random_number(ranf)
k = int(ranf*(icell(2,nc)-0.0001)) + icell(1,nc) + 1
l = ir(2,k)

!- L HAS BEEN CHOSEN RANDOMLY FROM THE CELL
kc = k - icell(1,nc)
nsc = irs(2,kc)

!- NSC IS THE SUB-CELL
m = l
if(isc(2,nsc) > 1) then

!- CHOOSE COLLISION PARTNER FROM THE SAME SUB-CELL
do while(m == l)
call random_number(ranf)
k = int(ranf*(isc(2,nsc)-0.0001)) + isc(1,nsc) + 1
kk = irs(1,k)
m = irs(3,kk)

!-- M HAS BEEN CHOSEN
end do

else
!- TRY FROM ADJACENT SUB-CELLS

call random_number(ranf)
jj = int(ranf*1.999999)

!- JJ IS THE RAMDOM ENTRY POINT TO THE ARRAY OF ADJACENT SUB-CELLS
j = 1
do while(j < 3)

!- CHOOSE COLLISION PARTNER FROM AN ADJACENT SUB-CELL
jjj = j + jj
if(jjj > 2) jjj = jjj - 2
nrow = nsc + nscn(jjj)
if((nrow > 0).and.(nrow <= ndiv)) then
nns = nrow
if(isc(2,nns) > 0) then
if(isc(2,nns) == 1) then

k = isc(1,nns) + 1
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else
call random_number(ranf)
k = int(ranf*(isc(2,nns)-0.0001)) + isc(1,nns) + 1

end if
kk = irs(1,k)
m = irs(3,kk)

end if
end if
j = j + 1

end do
if(j == 3) then

!- CHOOSE COLLISION PARTNER FROM ANYWHERE IN THE CELL
do while(m == l)
call random_number(ranf)
k = int(ranf*(icell(2,nc)-0.0001)) + icell(1,nc) + 1
m = ir(2,k)
end do

end if
end if

!- POSSIBLE COLLISION PARTNERS HAVE BEEN SELECTED

do k = 1, 3
vrc(k) = pv(k,l) - pv(k,m)

end do
vrr = vrc(1)**2 + vrc(2)**2 + vrc(3)**2
vr = sqrt(vrr)
if(vr > cell(2,nc)) cell(2,nc) = vr
call random_number(ranf)
if(ranf < vr/cell(2,nc)) then

!- COLLISION OCCURS
totcol = totcol + 1.0d0
clsep = clsep + abs(pp(l)-pp(m))
do k=1,3
vccm(k) = 0.5 * ( pv(k,l) + pv(k,m) )

end do
call random_number(ranf)
b = 2.0 * ranf - 1.0
a = sqrt(1.0 - b*b)
call random_number(ranf)
c = dpi * ranf
vrcp(1) = b * vr
vrcp(2) = a * cos(c) * vr
vrcp(3) = a * sin(c) * vr
do k=1,3
pv(k,l) = vccm(k) + 0.5*vrcp(k)
pv(k,m) = vccm(k) - 0.5*vrcp(k)

end do

#ifdef IPFAN
!- IP velocity
!- changes with Collision

ipcol = 2

if(ipcol == 1) then
vrr = 0.0
do k = 1, 3

vrr = vrr + (pvip(k,l)-pvip(k,m))**2
end do
c = vrr / (2.0*ispf)
do k = 1, 3
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a = 0.5*( pvip(k,l) + pvip(k,m) )
pvip(k,l) = a
pvip(k,m) = a

end do
#ifdef IPSUN

do k = 1, 2
a = 0.5 * ( ptip(k,l) + ptip(k,m) )
ptip(k,l) = a
ptip(k,m) = a

enddo
ptip(1,l) = ptip(1,l) + c
ptip(1,m) = ptip(1,m) + c

else if(ipcol == 2) then

cu = -0.25; ck = 0.87
vrr = 0.0
do k = 1, 3

vrc(k) = pvip(k,l) - pvip(k,m)
vrr = vrr + vrc(k)**2

end do
c = vrr / (2.0*ispf)
do k = 1, 3

vccm(k) = 0.5*( pvip(k,l) + pvip(k,m) )
end do
do k = 1, 3

vrcp(k) = cu * b * vrc(k)
end do
do k = 1, 3

pvip(k,l) = vccm(k) + 0.5*vrcp(k)
pvip(k,m) = vccm(k) - 0.5*vrcp(k)

end do
do k = 1, 2

trc(k) = ptip(k,l) - ptip(k,m)
end do
do k = 1, 2

tccm(k) = 0.5 * ( ptip(k,l) + ptip(k,m) )
end do
do k = 1, 2

trcp(k) = ck * b * trc(k)
end do
do k = 1, 2

ptip(k,l) = tccm(k) + 0.5*trcp(k)
ptip(k,m) = tccm(k) - 0.5*trcp(k)

end do
ptip(1,l) = ptip(1,l) + c
ptip(1,m) = ptip(1,m) + c*(1.0-(cu*b)**2)

#endif
endif

#endif

end if
end do

end do

end subroutine collisions

!-----------------------------------------------------------------------

subroutine clearSample
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use molecules
use flowField
use calculation
use sampling
implicit none

nsamp = 0
timi = time
cs(:,:) = 0.0
surf(:,:) = 0.0
#ifdef IPFAN
csip(:,:) = 0.0
surfip(:,:) = 0.0
#endif

end subroutine clearSample

!-----------------------------------------------------------------------

subroutine clearSteadySample

use molecules
use flowField
use calculation
use sampling
implicit none

nsamps = 0
timis = time
scs(:,:) = 0.0
ssurf(:,:) = 0.0
#ifdef IPFAN
scsip(:,:) = 0.0
ssurfip(:,:) = 0.0
#endif

end subroutine clearSteadySample

!-----------------------------------------------------------------------

subroutine sampleFlow

use molecules
use flowField
use calculation
use sampling

implicit none
integer :: n,m,nc
real :: a

nsamp = nsamp + 1
nsamps = nsamps + 1.0d0
do n = 1, nm

nc = ir(1,n)
if((nc < 1).or.(nc > ncell)) then
write(*,*) 'MOLECULE',n,' IN ILLEGAL CELL',nc,pp(n)
stop

end if
cs(1,nc) = cs(1,nc) + 1.0
scs(1,nc) = scs(1,nc) + 1.0d0
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do m = 1, 3
cs(m+1,nc) = cs(m+1,nc) + pv(m,n)
scs(m+1,nc) = scs(m+1,nc) + pv(m,n)
a = pv(m,n) * pv(m,n)
cs(m+4,nc) = cs(m+4,nc) + a
scs(m+4,nc) = scs(m+4,nc) + a

end do
end do
close(70)

#ifdef IPFAN
call IPsample

#endif

end subroutine sampleFlow

!--------------------------------------------

subroutine IPsample

#ifdef IPFAN
use molecules
use flowField
use calculation
use sampling
use species

implicit none

integer :: n,m,nc,k
real,dimension(3,mcell) :: ccip

ccip = 0.0

!- SAMPLE V*V
do n = 1, nm

nc = ir(1,n)
do m = 1, 3

ccip(m,nc) = ccip(m,nc) + pvip(m,n)*pvip(m,n)
end do

end do

!-- -- UPDATE IP FOR CELLS --

!- Sample ip flowfield density,velocities and temperature
do nc = 1, ncell

csip(1,nc) = csip(1,nc) + cnip(nc)
scsip(1,nc) = scsip(1,nc) + cnip(nc)
do k = 1, 3
csip(k+1,nc) = csip(k+1,nc) + cvip(k,nc)

scsip(k+1,nc) = scsip(k+1,nc) + cvip(k,nc)
csip(k+4,nc) = csip(k+4,nc) + ccip(k,nc)/icell(2,nc) - cvip(k,nc)**2

scsip(k+4,nc) = scsip(k+4,nc) + ccip(k,nc)/icell(2,nc) - cvip(k,nc)**2
enddo

#ifdef IPSUN
csip(8,nc) = csip(8,nc) + ctip(1,nc)

scsip(8,nc) = scsip(8,nc) + ctip(1,nc)
#endif
end do

#endif
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end subroutine IPsample

!--------------------------------------------

subroutine IPupdate

#ifdef IPFAN
!-- -- UPDATE CAIP,CEIP AND CNIP FOR NEXT TIMESTEP --
use molecules
use flowField
use calculation
use sampling

implicit none

real,allocatable :: v(:,:),p(:),n(:)
integer :: ecell,nc,ipc,nrow,np,nn,k,m
real :: dts,w,dn,de,nref,ps(3)
real,dimension(4,mcell) :: ccip

ecell = ncell + 2
allocate( v(3,ecell), p(ecell), n(ecell) )

ccip = 0.0

!- Sample v and t
do m = 1, nm

nc = ir(1,m)
do k = 1, 3
ccip(k,nc) = ccip(k,nc) + pvip(k,m)
end do

#ifdef IPSUN
ccip(4,nc) = ccip(4,nc) + ptip(1,m) + ptip(2,m)

#endif
end do

!- Update ip for cells

!nref = fden * cvol
nref = nm / ncell
do nc = 1, ncell

do k = 1, 3
cvip(k,nc) = ccip(k,nc) / icell(2,nc)
end do
cnip(nc) = icell(2,nc) / nref

#ifdef IPSUN
ctip(1,nc) = ccip(4,nc) / icell(2,nc)
cpip(nc) = 0.5 * cnip(nc) * ctip(1,nc)

#else
cpip(nc) = 0.5 * cnip(nc) * ftmp

#endif
end do
do nrow = 1, ncy

nc = nrow
ipc = nrow + 1
n(ipc) = cnip(nc)
p(ipc) = cpip(nc)
v(1,ipc) = cvip(1,nc)
v(2,ipc) = cvip(2,nc)
v(3,ipc) = cvip(3,nc)

end do
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!-- Wall B.C.
do ipc = 1, ncy+2, ncy+1

if(ipc == 1) nc = 2
if(ipc == ncy+2) nc = ncy - 1
n(ipc) = cnip(nc)
p(ipc) = cpip(nc)
v(1,ipc) = cvip(1,nc)
v(2,ipc) = 0.0
v(3,ipc) = 0.0

end do

dts = dtm
w = 0.5
ps = 0.0
do nrow = 1, ncy

nc = nrow + 1
np = nc - 1
nn = nc + 1
dn = -0.25 * rcy * ( n(nc)*(v(2,nn)-v(2,np)) + v(2,nc)*(n(nn)-n(np)) &

+n(nn)*v(2,nn) - n(np)*v(2,np) )
#ifdef IPSUN

de = -0.25 * rcy * ( p(nc)*(v(2,nn)-v(2,np)) + v(2,nc)*(p(nn)-p(np)) &
+p(nn)*v(2,nn) - p(np)*v(2,np) )

#endif
ps(2) = -0.5 * rcy * ( p(nn) - p(np) )

do k = 1, 3
caip(k,nrow) = caip(k,nrow)*(1.-w) + w*ps(k)/n(nc)
end do

#ifdef IPSUN
ceip(nrow) = ceip(nrow)*(1.-w) + w*2.0*de/n(nc)

#endif
cnip(nrow) = cnip(nrow) + w*dn*dts

end do

#endif
end subroutine IPupdate

!-----------------------------------------------------------------------

subroutine output

use species
use molecules
use flowField
use calculation
use sampling
use wcontrol

implicit none
double precision,dimension(8) :: op
double precision :: denn,denns,dennd,tt,tts,ttd
double precision,dimension(3) :: vels,vells
double precision,dimension(2,2:7) :: wall
integer :: j,n,nc,nrow,jj,kk
real :: y,a,ma,vref,pw,tao,ht

fname = fp//'wcontrol.in'
open(3,file = fname,status = 'old')
read(3,*) nso
read(3,*) nis
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read(3,*) nsi
read(3,*) iwrite
read(3,*) ires
close(3)
if(iwrite == 0) return

kk = 1
#ifdef IPFAN

kk = 2
#endif
ma = sqrt(2.0/1.667)*svf

vref = vmpf
a = 2.0/((time-timis)*area*fden*vref**2)
do jj = 1, kk

if(jj == 1) then
fname = fp//'Wall.dat'
do j = 1, 2
do n = 2, 7
wall(j,n) = ssurf(j,n)
end do
end do

end if
#ifdef IPFAN

if(jj == 2) then
fname=fp//'WallIP.dat'
do j = 1, 2
do n = 2, 7
wall(j,n) = ssurfip(j,n)
end do
end do

end if
#endif

open(2,file = fname,status = 'unknown')
write(2,10) kn,ma
10 format(1x,'Kn =',f6.3,' Ma =',f6.3/)

do j = 1, 2
op(1) = ssurf(j,1)
op(2) = ssurf(j,1) * a * vref
op(3) = wall(j,3) * a
op(4) = wall(j,6) * a
op(5) = spi * wall(j,2) * a
op(6) = spi * wall(j,5) * a
op(7) = wall(j,4) * a / vref
op(8) = wall(j,7) * a / vref
if(svf > 0.001) then
op(5) = op(5) * vref**2 / fvel
op(6) = op(6) * vref**2 / fvel

endif
pw = abs( op(3) + op(4) )
tao = abs( op(5) - op(6) )
ht = op(7) - op(8)

if(j == 1) write(2, 11)
if(j == 2) write(2, 12)

11 format(1x,'Properties on the LOWER surface'/)
12 format(1x,'Properties on the UPPER surface'/)

write(2, 13)
13 format(1x,' sample size number flux pressure(in,re)',1x, &
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' shear stress(in,re) Heat flux(in,re)')
write(2, 14) op
write(2, 15) pw
write(2, 16) tao
write(2, 17) ht

14 format(1x,8e13.5)
15 format(1x,' Wall pressure coef. =',e10.4)
16 format(1x,' Wall Shear Stress coef. =',e10.4)
17 format(1x,' Wall Heat Transfer coef. =',e10.4)
end do
close(2)

end do

!-- -- FLOW FIELD --
!-- -- Steady Flow--
!- DSMC RESULTS
fname = fp//'FieldS.dat'
open(2,file = fname,status = 'unknown')
write(2,*) 'cell, Y, Samples, N, u, v, Tx, Ty, Tz, T'
do nc = 1, ncy

y = (nc-0.5) * cy

do n = 1, 3
vels(n) = scs(n+1,nc) / scs(1,nc)
vells(n )= scs(n+4,nc) / scs(1,nc)

end do
op(1) = scs(1,nc)
op(2) = scs(1,nc) / (nsamps*cvol*fden)
op(3) = vels(1) / vref
op(4) = vels(2) / vref
op(5) = 2.0 * (vells(1)-vels(1)**2)
op(6) = 2.0 * (vells(2)-vels(2)**2)
op(7) = 2.0 * vells(3)
op(8) = ( op(5) + op(6) + op(7) ) / 3.0
op(8) = op(8) / ftmp
write(2,20) nc,y,op

end do
20 format(1x,I4,F9.4,E12.3,2F9.4,F10.4,4F9.4)
close(2)

#ifdef IPFAN
!- IP RESULTS
fname = fp//'FieldIPS.dat'
open(2,file = fname,status='unknown')
write(2,*) 'cell, Y, Samples, N, u, v, Tx, Ty, Tz, T'
do nc = 1, ncy

y = (nc-0.5) * cy

do n = 1, 3
vels(n) = scsip(n+1,nc) / nsamps
end do
op(1) = scs(1,nc)
op(2) = scsip(1,nc) / nsamps
op(3) = vels(1) / vref
op(4) = vels(2) / vref
op(5) = 2.0 * scsip(5,nc) / nsamps
op(6) = 2.0 * scsip(6,nc) / nsamps
op(7) = 2.0 * scsip(7,nc) / nsamps
op(8) = ( op(5) + op(6) + op(7) ) / 3.0

#ifdef IPSUN
op(8) = op(8) + scsip(8,nc)/nsamps
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#endif
op(8) = op(8) / ftmp
write(2,20) nc,y,op

end do
close(2)
#endif

!-- -- Instantaneous Flow--
!- DSMC RESULTS
fname = fp//'FieldU.dat'
open(2,file = fname,status = 'unknown')
write(2,*) 'cell, Y, Samples, N, u, v, Tx, Ty, Tz, T'
do nc = 1, ncy

y = (nc-0.5) * cy

do n = 1, 3
vels(n) = cs(n+1,nc) / cs(1,nc)
vells(n) = cs(n+4,nc) / cs(1,nc)

end do
op(1) = cs(1,nc)
op(2) = cs(1,nc) / (nsamp*cvol*fden)
op(3) = vels(1) / vref
op(4) = vels(2) / vref
op(5) = 2.0 * (vells(1)-vels(1)**2)
op(6) = 2.0 * (vells(2)-vels(2)**2)
op(7) = 2.0 * vells(3)
op(8) = ( op(5) + op(6) + op(7) ) / 3.0
op(8) = op(8) / ftmp
op(3) = op(3) * sqrt(2.0*gasR)
op(4) = op(4) * sqrt(2.0*gasR)
op(5) = sqrt(op(5)*2.0*gasR)
op(6) = sqrt(op(6)*2.0*gasR)
op(7) = sqrt(op(7)*2.0*gasR)
write(2,20) nc,y,op

end do
close(2)

#ifdef IPFAN
!- IP RESULTS
fname = fp//'FieldIPU.dat'
open(2,file = fname,status='unknown')
write(2,*) 'cell, Y, Samples, N, u, v, Tx, Ty, Tz, T'
do nc = 1, ncy

y = (nc-0.5) * cy

do n = 1, 3
vels(n) = csip(n+1,nc) / nsamp

end do
op(1) = cs(1,nc)
op(2) = csip(1,nc) / nsamp
op(3) = vels(1) / vref
op(4) = vels(2) / vref
op(5) = 2.0 * csip(5,nc) / nsamp
op(6) = 2.0 * csip(6,nc) / nsamp
op(7) = 2.0 * csip(7,nc) / nsamp
op(8) = ( op(5) + op(6) + op(7) ) / 3.0

#ifdef IPSUN
op(8) = op(8) + csip(8,nc)/nsamp

#endif
op(8) = op(8) / ftmp
op(3) = op(3) * sqrt(2.0*gasR)
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op(4) = op(4) * sqrt(2.0*gasR)
op(5) = sqrt(op(5)*2.0*gasR)
op(6) = sqrt(op(6)*2.0*gasR)
op(7) = sqrt(op(7)*2.0*gasR)
write(2,20) nc,y,op

end do
close(2)
#endif

end subroutine output

!-----------------------------------------------------------------------

subroutine writeRestart

use species
use molecules
use flowField
use calculation
use sampling
use wcontrol
implicit none
integer :: rsize
integer,allocatable :: rseed(:)

if(ires == 0) return

call random_seed(SIZE = rsize)
allocate(rseed(rsize))
call random_seed(GET = rseed(1:rsize))

fname = fp//'couette.res'
open(7,file = fname,form = 'unformatted')
write(7)npr,dtm,time,dtr,fmct,totcol,clsep,sp,spm,ispr,ispf,mfp,gasR, &

pp,pv,ir,irs,nm,nmi,msc,cxs,cell,icell,isc,nscn,ncy,ncell,nis, &
nso,nsi,npt,cvol,area,ybn,cy,rcy,dcrit,tr,tw,svf,fvel,vmpf,vmpw,&
ftmp,fden,pref,kn,nsamp,nsamps,nstep,cs,scs,surf,ssurf,rseed

#ifdef IPFAN
write(7)pvip,caip,cvip,cpip,cnip,csip,scsip,surfip,ssurfip

#ifdef IPSUN
write(7)ptip,ctip,ceip

#endif
#endif
close(7)
end subroutine writeRestart

!-----------------------------------------------------------------------

subroutine readRestart

use species
use molecules
use flowField
use calculation
use sampling
use wcontrol
implicit none
integer :: rsize
integer,allocatable :: rseed(:)

call random_seed(SIZE = rsize)
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allocate(rseed(rsize))

fname = fp//'couette.res'
open(7,file = fname,form='unformatted')
read(7) npr,dtm,time,dtr,fmct,totcol,clsep,sp,spm,ispr,ispf,mfp,gasR, &

pp,pv,ir,irs,nm,nmi,msc,cxs,cell,icell,isc,nscn,ncy,ncell,nis, &
nso,nsi,npt,cvol,area,ybn,cy,rcy,dcrit,tr,tw,svf,fvel,vmpf,vmpw,&
ftmp,fden,pref,kn,nsamp,nsamps,nstep,cs,scs,surf,ssurf,rseed

#ifdef IPFAN
read(7)pvip,caip,cvip,cpip,cnip,csip,scsip,surfip,ssurfip

#ifdef IPSUN
read(7)ptip,ctip,ceip

#endif
#endif
close(7)
call random_seed(PUT = rseed(1:rsize))

fname = fp//'wcontrol.in'
open(3,file = fname,status = 'old')
read(3,*) nso
read(3,*) nis
read(3,*) nsi
read(3,*) iwrite
read(3,*) ires
close(3)

end subroutine readRestart
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6
Parallel Computing and

Parallel Direct Simulation
Monte Carlo Method

6.1 Introduction

The DSMC method has been one of the most widely used tools for an-
alyzing hypersonic rarefied gas flows (Moss et al. 1994). The method
has been applied to a range of problems, for example, contaminant
pollution over space platforms (Rault and Woronowicz 1995). Recent
advances have resulted in procedures more efficient for dealing with
complex three-dimensional geometry as well as significant reductions
in the computational effort. Such advances have made practical the ap-
plications of DSMC to the calculations of the rarefied gas flow over the
full Space Shuttle geometry (Bird 1990).

For microfluid flows in MEMS, the operating pressure can be near or
even higher than the atmospheric pressure. Using DSMC to calculate
such flows of high density can be quite demanding in both the computer
memory and the computational time. Methods to deal with large vari-
ations of density have been proposed and applied successfully to many
problems. These schemes generally require a significant amount of com-
puter time for near-continuum conditions due to, partly, the increase of
the collision frequency at high gas density. As such, further reductions
in computational time are still needed to make the calculations of high-
density, large-scale microfluid flow problems more affordable.

Parallel implementations of DSMC for high-speed rarefied gas ap-
plications have been reported in the literature (Wilmoth and Carlson
1992; Dietrich and Boyd 1995; LeBeau 1999). The computer platforms
used include, for example, IBM SP-2 and CRAY-T3E. In recent years,
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hardware for personal computer (PC) has dramatically improved. This,
when coupled with efficient algorithms for parallel implementation, of-
fers a tremendous potential for a significant reduction of computation
time for the DSMC of microfluid flows in a cost-effective manner. In fact,
massive parallelization can achieve and even surpass the performance
of the current supercomputers for certain types of problems.

This chapter presents the development of high-performance comput-
ing cluster (HPCC) and the basic implementation of a parallel algorithm
for DSMC. The parallel efficiency has been benchmarked with applica-
tions to microfluid flows. The implementation of the parallel algorithm
does not require any major changes to the procedures of DSMC and
can, in principle, be applied to the general codes. Such an implemen-
tation will allow a wider range of flow conditions to be studied and
make possible a direct comparison of the DSMC results with the contin-
uum Navier-Stokes or Burnett equations solutions for microfluid flow
problems.

6.2 Cost-Effective Parallel Computing

Microfluidic flow simulations using either the Burnett equations or
DSMC involve intensive numerical computing. A large-scale unsteady
microflow simulation by DSMC in particular will need to use state-
of-the-art supercomputers to fully resolve the physics. On the other
hand, an efficient parallization of the DSMC procedure can also bring
down the computer run time on parallel computer platforms. Parallel
implementation of DSMC for high-speed rarefied gas applications has
been reported in the literature (Boyd 1991; Wilmoth 1992; Wilmoth
et al. 1992; Dietrich and Boyd 1994; Dietrich and Boyd 1995; LeBeau
1999). The computer platforms used include, for example, IBM SP-1,
IBM SP-2, Cray C-90, and Cray T3E. These supercomputers are ex-
pensive, beyond the reach of all but a few of the most prestigious uni-
versities and laboratories. Fortunately, high-performance computing on
HPCC such as the Beowulf system (Sterling et al. 1999) is accelerating
the development of CFD and other computational sciences, and it is
briefly described in the following paragraphs.

6.2.1 Parallel architecture

The computing architecture (Flynn 1966) can be classified into four
types in terms of instruction and data streams: single instruction and
single data (SISD), multiple instruction and single data (MISD), sin-
gle instruction and multiple data (SIMD), and multiple instruction and
multiple data (MIMD). For example, IBM PC and IBM RS/6000 work-
stations belong to SISD; MP-2 belongs to SIMD; CRAY T3E and Beowulf
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system belong to MIMD; CM-5 is a hybrid of the SIMD and the MIMD.
MISD is seldom used. MIMD is the dominant architecture in current
high-performance computing community because of its flexibility.

The MIMD-type machines can be further classified into shared mem-
ory parallel computer and distributed memory parallel computer in
terms of the type of memory access mode (Bell 1994). The shared
memory is accessible for multiple processors. Programming for shared
memory computer resembles that for vector computers, which is easier
than that for distributed memory computers. However, its scalability is
limited because of the limitation of system bus and memory access. Typ-
ical shared memory parallel computers are the CRAY C90, SGI Power
Challenger, and PCs or workstations based on symmetric multiproces-
sors (SMP). In distributed memory parallel computers memory is physi-
cally distributed among processors; each local memory is only accessible
by its specific processor. Message passing among processors is required
for accessing remote memory, which saves the data at the request of
a local processor. Because of its unlimited scalability, it is widely im-
plemented in massively parallel processing system (MPP), which is the
dominant trend in current high-performance computing. On the other
hand, this kind of parallel computer has two disadvantages. First, time
latency for message passing is usually long because of a software layer
required to access remote memory. Second, directing message passing
is the responsibility placed on a programmer. The programmer must
explicitly implement the schemes of data distribution and processor
mapping, all intraprocess communication, and synchronization.

The parallel computer system can be classified into highly specialized
vector parallel machines and MPP system, based on the arrangement of
computing processors. The vector parallel computers use ECL (emitter-
coupled logic) processors, which were specially built and offered at a
very high price. The MPP system, where high-performance micropro-
cessors are connected through high-speed network, is relatively less
expensive.

6.2.2 Development of HPCC

The history of the various supercomputers in the last six decades shows
that the performances of the fastest computers have been increased
exponentially by two orders of magnitudes every decade on an average,
as shown by the dash line in Fig. 6.2.1. Most of the data presented
in Fig. 6.2.1 before 1994 are taken from the book Parallel Computing
Works (Fox et al. 1998). This tremendous rate of growth was accurately
predicted by Moore’s law and is expected to continue in the future. But
it does not hold for the growth rate of the current parallel computer
systems.
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Over the past 20 years, the performance of microcomputers has grown
much faster relative to that of highly specialized vector parallel ma-
chines. Ten years ago, the best vector processor outperformed the best
microprocessor by a factor of 20,000. Today the difference is a factor
of less than 10. The vector parallel computers were very expensive,
and their market was too small to drive rapid technological growth. In
contrast, workstations and high-end PCs use microprocessors, which
provide lower performance than ECL but at a much lower price. In the
early 1990s, the microprocessor-based highly parallel computers were
introduced into the high-performance market by Thinking Machines,
Kendall Square, and Intel. These machines compensated for somewhat
slower performance per processor by using more of the less expensive
processors. Mainstream vendors like Cray, IBM, and Convex introduced



Parallel Computing and Parallel Direct Simulation Monte Carlo Method 161

their own such systems a few years later. Right now many of the high-
performance parallel systems in the TOP500 list (2003), which ranks
the performance of the most powerful supercomputer systems, use mi-
croprocessors. With the data taken from the Cray Inc. presentation
(Cray Inc. 2003) and Intel website (Intel 2003), the comparison of peak
performance for the fastest processors available in 2003 is shown in
Fig. 6.2.2. The peak performance is counted in the 32-bit-floating-point
operations per second (flop/s). It can be seen that the fastest micropro-
cessor at the time, Intel Itanium2, can be only about three times slower
than the fastest vector processor used in the Cray X1 and ranks fourth
right after IBM P690 1.3. The second fastest processor NEC SX-6 used
in the Earth Simulator, which is no.1 in the TOP500 list, is just twice
faster than Itanium 2. In summary, the advantage of the most expensive
vector processors has decreased to a factor of 3.

Also, the technology in fast Ethernet network has been rapidly de-
veloping with fast data transfer rate, low latency, and high bandwidth.
The improvement in microprocessors and the price/performance gained
in the fast Ethernet network technology make HPCC affordable in the
academic setting. An HPCC is a type of parallel or distributed process-
ing system, which consists of a collection of interconnected stand-alone
computers working together as a single, integrated computing resource.
A computer node can be a single or multiprocessor system, such as PCs
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or workstations with SMP. An HPCC generally refers to two or more
computer nodes connected together. The nodes can exist in a single cab-
inet or be physically separated and connected via a local area network
(LAN). An interconnected (LAN-based) cluster of computers appear as
a single system to users and applications. Such a system can provide
a cost-effective way to gain features and benefits (fast and reliable ser-
vices) that have been found only on much more expensive, centered
parallel machines such as nCube, CM5, Cray T3D, CRAY T3E.

6.2.3 Beowulf system

A Beowulf system is a type of HPCC, a massively parallel, distributed
memory MIMD computer built primarily out of commodity hardware
components such as PC, running a free-software operating system such
as Linux or FreeBSD, interconnected by a high-speed stand-alone net-
work. The primary advantage of such system is its high performance/
price ratio in comparison with other dedicated MPP systems.

The topology of a typical Beowulf system is shown in Fig. 6.2.3. The
network interface hardware acts as a communication processor and
is responsible for transmitting and receiving packets of data between
cluster nodes via a network/switch. Communication software offers a
means of fast and reliable data communication among cluster nodes
and to the outside world. Often, clusters with a special network/switch
like Myrinet (1.28 Gbps) use communication protocols such as active
messages for fast communication among its nodes. They potentially by-
pass the operating system and thus remove the critical communication
overheads providing direct user-level access to the network interface.
Through job-scheduling system, the cluster nodes can work collectively,
as an integrated computing resource, or they can operate as individual
computers. The cluster middleware is responsible for offering an illu-
sion of a united system image (single system image) and availability
out of a collection on independent but interconnected computers. Pro-
gramming environments can offer portable, efficient, and easy-to-use
tools for development of applications. They include message passing
libraries, debuggers, and profilers, such as message passing interface
(MPI), multiprocessing environment (MPE), and parallel virtual ma-
chine (PVM). Such a system could be used for the execution of sequential
with high-throughput computing and parallel applications with high-
performance computing.

The first Beowulf system came to birth at NASA Goddard Space
Flight Center in 1994 (Sterling et al. 1999). It comprised 16, 66MHz
Intel 80486 processors and cost less than $50K, which could compare
to the comparable performance of Cray YMP with cost about 1 million
dollars at that time, as shown in Fig. 6.2.1. After that, the cost efficiency



Parallel Computing and Parallel Direct Simulation Monte Carlo Method 163

Each Rack: 
32 × 2 = 64 2 GHz CPU 
32 × 0.5 = 16 GB RAM 
32 × 40 = 1.2 TB disk

• Scalable design 
• Transparent to users

Job Scheduling Send code and data chunks

Process and retrieve results

Process next …

Switch

Switch Switch

Switch

100BaseT

100BaseT

100BaseTFront end

Server

G
ig

ab
it

Figure 6.2.3 Topology of a typical Beowulf system.

quickly spread through NASA and into academic and research com-
munities. In 1997 ASCI Red was assembled at Sandia National Lab-
oratories as the first-stage Accelerated Strategic Computing Initiative
(ASCI) plan to achieve a 100 TERAFLOP supercomputer system by
2004. ASCI Red comprises 9,216 PentiumPro processors and was born
as the fastest system (1.8 Tflop/s) (Tomkins 2003). In 1997 and 1998, the
systems and services to achieve 1 gigaflop cost $3K to $3.5K. The cost
is decreasing dramatically. For example, the system shown in Fig. 6.2.3
has 194 Pentium Xeon 2GHz CPUs with 100BaseT network speed. The
peak performance is about 384 gigaflop with total cost about $210K.
That is, the cost to achieve 1 gigaflop has decreased to $550. Even if
the efficiency is 40 percent considering the unbalance caused by non-
professional setting of network, the actual price/performance is about
$1.4K per gigaflop. And the price/performance will continue to drop in
the future.

Because of the main attractiveness mentioned above, systems can be
built using affordable, low-cost, commodity hardware, fast LAN such
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as Myrinet, and standard software components such as Linux, MPI,
and PVM parallel programming environments. Scalable HPCC clus-
ters are rapidly becoming the standard platforms of high-performance
and large-scale computing. These systems are scalable, i.e., they can be
tuned to available budget and computational needs. Cluster computing
has been recognized as the wave of the future to solve large scientific
and commercial problems.

6.2.4 Parallel programming

In practical applications, there have been two main approaches for par-
allel programming:

1. The first approach is based on implicit parallelism. This approach is
followed by parallel languages and parallelizing compilers. The user
does not specify, and thus cannot control, the scheduling of calcula-
tions and/or the placement of data.

2. The second approach relies on explicit parallelism. In this approach,
the programmer is responsible for most of the parallelization effort
such as task decomposition, mapping tasks to processors, and the
communication structure. This approach is based on the assump-
tion that the user is often the best judge of how parallelism can be
exploited for a particular application.

Explicit parallelism is usually much more efficient than parallel lan-
guages or compilers that use implicit parallelism. Parallel languages,
such as SISAL (Feo et al. 1990) and PCN (Foster and Tuecke 1991)
have found little favor with programmers. Parallel languages and their
functions are still very limited. Parallelizing compilers are still limited
to applications that exhibit regular parallelism, such as computations
in loops. Parallelizing compilers have been used for some applications
on multiprocessors and vector processors with shared-memory, but are
unproven for distributed-memory machines. The difficulties are caused
by the nonuniform memory access (NUMA) in the latter systems. There-
fore, explicit parallelism is currently the only way on cost effective
HPCC.

In explicit parallelism, parallel computing paradigms fall into two
broad classes: functional decomposition and domain decomposition, as
shown in Fig. 6.2.4. These classes reflect how a problem is allocated
to process. Functional decomposition divides a problem into several
distinct tasks that may be executed in parallel; one field where this
is popular today is that of Multidisciplinary Design Optimization. For
CFD application, there are always many global variables inside each de-
composed function. They will occupy a log of memory space. It is rarely
used in CFD. On the other hand, domain decomposition distributes data
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across processes, with each process performing more or less the same
operations on the data. In the application of CFD, domain decomposi-
tion splits a large problem into small problems and is warmly welcomed
by coding programmers.

On the system of HPCC, the parallel programming paradigms can
be classified into the well known ones: single-program multiple data
(SPMD), task-farming (or master/slave), data pipelining, divide and
conquer, and speculative parallelism. SPMD is the most commonly used
paradigm. Each process executes basically the same piece of code but
on a different part of the data. This involves the splitting of applica-
tion data among the available processors. SPMD applications can be
very efficient if the data is well distributed by the processes and the
system is homogeneous. If the processes present different workloads or
capabilities, the paradigm requires the support of some load-balancing
scheme able to adapt the data distribution layout during run-time ex-
ecution. Therefore, there is still a lot of research work to do in the area
of cost-effective high-performance parallel computing.

6.3 Parallel Implementation of DSMC

The conventional DSMC simulations describe the time-dependent evo-
lution of molecules. The solution for a steady-state case is considered as
an asymptotic limit of a corresponding unsteady flow. As the simulated
molecules move, they collide with the other simulated molecules and
interact with the physical boundaries. The locations and the velocities
of these simulated molecules are determined and stored in sequences of
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time. Figure 5.1.1 represents the conventional DSMC flowchart, show-
ing the main procedures for a DSMC application. The core of the DSMC
algorithm consists of four primary processes: particle movement, index-
ing and cross-referencing, collision simulation, and flow field sampling.

The conventional DSMC has been widely used for hypersonic rar-
efied gas flow calculations (Rault and Woronowicz 1995; Bird 1990;
LeBeau 1999; Dietrich and Boyd 1995; Wilmoth and Carlson 1992).
DSMC has been used in the predictions of the heat transfer charac-
teristics of supersonic flows in microchannel (Liou and Fang 2001).
An implicit treatment of the flow boundaries has also been developed
for the DSMC simulations of subsonic microfluid flow (Liou and Fang
2000). In contrast to the conventional “vacuum” boundary conditions,
the implicit treatment accounts for the molecular fluxes across the flow
boundaries due to local thermal motions. The local mean velocities, tem-
perature, and number density at the boundaries determine the number
of entering molecules, their velocities, and internal energies in the com-
putational time interval. The implicit treatment has been successfully
applied to the simulations of microCouette flows and microPoiseuille
flows. The detailed implicit boundary treatment will be described in
Chap. 9. A DSMC code with the implicit boundary treatment is paral-
lelized with the library of message-passing interface (MPI) (Gropp et al.
1994) and is described in the following sessions.

The present parallelization of the DSMC method is based on the
SPMD model. The physical domain is decomposed and each of its sub-
domains, along with its associate cells and molecules, is allocated to an
individual processor (see Fig. 6.3.1). A complete DSMC code is loaded
on to all processors and the simulation in subdomain proceeds inde-
pendent of the other subdomains at each time step. Information of
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Figure 6.3.1 Sketch of domain decomposition.
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the molecules that will cross the decomposition boundaries during the
movement procedure of the DSMC algorithm is sent to the appropri-
ate processor using MPI. Thus, the simulations are synchronized be-
tween the movement and collision routines at each time step. Since
each processor contains a complete copy of the base simulation code,
any addition to or modification of the base simulation algorithm to in-
clude, for example, a more complex geometry or collision physics can
be readily implemented. In the following sessions, the data distribution
(domain decomposition) and data communication model through MPI
are described.

6.3.1 Data distribution

The physical region of interest is decomposed into a set of subdomains
as shown in Fig. 6.3.1. The subdomains are mapped onto different pro-
cessors. For example, Fig. 6.3.1 shows the subdomain �i, j and all its
neighboring subdomains in a 2-D space. The interface, which separates
�i, j from its neighbors, represents flow interface boundary. Molecules
may move through the interfaces between �i, j and the neighboring sub-
domain during a time step. It is important to parallel DSMC (PDSMC)
that all the molecules that exit �i, j through the interface to one of
its neighboring subdomains should be registered and appropriately ac-
counted for in their new “home” and be deleted from the original sub-
domain. In other words, there should be no loss/addition of molecules
due to the decomposition of the flow domain.

To this end, sending buffers are used in the present work. Each send-
ing buffer is assigned to one of the neighboring subdomains to store
the information of the molecules that will travel to that particular sub-
domain. For example, in the case of a 2-D flow as shown in Fig. 6.3.1,
the subdomain �i, j has eight sending buffers. The outgoing molecules
have, at most, three possible subdomains to go to through any flow in-
terface boundary. At each time step, a molecule that is going to exit
the current subdomain after a full time step is dealt with by a “re-
move” procedure. The remove procedure determines the new home of
the exiting molecule based on its location after the current time step.
Since the future subdomain where this molecule will reside has been
found, the current information of the position, velocity, internal en-
ergy, rotational energy, gas species, and the remaining portion of the
time step associated with this molecule should be saved in the corre-
sponding sending buffer. The molecule is then taken out of its current
subdomain.

There are also molecules entering this subdomain �i, j from its neigh-
bors. This is not shown in Fig. 6.3.1 for clarity. The information for the
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entering molecules is saved in respective receiving buffers after the
data communication between the related processors has completed.

6.3.2 Data communication

After the DSMC procedure of movement for all simulated molecules
and before the DSMC procedure of molecular collision during each time
step, all the processors must make necessary data-exchange of the in-
formation stored in the sending buffers described in data distribution.
The communication between the processors proceeds with information
on the number of molecules in transfer and their coordinates, velocity,
rotational energy, and time step remaining. For data communication,
there is an additional startup time needed for the processors to be ready
to transfer each data package. The startup time for data communication
for PC clusters is much lengthier than that for other high-performance
parallel architecture machines. Therefore, the number of data pack-
ages to transfer should not be large in order to improve the parallel
efficiency of the parallel computation on distributed PC cluster. In the
present work, a new data type mesg mpi t is derived and all the data
associated with the molecule crossing the flow interface boundary is
transferred as a whole using this newly defined data type.

Inside this new data type, all the values are continuously distributed
logically on a segment of RAM for each processor, so that they can be
transferred as a whole using MPI. Therefore, this new data type is used
as a template to send and receive data for the transferred molecules.
Before the sending of the molecules, all the information is encoded into
this template. And after the receiving, all the information is decoded to
a proper receiving buffer from the template.

While exchanging information between the processors, the proces-
sors must avoid sending data to or receiving data from each other at
the same time. Otherwise, it could cause a dead lock among the running
processors. It is also important to be sure that the targeted processor re-
ceives the data that have been sent by another processor. Asynchronous
communication is one way to avoid this problem. But there is a risk of
package loss. In this work, a synchronous communication model has
been used for the myidth processor, which calculates the (myid + 1)th
subdomain as shown in Fig. 6.3.2. Before communication, MPI Barrier
is employed to make sure that all the involved processors be ready to
exchange data packages. In the process of communication, the relative
value of processor identification is used to determine the order of data
receiving (MPI Recv) and data sending (MPI Ssend). After communi-
cation, the sending buffer should be reset to be ready for the next time
step.
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MPI Barrier make sure that all processors are ready to exchange data

To find the total number ii of its neighboring subdomains

do ith = 1, ii

ip = the processor number of its ith neighboring subdomains;

if (myid < ip) then

copy data of the ith sending buffer to template of mesg mpi t;

MPI Ssend send mesg mpi t to processor ip;

else

MPI Recv receive mesg mpi t from processor ip;

copy the data of mesg mpi t to its receiving buffer;

endif

enddo

do ith = 1, ii

ip = the processor number of its ith neighboring subdomains;

if (myid > ip) then

copy data of the ith sending buffer to template of mesg mpi t;

MPI Ssend send mesg mpi t to processor ip;

else

MPI Recv receive mesg mpi t from processor ip;

copy the data of mesg mpi t to its receiving buffer;

endif

enddo

do ith = 1, ii

clear the ith sending buffer

enddo

Figure 6.3.2 MPI synchronous communication model.

The communication is followed by an additional procedure of “cross-
move,” where the new comers stored in the receiving buffers are allowed
to finish their remaining time interval to reach new special locations.
The newly arrived molecules can then be indexed into field cells. After
this cross movement, the procedures of molecular collision and flow
sampling proceed in the same manner as those in a conventional DSMC.
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Figure 6.3.3 shows the flowchart of the PDSMC procedure (Fang
and Liou, 2001). The additional steps, in comparison with the conven-
tional DSMC given in Fig. 5.1.1, include decomposing geometry and
mapping subdomains to processors, deriving data type for communica-
tion, moving outgoing molecules to sending data buffer, data commu-
nication, crossing moving, and subsonic downstream implicit boundary
condition, as shown inside the dash box. These steps are dedicated to
PDSMC simulation of microflows.

6.3.3 A parallel machine

All the parallel computations referred to in this book have been per-
formed on the cost efficient parallel computing mast (CEPCOM) at the

Read data

Set constants

Move molecules within ∆td;
Compute interaction with boundary

Initialize molecules 
and boundaries

Compute collisions

Sample flow properties

Interval > ∆ts?

Print final results

Stop

No

Yes

Decompose geometry; 
map subdomains 
to processors

Move outgoing
molecules to
sending data-buffer

Data communication

Derive data type 
for communication

Start

Reset molecule indexing

Steady Flow: Average samples after 
 establishing steady flow

Time > tL ?

Yes

No

Crossing move

Subsonic downstream:
 Implicit B.C.

Figure 6.3.3 Parallel DSMC flowchart.
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CFD laboratory in Western Michigan University. CEPCOM is a 23-node
Beowulf-class cluster assembled in September 2001. Each node has two
1-GHz Pentium III processors and 512-MB RAM. The machines are con-
nected via the fast Ethernet network, which can support up to 100-Mbps
bandwidth for each node. An HP ProCurve Switch 4000 M with a back-
plane speed of 3.8 Gbps is used for the networking. All the processors
are dedicated to run parallel jobs or high throughput jobs. The operating
system is the Red Hat Linux 7.0. MPI library, mpich-1.2.2, is used for
parallel programming in C/C++/Fortran77/Fortran90. The overall peak
performance of CEPCOM is 46 Gflop/s, with total of 11.5-GB RAM and
302-GB hard drive space.

6.4 Parallel Performance of PDSMC

The performance and efficiency of the PDSMC method are examined
using the microfluid flows in microchannels, which include a straight
microchannel and a microchannel with a patterned surface structure.

A microPoiseuille flow has been calculated to benchmark the perfor-
mance of the PDSMC code. The size of the microchannel is 5 × 1 µm,
with the computational grid of 400 × 80 uniform rectangular cells. The
total number of the simulated molecules is about 1.6 million. The pres-
sure ratio is 4.0. The microchannel is divided into multiple numbers of
subdomains of equal size and each subdomain is assigned to a processor.
The parallel calculation achieves a satisfactory load balancing and the
total computing time decreases as the number of processors increases.
Figure 6.4.1 shows a sketch of the domain decomposition for 32 proces-
sors. Figure 6.4.2 shows the variation of the total computing time for 400
iterations for a range between 1 and 32 processors. For such a problem,
runs on a single Pentium III processor take nearly 2,560 s, and for a
32-processor run, it is about 166 s. The speedup enhancement with the
increasing number of processors is given in Fig. 6.4.3. The speedup is de-
fined as the ratio of the total computing time on one processor to that on
multiple processors. It deviates from the ideal linear variation at eight
processors, beyond which the communication time and synchronization
overhead increase relatively to the calculating time on each processor

Figure 6.4.1 Domain decomposition for a 2-D microchannel
flow.
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Figure 6.4.2 Total computing time for 2-D microchannel flow.

for this problem of fixed size. The speedup can be obtained up to 15.5 on
32 processors. Figure 6.4.4 shows the corresponding efficiency, which
is defined as the ratio of the speedup to the corresponding number of
processors used to run the problem. A nonlinear speedup is achieved
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Figure 6.4.3 Speedup for a 2-D microchannel flow.
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Figure 6.4.4 Efficiency for the 2-D microchannel flow.

within eight processors. Especially on two processors, the efficiency of
parallel computing is about 105 percent. Running on 32 processors, the
efficiency can be kept within 48 percent.

From this simple benchmark, it can be seen that the parallel process-
ing can clearly provide significant reductions in total computing times
for DSMC calculations. And DSMC can be parallelized very efficiently
to run on PC clusters, such as CEPCOM. The PDSMC algorithm pre-
sented here can be implemented in the attached DSMC/IP1D computer
program.
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Chapter

7
Gas–Surface Interface

Mechanisms

7.1 Introduction

Gas–surface interactions involve many, such as physical and chemi-
cal, mechanisms that occur near the interface. The result of these in-
teractions, however, can influence the operation characteristics of the
microdevices. In the near surface region, behavior of the individual
molecules cannot be ignored and the gas cannot be regarded as in equi-
librium. For instance, the momentum and the energy transfer between
the gas molecules and the surface need to be considered. Such regime or
sublayer, which is estimated to be about a few mean free paths thick, is
called the Knudsen layer. In the Knudsen layer, the gas behavior should
be considered from gas kinetic theory. This will bring in the Boltzmann
equation and the Liouville equations, which have been discussed ear-
lier. In the cases where the local Knudsen number is small and the
effect of the Knudsen layer is not significant, the continuum solution
for bulk flow can be extrapolated satisfactorily to the surface, implying
that the interactions of gas molecules and surface are the same as those
between the gas molecules and a gas/surface in equilibrium. This then
results in the average velocity and temperature of gas on the wall being
continuous and equal to the velocity and the temperature of the wall. At
high Knudsen number, the collision frequency can be low and the dis-
tribution function of the gas near the surface will not be an equilibrium
distribution. The gas–surface interactions then need to be considered
microscopically. The boundary conditions for the distribution function
of a gas in contact with solid surfaces are also required in the solution
of the Boltzmann equation, which contains spatial derivatives of the
distribution function.

175

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



176 Chapter Seven

y

x

Gas molecules (vimp, Timp)

Solid molecules

Vref = ?, Tref = ? Figure 7.1.1 Simplified view of
gas–surface interactions.

Interactions between the gas molecules and the solid molecules are
complicated from a microscopic point of view. Figure 7.1.1 depicts such
a view where ()imp and ()ref represent the impinging and the reflected
molecular properties, respectively.

On the surface, the velocity distribution would be the sum of the
distribution f (−) associated with the incident molecules with cy < 0
and f (+) for the reflected molecules with cy > 0. Or

f = f (+) + f (−) (7.1.1)

If gas molecules strike and are bounced off the surface with no accu-
mulation on the surface, then the number flux (per unit area per unit
time) of the impinging molecules should equal to that of the reflected
molecules. That is,

∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
cy f (−)dcx dcy dcz =

∫ ∞

∞

∫ ∞

0

∫ ∞

∞
cy f (+)dcx dcy dcz

(7.1.2)

The probability P of a surface reflection for a molecule with velocity c
to leave with velocity c∗ can be defined as

f (+) =
∫ ∞

∞

∫ 0

−∞

∫ ∞

∞
P (c → c∗) f (−)dc (7.1.3)

If the reflection probability P, or scattering kernel is known, the above
equation can be used to obtain an integral equation that relate f (−) to
f (+) . Except for simple cases, it is not easy to identify the reflection prob-
ability density function P. The incident molecules can be trapped by the
weak van der Waals attraction and stay near the wall (physisorbed),
which might cause a perturbation of the electronic structures of the
substrate. Some of the adsorbates may move parallel to the surface and
some might eventually be desorbed and be reemitted back into the gas.
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Figure 7.1.2 Three-dimensional
scattering.

The trapping–desorbing process (Hurst et al. 1979) may result in out-
of-plane scattering as shown in Fig. 7.1.2 where θi denotes the incident
angle measured from the wall-normal direction, θ f the reflected angle,
and ϕ f the out-of-plane scattering angle measured from the incident
direction.

A dynamic equilibrium may be reached when the rate at which the
number of molecules being adsorbed is equal to the rate of molecules
being desorbed. The adsorbates may also be bounded by the chemi-
cal bounds (chemisorption) similar to those encountered in molecules
that are stronger than the intermolecular van der Walls force. The
lateral interactions between the species control the thermodynamic
phase diagram of the combined adsorbates and substrate, and essen-
tially form a new material. Concerns of such mechanisms would occur
when considering thin film deposition and etching in the manufactur-
ing of microdevices. It could also be a concern in developing micro gas
sensors.

It has been proposed that the general requirement for equilibrium
between a gas and surface at the molecular level is that the inter-
action satisfies the principles of reciprocity condition and normaliza-
tion condition. The reciprocity principle is a relationship between the
probability of a gas–surface interaction with a particular set of inci-
dent and reflected velocities and the probability of the inverse inter-
action. It may be written as (Cercignani 1969; Wenaas 1971; Kuščcer
1971)

cP (c → c∗) exp[−E/(kTw)] = −c∗P (−c∗ → −c) exp[−E∗/(kTw)]

(7.1.4)

where E and E∗ represent the energy of incident and reflected molecule,
respectively. This condition is related to the detailed balance in energy.
The normalization principle assumes that the interaction surface
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reflects all the incident molecules without adsorption. Then the scat-
tering kernel must be a normalized probability function as∫ ∞

∞

∫ ∞

0

∫ ∞

∞
P (c → c∗)dc∗ = 1 (7.1.5)

Macroscopically, the gas–surface interactions can be evaluated by using
averaged parameters such as the tangential momentum accommoda-
tion coefficient σv.

σv = τi − τr

τi − τw
(7.1.6)

where τi = tangential momentum of incoming molecules
τr = tangential momentum of reflected molecules
τw = tangential momentum of the wall

(=0 for stationary surfaces)

The parameter represents a measure of the equilibrium of momentum
of the reflected molecules with that of the wall. Thermal accommodation
coefficient can be defined as

σT = dEi − dEr

dEi − dEw
(7.1.7)

where dEi = energy flux of incoming molecules
dEr = energy flux of reflected molecules
dEw = energy flux if all incoming molecules had been reemitted

with energy flux corresponding to the wall temperature

The values of the coefficients could depend on the gas and surface prop-
erties, such as temperature and roughness, the local pressure, and even
the local mean flow. It typically takes a molecule a few surface collisions
to take on the average σv. More collisions are needed to obtain an energy
level of the surface. Other parameters, such as chemical energy accom-
modation coefficient and recombination coefficient, were also used in
characterizing macroscopically gas–surface interactions.

The interactions between gas particles and a solid surface are com-
plex. It is unlikely that a general mathematical model can be rigor-
ously developed that will be adequate for a quantitative description of
the gas–surface interactions of different combinations of gases and sur-
faces at all conditions. Nevertheless, with the advances of ab initio sim-
ulations such as direct simulation Monte Carlo (DSMC) and molecular
dynamics (MD) and new experimental methods, better understanding
of the interaction phenomenon will be brought to light. This new knowl-
edge can help develop empirical or phenomenological models that are
more widely applicable.
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7.2 Phenomenological Modeling

7.2.1 Specular and diffusive reflection
models of Maxwell

In searching for boundary conditions for the distribution function of a
gas that is in contact with solid surfaces, Maxwell (1879) developed
two hypotheses. In the first, the surface was assumed to be elastic
and smooth. The tangential molecular velocity component is then un-
changed and the normal molecular velocity component is reversed as a
result of the collision between the gas molecules and the surface. The
incident angle θi, the angle between the wall normal and the incident
molecular velocity is the same as the deflection angle θ f , see Fig. 7.2.1.

This specular reflection model then results in no stress in the tangen-
tial direction and σv = 0, which is not generally observed. The reflection
probability density function can then be written in the form of the delta
function. That is,

P = δ(cx − c∗
x)δ(−cy − c∗

y)δ(cz − c∗
z) (7.2.1)

The second model, the diffuse reflection model (Fig. 7.2.2), hypothesizes
that the gas molecules interact with lattices of surface molecules mul-
tiple times and, as they are desorbed and reemitted into the gas, they
become in equilibrium with the solid surface, or are fully accommo-
dated. Their velocity distributions assume the half-range Maxwellian
distribution at the wall temperature.

For the diffuse model, τr = τw and σv = 1. Experimental results show
that for practical engineering surfaces at moderate temperature and
gas velocities, the diffuse reflection model is a reasonably good approx-
imation. For interactions with very clean surfaces or under vacuum
condition, diffusive model becomes invalid. It can also be found (Koga
1970; Cercignani 1969) that

P = c∗
y

(
2πm
kTw

)1/2( m
2πkTw

)3/2

exp
[
− m

2kTw
c2
]

(7.2.2)

x

y
θf = θiqi

Figure 7.2.1 Specular reflection.
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Figure 7.2.2 Diffuse reflection.

A model that describes the scattering as consisting of partly specular
and partly diffuse was also considered by Maxwell. A portion of the
surface is assumed to reflect incident molecules specularly and the re-
maining portion would trap and later desorb the gas molecules at the
surface temperature. With σv representing the fraction of the molecules
that are reflected diffusely and (1 − σv) the fraction that reflected spec-
ularly, the probability density function is the linear combination of that
of the two models given above. That is,

P = (1 − σv)δ(cx − c∗
x)δ(−cy − c∗

y)δ(cz − c∗
z)

+ σvc∗
y

(
2πm
kTw

)1/2( m
2πkTw

)3/2

exp
[
− m

2kTw
c2
]

(7.2.3)

7.2.2 Cercignani, Lampis, and Lord model

The Maxwell models of compete and fractionally diffuse surfaces have
been used widely. The models, however, do not produce the lobular dis-
tribution in the direction of the remitted molecules observed in exper-
iments. Cercignani and Lampis (1971) proposed a phenomenological
model that reproduced the lobular scattering distribution. The scat-
tering of the normal and the tangential components are considered
mutually independent in the model. Therefore, the scattering kernel
consists of three parts, one for each of the velocity components. For the
component tangential to the wall cx, the term can be written as

P (cx → c∗
x) = [πσv(2 − σv)]−1/2 exp

[
−{c∗

x − (1 − σv)cx}2

σv(2 − σv)

]
(7.2.4)

For isotropic surfaces, the expression is the same for cz. For the normal
velocity component, the probability can be written as

P (cy → c∗
y) = 2c∗

y

αn
I0

2(1 − αn)1/2cyc∗
y

αn
exp

[
−c∗2

y + (1 − αn)c2
y

αn

]
(7.2.5)
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Where αn represents the accommodation coefficient for the kinetic en-
ergy of the normal component and I0 the modified Bessel function of the
first kind. Note that the molecular velocity components in Eqs. (7.2.4)
and (7.2.5) are normalized by the most probable molecular speed at the
surface temperature. The model satisfies the reciprocity condition. The
model provides a continuous spectrum of behavior between the specular
reflection on one end and the diffuse reflection on the other. The model
contains two adjustable parameters, the normal energy accommodation
coefficient αn and the tangential momentum accommodation coefficient
σν . Several improvements of the Cercignani and Lampis model were
reported by Lord (1991; 1995). In Lord (1991), the model was modified
for diffuse scattering with partial energy accommodation and to include
accommodation of vibrational energy of a diatomic molecule. The case
with partially diffuse scattering was included by Lord (1995).

The Cercignani-Lampis-Lord (CLL) models are phenomenological
and contain two adjustable parameters. These empirical constants may
be determined by experimental data. A simple classical model for the
scattering of gas atoms from a solid surface is the “hard-cube” model
proposed by Logan and Stickney (1966). The model assumes that gas
molecules are spherical, rigid, and elastic. The surface atoms are mod-
eled as uniform cubes with one face parallel to the surface plane, which
moves only in the direction normal to the surface with a one-
dimensional Maxwellian distribution function. As a result, the tan-
gential components of the gas molecules do not change during the
interaction and each gas particle interacts with only one of these cubes.
The change of the velocity component normal to the surface occurs
according to the laws for the collision of rigid elastic bodies. The thermal
motion of a surface atom then affects the scattering distribution. The
hard-cube model contains no adjustable constant. The model can pro-
vide qualitative explanation of some experimental phenomena. These
include the lobular scattering pattern and the observation that, with
increasing surface temperature, the deviation from specular interac-
tion also increases. However, the model cannot produce out-of-plane
scattering due to the assumption of the conservation of tangential
momentum.

With the advance of modern computers, first principle-based sim-
ulation methods, such as the molecular dynamics (MD) method and
the DSMC methods can be effectively used to guide the development
of models and the calibration of model constants. MD can offer de-
tailed description of the collision process as affected by potential en-
ergy surface, lattice structure, and bond length. The simulations results
obtained from these ab initio methods can also be used along side exper-
imentals to provide further evaluation and assessment of these models.
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A typical example of this approach is the development of the multistage
gas–surface interaction model (Yamanishi and Matsumo 1999). Based
on the MD results of surface interactions for three different gases, i.e.,
O2, N2, and Ar with clean perfect graphite surfaces, and comparisons
with molecular beam experimental results, the gas–surface interac-
tion was assumed to be made up of three stages. In the first stage, the
translational and rotational energies are determined by model equa-
tions. The out-of-plane scattering direction is determined by the
potential energy surface in the section stage. At stage 3, the molecules
can either scatter, reenter the gas stream, or be trapped to the sur-
face, depending on the translational energy. The model parameters are
determined by the MD simulations. The multistage method produced
quantitative agreement with molecular beam experiments for in-plane
and out-of-plane scattering distributions. The model contains a number
of parameters, and their values are not the same for different gases.

Ab initial simulations of the interaction between a platinum (Pt) solid
surface with monatomic (Yamamoto 2002) and diatomic (Takeuchi et al.
2004) gases in a Couette flow have also been performed. In these stud-
ies, the gas–surface interactions are simulated by MD and the motion
of the gas molecules are simulated by using DSMC. The surface is made
up of a few sheets of Pt atoms and is assumed periodic in the directions
horizontal to the surface. In Takeuchi et al. (2004), the N2 molecules
are assumed to be a rigid rotor with a fixed bound length. The vibra-
tion of the molecules is neglected and the rotational energy is assumed
continuous. The Lennard-Jones potential was used for the interaction
potential. The simulations provide direct calculations of the momentum
accommodation coefficients and energy accommodation coefficients.

The microproperties of the surface can also affect the interactions
between the gas and the surface. The lattice structures can produce
molecular level roughness. Roughness, either at micro- or macro-scales,
influence the momentum and energy exchange during interactions. The
statistical model proposed by Sawada et al. (1996) considered conical
surface roughness. New fractal function models for rough surfaces pro-
files, which derive the probability distribution of heights for general
sample lengths, have also been proposed (Ling 1990; Blackmore and
Zhou 1996).

7.3 DSMC Implementation

The Maxwellian specular and diffuse wall models are widely used in
DSMC simulations. In this section, the implementation procedure for
the Maxwellian models in a DSMC framework will be described. We
will also examine the steps with which the CLL model can be realized
in DSMC.
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7.3.1 Specular reflection

In the DSMC simulations, the specular reflection model can be read-
ily implemented. Only the velocity component normal to the surface
changes its sign, other components do not change. For the remainder
of the simulation time step, the reflected molecule continues to travel
at the postreflection speed.

7.3.2 Diffusive reflection

The velocity distribution function for the Maxwellian diffuse reflection
model is

f = β3

π3/2 exp[−β2c∗2] (7.3.1)

where

β =
(

2
k
m

Tw

)−1/2

(7.3.2)

In diffusive reflection, the reflected velocity c∗ can be written in three
components in the form of (u, v, w), where v is the component normal
to the surface, and u and w the components parallel to the surface. The
distribution function for the velocity component normal to the surface is
sampled from the number flux on the surface, and assumes the form of

f v ∝ v exp(−β2v2) (7.3.3)

The proportionality coefficient can be obtained by applying the normal-
ization condition to Eq. (7.3.3), which gives

f v = 2β2v exp(−β2v2) (7.3.4)

Therefore

f vdv = exp(−β2v2)d (β2v2) (7.3.5)

That is, the distribution function for β2v2 can be defined as

f β2v2 = exp(−β2v2) (7.3.6)

A typical value of v can be found by using the sampling of the accumu-
lative distribution function in the App. 5A,

v = [− ln(R f )]1/2/β (7.3.7)

where R f is a random fraction.
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The distribution function for the velocity components parallel to the
surface is the same as that for a velocity component in a stationary gas.
That is,

fu = β√
π

exp[−β2u2] (7.3.8)

fw = β√
π

exp(−β2w2) (7.3.9)

The sampling pair of values for u and w is

fu du fw dw = β2

π
exp[−β2(u2 + w2)]du dw (7.3.10)

One can rewrite Eq. (7.3.10) by using the following transformation

u = r cos θ w = r sin θ r = u2 + w2 (7.3.11)

Or

fu du fw dw = exp(−β2r 2)d (β2r 2)d (θ/2π) (7.3.12)

Equation (7.3.12) means that θ is uniformly distributed between 0 and
2π , and that the variable β2r 2 is distributed between 0 and ∞ with
distribution function of

f β2r 2 = exp(−β2r 2) (7.3.13)

A typical value of θ is given as

θ = 2π · R f (7.3.14)

and Eq. (7.3.13) gives

r = [− ln(R f )]1/2/β (7.3.15)

that follows the same form as in Eq. (7.3.7).
Therefore, in the DSMC realization of Maxwellian model of diffusive

reflection, the normal component of the reflected molecule velocity can
be sampled by Eq. (7.3.7). A pair of values of r and θ may be sampled
from Eqs. (7.3.14) and (7.3.15) using successive random fractions. The
normally distributed values of u and w follow Eq. (7.3.11) and provide
values for the parallel velocity components for the reflect molecule. In
this model, the velocity of the reflected molecule depends on the surface
temperature Tw only, and is not related to its incident velocity.
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7.3.3 CLL model

Lord (1991; 1995) realized the CLL model in the DSMC method. Con-
sider first the parallel components of the CLL reflection. The tangential
momentum accommodation coefficient σv in Eq. (7.1.6) can be defined as

σv = cx − c∗
x

cx
(7.3.16)

and the tangential energy accommodation coefficient αt

αt = c2
x − c∗2

x

c2
x

(7.3.17)

Then relationship between these two accommodation coefficients can
be obtained as

αt = σv(2 − σv) (7.3.18)

Without the loss of the generality, the coordinate is chosen according
to the velocity (combined parallel velocities) direction of the incident
molecule. That is cx = ui, and cz = 0. Using Eqs. (7.3.1) and (7.3.18),
the probability that a molecule is reflected with tangential velocities of
(u, w) from incident velocity of (ui, 0) can be obtained as

P (ui → u)P (0 → w)du dw

= 1
παt

exp

[
−
{

u − (1 − αt)1/2ui
}2 + w2

αt

]
du dw (7.3.19)

The coordinate (u, w) is transformed to a polar coordinate system
(r, θ ), following the same rule with Eq. (7.3.11) with its origin at
Q((1 − αt)1/2ui, 0), where

r =
√

{u − (1 − αt)1/2ui}2 + w2 (7.3.20)

The probability is also transformed as

P (ui → u)P (0 → w)du dw = r
παt

exp
(

−r 2

αt

)
dr dθ (7.3.21)

The distribution function for r 2/αt can be obtained by integrating
Eq. (7.3.21) with θ from 0 to 2π

f (r 2/αt) = exp(−r 2/αt) (7.3.22)

The sampling for r and θ can be obtained independently as{
θ = 2π · R f

r = {−αt ln(R f )}1/2 (7.3.23)
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and the parallel components for the reflected molecule are sampled as

u = (1 − αt)1/2ui + r cos θ (7.3.24)

w = r sin θ (7.3.25)

The normal velocity component v of the reflected molecule can be con-
sidered as the combined vector of the parallel components. With normal
velocity vi of the incident molecule and the same sampling for the par-
allel components of reflected velocity, the value of v is sampled as{

θ = 2π · R f

r = {−αn ln(R f )}1/2 (7.3.26)

v = {r 2 + (1 − αn)v2
i + 2r (1 − αn)1/2vi cos θ}1/2 (7.3.27)

where αn is the normal energy accommodation coefficient.
In the DSMC realization of the CLL model, the inward normal compo-

nent of the incident velocity is vi and the parallel components are ui and
wi. These velocity components have been normalized by the most prob-
able speed at the surface temperature. The new axes are chosen such
that ui lies in the interaction plane that contains the incident molecular
path and the surface normal. wi is therefore zero. The distributions of θ

and r in Eq. (7.3.23) are applied to the parallel components of reflected
molecular velocity in the interaction plane, u and w, in Eqs. (7.3.24) and
(7.3.25). The distributions of θ and r in Eq. (7.3.26) are applied to the
outward normal components of reflected velocity v in Eq. (7.3.27). Note
that the accommodation coefficient in Eq. (7.3.23) is different from that
in Eq. (7.3.26) and that different sets of random values for θ and r must
be used for the different velocity components. The reflected components
must be transformed back to the original coordinate system. The CLL
model reduces to the specular reflection model when all the accommo-
dation coefficients are set equal to zero and to diffuse reflection with
values of one.

The physical meaning for the CLL model can be explained with the
following. The average value u0 of the tangential reflection velocity for
reflected molecules can be obtained through integrating the reflection
kernel equation (7.3.19) as

u0 =
∫

uP(ui → u)du

=
∫ ∞

−∞
u[πσv(2 − σt)]−1/2 exp

[
− [u − (1 − σt)ui]2

σt(2 − σt)

]
du (7.3.28)

= (1 − αt)1/2ui
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Figure 7.3.1 Graphic representation of CLL model.

Equation (7.3.28) gives the averaged state of reflected molecules by us-
ing the accommodation coefficients. Lord (1991) introduced the graphic
shown in Fig. 7.3.1 to illustrate this general distribution function in the
CLL model. The point P on the u-axis may represent the state of the
incident molecule, and the distance OP can represent the magnitude
of either the parallel velocity component ui or the normal component
vi. The point Q represents the mean state u0 of the reflected molecules
under the condition that OQ/OP = (1 − α)1/2, where α is the accommo-
dation coefficient. Point R represents the actual state of the reflected
molecule. The probability distribution of this state is given by a two-
dimensional Gaussian distribution in Eq. (7.3.21) centered at Q, where
r is the distance QR and θ is the angle � PQR. The distance OR repre-
sents either the reflected normal velocity v or the reflected combined
parallel velocity (u2 + w2)1/2, while the projections OM and ON of OR
onto the axes represent either u or w. To summarize, the CLL model
samples the reflection velocities to a mean state u0 according to its
accommodation coefficient and incident velocities and an actual state
is sampled by a two-dimensional Gaussian distribution based on the
mean state.

7.4 Wall-Slip Models for Continuum
Approaches

The first- and the second-order approximation of the Chapman-Enskog
expansion of the Boltzmann equation result in the Navier-Stokes equa-
tions and the various forms of the Burnett equations. These equations
are valid in the region away from the wall. Since these equations in-
volve spatial derivatives, boundary conditions are required in terms of
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the averaged properties of the flow, such as the velocity. For a specular
wall, Eq. (7.2.1) suggests that

cy ≡ vgas = 0

for a stationary surface. This applies to the diffuse reflection model as
well. For the tangential velocity component us, the specular reflection
model indicates that it is not changed by the gas–surface interaction.
With diffuse reflection, the reflected molecules adopt the surface ve-
locity that is independent of the incident velocity. An estimate of the
average tangential velocity can be made by examining the momentum
balance in the near-surface region. The average flux of particle imping-
ing on the wall can be written as, for Q = n[c • (−nw)] = −ncy, where
nw denotes the unit vector normal to the wall, which points in the
y-direction in Fig. 7.1.2,

−
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
nf cy dcx dcy dcz

Assuming a Maxwellian distribution function, we can write the above
equation as

1
4

nc′

where c′ denotes the average thermal speed. The tangential momentum
each of the impinging molecules carries before the interaction, say at
one mean free path away from the wall, can be written as

m
(

ugas + λ
du
dy

∣∣∣∣
w

)

by using a first-order approximation, where du/dy is evaluated on the
wall. The averaged tangential momentum flux, or shear stress, would
then be

1
4

nc′m
(

ugas + λ
du
dy

)
= 1

4
c′ρ
(

ugas + λ
du
dy

)
(7.4.1)

For the Navier-Stokes equations to be valid, this shear stress would be
µdu

dy

∣∣
λ
. For monatomic gases,

µ = 1
2

ρc′λ
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Equating the shear stresses from the kinetic theory consideration and
that from the Navier-Stokes approximation, we get

ugas = λ
du
dy

(7.4.2)

Equation (7.4.2) shows that the averaged tangential velocity component
relative to the surface is not zero. The averaged flow shows a finite slip
on the surface. The amount of the slippage is proportional to the local
mean free path λ. When properly normalized, say, using the velocity and
the length of the averaged flow, the equation shows that the slip velocity
is proportional to the local Knudsen number. Therefore, for the first-
order Chapman-Enskog expansion, the slip tangential velocity is small
compared with the velocity scale of the averaged bulk flow. The “no-
slip” boundary conditions that are normally used in the solution of the
Navier-Stokes equations are then valid for flows that are in equilibrium.
For microflows, the Knudsen numbers are large and the velocity slip
may not be neglected.

For the partially specular and partially diffuse walls considered by
Maxwell (1879), an expression for the slip velocity for an isothermal
wall of temperature Tw is

ugas − uw = 2 − σv

σv
λ

∂u
∂y

(7.4.3)

For monatomic gases, the equation can be written as

ugas − uw = 2 − σv

σv

µ
√

π

ρ
√

2RTw

∂u
∂y

(7.4.4)

The contribution by the streamwise temperature gradient associated
with the thermal creep phenomenon is added by von Smoluchowski
(1898) and can be written as

ugas − uw = 2 − σv

σv
λ

∂u
∂y

+ 3
4

µ

ρTw

∂T
∂s

(7.4.5)

where ∂/∂s is taken tangential to the surface. According to Eq. (7.4.5),
slip velocity can be caused by the velocity gradient normal to the wall
and the temperature gradient tangent to the wall. Using a similar ar-
gument made for the velocity slip, von Smoluchowski also proposed a
boundary condition for the temperature

Tgas − Tw = 2 − σT

σT

[
2γ

γ + 1

]
λ

Pr
∂T
∂y

(7.4.6)
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The finite Knudsen number effects thus generate a difference of temper-
ature between that of the surface and that of the gas, or a temperature
jump. The nondimensional form of the velocity-slip and temperature-
jump conditions can be written as

ugas − uw = 2 − σv

σv
Kn

∂u
∂y

+ 3
2π

γ − 1
γ

Kn2Re
Ec

∂T
∂s

(7.4.7)

Tgas − Tw = 2 − σT

σT

[
2γ

γ + 1

]
Kn
Pr

∂T
∂y

(7.4.8)

The Eckert number Ec is defined as,

Ec = u2
r

Cp�Tr

where ur and �Tr represent the reference velocity and the reference
temperature difference, respectively.

Various second-order slip boundary conditions have also been exam-
ined (Schamberg 1947; Cercignani and Daneri 1963; Deissler 1964;
Hsia and Domoto 1983). Beskok and Karniadakis (1994, 1999, 2002)
proposed a modified form of the slip conditions,

ugas − uw = 2 − σv

σv

Kn
1 − bKn

∂u
∂y

+ 3
2π

γ − 1
γ

Kn2Re
Ec

∂T
∂s

(7.4.9)

The slip coefficient b is written as

b = 1
2

(
u′′

u′

)
w

where the prime denotes derivatives of the tangential velocity field,
obtained with no-slip conditions, along the normal direction to the sur-
face. The procedure of Beskok and Karniadakis can be extended to high
orders for both the velocity-slip and the temperature-jump conditions.

For liquids, there is no advanced first-principle based theory as it is for
dilute gases. The surface interaction modeling is mostly phenomenolog-
ical. Thompson and Troian (1997) performed MD simulations to quan-
tify the dependence of the slip-flow boundary condition on shear rate
in a Couette flow arrangement. Similar to the slip modeling for gases,
a slip length Ls was defined,

uliquid − uw = Ls
du
dy

(7.4.10)

They found that Ls begins to diverge well below the shear rate where
the linear constitutive relation would become invalid. The divergence
was also observed to be highly nonlinear and quick, indicating that a
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small change of shear rate or a change of surface properties may result
in large variation of velocity slip.

Based on their MD data, they suggested that

Ls = L0
s

(
1 − γ̇

γ̇c

)−1/2

(7.4.11)

where L0
s denotes the slip length at small shear rates, γ̇c the critical

shear rate.
The boundary conditions can be more complex when effects such as

the chemical, physical, and electrical properties are included. For in-
stance, more drugs today are protein based. The interaction between
the pharmaceutical products with glass containers, such as adsorption,
can affect the packaging and the delivery of the solutions. At microscale,
the surface mechanisms play an important role in the behavior of the
flow and there are many phenomena that are not fully understood and
modeled.
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Chapter

8
Development of Hybrid

Continuum/Particle Method

8.1 Overview

The Chapman-Enskog expansion of the velocity distribution in terms of
the power series of the Knudsen number gives rise to various forms of
approximation for the Boltzmann equation. As was shown in Chap. 4,
for the thermal equilibrium condition, the Euler equations are obtained.
As the departure from equilibrium increases, measured by appropri-
ately defined Knudsen numbers, higher order terms need to be included.
The first-order expansion results in the Navier-Stokes equations and
the Burnet equations have also been derived as the second-order ap-
proximation form of the Boltzmann equation. For micro flows of small
Knudsen number, say, less than 0.01, the Navier-Stokes equations have
generally been found satisfactory. At higher Knudsen number, the
Burnett equations become more appropriate. The application of the slip
boundary condition for the velocity and the temperature jump condition
often enables both the Navier-Stokes equations and the Burnett equa-
tions to provide solutions at high Knudsen numbers. At higher Knudsen
number, it becomes necessary to use discrete based approaches, such as
molecular dynamics (MD), direct simulation Monte Carlo (DSMC), or
lattice Boltzmann method, for numerical simulations of practical flows.
These first principle methods are physically sound and valid for flows
at all Knudsen numbers. They, however, demand more computational
resources than the differential equation models for flows of low speed
and Knudsen number.

For microfluidic devices, the operational value of the Knudsen num-
ber can spread over quite a large range in the same system. A single-
scale approach based on a continuum equation model is then not
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uniformly valid in the entire system. On the other hand, the costs of
using discrete methods, although physically accurate regardless of the
local Knudsen number, are high. In these situations with physics that
are of multiple scales in nature, a hybrid approach becomes an attrac-
tive option. Such an approach would involve the use of both the dis-
crete as well as the continuum-based methods for the solution of the
appropriate flow domain in the same flow field. For the sake of com-
putational efficiency, a differential equation model of the continuum
approach, such as the Euler and the Navier-Stokes equations, is nor-
mally applied to the largest domain possible. The discrete method is
then used in regions where a breakdown of the continuum assumption
is anticipated.

The hybrid approaches have been explored in many studies of hy-
personic rarefied gas flows. The flight trajectory of an aerospace vehi-
cle can cover the entire atmosphere of a planet, ranging, for instance,
from high-altitude rarefied gas regime to low-altitude continuum flow
regime. There are also flows, such as the blunt body wakes and control
system plumes that are in a mixed continuum and rarefied condition.
Aerospace engineers have had quite some successes in applying hy-
brid methods to these flows. There are also recent studies with focuses
on the hybrid approaches for microflows. In this chapter, these hybrid
approaches are briefly discussed.

8.2 Breakdown Parameters

One of the key issues in the development of the hybrid approaches is the
determination of the location of the interface boundary between the do-
mains, or patches, where the continuum assumption can be applied and
the domain where a discrete method should be used. The decomposition
of the domain is normally accomplished through the use of parameters
that measure the breakdown of the continuum approach. Although the
Navier-Stokes equations can be derived from the Boltzmann equation
with the assumption that the velocity distribution is a small perturba-
tion of the equilibrium or Maxwellian function, the Chapman-Enskog
theory did not provide explicitly a limit when such perturbation can
be considered small and the Navier-Stokes equations are valid. Sev-
eral breakdown parameters have been proposed in the literature. Bird
(1970) proposed a breakdown parameter

P = 1
ν

∣∣∣∣D(ln ρ)
Dt

∣∣∣∣ (8.2.1)

The materials derivative is evaluated along the flow streamlines.
Bird’s study of the expanding flows showed that the breakdown of the
continuum approach correlated with a value of P of approximately 0.02
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(Bird 1994). Boyd et al. (1995) considered a gradient-length local
Knudsen number defined by

KnGLL = λ

Q

∣∣∣∣dQ
dL

∣∣∣∣ (8.2.2)

Boyd et al. (1995) concluded in their study of one-dimensional normal
shock waves and two-dimensional bow shocks that the continuum ap-
proach broke down wherever the value of the gradient-length local
Knudsen number exceeded 0.05. Garcia and Alder (1998) proposed a
breakdown parameter B .

B = max
{∣∣τ ∗

ij

∣∣, ∣∣q∗
i

∣∣} (8.2.3)

where

τ ∗
ij = µ

p

(
∂Vi

∂xj
+ ∂V j

∂xi
− 2

3
∂Vk

∂xk
δij

)
q∗

i = − κ

p

(
2m
kT

)1/2
∂T
∂xi

(8.2.4)

are the normalized stress tensor and heat flux vector. p denotes pres-
sure. The continuum breakdown parameter includes both the viscous
stress and heat transfer coefficients in the first-order Chapman-Enskog
expansion. The validity of the Chapman-Enskog distribution was found
questionable for B > 0.2. This parameter has also been used by Garcia
et al. (1999). Sun et al. (2004) also used the breakdown parameter B
as the continuum/particle interface indicator in the implementation
of a hybrid approach of the Navier-Stokes equations and information
preservation (IP) method. A Knudsen number type of breakdown pa-
rameter was proposed by Wang and Boyd (2003).

Knmax = max[KnD, KnV, KnT ] (8.2.5)

where the Knudsen numbers KnD, KnV, KnT were calculated by using
the formulation of Boyd et al. (1995) and the subscripts D, V, and T
denoted density, velocity magnitude, and translational temperature.
Tiwari (1998) proposed a criterion for local equilibrium by using the
norm of the first order Chapman-Enskog expansion function �1 defined
by Eq. (4.3.2) in Chap. 4.

‖�1‖ = 1
ρRT

[
2
5

|qi|2
RT

+ 1
2

∥∥τ∥∥E
2
]1/2

(8.2.6)

where ‖τ‖E denotes the Euclidean norm of the stress tensor matrix τij.
The parameter was used to automatically determine the domain de-
composition between the regions where the Boltzmann and the Euler
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solvers would be applicable. Both equations were solved by particle
methods.

8.3 Hybrid Approaches for Microfluid Flow

Aktas and Aluru (2002) used the Stokes equations as the continuum
fluid model and the DSMC as the discrete model. For the microflu-
idic filters considered, the computational domains for the two meth-
ods are overlapped and Dirichelet-Dirichelet type boundary conditions
are used. There was no need for interface flux evaluation. In the over-
lapped domain, the solution was interpolated from one subdomain to the
other by using scattered point interpolation. The Stokes equations were
solved by using the scattered point finite cloud method. It was argued
that in comparison with a mesh-based method, such as the finite ele-
ment methods, the scattered point method allowed arbitrary treatment
of the interface between the DSMC and the continuum domains. The
multiscale method was applied to the steady-state analyses of microflu-
idic filters. In these simulations, the continuum and the discrete regions
were assumed and remained unchanged during the simulations.

Sun et al. (2004) presented a coupling of the information preserva-
tion (IP) method described in Chap. 5 with a continuum model using the
Navier-Stokes equations. Reservoir cells and buffer cells were used to
generate particles from the continuum region. The interface location
was determined by using the breakdown parameter proposed by Garcia
et al. (1999). The IP method preserves information at the macroscopic
level, which allows a direct feed of information to the continuum ap-
proach. For low-speed flows, the IP method exhibits very small statis-
tical scatter compared with the DSMC method. The application of the
IP method can be quite significant in the future development of hybrid
approaches for low-speed microflows.

The hybrid of continuum Navier-Stokes equations and atomics MD
is implemented to simulate unsteady sudden-start Couette flow and
channel flow with nano-scale rough walls by Nie et al. (2004). The spa-
tial coupling between the continuum equations and the MD method
was achieved through constrained dynamics in an overlap region. Con-
tinuity of fluxes was imposed at the boundaries of the overlap region.
The results were validated with analytical solutions and full molecular
dynamics simulations.

8.4 Development of Additional
Hybrid Approaches

A zonally decoupled hybrid approach was used by Wilmoth et al. (1994)
to examine the wake closure behind a hypersonic blunt body. At the
simulated conditions of Mach 20, the forebody flow was regarded as
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continuum flow. The wake flow was solved by using DSMC with the
exit-plane Navier-Stokes solution as the inflow condition. Overlapping
cells were used for coupling and sampling from Maxwellian distribution
function. There was no feedback from the DSMC solution to the Navier-
Stokes forebody solution.

Gatsonis et al. (1999) studied the nozzle and plume flows at the fir-
ing of a small cold-gas thruster onboard a suborbital spacecraft. Three-
dimensional Navier-Stokes simulations were performed first until the
breakdown surface of the continuum flow was established according
to Bird’s breakdown parameter (Bird 1970). Three-dimensional DSMC
simulations using the DAC code (Wilmoth et al. 1996) were subse-
quently performed inside the breakdown surfaces. The input data
necessary for the DSMC runs were taken from the Navier-Stokes sim-
ulations using a linear interpolation scheme of visualization software.

Glass and Gnoffo (2000) proposed a coupled 3-D CFD-DSMC method
for highly blunt bodies using the structured grid.

The work of Roveda et al. (1998; 2000) on hybrid approach was mo-
tivated by the need to study thrust plume impingement on spacecraft
solar panels. In this paper, the Euler equations were used for the equi-
librium region and the DSMC method was applied in the nonequi-
librium patches. The Euler equations were solved by using adaptive
discrete velocity (ADV) method of Gadiga (1995), which was a quasi-
particle approach developed from kinetic theory. This was a strongly
coupled approach, in that the DSMC and the ADV solutions were cou-
pled to exchange information within every calculation cycle. The trans-
lational nonequilibrium patches were adaptively identified based on
Bird’s breakdown parameter (Bird 1970), which involved the density
gradients in determining the breakdown of the continuum approach.
At the interface, a buffer layer of two DSMC cells was treated as an
extension of the ADV domain and the macroscopic DSMC properties
were used to evaluate the half-fluxes. To reduce the statistical noises
of DSMC at the interface, ghost cells were used near the interface to
locally increase the number of particles.

In the hybrid method developed by Wadsworth and Erwin (1990;
1992), the flux into the DSMC region was calculated by interpolation to
the interface of the cell-centered Navier-Stokes solution. The boundary
conditions to the Navier-Stokes simulations were provided by the cumu-
lative sampled value of the DSMC cell centered conservation quantities
adjacent to the interface. The solutions therefore improved as they ap-
proached a steady-state condition.

In an experiment by Golse (1989), the coupling was accomplished
through a half-flux method borrowed from radiative heat transfer prob-
lem. The half-flux of mass, momentum, and energy of the particles
crossing the interface based on the DSMC and the Navier-Stokes equa-
tions were considered. The method was developed for application in
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space vehicle reentry problems. The computational domains were not
overlapped. Hash and Hassan (1996) considered various interface cou-
pling methods in terms of their physical and numerical advantages by
using rarefied Couette flows and the half-flux method was found to of-
fer the best performance. In a later paper, Hash and Hassan (1997)
found that the Marshak condition of half fluxes was unacceptable for
low-speed flow applications due to the large statistical scatter of DSMC
in evaluating the fluxes.

Garcia et al. (1999) used the adaptive mesh refinement (AMR)
method to solve the Navier-Stokes equations. DSMC is used at the finest
level of the AMR hierarchy. The breakdown of the Navier-Stokes model
is determined by a breakdown parameter for the Chapman-Enskog dis-
tribution (Garcia and Alder 1998). The adaptive mesh and algorithm
refinement (AMAR) coupling between the particle and the continuum
regions was found (Garcia et al. 1999) to conserve mass, momentum,
and energy within round-off error.

Lian et al. (2005) developed a parallel 3-D hybrid DSMC-NS method
using an unstructured grid topology and the breakdown parameter of
Wang and Boyd (2003). Alexander et al. (2002) constructed a hybrid
particle/continuum algorithm for linear diffusion in the fluctuating hy-
drodynamic limit with the adaptive mesh and algorithm refinement.

LeTallec and Mallinger (1997) used the Boltzmann equation in the
discrete domain of a space vehicle reentry problem. The Navier-Stokes
model was used in the continuum part of the flow. The coupling was
achieved by matching half-fluxes at the interface of the two nonover-
lapping domains.

8.5 Remarks

Microfluidic applications can have physics of vastly different time scales
in the different spatial areas. The hybrid approaches are best suited for
analyses of problems that involve physics of disparate scaling. Hybrid
approaches can provide physically realistic results at greater computa-
tion efficiency than a single-scale approach. Such a multiscale, hybrid
approach may include the continuum theories, the statistical model-
ing of DSMC, and the deterministic method of MD. As the functions of
the microfluidic devices expand, hybrid approaches become more useful
in the modeling of multiscale, multiphysic phenomena. Much work is
still needed in areas such as the coupling of the different methods, the
proper identification of the interfaces, and the interface conditions.
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Chapter

9
Low-Speed Microflows

9.1 Introduction

Numerical solutions of a number of microfluid flow cases are presented
in this chapter. Results obtained by using both the continuum as well
as the discrete approaches will be presented, discussed, and, when pos-
sible, compared. The classical problems of the Couette and Poiseuille
flows will be used. This allows us to prime the reader with some of
the fundamental differences between low-speed microflows and those
at macroscales by simple analyses before the numerical solutions are
introduced.

9.2 Analytical Flow Solutions

9.2.1 MicroCouette flows

The geometry of the microCouette flow is simple. The flow develops
between two infinite parallel walls. The top wall moves at a constant
speed and the lower surface is stationary. Without considering other
physical forces, such as electrical and magnetic forces, the wall shear
provides the driving mechanism. The flow is a classical problem in con-
tinuum fluid mechanics. In microscale devices, the flow is also represen-
tative of many flows seen in microfluidic devices, such as micropumps,
microbearings, and micromotors. In this section, we will examine its
analytical solution in the slip-flow regime and discuss the resulting cor-
rections to the continuum solution due to the finite Knudsen number.

The flow geometry is shown in Fig. 9.2.1. The flow is assumed ho-
mogeneous in the z-direction and, therefore, two-dimensional. As in
the continuum problem, solutions will be sought when the flow has be-
come steady and fully developed in its velocity profiles. Without losing
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Figure 9.2.1 Couette flow.

generality, the fluid will be assumed incompressible. The Navier-Stokes
equations become

∂v
∂y

= 0 (9.2.1)

ρv
∂u
∂y

= µ
∂2u
∂y2 (9.2.2)

ρv
∂v
∂y

= −ρg − ∂p
∂y

+ µ

(
∂2v
∂y2

)
(9.2.3)

With the no-slip boundary condition, vw = 0, equation (9.2.1) gives v = 0
and Eq. (9.2.2) gives

u = C1y + C2 (9.2.4)

With the no-slip boundary condition, uw = 0 the stream wise velocity
profile of the continuum flow solution become

u
U

= y
h

Or, in a dimensionless form,

u = y (9.2.5)

where u and y now represent nondimensional quantities and ∈ (0,1). For
the slip flow solutions, Eq. (9.2.4) still holds but subject to the velocity
slip condition. The first-order surface-slip condition can be written as

us − Uw = 2 − σv

σv
Kn

∂us

∂n
= α

∂us

∂n
(9.2.6)

where

α = 2 − σv

σv
Kn

On the lower wall, Uw = 0 and ∂us/∂n = ∂us/∂y · Uw = 1 and ∂us/∂n =
−∂us/∂y on the upper wall. It can then be obtained

C1 = 1
1 + 2α

C2 = α

1 + 2α
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Equation (9.2.4) thus becomes

u = 1
1 + 2α

y + α

1 + 2α
(9.2.7)

Or,

u = y + 2−σv
σv

Kn

1 + 2 2−σv
σv

Kn

The slip flow velocity solutions, compared with the continuum flow so-
lution Eq. (9.2.5), show not only a velocity slip on the wall, but also a
correction to the slope of the profile. The corrections to both the wall
gas velocity and the slope depend on σv the tangential momentum ac-
commodation coefficient and the flow Knudsen number.

Example 9.1 For σv = 0.8, Kn = 0.05, Eqs. (9.2.6) and (9.2.7) give

α = 0.075 u = y + 0.075
1.15

= 0.87y + 0.065

Therefore the slip velocity at the lower wall (y = 0)

us = 0.065

or 6.5 percent of the top wall velocity U . At the upper wall (y = 1), the gas
flow velocity is 0.935U and the slip velocity relative to the wall is

Us − Uw = Us − 1 = −0.065

The slip flow solutions of the streamwise gas velocities on the walls thus
show a 6.5 percent correction to that of the continuum solutions. Similarly,
the nondimensional velocity slope is now 0.87, compared to one based on the
continuum solutions. Figure 9.2.2 shows a comparison of the two solutions.

A few other flow characteristics of interest for this flow can now be
examined. The nondimensional volume flow rate per unit span in the
z-direction is

Q =
∫ 1

0
u dy = 0.5 (9.2.8)

x

y

U

∞m
∞

h

Figure 9.2.2 Comparison of the continuum and the slip Couette
flow solutions: - - - - continuum, —slip flow.
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Therefore, the slip flow solution gives the same nondimensional volume
flow rate as that by the continuum flow solution. The volume flow rate
is independent of Kn. The skin friction coefficient

Cf = 1
Re

∂u
∂y

where Re = ρUh/µ. Or

Cf = 1
Re

1
1 + 2α

(9.2.9)

For the continuum solution, the skin friction coefficient is 1/Re. If we
revisit Example 9.1, the slip flow solution of the skin friction coefficient
represents a 13 percent decrease of skin friction coefficient compared
to the continuum flow value for a microCouette flow with σv = 0.8 and
Kn = 0.05.

Since the velocity profile is linear, there is no correction to the stream-
wise velocity profile if the second-order velocity slip condition of
Karniadakis and Beskok (2002) is used.

9.2.2 MicroPoiseuille flows

The simpler form of the Poiseuille flow considered here comprises a
flow confined between two infinite parallel stationary plates. The flow
is driven by pressure gradient in the mainstream direction of the flow.
Pressure-driven flows mostly occur in microchannels where flows are
pressurized to pass through microdevices for measurement, sensing, or
pumping purposes. A sketch of the flow geometry is shown in Fig. 9.2.3.

We consider a steady, two-dimensional flow that is fully developed
in its velocity distributions. The fluid is assumed incompressible. The
Navier-Stokes equations can be written as

∂v
∂y

= 0

ρv
∂u
∂y

= −∂p
∂x

+ µ
∂2u
∂y2

ρv
∂v
∂y

= −ρg − ∂p
∂y

+ µ
∂2v
∂y2

∂x

∂p

x

y
∞

m
∞

h

Figure 9.2.3 MicroPoiseuille flow.
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The nondimensional forms of the solutions for the velocity components
are

u = Re
2

dP
dx

y2 + C1y + C2 (9.2.10)

where u and y have been nondimensionalized by a certain velocity scale
U and the height of the channel h, respectively. Therefore, y ∈ (0,1).
With the no-slip boundary conditions, the continuum solution becomes.

u = Re
2

dP
dx

(y2 − y) (9.2.11)

The parabolic streamwise velocity profile is indicated in Fig. 9.2.3. The
slip flow solution for the microPoiseuille flow can be obtained by ap-
plying the velocity slip boundary conditions. Applying the first-order
velocity slip boundary condition Eq. (9.2.6), we can find the integration
constants C1 and C2. The slip flow solutions can then be written as

u = Re
2

dP
dx

(y2 − y − α) (9.2.12)

Or

u = Re
2

dP
dx

(
y2 − y − 2 − σv

σv
Kn
)

(9.2.13)

Equation (9.2.13) is the slip flow solution to the microPoiseuille flow. The
distribution of the streamwise component of the velocity is parabolic,
similar to Eq. (9.2.11). There is a correction in the amount of

−Re
2

dP
dx

α

to the gas velocity at the wall and to the entire profile of u. This is a
positive quantity, indicating that for the same pressure gradient and
Reynolds number, the first-order slip flow solution gives an increase of
flow speed. The maximum flow speed umax occurs at the centerline of
the channel and can be written as

umax = −Re
2

dP
dx

(
1
4

+ α

)

For umax, the ratio of the slip flow correction to that of the continuum
flow value is

−Re
2

dP
dx

α

−Re
2

dP
dx

1
4

= 4α (9.2.14)
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Figure 9.2.4 Qualitative comparison of the contin-
uum and the slip Poiseuille flow solutions: - - - -
continuum, —slip flow.

Figure 9.2.4 shows a qualitative comparison of the continuum and
the slip flow solutions.

The volume flow rate per unit width can be obtained as

Q =
∫ 1

0
u dy =

∫ 1

0

Re
2

dP
dx

(y2 − y − α) dy

which becomes

Q = −Re
2

dP
dx

(
1
6

+ α

)

The correction to the continuum solution is therefore

−Re
2

dP
dx

α

and the ratio of the correction to that of the continuum solution is

−Re
2

dP
dx

α

−Re
2

dP
dx

1
6

= 6α (9.2.15)

Example 9.2 For σv = 0.9 and Kn = 0.05,

α = 2 − σv

σv
Kn

= 0.06

The increase of the volume flow rate and the maximum streamwise velocity,
according to Eqs. (9.2.14) and (9.2.15) are 36 and 24 percents, respectively.

Using the second-order velocity slip boundary conditions of
Karniadakis and Beskok (2002), the velocity profile with the second-
order correction can be obtained.

u = Re
2

dP
dx

(
y2 − y − 2 − σv

σv

Kn
1 + Kn

)
(9.2.16)
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The slip velocity correction of the second order is then

− Re
2

dP
dx

α

1 + Kn
(9.2.17)

Similarly, one can find the corrections for other important flow param-
eters.

The above results show that for microflows in the slip flow regime,
say with 0.01 < Kn < 0.1, the velocity slip effects are important. The
fact that gas molecules slip over solid surface accounts significantly for
large deviation from continuum solutions and the effects of velocity slips
need to be considered in microfluidic microelectromechanical systems
(MEMS) design. The slip flow corrections remain important when the
effect of compressibility and thermal conditions are considered (Harley
et al. 1995). The compressible analyses are involved and not described
here. Further examination of the low-speed microflows will be shown
in the later section by comparisons with DSMC and Burnett equations
solutions.

9.3 Numerical Flow Simulations

9.3.1 Subsonic flow boundary conditions

Microflows often operate with a given pressure (gradient) at the inlet
and the outlet boundaries. In this section, an implicit treatment for
low-speed inlet and exit boundaries for the DSMC of microflows in such
operating conditions is briefly described for completeness. A detailed
derivation can be found in Liou and Fang (2000).

From the microscopic point of view, gas molecules translate, in addi-
tion to a mean molecular velocity, by the thermal or random velocity.
For flows at high speeds, such as hypersonic flows, the thermal veloc-
ity can be smaller in magnitude compared with the mean velocity. For
a DSMC simulation of high-speed flow, a conventional approach is to
impose a “vacuum” condition at the exit boundary, where no molecules
enter the computational domain from the region external to the flow
domain. For the low-speed flows in fluidic MEMS, the thermal motion
can be of the same order of magnitude as the mean molecular motion. It
then becomes inappropriate to neglect the mass influxes due to thermal
motion at, for example, an exit flow boundary. A boundary treatment
has been proposed for such MEMS flow simulations in Liou and Fang
(2000). In this method, the number of molecules entering the compu-
tational domain and their corresponding internal energy and velocity
components are determined in an implicit manner by the local mean
flow velocity, temperature, and number density. The number flux of the
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molecules entering the computational domain can be described by using
the Maxwellian distribution function,

Fj = nj

2
√

πβj

{
exp
(−s2

j cos2 ϑ
)+ √

πsj cos ϑ[1 + erf (sj cos ϑ)]
}
(9.3.1)

where

sj = Uj βj and βj = 1/
√

2RT (9.3.2)

Fj represents the number flux through a cell face of the boundary cell j .
“erf” denotes the error function, R the gas constant, and nj the number
density of molecules in cell j . T j and Uj denote the local temperature
and the streamwise mean velocity component, respectively. The value
of ϑ is zero for the upstream boundary and π for the downstream exit
boundary. The velocity components of the entering molecule can be de-
termined by using the acceptance–rejection method of Bird (1994) and
the Maxwellian distribution function.

At the upstream inlet boundary, the streamwise velocity cx, the cross-
stream velocities cy, and cz of the molecules entering the computational
domain through the cell face of a boundary cell j can be written as,

cx = (Uj + 3c′
mp)Rf

cy = Acos ϕ (9.3.3)

cz = Asin ϕ

where

A =
√

− ln(Rf )c′
mp and ϕ = 2π Rf (9.3.4)

and Rf represents a random fraction number and c′
mp the local most

probable thermal speed of molecules.
At the downstream, the velocity components for the molecule entering

the computational domain through the exit flow boundary are

cx = (Uj − 3c′
mp)Rf

cy = Vj + Acos ϕ (9.3.5)

cz = Asin ϕ

where Vj denotes the local transverse mean velocity.
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With the vibrational energy neglected, the internal energy of the en-
tering equilibrium gases of diatomic molecule consists of translational
energy Etr and rotational energy Erot,

Etr = m |c|2
2

(9.3.6)

Erot = − ln(Rf )kT (9.3.7)

where c is the velocity of an entering molecule, m the mass of the sim-
ulated gas, and k the Boltzmann constant.

To implement the conditions shown in Eqs. (9.3.1–7), the number
density, temperature, and the mean velocity at the flow boundaries are
needed. At the upstream boundary, the pressure pin and density ρin are
normally given. The number density nin and temperature T in can then
be obtained according to the conservation of mass and the equation of
state. That is,

nin = ρ

m
and T in = pin

ρin R
(9.3.8)

The transverse mean velocity (V in)j is set zero. A first-order extrapo-
lation is used to determine the streamwise mean velocity (Uin)j from
that of the computed for cell j . That is,

(Uin)j = Uj (9.3.9)

At the downstream boundary, the only given flow parameter is nor-
mally the exit pressure pe. The other mean properties of the flow are
to be determined implicitly as the calculation proceeds. In the present
method, the flow variables are first computed by the following charac-
teristics theory-based equations:

(ne)k
j = nk

j + pe − pk
j

m
(
ak

j

)2 (9.3.10)

(ue)k
j = uk

j + pk
j − pe

mnk
j ak

j
(9.3.11)

(ve)k
j = vk

j (9.3.12)

(T e)k
j = pe

m(ne)k
j R

(9.3.13)

The subscript e denotes the exit boundary, superscript k the computed
quantities at the kth step, and the ak

j local exit speed of sound. The exit
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mean flow velocities can then be obtained through a sampling of the
following form:

(Ue)j = 1
Nj

Nj∑
i=1

cxei (9.3.14)

(Ve)j = 1
Nj

Nj∑
i=1

cyei (9.3.15)

Nance et al. (1998) first proposed an application of the characteristics
theory that has been used extensively in continuum computational fluid
dynamics (CFD) (Whitfield and Janus 1984) in DSMC simulations. The
current implementation of the characteristic equations involves an up-
dating procedure for the mean flow properties at the exit boundary as
the DSMC calculation proceeds. This information, in turn, is used in
Eqs. (9.3.1) and (9.3.3) to calculate the properties of the molecules en-
tering the computational domain. It is shown in the following results
that the implicit boundary treatment successfully drives a microchan-
nel flow to a stationary state with matching exit pressure and overall
mass balance, which are the fundamental criteria for validating inter-
nal flow computation. Because of the statistical scatter of the DSMC
method, this technique becomes inappropriate for flows of extremely
low speeds. The IP method described earlier has been shown to work
well in such conditions.

In the following, the results of the simulations for three types of mi-
crochannel flows are presented. The flows include microCouette flows
and microPoiseuille flows with various values for the ratio of wall tem-
perature to the inlet flow temperature. Sketches of the simulated ge-
ometries are shown in Figs. 9.2.1 and 9.2.3. The variable hard sphere
(VSH) model (Bird 1994) and diffuse wall boundary condition are used
for the collision process. Some of the computational results are pre-
sented and, where appropriate, compared with the Navier-Stokes equa-
tions with slip boundary conditions.

9.3.2 MicroCouette flows

For the simulated microCouette flow of nitrogen, the upper wall moves
with a speed U of 100 m/s. The pressure at the inlet and the outlet
boundaries are both set at 0.83 atm (pin = pe = 0.83 atm). The inlet
flow temperature T in and the wall temperature T w are set equal to
300K. The channel length L is 4.0 µm. Results will be shown for two
channel heights h of 0.4 and 0.8 µm. The Knudsen numbers, based on
the channel height and the inlet conditions, are 0.163 and 0.08, respec-
tively. The physical parameters are set such that low-speed microflows
are simulated. The computational grid consists of 100 × 60 uniform
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rectangular cells. The number of the simulated molecules in the DSMC
simulations is about 320,000. Runs of 200,000 time steps and sam-
pling after 2000 time steps of development on SGI Octane typically
take roughly 48 hours of CPU time with a single processor.

Figures 9.3.1a and 9.3.1b show the predicted velocity profiles for
Kn = 0.08 and 0.163, respectively. The corresponding linear profiles
given in Eq. (9.2.7) are also shown for comparison. Overall, there is a
good agreement between the continuum solutions and the DSMC result
for Kn = 0.08, which suggests that the implicit flow boundary condi-
tion described earlier is suitable for DSMC simulations of low-speed
microflows. In the center portion of the channel, the DSMC solution
agrees well with the continuum-based linear analytical solution. There
appears to be a slight difference between the two solutions away from
the center portion. For the case with a higher Kn (0.163), a nonlinear
velocity profile was obtained by the DSMC simulation. Compared with
the linear continuum solution, the DSMC method has predicted a veloc-
ity profile with a lower value of slope in the center portion of the channel
and with slight curvatures approaching the wall. Figure 9.3.2 shows the
velocity differences between the DSMC results and the continuum an-
alytical solution across the channel for both cases. The nonlinear, wavy
behavior of the DSMC solution is evident, especially for the higher Kn
case. The difference in the wall slip velocity between the DSMC and
the analytical solution is small. For example, for Kn = 0.163, the cal-
culated slip velocity on the lower wall, 11.87 m/s, is roughly 3 percent
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Figure 9.3.1 Comparison of the velocity profiles for microCouette flows: (a) Kn = 0.08;
(b) 0.163. (Liou and Fang 2000.)
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Figure 9.3.2 Distribution of the velocity difference be-
tween the DSMC and the continuum flow solutions.
(Liou and Fang 2000.)

lower than that of given by Eq. (9.2.7). It suggests that the difference
between the velocity profiles predicted by the DSMC method and the
analytical method based on the continuum flow assumption is not nec-
essarily due entirely to the low-order accuracy of the slip flow boundary
condition.

The distribution of temperature in the wall-normal direction, at the
station x/L = 0.5, is shown in Fig. 9.3.3 for the microCouette flow. Also
included is an analytical approximation, which is derived from a sim-
plified form of the Navier-Stokes equations using the first-order wall
velocity-slip and the first-order wall temperature-jump condition of
Maxwell. The analytical approximation can be written as

T = T w + 1
2

µU 2

K

(
1

2α + 1

)2
(

−
(

y
h

)2

+ y
h

+ 2γ

γ + 1
α

Pr

)
(9.3.16)

where α is defined in Eq. (9.2.6). K represents the thermal conductivity
and Pr the Prandtl number.

The values used for µ, σv, K , and Pr for nitrogen are 1.656 × 10−5

kg/(ms2), 1.0, 0.023 J/(msK), and 0.72, respectively. The analytical form
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Figure 9.3.3 Comparison of the temperature profile for micro-
Couette flows with Kn = 0.08. (Fang and Liou 2002a.)

gives a distribution that, in general, agrees well with the present DSMC
results. The wall temperature-jump, about 0.3K, is predicted by both
methods. The relative scattering error is less than 0.1 percent. Results
at other locations are similar because of the one-dimensional nature of
the microCouette flow. For the flow velocity, a distribution that shows
a slight deviation from a linear variation is observed.

9.3.3 MicroPoiseuille flows

Two microPoiseuille flows were calculated. The height of the microchan-
nel h is 0.4 µm for both cases and the channel length L is 2.0 µm. The
inlet temperature is 300K and the wall temperature is 323K. The in-
let pressures are 2.5 and 0.72 atm for Case 1 and Case 2, respectively.
The pressure ratios are 2.5 for Case 1 and 4.54 for Case 2. A constant
velocity of 100 m/s is used in the computational region, including the
flow boundaries, to initiate the simulations. The operating conditions
resulted in the local Kn to vary from 0.055 at the inlet to 0.123 at the
exit for Case 1. For Case 2, they change from 0.12 to 0.72. The computa-
tional grid contains 100×60 rectangular cells. The simulated number of
molecules is about 180,000. Runs of 200,000 time steps, with sampling
after 2000 DSMC time steps, on SGI Octane typically took nearly 36 h
of CPU time with a single processor. Significant speedup can be and
has been achieved with a parallel version of the DSMC code (Fang and
Liou 2002b). A multifold speedup is normally obtained. The results
shown in the following for Case 2 were obtained using a dual-processor
SGI Octane.
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Figure 9.3.4a shows the predicted pressure distribution along the
centerline of the channel for Case 1. A continuum-based analytical
form (Piekos and Breuer 1995) was also included for comparison.
Figure 9.3.4b shows the relative difference of the pressure distributions
between the DSMC result and the analytical solution. The maximum
difference is roughly 2 percent, indicating that the current flow bound-
ary treatment is appropriate to use with the DSMC techniques. Both
methods predicted pressure variations that are nonlinearly distributed
along the channel, which has been observed experimentally for flows
in microchannels. Figure 9.3.4c compares the deviations of the DSMC
and of the analytical pressure drops from the linear distribution pl. The
nonlinearity exhibited by the DSMC solution is 0.5 percent lower than
that of the continuum flow solution.

Figure 9.3.5 shows a comparison of the DSMC velocity profiles with
the continuum-based analytical solution of Eqs. (9.2.13) and (9.2.16) at
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six different locations along the channel. The velocity profiles have been
normalized by their respective maximum value, which occurs at the
centerline of the channel, denoted by Uc. The value of the Kn changes
from 0.055 to 0.118. For the small Kn, there is little difference between
the first- and second-order accurate continuum-based velocity profiles.
The calculated profiles agree well with the continuum solutions for
all the stations compared. In this low Kn range, the continuum ana-
lytical solution does provide an approximated solution to the microflow
considered. The results show that the present implicit flow boundary
treatment is consistent the DSMC procedure and has produced accu-
rate numerical predictions to the microflow considered.

The pressure ratio for Case 2 is 4.54, compared with 2.5 for Case 1.
The local Kn is higher than that of Case 1. Figure 9.3.6a shows the
pressure distribution along the centerline of the channel. Figure 9.3.6b
shows the difference of pressure distribution between the DSMC
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solutions and the continuum-based analytical form, with a maximum
difference of 3 percent. Compared with Case 1, a stronger nonlinearity
is predicted by both methods. Figure 9.3.6c shows that the deviation
from the linear distribution is now 9 percent for the DSMC solution
and 10% for the continuum-based analytical solution.

Figure 9.3.7 shows the calculated mean velocity profiles at six differ-
ent stations along the channel. Continuum-based solutions using the
first- and second-order slip wall conditions were also included for com-
parison. The difference between the first-order profiles and those of the
second order for this case are more significant than those for Case 1.
While the second-order profiles give reasonable approximations to the
DSMC results for Kn up to 0.641, the first-order profiles move away
from the DSMC results as the value of Kn increases, with the largest
difference occurring at the channel wall.

Figure 9.3.8 shows the evolution of the calculated pressure at the
downstream boundary, nondimensionalized by the imposed exit pres-
sure pe as the solution progresses for Case 2. In each print cycle, there
are ten time steps of sampling. The calculated pressure converges to
the imposed value, e.g. p/pe = 1, after the transient variation from the
uniform initial conditions has subsided.

Figure 9.3.9 shows the approach to a steady-state solution using the
same print cycles as in Fig. 9.3.8 for Case 2 with two different initial
streamwise velocities. As was described earlier, an initial uniform ve-
locity field (Uinitial) is required to start the calculations and Uinitial =
100 m/s has been used. For a pressure-driven internal flow, this com-
putational initial condition set at the interior flow domain and the flow
boundaries where the boundary treatment is used should have no bear-
ing on the final DSMC numerical solution. For validation, Fig. 9.3.9 also
includes results for a second Uinitial(=15 m/s). Figure 9.3.9a shows the
variation of the mass fluxes at the upstream and downstream bound-
aries. The mass flux is defined as

ṁ = 1
h

∫ h

0
ρu dy (9.3.17)

The corresponding initial values are denoted by the solid symbols in
Fig. 9.3.9. The initial mass flux is about 12 kg/ms for the case with
Uinitial = 15 m/s and 80 kg/ms for Uinitial = 100 m/s. For both cases
Fig. 9.3.9a shows that, after a transient from the uniform initial con-
ditions, the mass fluxes at the upstream and the downstream converge
to the same constant value and an overall mass balance in the mi-
crochannel is established. Figure 9.3.9a also shows that the converged
mass fluxes for the two different initial fields agree well, which is
about 39.4 kg/ms with a 0.25 percent variation. Figure 9.3.9b shows
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Figure 9.3.7 Comparison of the velocity profiles of microPoiseuille flow. Case 2.
(Liou and Fang 2000.)
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Figure 9.3.8 Evolution of the downstream pressure. Case 2. (Fang and
Liou 2002a.)

the variation of the average streamwise velocity component for an inlet
cell and an outlet cell located at (0, h/2) and (L, h/2), respectively. For
both initial conditions, the streamwise velocity component for the inlet
cell converges to 58.78 (±0.54%) m/s. For the outlet cell, the velocity
converges to 232.05 (±0.32%) m/s. These results agree well with Bird’s
calculation using extended buffer domains and vacuum boundary con-
ditions (Bird 2002). The results shown in Fig. 9.3.8 and 9.3.9 indicate
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Figure 9.3.10 Streamwise velocity magnitude contours. (Fang and Liou 2002a.)

that the present implicit treatment of the low-speed flow boundaries
supports a stable and efficient solution process for the DSMC of the
internal microflows studied.

Figure 9.3.10 shows the contours of the streamwise mean velocity
magnitude for Cases 1 and 2. The flow velocity increases as it devel-
ops downstream. Partly because of the high-pressure gradient, the flow
speed at the exit of Case 2 is higher than that of Case 1. There is only
small statistical scattering in the computed velocity magnitude for both
cases.

Figure 9.3.11 shows the variations of the gas slip-velocity along the
wall for both cases. The slip-velocity is defined as

us = ug − uw (9.3.18)

where ug represents the gas velocity on a wall and uw the wall velocity.
It can be seen that the slip-velocity increases as the flow develops down-
stream. For the high Kn case, Case 2, the increase is more significant.
At the exit of the microchannel, the slip-velocity for Case 2 is nearly
twice as high as that of Case 1.

Analytical forms of the velocity distributions can be obtained us-
ing the Navier-Stokes equations with slip-wall conditions described in
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Figure 9.3.11 Slip velocity distributions on the wall. (Fang and Liou 2002a.)

Eqs. (9.2.14) and (9.2.17). The resulting wall slip velocity ratio can be
written as

us

uc
= Kn

/(
1
4

+ Kn
)

(9.3.19)

and

us

uc
=
(

Kn
1 + Kn

)/(
1
4

+ Kn
1 + Kn

)
(9.3.20)

where Kn is the local Knudsen number evaluated on the wall, which
varies with the streamwise flow development. Equation (9.3.19) is ob-
tained by using the first-order slip-wall condition proposed by Maxwell
and Eq. (9.3.20) by using Karniadakis and Beskok (2002) second-order
condition. In Fig. 9.3.12, the wall slip velocity given by Eqs. (9.3.19)
and (9.3.20) are compared with the present DSMC predictions. For
Case 1 with the lower Kn, the continuum-based analytical values agree
well with the DSMC results in the entire microchannel. As Kn is low,
it is not surprising to observe such a good agreement between the
continuum-based solutions and the current DSMC results. This agree-
ment also further validates the DSMC solver used in the present study.
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The difference between the first-order and the high-order approxima-
tions becomes more apparent for Case 2, where the Kn is large (>0.19).
In fact, Fig. 9.3.12 shows that the first-order approximation is no longer
valid for Case 2, producing a velocity slip significantly higher than both
the DSMC result and the high-order analysis.

The difference between the wall temperature and the gas tempera-
ture near the wall, or the temperature-jump, for these two cases are
given in Fig. 9.3.13. For both cases, there is a gradual decrease of
temperature-jump in the first half of the channel, from about 10K to
nearly the same, suggesting a corresponding gradual decrease of the
heat transfer from the wall to the microflow. In the second half of the
channel, the wall temperature-jump for Case 2 shows a significant in-
crease as the flow develops toward the exit than that for Case 1.

The calculated distributions of temperature are shown in Fig. 9.3.14.
The flows are seen to have an increase of temperature as the flow de-
velops in the first half of the channel. This is likely to be caused by the
temperature difference between the wall and the flow. The contours,
however, show a subsequent decrease of temperature in the down-
stream half of the microchannel for both cases, with a more pronounced
reduction in Case 2.
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A different view of the temperature distribution is given in Fig. 9.3.15.
The temperature distributions across the channel for these two cases
develop in a similar manner before x/h = 3.0. Further downstream,
the temperature decreases, with a more significant reduction for Case 2
with high Kn. Near the exit, the temperature in the centerline region
of Case 2 is about 15K lower than that predicted for Case 1.

Figure 9.3.16 shows the wall heat transfer distributions. The net heat
flux on a wall element with length x� can be evaluated as

q̇ =
{[∑n

i=1(Etr + Erot)i
]

inc − [∑n
i=1(Etr + Erot)i

]
ref

} · N0

ts(1 · �x)
(9.3.21)

where n denotes the total number of simulated molecules that strike
the wall element during sampling, N0 the number of gaseous molecules
associated with a simulation cell, and ts the time period of the sampling.
The subscript “inc” and “ref” denote values before and after the molecule
impacts the wall, respectively. Near the entrance region, there is a sig-
nificant transfer of heat from the wall for both cases due to the high
wall temperature. The level is higher for Case 1 than for Case 2 with
higher Kn. As the flow develops downstream, the wall heat transfer
diminishes and the difference between Case 1 and Case 2 falls within
statistical error.
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The results suggest that the flow expansion observed in Fig. 9.3.10
in the second half of the channel is nearly adiabatic for both cases, de-
spite the finite temperature jump at the wall. This is particularly true
for Case 2. Recall that the gas temperature near the exit for Case 2 is
lower than that for Case 1 by about 15K and than the wall tempera-
ture by about 40K. It suggests that, for the high Kn case (Case 2), the
large temperature difference between the wall and the flow is not ac-
companied by any significant amount of wall heat transfer. Note that
the heat transfer characteristics of supersonic flows with three differ-
ent values of Kn in a microchannel is shown in Chap. 10. For the case
with the highest Kn (0.186), the results showed a significant increase of
wall heat transfer with large temperature difference between the wall
and the flow. On the other hand, the temperature along the streamwise
direction develops in a manner similar to the current low-speed cases.
That is, the temperature for the flow with large Kn is higher than that
with low Kn at the upstream and, as the flow develops downstream, a
more substantial drop of the flow temperature is found for cases with
high Kn. These computational results appear to indicate that the heat
transfer characteristics of high Kn microfluid flows at low speeds can
be different from that at high speeds.

9.3.4 Patterned microchannel flow

Depending upon the specific applications, the internal flow passage in
MEMS may contain various forms of partial blockages and cavities.
These patterns can be micromachined with surface etching that selec-
tively removes materials using, for example, imaged photoresist as a
masking template. Figure 9.3.17 shows a typical cross-sectional view of
such patterns. Compared with the microCouette and microPoiseuille
flows described in the sections above, the flow inside the geometry
shown in Fig. 9.3.17 is highly two-dimensional. To examine the thermal

h

Tw

Tw

ρin

Pin

Pe

Figure 9.3.17 Sketch of a patterned microchannel. (Liou and Fang
2002a.)
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and microflow phenomena in a more realistic geometry, the present
DSMC procedure is applied to the microchannel shown in Fig. 9.3.17.
The inlet pressure is 0.73 atm and temperature is 300K. For compar-
ison, two cases with different exit pressure have been computed. The
corresponding pressure ratios are 2.5 (Case 3) and 4.0 (Case 4), which
are comparable to those of Case 1 and Case 2, respectively. The chan-
nel height is 0.9 µm with an aspect ratio of 6.7 and the block height is
0.3 µm. The wall temperature is 323K, except for the top of the blocks
with a temperature of 523K. The Knudsen number, based on the in-
let conditions, is about 0.08. The simulations have been performed in
the parallel mode by domain decomposition (Fang and Liou 2002b).
The number of the simulated molecules is about 1.62 million in each
case, with 16,000 uniform rectangular cells. Runs of 200,000 time steps,
with sampling after 2000 time steps of development, on ten processors
of Pentium III-800 take roughly 50 h.

Figure 9.3.18 shows the temperature contours for both cases.
Mushroom-like regions of high temperature can be observed surround-
ing the blocks, due to the high temperature at the top of the blocks.
These high-temperature regions for the two cases are geometrically
similar.

Figure 9.3.19 shows the streamwise variation of temperature at two
height levels for both cases; one at the top of the blocks and the second at
midway between the top of the blocks and the top wall. The temperature
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Figure 9.3.18 Temperature contours. Cases 3 and 4. (Fang and Liou 2002a.)
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in the regions above the blocks is significantly higher than the re-
gions upstream and downstream of the blocks. The highest tempera-
ture change is roughly 60K between these two levels, which are 0.3 µm
apart. Except for the region above the second block, there is a mini-
mal difference in the streamwise temperature distributions between
the two cases.

Figure 9.3.20 shows the temperature-jump distributions along the
upper and the horizontal part of the lower walls. The temperature-
jumps along both the upper and the lower walls are high in the regions
around the blocks. The absolute value of the temperature-jump is higher
on the top surface of the block than on the upper wall. For instance, on
the top surface of the first block the temperature-jump is nearly 80K,
while that for the upper surface is about 20K. Overall, the temperature-
jump distributions for Case 3 are similar to those of Case 4.

A comparison of the heat transfer at the top channel wall for the two
cases is given in Fig. 9.3.21. The peak values roughly correspond to
the locations of the blocks. The heat transfer for the low pressure-ratio
case (low Kn) is slightly higher than that for the higher value. This
agrees well with the results for the microPoiseuille flows presented
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above where the flow with high Kn shows less heat transfer compared
to that with lower Kn.

Three types of subsonic microchannel flows have been computed us-
ing the DSMC method and an implicit treatment of the flow boundaries
developed specifically for the simulation of low-speed microfluid flows.
The heat transfer and the fluid dynamics of the computed flows are ex-
amined. Where applicable, the DSMC calculations were found to agree
well with the analytical results. The wall heat transfer in the calculated
subsonic microfluid flow decreases with an increase of Knudsen number.
The present results show that the Knudsen number and the geometric
complexity of the channel have significant effects on the fluid dynamic
and the thermodynamic behavior of the microfluid flows studied.

9.3.5 Microchannels with surface
roughness

There are experiments (Mala and Li, 1999) of microchannel flows that
have reported that deviation of, for example, friction factor from the
Moody chart, can depend on the material of the microchannel and on
the flow transition to turbulence. The different materials produced dif-
ferent roughness on the wall. The reported mean roughness height
was about 1.75 µm with a roughness/diameter value of about 0.035.
According to the data, the roughness Reynolds number, a ratio of the
roughness height and the near-wall viscous length scale, can be esti-
mated to be about three. The roughness Reynolds number is below the
critical Reynolds numbers for the roughness to affect the skin friction
coefficient of a macroturbulent boundary layer (Schlichting and Gersten
2000). It appears that the effect of wall roughness on the microchan-
nel flow can be more significant than that on macro scale flows. In this
section, the effects of roughness are discussed based on the results ob-
tained by using a phenomenological model (Liou and Fang, 2003) and
a continuum approach. The model is built on simple scaling arguments
and can best be used for qualitative, rather than quantitative, char-
acterization of roughness effects. The model can be straightforwardly
incorporated in the NB2D code attached in the back of this book.

The disturbance momentum transport generated by the roughness is
assumed diffusive and the gradient assumption is used. The effective
diffusivity associated with the roughness µR can then be written as

µR ∼ ρul (9.3.22)

To proceed, it is assumed that the roughness has the same equiv-
alent roughness height k and is uniformly distributed on the wall of
the microchannel. The characteristic length scale l can be taken as the
roughness height and the velocity scale u can be taken as the product of
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the mean rate of strain and the roughness height. For a microchannel,
it can be written as

u ∼
(

dU
dy

)
y=k

k (9.3.23)

Then

µR ∼ ρ

(
dU
dy

)
y=k

k2 (9.3.24)

The resulting effective diffusivity can then be high, say, a maximum
value, near the wall and decreases as the distance from the wall in-
creases. Or

µR = c fµρ

(
dU
dy

)
y=k

k2 (9.3.25)

where c represents a model constant and fµ a damping function for the
assumed decreasing effects of roughness with the distance to the pipe
wall. The model formulation is similar to what has been commonly used
in turbulence modeling with the turbulent eddy viscosity evaluated by
using the Prandtl’s mixing length model. The total viscosity then is the
sum of the molecular viscosity and the effective roughness viscosity.

µ = µm + µR (9.3.26)

A simple functional form that can be used for fµ is

fµ = 1 − exp

[
−k
∣∣y − h/2

∣∣
(y − β)2

]
β =

{
0, y ≤ h/2
h, y > h/2 (9.3.27)

The value of the damping function fµ is unity near the wall and zero
near the centerline. The value for the model constant c, determined
currently by numerical runs, is set at 0.5.

Results of calculations of two air microchannels with roughness us-
ing the Navier-Stokes equations as well as the Burnett equations are
presented. The slip wall boundary conditions were used in all the cal-
culations. The first channel has a length L of 800 µm and a height
of 50 µm. The outlet pressure is fixed at 0.5 atm. The wall tempera-
ture is set at 300K, which is also applied at the inlet of the channel.
The Knudsen number, based on the channel height, is 0.0026. For this
small Knudsen number case, the flow calculations were performed by
solving the Navier-Stokes equations. Three different grids were used to
evaluate grid independence. The grid sizes are 121 × 61, 181 × 31, and
241 × 41, respectively, in the streamwise and the vertical directions.

Figure 9.3.22 shows the variation of the mass flow rate with pres-
sure gradient. The roughness heights calculated are 1.0 and 1.5 µm.



232 Chapter Nine

Pressure gradient (62.5 KPa/cm)

M
as

s 
fl

ow
 r

at
e 

(1
0−

3  
kg

/s
)

1 2 3 4

2

3

4

5

6 k = 0.0 µm⎫
k = 1.0 µm⎬ Grid: 121 × 61
k = 1.5 µm⎭
k = 0.0 µm⎫
k = 1.0 µm⎬ Grid: 181 × 31
k = 1.5 µm⎭
k = 1.5 µm, Grid: 241 × 41

Figure 9.3.22 Changes of mass flow rate with pressure gradient.

The smooth-wall results (k = 0.0 µm) are also included for comparison.
The modeled roughness effects caused a reduction of the mass flow rate
with the increase of the roughness height at the same pressure gradi-
ent. This effect of the roughness on the mass flow rate agrees with gen-
eral experimental observations (Peiyi and Little 1983). As the pressure
gradient increases, the differences among the smooth and rough wall
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Figure 9.3.23 Wall heat transfer coefficient.
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mass flow rates also increase, again, agreeing with experimental obser-
vations.

Figure 9.3.23 shows the distributions of the wall heat transfer coeffi-
cient with the pressure ratio of 1.2. With roughness, the results show a
slight decrease of wall heat transfer as k increases. Their values remain
positive in the entire length of the channel.

Figure 9.3.24 shows the variations of the wall slip velocity, normalized
by the average velocity, along the microchannel. The average velocities
uav at x/L = 0.5 are 112, 104, and 96 m/s for the k = 0.01, 1.0, and 1.5
µm, respectively. The slip velocity is less than 0.1 percent of the average
velocity and appears to increase with the roughness height. The Navier-
Stokes equations calculations are then appropriate for this case.

The second channel calculated has a height of 4 µm. The length of
the microchannel is 20 µm. The roughness height is 0.15 µm. The outlet
pressure is 0.4 atm. The wall temperature and the inlet flow tempera-
ture are both set at 300K. The Knudsen number is about 0.04. The grid
used for this case is 121 × 31. Because of the large Knudsen number,
in addition to the Navier-Stokes equations, the Burnett equations have
also been applied. Similar to the observations made previously for the
50 µm channel, the wall slip velocity for rough walls is higher than the
smooth wall data (Fig. 9.3.25). The average velocities uav at x/L = 0.75
are 130, 130, and 127 m/s for the Navier-Stokes, the Burnett and the
Burnett with roughness calculations, respectively. The velocity slip is
about 10 percent of the average velocity and is significantly higher than
that in the previous small Knudsen case.
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Figure 9.3.24 Comparison of slip velocities: Kn = 0.0026.
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Figure 9.3.25 Comparison of slip velocities: Kn = 0.04.

Figure 9.3.26 shows the wall heat transfer distributions along the mi-
crochannel. There are some differences between the results with and
without roughness. It is interesting to note that the wall heat transfer
coefficient is negative at the second half of the channel, which is not
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Figure 9.3.26 Wall heat transfer coefficients: Kn = 0.04.
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present for the 50 µm case. This indicates a heat transfer into the flow
at the second half of the channel. Similar heat transfer characteristics
have also been observed in DSMC simulations of high Knudsen num-
ber smooth-wall microchannel flow in the previous section. The sign
change of wall heat transfer results from the effects of rarefaction and
compressibility. According to the computational results, the effect of
roughness, although small, seems to decrease the heat transfer rate.

The model used here has been developed based on the simple gradient
assumption that is often invoked in the macroscale modeling of diffusion
effects. Quantitative experimental evidence at the microscale needed to
support this assumption is scarce at present. For microchannel flows
at high Knudsen number, the nonequilibrium effects in Knudsen layer
near the wall become significant. Gas-surface interactions are complex
and there is presently no general and comprehensive theory. In the
mean time, for engineering computational fluid dynamics (CFD) calcu-
lations of microfluid flows in microdevices with roughness, phenomeno-
logical models can be implemented straightforwardly in the existing
CFD framework.
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Chapter

10
High-Speed Microflows

10.1 Introduction

Maxwell (1879) studied the near-wall behavior of fluid flow of large Kn
and proposed that there might be a finite slip of velocity and a jump of
temperature for gaseous fluid when the mean free path is large com-
pared to the flow dimensions. The large gradients of temperature and
velocity may affect the transport of heat and momentum in a manner
that is different from those observed in larger systems. As the number
of industrial and scientific devices using microelectromechanical sys-
tems (MEMS) increases, a detailed understanding of the heat transfer
in microchannel flows is becoming increasingly important for an accu-
rate prediction of their performance and for a better design. In Chap. 9,
low-speed microflows were described. In this chapter, the heat transfer
characteristics of two-dimensional microchannels of high-speed inflows
at atmospheric conditions, as opposed to vacuum conditions (Yasuhara
et al. 1989), are examined. Particularly, the effects of Kn on the wall heat
flux are investigated in detail. The value of Kn is changed by varying
the channel height, while keeping the aspect ratio of channel constant.
The bow shock structure, temperature distribution, and net heat flux
on the wall for a range of Kn are examined. Detailed studies of shocks
in and around microscale devices can be found in Dlott (2000), Ohashi
et al. (2001), and Brouillette (2003).

10.2 High-Speed Channel Flows

The DSMC method is used to simulate the heat transfer in two-
dimensional microchannel flows near the atmospheric condition. The
two-dimensional simulations allow a better use of the computer
resources for a detailed study of the heat transfer mechanisms in

237

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



238 Chapter Ten

microchannels, which may be significantly different from that in three-
dimensional cases (Sobek et al. 1994). In fact, there are many examples
of two-dimensional high-speed microchannel flow in MEMS, for exam-
ple, the flow in the gap between rotor and stator in micromotors (Guckel
et al. 1993) and microengines (Janson et al. 1999). Each computational
cell has been divided into two subcells in each direction in the present
DSMC simulations. The time step has been chosen such that a typical
molecule moves about one-fourth of the cell dimension in one computa-
tional time step. Nitrogen gas is used here and the variable hard sphere
(VHS) model (Bird 1994) has been applied in all the simulations. For
the standard atmospheric condition, the number density is high and
the mean collision time is in the order of 10−10 sec. The time step used
in the DSMC method, �td should be less than the mean collision time,
so that particle movement and collision may be uncoupled, i.e.,

�td <
�xd

c′ (10.2.1)

where c′ is the most probable molecular speed. Borrowing from the
traditional computational fluid dynamics (CFD), this constraint,
Eq. (10.2.1), may be expressed as a Courant-Friedrichs-Lewy (CFL)
number. So

CFL = c′�td

�xd
< 1 (10.2.2)

The cell size �xd is taken as less than a half of the mean free path in
the current simulations, i.e.,

Knc = λ

�xd
≥ 2 (10.2.3)

where Knc is defined as a “cell Knudsen number.” Physically, this con-
dition requires the particle to reside in the same cell for at least a few
time steps to allow it to interact with other particles. This ensures that
its information can be distributed properly throughout the domain of
computation. Therefore, for DSMC, the CFL number is not a stability
constraint, but rather a physical requirement. Violation of this con-
dition may produce solutions that are not physically realistic. In the
simulations that will be presented, the value of CFL is set at about 0.2.

The temperature at the upper and the lower walls are set equal. When
the simulated particle collides with the wall, the diffuse reflection model
is used to determine the reflection. In this model, the emission of the
impinging molecules is not correlated with the preimpingement state
of the molecules. The outgoing velocity is randomly assigned accord-
ing to a half-range Maxwellian distribution determined by the wall
temperature. This is also known as the full thermal and momentum
accommodation.
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For equilibrium gases of diatomic molecules, by neglecting the vibra-
tional energy, the temperature can be calculated as

T = (3Ttr + ξr Trot)
3 + ξr

(10.2.4)

where Ttr denotes the translational temperature and Trot the rotational
temperature. They can be written as

Ttr = 2
3R

(mc2 − mc̄2) and Trot = 2
ξr k

ε̂rot (10.2.5)

For nitrogen, ξr = 2, and the averaged molecular rotational energy can
be written as

ε̂rot = − ln(R f )kT (10.2.6)

The net molecular energy lost per unit width resulting from a wall
collision or the wall heat transfer can be calculated by

q =

[(∑
Nw

êtr −∑
Nw

êrot

)
inc

−
(∑

Nw

êtr −∑
Nw

êrot

)
ref

]
N0

�t • �x
(10.2.7)

where Nw represents the number of molecules that have collided with
the wall during the sampling period of �t and N0 the number of gas
molecules assigned to a computational molecules in DSMC.

Three example simulations, referring to as Case 1, Case 2, and Case 3,
of microchannel flow will be discussed. The Knudsen numbers are 0.031,
0.062, and 0.186 for Case 1, Case 2, and Case 3, respectively. The flow
conditions and the channel sizes are given in Table 10.2.1. The aspect

TABLE 10.2.1 Conditions of the Simulations

Case 1 Case 2 Case 3

L(µm) 12 6 2

H (µm) 2.4 1.2 0.4

Free stream distance (µm) 1.2 0.6 0.2

Kn 0.031 0.062 0.186

Total number of particles 12,017 11,854 8,041

M∞ 4.15

T ∞(K) 300

T w(K) 323

Number density (m−3) 1.75 × 1025

Free stream mean free path 7.4 × 10−8
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ratio of the channels is set at 5 for all cases and rectangular cells
(100 × 60) were used. In the figures presented, the height of the channel,
H, has been used for nondimensionalization. The microchannel is em-
bedded in a high-speed stream of Mach number 4.15. The distance
between the upstream computational boundary and the inlet of the
channel is referred to as the free stream distance. The inlet is consid-
ered to have sharp leading edges. Such high-speed microchannel flows
have been studied by Oh et al. (1997), Liou and Fang (2001), and Raju
and Roy (2003). The following results are based on those of Liou and
Fang (2001).

Figures 10.2.1a–c show the shock structures for the three cases.
Figure 10.2.1a shows that in the immediate upstream of the lead-
ing edges, detached bow shocks form because of the viscous boundary
Layers. For the case with Kn = 0.031 (Case 1), the two bow shocks
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Figure 10.2.1 Mach number contours. (Liou and Fang 2001.)
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emitted from the upper and the lower walls intersect near x/H = 1.35.
The waves resulting from the intersection of the bow shocks diffuse as
they separate and extend toward the wall due to the weakening inci-
dent shocks. As the Kn increases, the leading edge shocks thicken and
the angle between the shock and the wall increases. As such, the inter-
section of the bow shocks moves upstream. For Case 3 with Kn = 0.186,
the intersect cannot be identified because of the relatively large shock
thickness. The flow initially decelerates to subsonic speed, followed by
acceleration. As will be seen in the following, the deceleration of the
flow in the highest Kn case, Case 3, is accompanied by a significant
increase of the wall heat transfer.

Figures 10.2.2a–c show the temperature contours. These figures show
the incident bow shocks and the strong temperature gradients across
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the bow shocks near the leading edges. As the Kn increases, both the
temperature and its gradient increase sharply. It is also apparent that
an island of high temperature is formed as the Kn increases and the
location of the high-temperature island moves upstream as the Kn
increases. The formation of the high-temperature island is, as was
mentioned above, accompanied by the deceleration of the flow. Also,
the thickness of the thermal boundary layers in all the cases can be
observed to increase with Kn.

Figures 10.2.3a–c show the density contours. For Kn = 0.031 and
0.062, the two shocks emanating from the leading edges of the mi-
crochannel intersect, and then extend to the wall. This causes the for-
mation of islands of low density near the walls in the first half of the
microchannel. Behind the intersection, a region of high density appears.
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For Kn = 0.186, the shocks are detached further from the leading edge
and more diffused. The root of the bow shocks is nearly normal to the
channel. The shock layer is much thicker than those for the lower Kn
cases. The compression shocks spread almost over a half of the mi-
crochannel. As a result, there are no identifiable islands of low density
near the wall, as was found in cases with lower Kn.

Figures 10.2.4a, b show the axial temperature T and mean velocity u
profiles at x/H = 0.5, 1.5, 2.5, 3.5, and 4.5, respectively. The variation
of the temperature profiles, Fig. 4a, reveals the development of the
thermal boundary layers. The case with Kn = 0.031 shows two local
peaks in all the profiles and these peaks tend to merge as the flow
develops downstream. A fully developed state has not been reached
at the downstream end of the channel. On the other hand for Kn =
0.062, the peaks merge at about x/H = 4.5 and the flow is becoming
fully developed. For Kn = 0.186, the temperature profiles flatten out
sooner, and the peak value at the centerline decreases significantly
downstream. Axial velocity profiles are shown in Fig. 10.2.4b. There is
a peak at the centerline for all the cases. The peak values vary little in
the downstream direction in the Kn = 0.031 case. However, the peak
values for Kn = 0.186 change quite significantly as the flow develops
downstream. For Kn = 0.186, both the temperature and the kinetic
energy reduce as the flow develops downstream.

The temperature jump at the wall is shown in Fig. 10.2.5. T g denotes
the gas temperature at the wall and T w the constant wall tempera-
ture. Figure 10.2.5 shows that the temperature jump decreases as the
flow develops downstream. The highest temperature jump occurs near
the microchannel entrance. As Kn increases, the location of the peak
temperature jump moves slightly downstream. Near the outlet of the
simulated microchannels, the temperature jumps for the cases with
Kn = 0.031 and 0.062 appear reaching an asymptotic value.

Figure 10.2.6 shows the temperature distribution along the center-
line of the microchannels. The multiple plateaus of the centerline tem-
perature for the cases with Kn = 0.031 and 0.062 are related to the
intersects of the incident and the reflected shocks. For Kn = 0.186,
the centerline temperature peaks near x/H = 2.0 and decreases mono-
tonically thereafter. The value of centerline temperature peak increases
with the increasing value of Kn. The location of the peak also moves up-
stream with the increasing Kn, conforming to the observation made ear-
lier that the island of increasingly high temperature moves upstream
as the Knudsen number increases.

Figure 10.2.7 shows the streamwise variation of the heat flux q at
the wall. For Kn = 0.031 and 0.062, the heat flux decreases as the
flow develops downstream. For Kn = 0.186, the streamwise variation
is distinctively different from those of the lower Kn. After an initial
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region of small variation, the heat flux increases sharply in the midsec-
tion of the microchannel. The heat flux peaks at about 14 × 107 W/m.
The wall heat transfer then decreases monotonically downstream. The
maximum value of the wall heat transfer for Kn = 0.186 is about 3.5
and 2.3 times those for Kn = 0.031 and 0.062, respectively, representing
a significant increase of heat transfer at high Kn.

Figure 10.2.8 shows the axial distributions of the averaged trans-
lational and rotational energy deficits, per molecule, ε normalized by
10−20. The translational energy deficit increases slightly with the in-
creasing Kn upstream of x/H = 2.0. On the other hand, the rota-
tional energy deficit does not change in any significant way with Kn.
The number rate of wall-impinging molecules, nondimensionalized by
the number density of the free stream, 1.75 × 1025 m−3 is shown in
Fig. 10.2.9. For Kn = 0.186, the distribution is quite different from the
other two cases with lower Knudsen numbers. For both Kn = 0.031
and 0.062, there is a plateau near x/H = 4.0. The peak value of the
number rate of molecules impacting the wall for Kn = 0.186 is roughly
1000, and those for Kn = 0.031 and 0.062 are 400 and 580, respectively.
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The increase of the number rate of molecules that impact the wall is
apparently a dominating factor contributing to the observed increase
of wall heat transfer. Recall that there are islands of low density near
the walls for the lower Kn cases and these islands of low density were
not observed for Kn = 0.186. It is believed that the high number rate of
wall-impacting molecules for the high Kn case (0.186) is related to the
general high density in the near wall regions that do not exist in the
lower Kn cases.

The heat transfer characteristics of the high-speed microchannel
flows can vary significantly with Knudsen numbers. For the two-
dimensional supersonic microchannel flows shown above, there is a
significant increase of wall heat transfer with Knudsen number. The
results show that the enhanced wall heat transfer is mainly caused by
the increased number rate of molecules that impact the wall. As the
value of the Knudsen number for a typical MEMS device can be quite
high, this unique behavior of the wall heat transfer observed in the
present simulations may have a significant bearing on the development
and the design of MEMS.
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Chapter

11
Perturbation in Microflows

11.1 Introduction

For macroscale flows, in situations where there is little or no free stream
forcing, small disturbances initially grow in a linear fashion. As the dis-
turbances become amplified, nonlinear effects become important. New
modes generated by the flow nonlinearity fill the disturbance spectrum
and the flow becomes locally turbulent. This is usually called natural
transition. When the free stream disturbances, for example, generated
by free stream turbulence, are high, the linear stage of growth may
be bypassed in the transition process. This is usually referred to as
bypass transition. The fluid dynamics of either the natural or the by-
pass transition is highly nonlinear where energy of certain dominant
modes of fluctuations cascades to their higher harmonic modes and
eventually transfers to fluctuations of other scales. Many recent exper-
iments in fluidic microchannels have reported significant difference in
the heat and momentum transfer coefficients compared with those at
the macroscales. For example, while the friction factor varies inversely
with the Reynolds number when the Reynolds number is small, the
proportionality constant does not agree with the conventional correla-
tion. The friction factors were also found to diverge from this inverse
proportionality, which at macroscale indicates a change of flow char-
acteristics from that of a laminar flow to a turbulent flow, at smaller
Reynolds numbers than those commonly observed in the corresponding
large channels. This early change of flow characteristics has been at-
tributed to the effects of, for instance, gas rarefaction and other surface
mechanisms, the large change of the flow Reynolds number along the
microchannels, and the likely experimental uncertainties in microscale
measurements. Advanced measurement techniques such as molecular
tagging can produce more detailed quantitative data for microflows,
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which may eventually lead to a better understanding of the appar-
ent microflow transition. In the following, the characteristics of dis-
turbances in a forced microCouette flow and in microRayleigh-Bénard
flows are described. The discussions are aided by using results of DSMC
and Navier-Stokes numerical simulations.

As the DSMC method is based on a molecular description of gases,
there have been concerns whether DSMC is capable of resolving
vortical fluid motions due to the lack of an exact conservation of an-
gular momentum in collisions. Results (Nanbu et al. 1988) show that
as long as the cell size is sufficiently small, the total angular momen-
tum is nearly conserved. Bird (1987) has also shown that the noncon-
servation of the angular momentum has no significant effects on the
DSMC solutions with the mean separation distance between collision
partners being less than the local mean free path. During the past
decade, the DSMC method has been employed to study the low-density
limits of a number of flow instabilities. The centrifugal instabilities in
Taylor-Couette flows have received the most attention (Riechelmann
and Nanbu 1993; Stefanov and Cercignani 1993). The formation of
Taylor vortices were clearly demonstrated for a range of Knudsen num-
ber in these two-dimensional (axisymmetric) flow computations. The
convective instability associated with the Bérnard cells has also been
studied.

The characteristics of microflow disturbances will be discussed by ex-
amining two microflows, i.e., a microRayleigh-Benard and a microCou-
ette flow. In the first, the disturbances are associated with the buoyancy
force. In the second, an artificial external force is applied to energize
the flow and its disturbances.

11.2 Forced MicroCouette Flows

The Couette flow geometry considered is shown in Fig. 11.2.1. The flow
develops between two diffuse walls in the y-direction. The top wall
moves at a speed of U and the lower wall is brought to a stop instan-
taneously at the beginning of the calculations. The channel height is h.
Periodic boundary conditions are applied in the x- and z-directions. In
contrast to the microCouette flow cases studied in Chap. 9, an artificial
gravitational forcing (AF)

AF = c(û − U )2 (11.2.1)

has been applied to the flow along the y-direction. û represents the
fluid velocity component in the x-direction. c denotes a constant coeffi-
cient that is used to adjust the level of the external forcing on the flow.
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Figure 11.2.1 Forced microCouette flow geometry.

A similar imposition of the artificial acceleration has previously been
developed (Malek Mansour 1990) in an analytical study of the onset of
hydrodynamic instabilities and independently by Bird (2002) to study
forced chaotic flows. Note that the sample averaged behavior of the
microCouette flow without forcing has been discussed in Chap. 9.

The effect of the artificial gravitational force in the flow model is
that when a fluid particle is perturbed and moves in the y-direction,
an effective buoyant force favors further displacement of the particle
in the y-direction. The scenario is similar to the instability mechanism
associated with the centrifugal force in the Taylor-Couette and Gortler
problems, where Taylor-Gortler vortices have been observed in exper-
iments and computed using two-dimensional DSMC. As a result, it is
reasonable to expect that the current simulations will also exhibit sim-
ilar vortical structures or flow patterns. For a particle that moves from
the bottom to the top wall in a straightline flight path, the work done
by the artificial forcing can be written as

w =
∫ h

0
c(û − U )2d y = cU 2h

∫ 1

0

(
û
U

− 1
)2

d
(

y
h

)
(11.2.2)

Therefore, the work done by the forcing is positive definite. Its amount,
however, depends on the actual vertical distribution of the velocity û.
For discussions, one can assume a linear velocity profile, where û =
(y/h)U, then

w = 1
3

cU 2h
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Therefore, the amount of energy put to the particle by the externally ap-
plied forcing, based on the simple analysis, is proportional to the value
of the forcing coefficient, the square of the plate speed, and the channel
height. The use of an artificial forcing, instead of a physical one, thus
allows for an efficient adjustment of the strength of the disturbances
by varying the values of these parameters.

DSMC allows for a direct physical simulation of gas flows. The min-
imum level of physical modeling is needed at the level of molecular
models that have been used in kinetic theory of gases. However, a large
number of particles are required in a DSMC simulation to reduce the
inherent statistical scatter. The computer resource needed to perform
three-dimensional flow simulations can be significant, which appears
to be a major limiting factor for performing many necessary simula-
tions to capture three-dimensional physical flow disturbances. By using
an artificial forcing in the form of Eq. (11.2.1) instead of a physical
one, it is possible to apply a wide range of forcing level to the flow
without changing the flow geometry. Since the normalized root mean
square of the disturbances is inversely proportional to the square root
of the sample size (Landau and Lifshitz 1958), the present flow model
allows for a more efficient use of the computer resources in capturing
unsteady, three-dimensional disturbances by artificially energizing the
flow. This type of first principle simulations of time-dependent three-
dimensional flow disturbances has not been reported previously before
the work of Bird (2002) and the authors (Liou et al. 2003a,b,c; Liou and
Fang 2004).

Two types of sampling have been used in the study to obtain macro-
scopic, averaged, and disturbance components of the DSMC simulated
flows. The “unsteady” property, say, for the vertical velocity component
v̂ is obtained by

v̂(x, y, z, t) = 1
ts

∫ t+ 1
2 ts

t− 1
2 ts

Mc∑
i=1

cv,i(t ′)dt ′ (11.2.3)

where cv denotes the vertical component of the particle velocity, Mc the
number of particles in the cell at time t ′. ts represents the short time
period for the unsteady sampling that is longer than the molecular col-
lision time for obtaining a meaningful statistical sampling. It was set
at about one order-of-magnitude larger than the mean collision time
of the gas. The long-time-averaged or mean component of the flow is
obtained by

v = 1
t − t0

∫ t

t0

Mc∑
i=1

cv,i(t ′)dt ′ (11.2.4)
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where t0 denotes the beginning time of the sampling. The sampling
period for the long time average should be longer than ts and, subse-
quently, the mean collision time. The difference between the unsteady
sample average and the long time average is defined as the disturbance
v′. Or

v′ = v̂ − v (11.2.5)

11.2.1 Flows in two-dimensional planes

Two-dimensional (2D) simulations of slices in the x-y and the y-z
planes are described. The simulated flows exhibit highly organized dis-
cernable vortical structures. Fourier analyses of the vertical velocity
signals show the existence of a hierarchy of fluctuation modes that con-
sist of a fundamental and its harmonics.

Longitude planes. The 2D domain slices through the current model flow
along a constant z-plane. The top plate moves in the positive x-direction.
The size of the computational domain in the x and the y directions
is 180 × 60, nondimensionalized by the initial mean free path λ. The
Kundsen number (Kn) defined by the channel height h is then 1/60.
The cell size is 90 × 30. Nearly 2 million computational molecules were
used. The value of c in the artificial gravitational force formula is 0.1.
The forcing is equivalent to a centrifugal forcing corresponding to a
radius of curvature of 10 mean free path of the initial gas. Figure 11.2.2
shows comparisons of the vertical velocity perturbation contours and
the pathlines between the results obtained by Bird’s code (Bird 2001)
and the present parallel DSMC results after the simulated flows appear
to have reached a periodic flow pattern.

The results of the parallel runs using two different types of domain
decomposition (1DD and 2DD) are shown: 1DD denotes one-directional
decomposition and 2DD two-directional. Small statistical scatter can
be observed in all three results. The pathlines show that the overall
flow patterns are basically the same, both capturing a small region of
vortical flows at the heel of the region of large, positive vertical velocity
perturbation. Similar contour patterns are also observed in the 2DD re-
sults. Note that the boundaries are periodic and it is difficult to time the
outputs so that comparable flow patterns appear at the same location
for all three plots in Fig. 11.2.2.

The results shown in Fig. 11.2.2 indicate that the width of the do-
main 180 can be too small to contain more than one cyclical flow pat-
tern. Figure 11.2.3 shows the vertical velocity perturbation contours
and pathlines for a case of larger domain of 1200 × 100 and c = 0.04.
Nearly 8 million computational molecules were used. There are three
identifiable periodic flow patterns. The flow patterns are quite regular,
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Figure 11.2.2 Comparisons between parallel and serial DSMC results.

with a wavelength � of about 400, and are rather smooth. In time, the
cyclic flow pattern moves in the x-direction. Figure 11.2.4 shows the
evolution of the unsteady specific kinetic energy in the cell. Or

AKE = 1
N

∑
cell

(û2 + v̂2) (11.2.6)
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Figure 11.2.3 Vertical velocity perturbation contours and pathlines.
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Figure 11.2.4 Evolution of cell-averaged specific kinetic energy.

where the summation is applied to all the cells and N denotes the total
number of cells. The kinetic energy settles after an initial transient to
finite amplitude oscillations. A part of the curve in the region of the
finite amplitude oscillations has been enlarged and is also included in
Fig. 11.2.4. It shows that the kinetic energy varies quite regularly and
the flow has essentially reached a quasiperiodic state after 1000 print
cycles, or 20,000 initial mean molecular collision time, TC . It can be
seen from Fig. 11.2.3 that the flow associated with the quasiperiodic
state features flow structures with wavelength of about 400. Before the
quasiperiodic state is reached, the simulated flow continuously evolves
in time as it develops from the initially chaotic flow. The region near
the bottom wall is strongly rarefied and first shows significant patterns
of small-scale variations. As time advances, some small-scale patterns
amalgamate and grow and others decay after their initial generation.
Figure 11.2.5 shows the pathlines at t = 2480TC , when the flow is in
transition from the initial chaotic to the quasiperiodic states. Vortices
of different sizes can be identified; some span across the height of the
channel. The flow eventually evolves into a regular disturbance pattern
as was shown in Fig. 11.2.3.

The distribution of the vertical velocity perturbation along the
x-direction for y = 66, when the flow has become quasiperiodic, is shown
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Figure 11.2.5 Pathlines for t/(20TC ) = 124.

in Fig. 11.2.6. The three concentrated regions of high, positive vertical
velocity perturbations are associated with the three cyclical flow pat-
terns in Fig. 11.2.3. The wavelength is about 400. The signals associated
with the dominant flow pattern with wavelength 400 are quite smooth
with little statistical scatter. In between, there appear to be waves of
smaller wavelengths. The Fourier wave number spectrum of the verti-
cal velocity perturbation signal given in Fig. 11.2.6 (along y = 66) is
shown in Fig. 11.2.7. The Fourier spectrum of the initial, chaotic state
has also been included for comparison. At the high wave number end,
the spectrum is filled with low-amplitude noise, as can be expected from
a statistical simulation such as DSMC. At the low wave number end,
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Figure 11.2.6 Distributions of vertical velocity perturbation along y = 66.
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Figure 11.2.7 Fourier wave number spectrum of vertical velocity perturbation along
y = 66.

multiple discrete peaks with amplitudes one to two orders of magnitude
higher than those at the high wave number end appear. The first peak,
with a wave number of 3, has a wavelength of 400, corresponding to the
flow pattern described earlier in Figs. 11.2.3 and 11.2.6. The next peak
has a wavelength of 400/2. If one refers to the wave with a wavelength
of 400 as a fundamental mode, the wave with a wavelength of 400/2 is
then its first harmonic. In all, about nine or more higher harmonics can
be identified in Fig. 11.2.7 before their amplitudes drop off. Since nei-
ther the applied forcing nor the initial flow contains any preferred time
and length scales, the generation of these harmonic waves is not asso-
ciated with any externally imposed excitation, which is often applied
in Navier-Stokes-based flow simulations. The wave hierarchy appears
in the current DSMC simulations as a result of the nonlinearity of the
simulated flow.

Figure 11.2.8 shows the time-dependent evolution of the Fourier am-
plitudes of four wave numbers. They are associated with the first three
harmonic waves and a high wave number mode (n = 60). The harmonic
modes arise from the initially chaotic flow and grow in amplitude as the
flow develops. They then become quasiperiodic at large time. At high
wave number (n = 60), the mode was initially amplified but become
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Figure 11.2.8 Time-dependent evolution of the Fourier amplitudes.

subdued with time. As the applied forcing is artificial, the growth of the
harmonic waves and the resulting flow patterns may not be physically
realistic. The results nevertheless show that DSMC can resolve a hier-
archy of waves of a fundamental mode with wavelength � = 400 and
its harmonics (� = 400/n).

Spanwise planes. In the spanwise planes, 2D simulations for a plane
in the x-direction will be examined. As was noted earlier, the assumed
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Figure 11.2.9 Steady flow pathlines. Kn = 1/60. (Bird 2002.)

forcing is similar to that of centrifugal force and Taylor-Gortler type of
vortical motion are expected to be found in certain steady-state solutions
of the current time-dependent simulations. The flows are analogous to
the two-dimensional Taylor-Couette problem. Figure 11.2.9 shows the
time-averaged pathline patterns for a case where vortices similar to
that of the Taylor-Gortler vortices are observed. The computational do-
main size as shown is 60 × 180 in the y- and z-directions, respectively.
The flow appears to be steady. The pathlines are based on an average
from tU/h = 24 to 62. The flow pattern indicates a regular vortical
flow almost identical to that of the Taylor-Couette flows. It shows that
the current time-dependent DSMC is capable of capturing the Taylor-
Gortler type of vortical flow motions.

The Knudsen number is 1/60 for the flow in Fig. 11.2.9. The flow
patterns change as the Kundsen number decreases. The flow becomes
varying with time and unsteady sampling must be used. Figure 11.2.10
shows the pathline patterns for two cases with Kn = 1/240 and 1/500,

y

z

(a)

(b)

Figure 11.2.10 Flow pathlines: (a) Kn = 1/240, tU/h = 20;
(b) Kn = 1/500, tU/h = 13. (Bird 2002.)
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respectively. The corresponding domain sizes are 240 × 720 and 500 ×
1500. Compared to the vortical flow shown in Fig. 11.2.9 (Kn = 1/60),
the numbers of identifiable vortices in Fig. 11.2.10a for Kn = 1/240
are the same and the vortices still span across the entire height of
the channel. The vortices in Fig. 11.2.10a, however, are deformed and
irregular. With a further decrease of the Knudsen number, Fig. 11.2.10b
(Kn = 1/500) describes a flow pattern that is irregular and contains
vortices of different sizes that form and decay as time develops.

The 2D simulations performed on the two different cross-sectional
cuts of the three-dimensional model flow have provided valuable in-
sights into the applicability of DSMC to time-dependent flow simu-
lations. They also serve as a guide to three-dimensional simulations,
which are significantly more demanding on computational resources.

11.2.2 Three-dimensional flows

The three-dimensional (3D) simulations examined in this section are
rich in physics and are demanding on computer resources. This is par-
ticularly true for the parallel DSMC simulations. Particle numbers in
the order of 50 million have typically used for the larger domain sim-
ulations. Depending on the number of processors used, weeks of CPU
hours are normally required to establish stationary states. We will be-
gin by describing the flow parameters and the general features of these
flows. This is followed by a more detailed description of the flow physics
of the 3D flows, including the mean and the disturbances. The effects
of the other flow parameters on the simulated flows are also discussed.

Two computational domain sizes, 800×60×320 and 800×320×640,
nondimensionalized by the initial mean free path λ, in the x-, y-, and
z-directions, respectively will be used. The value of U is set equal to
the most probable molecular speed at the initial gas temperature of
1000 K. For hard-sphere gases, the inverse Knudsen number, based
on the channel height, is then 60 and 320, respectively. The Reynolds
numbers are 108 and 576, based on the channel height and U. The
number of the computational molecules used is about 16 million for the
small domain cases (h = 60) and about 48 million for the large domain
case (h = 320). The average separation distances are roughly 1.4 times
the mean free path. The following set of figures showing the general
features of the sample average flow and the disturbances are for h = 60
and c = 0.04.

Figure 11.2.11 shows the time history of the instantaneous and the
long-time-averaged or mean velocity components for a cell that is
located at the center of the computational domain. The data were
obtained by using two different time-steps. The time-steps are 20 per-
cent (�t∗ = 0.2) and 10 percent (�t∗ = 0.1) of the mean molecular
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ŵ, ∆t* = 0.1

(b)

t*

M
ea

n 
ve

lo
ci

ty
 c

om
po

ne
nt

s

0 4000 8000 12000 16000
−0.2

0

0.2

0.4

0.6

0.8

1
u, ∆t* = 0.2
v, ∆t* = 0.2
w, ∆t* = 0.2

w, ∆t* = 0.1
v, ∆t* = 0.1
u, ∆t* = 0.1

(c)

Figure 11.2.11 Evolution of velocity components. h = 60,
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collision time of the initial gas (Tc). The instantaneous velocity signals
are practically identical, indicating that the simulations are indepen-
dent of the time-steps used. This is also true for the averaged velocity
components (Fig. 11.2.11c) obtained by using the two different time-
step sizes, in that their evolutions in time are identical. The results
show that the current parallel DSMC simulation tools are numerically
accurate. The results also indicate that the general observation that, as
long as the time steps are small compared with the mean molecular col-
lision time, DSMC simulations are independent of their exact values, is
valid for not only the stationary state of a flow but also its development
in time. The following results were obtained by using �t∗ = 0.2.

Figure 11.2.12 shows the time history of the cell-averaged specific
kinetic energy on an x-plane located at x = 350. After an initial tran-
sient, the flow appears to have become stationary and the statistical
oscillations are small, as is shown in the insert in Fig. 11.2.12. Figure
11.2.13 shows the pathlines of the long-time-averaged flow on three
planes at different x locations. Note that the top wall at y = 60 moves
along the x-direction. The pathlines indicate that a fluid flow exhibiting
pairs of counter rotating vortical motion may exist in the 3D simulation,
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Figure 11.2.12 Evolution of cell-averaged specific kinetic energy.
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Figure 11.2.13 Time-averaged vertical velocity contours and in-plane pathlines.

a characteristic of the Taylor vortices. Note that the results of the 2D
simulation of the same Knudsen number also shows similar patterns
of pairs of vortices. The value c is 0.1 in that case.

Figure 11.2.14 shows the contours of the time-averaged vertical
velocity in the three planes perpendicular to the coordinate axes,
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Figure 11.2.14 Sampled vertical velocity contours on three orthogonal planes.
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respectively. The contour pattern in the y-plane shows streamwise
streaks, indicating that the vortical motions exhibited in Fig. 11.2.13
are indeed imprints of pairs of counter rotating streamwise structures,
or the Taylor vortices.

Figure 11.2.15 shows the in-plane pathlines in the three planes per-
pendicular to the coordinate axes, respectively. The pathline pattern
in the z-plane shows that the vortical motions have not advanced a
complete rotation, probably because of the limited domain size in the
x-direction. The pathlines in the y-plane either bundle up underneath
the regions of high positive vertical velocity or spread out underneath
the region of high negative vertical velocity. The pattern suggests that
fluid is swept in from the side and ejected upward in the up-wash part
of the Taylor vortex motion. Similarly, the fluid is pushed downward
and spread out sideways near the wall in the down-wash part of the
Taylor vortex motion.

Figure 11.2.16 shows the Fourier spectrum of the steady specific
kinetic energy where K represents the magnitude of the wave num-
ber vector. At the low wave number end, the spectrum is dominated
by a number of discrete peaks, each apparently corresponding to the
coherent vortical flow pattern shown in the previous figures. Beyond
K = 10 at the higher wave number end, the spectrum shows, in gen-
eral, a monotone decrease. The magnitudes are orders-of-magnitude
smaller than the spectral peaks in the low wave number range, which
are associated with identifiable flow signals.
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Figure 11.2.15 In-plane pathlines on three orthogonal planes, color-coded by the magni-
tude of the steady vertical velocity.
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Figure 11.2.16 Specific kinetic energy spectrum.

Effects of the forcing coefficient. We will use the case with h = 60 to
describe the effect of the changes of the forcing coefficient c on the
forced microCouette flow.

c = 0.0. The DSMC results will be compared with those obtained by
using a continuum slip flow model (Liou et al. 2003c). The model uses
the Navier-Stokes (NS) equations and slip boundary conditions.

In the NS solver, a fifth-order compact upwind difference scheme
(Tolstykh and Lipavskii 1998) is used for the spatial convective terms
and a third order low-storage Runge-Kutta scheme (Williamson 1980)
for the time advancement of the NS equations. High-order compact
schemes have attracted much attention due to their spectral-like ac-
curacy (Lele 1992; Hixon et al. 1998) and the demonstrated ability to
deal with flows in a complex domain and to resolve shocks. Tolstykh
and Lipavskii (1998) developed a different high-order compact upwind
difference scheme by correcting the conventional first-order upwind dif-
ference scheme and applying a high-order Pade series to the correction.
Their studies show that the scheme can capture wiggle-free steady-
state solutions with steep gradients without having to use additional
numerical dissipation. For the viscous terms, fourth-order finite differ-
ence schemes were used for the discretization for the interior nodes and
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the boundary nodes. The applied forcing is added to the NS equations
with a forcing term,

F = 1
J

⎛
⎜⎜⎜⎜⎝

0
0
cρ(u − U )2

0
cρ(u − U )2v

⎞
⎟⎟⎟⎟⎠

The Maxwell-Smoluchowski slip boundary conditions were used to de-
termine the slip velocity components (u and w) and the temperature
jump at the surfaces.

us − uw = 2 − σv

σv
Kn
(

∂u
∂n

)
wall

(11.2.7)

Ts − Tw = 2 − σT

σT

2γ

γ + 1
Kn
Pr

(
∂T
∂n

)
wall

(11.2.8)

The pressure gradient normal to the surfaces are determined by apply-
ing the momentum equation locally, which gives, for instance, on the
lower surface,

∂p
∂y

= cρ(u − U )2 (11.2.9)

Both the NS and the DSMC calculations ran in a time-accurate man-
ner. The NS calculation converges to a solution with the flow properties
being homogeneous in the x- and z-directions. The DSMC simulation
develops a statistically stationary state that also shows homogeneity
in the x- and z-directions. Figure 11.2.17 gives the vertical distribu-
tions of the streamwise velocity component, pressure, and density. The
DSMC solutions shown are the long-time-averaged macroscopic flow
properties. The NS solutions are the converged results. The velocity
profiles agree quite well and both show a slight departure from linear
distributions. The inflectional, as opposed to a linear, velocity profile
is consistent with many microchannel flow computation results that
show the velocity deviating from a linear distribution as the Knudsen
number increases. Both the NS and DSMC model predict a constant
pressure of 1.05 in the vertical direction. Figure 11.2.17c shows the
computed density distributions in the y-direction. There is a fairly good
agreement between the two solutions.

Figure 11.2.18 shows the spanwise (z) distributions of the velocity slip
and the temperature jump on the plate surfaces. On the upper plate
the NS model predicts well the velocity slip. The NS model slightly
underpredicts the slip velocity on the lower plate. For the NS solution,
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the temperature jump is the same on both surfaces, which agree well
with the DSMC results.

Overall, in the absence of the external forcing, the gas microflow com-
puted by using the NS model agrees well with that by using the DSMC
method. The good agreement between the two model results in this es-
sentially two-dimensional flow with low Knudsen number is generally
observed in other similar comparisons.

c = 0.001. In the following, the external forcing is activated. For
c = 0.001, the computed flow reaches a stationary state. There are less
than 3 percent changes of density, pressure, and temperature compared
with those of the no-forcing case. The averaged streamwise velocity pro-
files are nearly linear and homogeneous. Figure 11.2.19 shows the ver-
tical distributions of the averaged spanwise velocity at three spanwise
locations. The figure shows that there are no secondary motions in the
computed flow and the flow is essentially two-dimensional.

c = 0.005. For c = 0.005, the computed flow also reaches a station-
ary state. In contrast to the c = 0.001 case, the stationary flow is highly
three-dimensional. Figure 11.2.20 shows the in-plane pathlines on
three planes at different x locations. Note that the top wall at y = 60
moves along the x-direction. The pathlines indicate a fluid flow with
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Figure 11.2.19 Averaged spanwise velocity distributions. c = 0.001.
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Figure 11.2.20 In-plane pathlines of the averaged flow. c = 0.005.

three pairs of counter rotating vortical motion. This is characteristic
of the Taylor vortices and the vortical flow patterns appear the same
as that of the corresponding 2D chaotic flow simulation. The unsteady
quantities exhibit practically the same vortical flow patterns.

Figure 11.2.21 shows the spanwise distributions of the averaged en-
ergy at three streamwise locations along the midplanes (y = 30) and

e = 1
2

(u2 + v2 + w2) (11.2.10)

The distributions are rather smooth. The cyclic distributions reflect the
vortex pairs observed in Fig. 11.2.20. The amplitudes of the energy vary
slightly from 0.15 to 0.14. Figure 11.2.21 also shows that the simulated
flow is nearly homogeneous in the x-direction.

c = 0.01. For c = 0.01, the in-plane pathlines pattern are similar to
the c = 0.005 case, with three pairs of vortical flow structures. The am-
plitudes of the energy vary slightly from 0.18 to 0.55, slightly higher
than that for c = 0.005. Figure 11.2.22 shows the vertical distribu-
tions of the streamwise velocity at three spanwise locations. Compared
with the no-forcing case, the streamwise velocity profiles deviate sig-
nificantly from a linear distribution due to the strong rarefaction in
the lower part of the flow, which is consistent with the DSMC result of
similar flows (Fang and Liou 2002).

Figure 11.2.23 shows the spanwise distributions of v at y = 30 and
x = 400 for two results of the DSMC simulations. The physical and the
numerical parameters of the two simulations are identical. The only
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difference is that two different methods have been applied to the initial
seeding of the random variables in the different processors, one (initial
1) with the same seed for all the processors that are used in the simula-
tions and varying in the second (initial 2). Except for an apparent phase
difference, the flow patterns predicted, as can be seen in Fig. 11.2.23,
are essentially the same. The nonuniqueness of the DSMC solutions
is, perhaps, not too surprising in their numerical aspects, since the nu-
merically enforced flow boundary conditions are periodic. The DSMC
results, nevertheless, suggest that for the current flow model the sta-
tionary macroscopic flow properties depend on the initial conditions at
the microscopic level. The results shown are obtained using the uniform
seeding method.

Figure 11.2.24a shows the frequency spectra of the instantaneous
(unsteady), the long-time-averaged, and the disturbance kinetic ener-
gies for c = 0.01. Figure 11.2.24b shows the frequency spectra of the
cross correlation of the vertical and the spanwise velocity components.
The long-time-averaged component of the instantaneous velocity field,
which shows highly spatially coherent patterns (Fig. 11.2.22), is tem-
porally dominated by the zero frequency (=m/(20Tc)), or stationary
mode. At other frequencies, the spectra suggest mainly statistical noise.
There does not appear to be very strong correlations between the ver-
tical and the spanwise velocity components for the any of the three
signals.

Comparisons can also be made with the NS calculations. The forcing
is applied in the y-direction as described earlier and has been imple-
mented explicitly in the NS solutions. The NS calculation converges
to steady-state solution. The DSMC solution also eventually becomes
stationary. Both solutions, as are shown shortly, exhibit organized flow
pattern in the spanwise direction. To facilitate the comparison between
the DSMC and the NS models, the DSMC results in the following fig-
ures were translated in the z-direction by a constant value so that there
is an alignment with the vortical structure in the NS solution. The an-
choring vortex center is located about z = 52. Figure 11.2.25 shows the
in-plane streamlines on three planes at different x locations. Note that
the top wall at y = 60 moves along the x-direction. The streamlines
in Fig. 11.2.25a indicate a fluid flow with three pairs of counter rotat-
ing vortical motion. This is characteristic of the Taylor vortices and the
vortical flow patterns appear the same as that of the corresponding
2D flow simulation. The instantaneous quantities exhibit practically
the same vortical flow patterns with some statistical scatter. Figure
11.2.25b shows the in-plane streamlines at the same axial locations
based on the NS solutions. The NS solutions also show three vortex
pairs. The streamline patterns are virtually identical to those obtained
by using DSMC.
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The spanwise distributions of the calculated streamwise velocity com-
ponent on the lower plate (y = 0), the centerline of the channel (y = 30),
and the upper plate (y = 60) are compared in Fig. 11.2.26 for x = 400.
There is a fairly good agreement in both the phase and amplitude of
the periodic patterns of the slip velocities on the plates between the two
model solutions.

In the following figures the characteristic of a computed vortex will
be extracted from each of the two solutions and compared. There are
three vortex pairs. Consequently, each vortex spans vertically between
the plates and occupies about 320/6 in the z-direction. Figure 11.2.27
shows the spanwise distributions of the calculated spanwise velocity
component at y = 0, 30, and 60, respectively. Similar to what has been
shown for the u slip-velocity component, there are small differences
in the amplitude and phase between the computed periodic patterns.
Overall, the spanwise slip velocity component calculated by the NS
model agrees reasonably well with the molecular DSMC model.

Figure 11.2.28 shows the vertical distributions of u at three spanwise
locations, z = 36, 52, and 68, which correspond closely to the quarter
locations of the anchoring vortices extracted from each solution. The
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Figure 11.2.26 Distributions of the streamwise velocity component. (Liou
and Fang 2004.)
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overall trend of variation with the locations in the vortices appears to
be similar. Both the NS and DSMC capture highly inflectional distri-
butions. Compared with the no-forcing results in Fig. 11.2.17a for the
same Knudsen number, u has more significantly deviated from the lin-
ear profile. This large deviation apparently is a result of the secondary
microflow motion driven by the applied forcing. There are marked differ-
ences, up to 10 percent of U, between the NS and DSMC distributions at
all three locations, which are not observed in the no-forcing case result.

Figure 11.2.29 shows the vertical distributions of v at the same quar-
ter locations in the anchoring vortices as those in Fig. 11.2.28. In gen-
eral, the trend of variation is similar between the two model predictions.
The NS solutions show larger vertical speeds on both sides of the vortex
in comparison with the DSMC solutions.

Figure 11.2.30 shows a composite plot of v and w. The figure shows
the distributions of v along the horizontal center line, denoted by v(z),
and those of w along the vertical centerline w(y) of the anchoring vor-
tices. The anchoring vortices exhibit clockwise rotation motion. For both
v and w, the NS solutions have larger values than the DSMC solutions.
It appears to indicate that the vortex computed by the NS model is
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Figure 11.2.29 Vertical velocity distributions in the anchoring vortices.

rotating at a higher rate than that computed by the DSMC model.
A rough estimate of the amount of rotation can be obtained by eval-
uating the streamwise vorticity associated with the vortices using the
vortex centers and the maximum v’s and w’s in the figure. The simple
calculation shows that the estimated vorticity for the vortices computed
by using the NS model is about 60 percent higher than that computed
using the DSMC model. The vertical density, pressure, and temper-
ature distributions at the quarter locations of the anchoring vortices
are shown in Fig. 11.2.31. In general, the agreement is satisfactory
between the two solutions. There is a certain degree of rarefaction
in the lower half of the channel where the applied forcing is strong.
As a result, the density and pressure are higher in the upper half of
the channel. The temperature distributions show an increased thermal
velocity compared with the no-forcing case, particularly in the upper
half of the channel. The NS solutions also show similar trends.

The results indicate that microflow behavior simulated by using the
molecular DSMC model is significantly different from that using the
continuum Navier-Stokes model, when the forcing is applied. There
could be a number of factors that contributed to the results. Effects of
the slip boundary conditions and the numerical resolutions of the NS
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Figure 11.2.30 Composite comparisons of v and w in the anchoring vortices.

results may be examined. There are strong 3D flows in both solutions,
which might also have caused the observed differences.

c = 0.04. With c = 0.04, the flow develops into a stationary state
and the in-plane pathline patterns of the long-time-averaged flow show
three pairs of vortical motion, same as the c = 0.005 case and has been
shown in Fig. 11.2.13. As was mentioned earlier, the vortical structures
appear as a result of the externally applied forcing in the y-direction
that mimics the centrifugal forcing in Taylor-Couette problems. Figure
11.2.32 shows a comparison of the mean spanwise velocity (w) distribu-
tions in the spanwise direction at three x-stations and y = 30. The
spanwise velocity distributions also exhibit wavy patterns that are
periodic in the z-direction and fairly homogeneous in the x-direction.

Figure 11.2.33 shows the Fourier spectra of the averaged spanwise
velocity components given in Fig. 11.2.32. The distinct peaks indicate
that the averaged flow is dominated by fluid motion of discrete wave
numbers in the spanwise direction. The first peak has a wave number
of 3 with a wavelength � of 107 (∼320/3), which corresponds to the
dominant flow pattern observed in Fig. 11.2.32. The statistical noises
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are orders of magnitude lower than the coherent flow signals. If n = 1
denotes the first peak, the second peak corresponds to n = 2 with a wave
number of 6 and a wavelength of 320/6. The 3D DSMC simulation is
able to capture harmonic modes with no preferential forcing of these
modes in the initial field. In the absence of the external forcing, on
the other hand, no distinguishable secondary, vortical flow patterns
can be found in a 3D simulation with the same initial field. The flow
pattern observed arises as a result of both the applied forcing and the
nonlinearity in the simulated flow.

Figure 11.2.34 shows the evolutions of the Fourier amplitudes with
time for the first three modes and for n = 12. Figure 11.2.34 provides
a view of how the averaged secondary vortical patterns develop as
the flow evolves with time. The amplitudes of all four modes pick up
quickly at the beginning of the simulations and then decrease until
t/(20Tc) = 100. Their magnitudes fluctuate significantly and there is
not a definite dominant mode. The flow initially contains motions of a
wide range of length scale. The fundamental mode (n = 1) amplitude be-
gins to increase after t/(20Tc) = 120 and becomes the dominant mode
at t/(20Tc) about 200. The first harmonic mode (n = 2) also grows but
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asymptotes to a lower amplitude than the fundamental mode. During
this period, the amplitudes of the other three modes continue to drop.
The amplitude decaying process for the high wave number modes con-
tinues until t/(20Tc) reaches about 400. At which point, the n = 3 mode
begins to pick up its amplitudes. At a later time of 450, the amplitude
of the n = 12 mode begins to increase. It is apparent that the low wave
number fundamental mode is more efficient in extracting energy from
the applied forcing and becomes the dominant mode in the averaged
flow. The Fourier amplitude of the highest harmonic is small and is
more likely to be associated with statistical noises than physical flow
signals.

Figure 11.2.35a shows the frequency spectra of the instantaneous
(unsteady), the long-time-averaged, and the disturbance energy at the
center of the simulation domain. Figure 11.2.35b shows the frequency
spectra of the cross correlation of the vertical and the spanwise ve-
locity components. The long-time-averaged component of the instanta-
neous velocity field, which shows highly spatially coherent patterns
(Figs. 11.2.32–35), is temporally dominated by low frequency (= f /

(20T c)) modes. On the other hand, the disturbance and the instan-
taneous components appear to be mainly statistical and do not have
any preferential modes. It is interesting to note that DSMC is able to
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capture the very small amplitude, but fairly organized, pattern of the
long-time-averaged flow in the apparent statistical signals. The long-
time-averaged velocity components also correlate well at the low fre-
quency. There is no preferred mode of correlations for the instantaneous
and the disturbance components.

Effects of domain sizes. To illustrate the effects of the domain sizes, we
will examine the results for the cases with h = 320 for two values of the
forcing coefficient of 0.001 and 0.01. They should be compared with the
h = 60 cases with the same values of the forcing coefficient presented in
the last section. For this channel height, the Reynolds number is about
550 and the Knudsen number is 1/320. The flow operating conditions
used were the same as those for the previous h = 60 cases.

c = 0.001. For the large domain, 3D vortical structures appear in the
averaged component of the stationary flow for c = 0.001, which have
not been observed at the same forcing level for h = 60. Figure 11.2.36
shows the in-plane pathlines for the averaged flow. There are two pairs
of vortical structures.

Figure 11.2.37 shows the spanwise distributions of the averaged en-
ergy at three streamwise locations along the midplanes (y = 60). The
energy is distributed roughly between 0.37 and 0.67. Note that for
c = 0.001 there is no secondary motion in the h = 60 case. In fact, on
the average, the energy for the large domain case is nearly two times
that for the flow with c = 0.005 and h = 60 (Fig. 11.2.21).
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Figure 11.2.36 In-plane pathlines. c = 0.001. (Liou and Fang 2004.)
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c = 0.01. Figure 11.2.38 shows four snap shots of the in-plane path-
lines for the averaged flow for c = 0.01. The long-time-averaging of the
flow begins at the initiation of the simulations. At the nondimensional
time of tU/h = 7.5, the average flow shows the formation of vortices of
different sizes from a chaotic initial flow. The time scale h/U equals to
(640/

√
π )T c. The secondary flows first appear near the bottom plate

due to the applied forcing. The flow is also far from being homogeneous
in the streamwise direction. The vortical flow develops further at a later
time. New regions of small-scale vortical motion can also be identified.
Some grow as they merge with the neighboring ones. The vortices ap-
pear to deform in different ways. Since these are in-plane pathlines, the
appearance of a convergence to a point in a pathline indicates a strong
fluid motion in the third or x direction. At tU/h = 15.5, a large vortex
forms near the periodic boundaries in the z-direction. The centerline
region is occupied by two connected vortices. Some small vortices seen
in the earlier time have disappeared. At tU/h = 33.2, the flow develops
into two large vortices. Except for the center region of the large vortical
motions, small-scale motions have dissipated. The averaged flow varies
slowly onward. At tU/h = 63.4, the flow shows only two large counter
rotating vortical structures.

The long time averages of the simulated flows show distinctively
pairs of counter-rotating structures that are aligned with the direction
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Figure 11.2.38 In-plane streamlines of long-time-average flow. c = 0.01: (a) tU/h = 7.5;
(b)15.5; (c) 33.2; (d) 63.4.
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of movement of the top wall. The characteristics of the long-time-
averaged flows are similar to what has been shown in Figs. 11.2.32
to 11.2.34 for the h = 60 cases. It is likely that the periodic bound-
ary conditions have dictated the flow pattern of the averaged flow for
c = 0.01 and h = 320, where there is only one pair of counter-rotating
vortices found as the flow becomes stationary.

For the disturbances, Fig. 11.2.39 shows the time history of the ve-
locity component signals for the cell that is located at the center of the
simulation domain. Note that a disturbance has been defined in the
present study in Eq. (11.2.5) as the difference between the unsteady
sample average and the long time average. For c = 0.001, all three dis-
turbance velocity components are oscillatory, which shows the statisti-
cal nature of DSMC. It is also apparent that the signals develop mean
values, about which the oscillations occur, particularly for the stream-
wise disturbance velocity component u′. Similar oscillatory behavior of
the disturbances can also be observed in Fig. 11.2.39b (c = 0.01) im-
mediately after the commencement of the simulation. For c = 0.01 the
disturbance velocity behavior changes at a later time. There are fre-
quent occurrences of large amplitude excursions that did not exist for
c = 0.001. The apparent differences in the disturbance velocity between
the two cases can also be viewed by examining their spectral content.

Figure 11.2.40 shows the kinetic energy spectra for the disturbance
time-traces in Fig. 11.2.39. For comparison, the energy spectra for the
instantaneous and the long-time-averaged flows are also included.
Compare to the h = 60 cases where the spectra distributions are ba-
sically random, for h = 320 and c = 0.001 the disturbance spectra in
the low frequency region (e.g. m < 10) are distinguishably higher than
those in the high frequency range that is dominated by the sampling
error of DSMC. Figure 11.2.40b shows the energy spectra for the in-
stantaneous, the long time average, and the disturbances for c = 0.01.
The long-time-averaged component contains predominantly the zero-
frequency mode and is stationary. Similar to the previous case with
c = 0.001, the disturbance spectra in the low frequency range are sig-
nificantly higher than those in the higher range. Moreover, the distur-
bance energy spectra are at least one order of magnitude higher than
the statistical scatter at the high frequency end of the spectra and this
is apparent in a wider region of low to medium frequency (e.g. m < 60).

Figure 11.2.41a shows the cross correlation frequency spectrum for
c = 0.001. Similar to the case with h = 60 and c = 0.04 (Fig. 11.2.35b),
the long-time-averaged flow correlates well at low frequency range and
the disturbances are mainly statistical noises. With a larger forcing
coefficient c = 0.01, Fig. 11.2.41b shows that the cross correlation spec-
trum of the vertical and the spanwise disturbance velocity components
is dominated by low frequency modes.



292 Chapter Eleven

m
(a)

K
in

et
ic

 e
ne

rg
y

102101100

10−5

10−4

10−3

10−2

10−1
Instantaneous
Disturbance
Long time average

m
(b)

K
in

et
ic

 e
ne

rg
y

102101100

10−5

10−4

10−3

10−2

10−1
Instantaneous
Disturbance
Long time average

Figure 11.2.40 Kinetic energy spectra. h = 320: (a) c = 0.001; (b) c = 0.01.
(Liou and Fang 2004.)
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Figures 11.2.40b and 11.2.41b show that, with c = 0.01, the distur-
bances are energetic and well-correlated. Figures 11.2.42 and 11.2.43
show the snap shots of the in-plane pathlines for the disturbances at two
instants of time. The corresponding unit in t∗ are roughly 600 and 1140,
respectively. Figure 11.2.42 is for those on the yz-planes and Fig. 11.2.43
for the xy-planes. Together, Figs. 11.2.42 and 11.2.43 provide a view of
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Figure 11.2.42 In-plane (yz-plane) pathlines for the disturbances. h = 320, c = 0.01:
(a) tU/h = 33.2; (b) 63.4. (Liou and Fang 2004.)
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Figure 11.2.43 In-plane (xy-plane) pathlines for the disturbances. h = 320, c = 0.01:
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the spatial structure of the disturbances. The disturbances are far from
being random as one may infer from the appearance of the traces of the
individual disturbance velocity components in Fig. 11.2.39. In fact, they
are well-correlated and well-organized. The disturbance pathlines in-
dicate that the disturbances are three-dimensional and contain events
with scales as large as the channel height as well as smaller ones.
These highly correlated disturbances of large and small scales continue
to evolve with time. The three-dimensional vortical motions go through
growth, amalgamation, and decay after their initial formation. The time
and the spatial scales of most of the small-scale events are in the order
of the molecular scales and the flow cannot be computed by using the
NS equations.

Effects of plate speeds. Two cases are simulated with U = 2 for c =
0.001 and c = 0.01. The operating conditions are the same as those
for the previous h = 320 cases. The Reynolds numbers are about 1156.
Figure 11.2.44 shows the in-plane pathlines of the long-time-averaged
flow and the disturbances at three x-locations for c = 0.001 at tU/h =
83.08. Figure 11.2.44a shows that mean flow contains one large vortex
pair compared with two in the corresponding U = 1, c = 0.001 case.
Figure 11.2.44b shows that, despite some statistical noise, there is also
one pair of identifiable vortical structure in the disturbances.

Figure 11.2.45 shows the energy and the cross correlation spectra
for the instantaneous, the long time average, and the disturbances. For
both the mean and the disturbance, the energy spectra contain regions
of low to medium frequency with Fourier amplitudes that are at least
one order of magnitude higher than the statistical scatter apparent
at the high-frequency end of the spectra. The zero-frequency mode, in
particular, is nearly four order-of-magnitude higher than those in the
high-frequency end. The kinetic energy spectra are nearly linearly in-
creasing toward the low-frequency end. The correlation spectra peak at
the zero-frequency and appear random for other modes.

Figure 11.2.46 shows evolutions of the disturbance velocity compo-
nents for c = 0.001 and 0.01, respectively. For c = 0.001, the disturbance
velocity components oscillate about a mean value as the flow develops
and appears to be converging toward the end of the simulations. For
c = 0.01, occurrences are significantly larger in amplitudes compared
with the c = 0.01 case.

Figure 11.2.47 shows the in-plan pathlines for the mean and the
disturbance flow fields for c = 0.01. One pair of vortical structures
appears in the mean flow as shown in Fig. 11.2.47a. The disturbance
(Fig. 11.2.47b) contains three-dimensional structures of different sizes.
Compared with the U = 1 case, the disturbance field in the current
U = 2 case contains more small scale events. Note that the secondary
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Figure 11.2.45 Spectra for c = 0.001, h = 320, and U = 2: (a) Energy; (b) Cross
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flow in the mean and the three-dimensional disturbances do not exist
in the initial conditions and are not preferentially perturbed by any
means.

Figure 11.2.48 shows the kinetic energy and the correlation spectra
for c = 0.01. For the mean flow, the spectrum for the zero-frequency
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mode is significantly higher than all the other modes. The disturbance
and the instantaneous kinetic energy spectra are not random. The spec-
tra are fuller in the midfrequency than those for the low- and the high-
frequency modes, where there is an apparent drop-off. Similar appear-
ance can also be seen in the correlation spectra.

To summarize, the first principle DSMC method has been used as a
numerical simulation tool to study the structures and the dynamics of
an artificially forced three-dimensional microCouette flow. The applied
forcing is proportional to the square of a local velocity difference (local
x-velocity less the upper plate velocity). The parallel DSMC code used
has been validated with independent serial code results, by comparisons
with the continuum NS model results, and by varying the sample sizes.
The simulations contain no preferred scales in the initial states. The
results show that the long-time-averaged, or the mean, flows contain a
hierarchy of harmonics with the fundamental mode being the dominant
one. The Fourier amplitudes of these modes develop in a sequential
manner in time. The pathlines for the flows show that these modes are
associated with spatially coherent, counter rotating vortex pairs. The
results also show that the flow disturbances captured by DSMC can be
well-correlated in space and time. The evolution of the pathline pattern
indicates that the flow disturbances are three-dimensional.

As the forcing being applied is not physical, the disturbance flow
pattern captured may not be realistic. The results, nevertheless, provide
a verification that the DSMC method can capture, in a time-dependent
manner, the development of the stationary mean component and the
unsteady three-dimensional disturbance component of a flow, which has
not been previously reported. Due to the computer constraints, there
is still a large parameter space, for instance, in Knudsen and Reynolds
numbers, that is yet to be examined.

In the following section, a microRayleigh-Bénard convection problem
will be examined. The gas considered is being confined between two
walls and is heated from below by a hot, lower wall. Compared with the
forced microCouette flow studied in this section, the buoyant force nat-
urally arises in the fluid in the Rayleigh-Bénard flow due to heat trans-
fer and is therefore physical. The results will show that DSMC can also
capture the physical disturbances in the microRayleigh-Bénard flows.

11.3 MicroRayleigh-Benard Flows

The Rayleigh-Bénard convection (RBC) is a well-known phenomenon in
traditional continuum fluid dynamics, in which a viscous fluid layer is
enclosed between two infinite parallel flat plates, with the lower plate
at a higher temperature than the upper plate. If the temperature differ-
ence between the two plates exceeds a certain critical value, there exists
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a transition from thermal conduction to natural convection. The point
is reached when the buoyancy forces released by the heating overcome
the inertial viscous forces in the fluid. At higher temperature gradients,
cellular flow pattern develops and results in the Rayleigh-Bénard cells,
with cellular vortical motions in the plane normal to the plates. The first
theoretical solution was provided by Rayleigh (1916), upon which many
modern theories of RBC are built. What followed were many experimen-
tal studies (Ahlers and Behringer 1978; Behringer and Ahlers 1982;
Wu et al. 1995) and numerical simulations using the incompressible
NS equations (Kessler 1987; Ozal and Hara 1995) and the Boussineq
equations (Godreche and Manneville 1998). The Rayleigh-Bénard prob-
lem was also studied using the lattice Boltzmann method at the molecu-
lar level (Shan 1997; He et al. 1998; Watanabe 2004). Many recent stud-
ies focused on probing the onset of turbulent convection in the system.
A recent extensive review can be found in Bodenschatz et al. (2000).

In the following sections, the results of 2D and 3D micro Rayleigh-
Bénard convection (MRBC) problems are presented. The length is nor-
malized by λ, the mean free path of the initial gas. The 2D and 3D MRBC
have the same aspect ratios. The velocities are normalized by using the
most probable speed of molecules at TH , density by the initial state
value, and temperature by TH . DSMC is applied in a time-dependent
manner. The time t is the real physical time normalized by λ/

√
2R,

where R is the gas constant of monatomic molecules. The short time
period ts is set 200 times the mean collision time Tc of the initial gas and
the time step is 0.2Tc. In all the simulated cases, the wall temperature
ratio r (=TC/TH ) is 0.1 and the Knudsen number is 0.01. The Froude
number is 3.5. The resulting Rayleigh number is 10,159. The simula-
tions are computationally intensive and the parallel DSMC algorithm
described in Chap. 6 has been used and the parallel computations were
performed on the Beowulf cluster at the CFD laboratory of Western
Michigan University.

Evolutions of the convective flow patterns are studied in detail, and
their corresponding pressure and heat transfer on the wall are calcu-
lated in terms of the averaged pressure coefficient, the heat transfer
coefficient, and the Nusselt number. Three stages of flow development
can be identified. In the first two stages, the difference in the flow de-
velopment between the cases is not significant. In the third, all the 2D
cases and the 3D case with the smallest aspect ratio develop into steady
flows. For the 3D cases with the two larger aspect ratios, however, the
cellular vortex rolls are found to translate at constant speeds. Such
an advective phenomenon of the vortex rolls in the three-dimensional,
unsteady Rayleigh-Bénard convection problem, to the best of our knowl-
edge, has not been previously reported in the open literature prior to
Fang et al. (2004).
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In continuum fluid dynamics, a measure generally used for the flow
transition from thermal conduction to natural convection is the
Rayleigh number, Ra,

Ra = αg�T h3

κν
(11.3.1)

where α denotes the thermal expansion coefficient, g the gravitational
acceleration, �T the temperature difference between the upper and
lower plates, h the distance between the two plates, κ the thermal dif-
fusivity, and ν the kinematic viscosity. The critical Rayleigh number
Rac for the onset of convection is taken to be 1708.

On the other hand, there have been far less number of reports on
the studies of the Rayleigh-Bénard convection in micro gas flows, in
rarefied and transitional gas flows. In such flows, the rarefied gas and
compressibility effects can be important and should be taken into ac-
count. Such studies in kinetic theory might be of great importance for
the purpose of understanding the fundamental phenomena of flow in-
stability and self-organization from first principles. Studies have been
carried out on the RBC in rarefied gas flows by using DSMC, com-
pressible NS equations with slip boundary conditions (Stefanov et al.
2002a,b), and the linearized Boltzmann (BGK) equation (Sugimoto et al.
1995; Sone et al. 1997). These calculations have been for 2D flows in
a near-continuum regime, and most of the concerns were with the on-
set of the natural convection with rarefied gas effects. However, three-
dimensional investigations of RBC for a rarefied gas can be valuable
to the discovery of the transition from laminar to a turbulent regime
(Stefanov et al. 2002b). The previous section has shown that unsteady
DSMC is capable of resolving a hierarchy of waves, consisting of a fun-
damental and its harmonic modes and the time-dependent DSMC sim-
ulations also provide a description of the nonlinear dynamic evolutions
of the wave hierarchy. Compared to the artificially forced microCouette
flow described there, the buoyancy force that naturally arises in the
current RBC problem.

2D and 3D MRBC problem and the transition to natural convection
in microflows will be examined based on time-dependent DSMC sim-
ulation results. The aspect ratio of the computational domain ranges
from 2:1 to 6:1. The MRBC problem can be described by the Boltzmann
equation. Evolutions of the convective flow patterns are studied in de-
tail, and the corresponding pressure and heat transfer on the wall are
calculated in terms of the averaged pressure coefficient, the heat trans-
fer coefficient, and the Nusselt number.

Basic equation for microRayleigh-Bénard convection problem. The MRBC
can be studied from the microscopic point of view in kinetic theory.
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A monatomic gas is considered enclosed between two infinite, hori-
zontally parallel plates with two different temperatures, TC on the
upper wall and TH on the bottom wall. The geometry is shown in
Fig. 11.3.1. The gas is heated from the bottom plate (TH > TC ), and
there acts a gravitational force

⇀

F = (0, −mg, 0)T , which accelerates the
gas molecule downwards, with m the mass of the gas molecule. Periodic
boundary conditions are applied in the x- and z-directions, and the two
plates are modeled as diffuse walls. The physical dimension of the flow
geometry is small, with length scales ranging from 100 to 600 molecular
mean free paths.

The MRBC problem is described by the time-dependent Boltzmann
equation,

(nf ) + c · ∂

∂x
(nf ) − g

∂

∂cy
(nf ) = �[Q( f )] (11.3.2)

where f is the velocity distribution function, n the number density, and
t the time. x = (x, y, z)T and c = (cx, cy, cz)T are the physical space
vector and velocity space vector, respectively. The collision integral
operator in Eq. (11.3.2) is

�[Q( f )] =
∫ ∞

−∞

∫ 4π

0
n2( f ∗ f ∗

1 − f f 1)cr σd�dc1 (11.3.3)

where cr = |c − c1|, σ denotes the differential cross section describing
the interactions between particles, and � the solid angle.

Equation (11.3.2) is coupled with the following initial and boundary
conditions. At the beginning of calculation (t = 0), we assume equilib-
rium state with temperature TH and

f (0, x, c) = f 0(x, c)
∣∣
T =TH

(11.3.4)

y

x

z

h
TH

TC

g

Cold wall

Hot wall

Figure 11.3.1 Flow geometry for microRayleigh-Bénard
problem.
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That is, at the initial state, the number density of molecules is uniformly
distributed; the velocity components of mean flow are zero, and the
flow temperature is set as TH . At the two parallel plates we assume
diffusive reflection with complete thermal accommodation according to
the temperature TC and TH , i.e.,

f (t, x, c) = MTH (c)
∫

cy>0
f (x, 0, z, c1)cy dc1 (cy ≥ 0) (11.3.5)

f (t, x, c) = MTC (c)
∫

cy<0
f (x, h, z, c1)cy dc1 (cy ≤ 0) (11.3.6)

where MT is half-space Maxwellian

MT (c) = 1
2π RT

exp

(
− c′2

2RT

)
(11.3.7)

Rayleigh number in microflows. The critical Rayleigh number Rac was
obtained (Rayleigh 1916) by using a perturbation of the Boussineq equa-
tions, which are a linearized form of the Navier-Stokes equations with
the Boussineq approximation. This approximation assumes the physi-
cal properties of the fluid are independent of temperature. Except for the
density change that produces the buoyancy force, the fluid is otherwise
assumed to be incompressible. These assumptions hold in the classi-
cal Rayleigh-Bénard problem, where the temperature ratio TC/TH is
typically close to unity because of the large scale of its characteristic
length.

In microflows, however, there exist rarefied gas and compressibility
effects and the Boussineq approximation might not hold. The Rayleigh
number is expected to relate to the Knudsen number Kn because of the
rarefied gas effects that produce velocity slip and temperature jump.

For monatomic molecules with the hard sphere model, the Knudsen
number Kn can be defined based on the mean free path λ = (

√
2πn0d 2)−1

as

Kn = λ/h (11.3.8)

n0 denotes the number density of molecules in the initial state and d
the molecule diameter. If the thermal diffusivity κ is defined in the
form of

κ = k/(ρ0cp) (11.3.9)

where k represents the heat conduction coefficient, ρ0 the gas den-
sity at the initial state and cp specific heat at constant pressure, the
Rayleigh number can be derived from the first-order approximation of
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the Chapman-Enskog theory (Chapman and Cowling 1970) as

Ra = 512hα�T g

75πKn2(2RT )
(11.3.10)

where T is the system temperature and R the gas constant. Using the
bottom wall temperature TH as the reference temperature and thermal
expansion coefficient taken as

α = 2/(TH + TC ) (11.3.11)

we can write Eq. (11.3.10) as

Ra = 1024
75π

1 − r
1 + r

1

Fr · Kn2 r = TC

TH
(11.3.12)

where the Froude number is defined as

Fr = V 2
H

gh
V H =

√
2RTH (11.3.13)

Based on the most probable speed of molecules on the bottom hot wall,
the Froude number Fr relates the thermal speed with the gravitational
acceleration. Equation (11.3.12) shows that the Rayleigh number Ra
is a function of the characteristic parameters, Kn and Fr, of the micro
Rayleigh-Bénard problem, and Ra ∝ Kn−2; i.e., the natural convection
becomes less likely with increasing Kn.

Due to its complexity, especially the collision integration term, the
Boltzmann equation (Eq. 11.3.2) is not solved directly. Instead, the
DSMC method will be used. The DSMC method does not solve the Boltz-
mann equation, however, it does provide solutions that are consistent
with the Boltzmann equation as long as it obeys the principles and
boundary conditions of the Boltzmann equation for a specific problem.
More detailed implementation of DSMC to obtain a stationary solu-
tion of the Boltzmann equation can be found in Stefan and Cercignani
(1993).

11.3.1 Two-dimensional flows

Three cases have been calculated in 2D microchannels with the aspect
ratios (AR) of 2:1, 4:1, and 6:1. As shown in Table 11.3.1, the number of
rectangular field cells are 60 × 30, 120 × 30, and 180 × 30, respectively.
The number of simulated molecules is 2 millions in all cases.

Heat transfer. The heat transfer coefficient ch is defined as

ch = q
/(1

2
ρ0V 3

H

)
(11.3.14)
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TABLE 11.3.1 Parameters in 2D Flow Simulations

Case 1 Case 2 Case 3

AR 2:1 4:1 6:1
Grid size 60 × 30 120 × 30 180 × 30
Molecules 2 million 2 million 2 million
Processors 1 1 1

R 0.1 0.1 0.1
Fr 3.5 3.5 3.5
Kn 0.01 0.01 0.01
Ra 10,159 10,159 10,159

with the wall heat transfer rate q defined as

q =
∑Ns

i=1

(
1
2 mc2

i

)in
−∑Ns

i=1

(
1
2 mc2

i

)re

ts · �A
(11.3.15)

where Ns denotes the total number of molecules impacting the wall
element during the short sampling time period ts, �A the area of the
wall element, m the mass of the molecule. The superscripts “in” and “re”
denote the values associated with the incident and the rebounding parts
of the collision of a molecule with the wall, respectively. The history
of heat transfer coefficient on the hot wall is shown in the log-linear
plot of Fig. 11.3.2. For all the three 2D cases, there appears to be three
main stages associated with the development of the wall heat transfer.
In the first two stages, the wall heat transfer continuously increases
nearly linearly with time in the log scale with two distinctly different
slopes. The growth trend stops in the third stage. The heat transfer
coefficients become oscillatory with an average value around −0.062.
For AR = 2 and 4, the change occurs at about t = 50, and at about 80 for
AR = 6. There is an apparent jolt in the heat transfer coefficient around
t = 225 for AR = 4, as it develops toward a stationary value. The wall
heat transfer gradually decreases first and two abrupt changes follow,
each reversing the directions of change, before it gradually settles to a
stationary state.

Figure 11.3.3 shows the evolutions of Nusselt number (Nu) on both
the hot and the cold walls, where

Nu = q
/(

k
�T

h

)
(11.3.16)

It can be seen that the Nusselt numbers for both the hot and the cold
walls approach 3.33 after the flows develop to stationary states. For
the 4:1 case shown in Fig. 11.3.3b, the development of the stationary
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Figure 11.3.2 Evolution of hot-wall heat transfer coefficients for 2D cases, with
aspect ratio of 2:1, 4:1, and 6:1.

state appears to be interrupted by the sudden and large-amplitude jolt
described in Fig. 11.3.2. Nu is about 3.29 before the jolt and about 3.32
afterward.

The pressure coefficient cp distributions on the cold wall are shown
in Fig. 11.3.4, where

cp = p
/(1

2
ρ0V 2

H

)
(11.3.17)

Pressure p is defined as

p =
∑Ns

i=1(mcn,i)in −∑Ns
i=1(mcn,i)re

ts · �A
(11.3.18)

where the subscript “n” denotes the molecule velocity component nor-
mal to the wall. It can be seen that the calculated pressure coefficients
decrease to a constant about 0.31 for all the three 2D cases. Similar
to the wall heat transfer shown in Figs. 11.3.2 and 11.3.3b, the pres-
sure coefficient evolution also appears to indicate two stationary states
after the initial transition for the case with AR = 4. The pressure is low
initially and later becomes more comparable to those for the 2:1 and
the 6:1 cases.
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Figure 11.3.4 Evolution of pressure coefficient on the cold wall in 2D cases,
with aspect ratio of 2:1, 4:1, and 6:1.

Transition to stable stationary flow pattern. Figure 11.3.5 shows the path-
lines of the 2D steady-flow field at time t = 567.19, sampled after time
t = 88.62. The contours of the flow vorticity are also shown in the back-
ground. The vorticity is defined as

ωz = 1
2

(
∂u
∂y

− ∂v
∂x

)
(11.3.19)

There are one, two, and four pairs of vortices, in the flow field with AR =
2, 4, and 6, respectively. In Figs. 11.3.5a and 11.3.5c, the vortex pairs are
uniformly distributed in space, with about the same maximum vorticity
magnitude. In Fig. 11.3.5b for AR = 4, the second vortex pair from the
left, which consists of the first and the fourth vortices, is slightly de-
formed. The vorticity magnitude is also smaller than that of the first
vortex pair.

Figures 11.3.6 and 11.3.7 show the corresponding density and tem-
perature fields. In the density fields, there are one, two, and four pairs
of mushroom-like areas for the 2:1, 4:1, and 6:1 cases, respectively. The
centers of the vortices, or convection rolls, can be found on either sides
of the stem of the mushrooms. It can be seen in Fig. 11.3.7 that, other
than the regions where there are strong, vertical downwash (upwash)
of high (low) temperature gas, the temperature is about 0.5 in a large
part of the flow.
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Figure 11.3.5 Pathlines and vorticity contours for the long-time aver-
aged 2D flow field cases at time t = 567.19: (a) 2:1; (b) 4:1; (c) 6:1.

Snapshots of the instantaneous velocity vector field at five instants of
time are presented in Figs. 11.3.8a–f for the case with AR = 4, marked
by the vorticity levels. The wall heat transfer values that correspond
to these times are marked by (a) to ( f ) in Fig. 11.3.3b. The horizon-
tal arrow depicted in the top left corner of each figure represents the
reference magnitude for the velocity vectors in that figure. The simula-
tion time and the number of output cycles are shown in the upper right
corner. The initial gas temperature is TH with zero average velocity. The
cold wall heat transfer decreases as the simulation commences and that
for the lower hot wall increases. Vortical motion can be seen near the
upper cold wall at time t = 17.72 (point “a” in Fig. 11.3.3b) as shown
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Figure 11.3.6 Density contours for the long-time averaged 2D flow cases
at time t = 567.19: (a) 2:1; (b) 4:1; (c) 6:1.

in Fig. 11.3.8a. In the time range between 17.72 and 50 (point “c” in
Fig. 11.3.3b), the vortical structures grow quickly in size and strength,
and extend toward the lower hot wall. As more high temperature gas
is brought from the lower hot wall, the heat transfer coefficient on the
upper cold wall reverses its decreasing trend and begins to increase.
For the lower hot wall, the heat transfer coefficient continues its in-
creasing trend, and at a faster pace, during this period. After slight
overshoots near t = 40, the heat transfer coefficients on both walls sta-
bilize and converge to the same value of about 3.29. The flow devel-
ops into a seemingly stationary pattern with three pairs of vortices as
shown in Fig. 11.3.8c. This flow pattern stays for a time period of about
160 before one of the three pairs of vortical flow structures near the
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Figure 11.3.7 Temperature contours for the long-time averaged 2D flow
field cases at time t = 567.19: (a) 2:1; (b) 4:1; (c) 6:1.

right flow boundary begins to shrink in size with reducing strength, as
is shown in Fig. 11.3.8d. This vortex pair quickly weakens and disap-
pears, and the flow is left with only two larger vortex pairs (shown in
Fig. 11.3.8e at t = 221.56). During this transformation of flow patterns,
the wall heat transfer dips first (point d in Fig. 11.3.3b) as the vor-
tex pair is diminishing and overshoots when the remaining structures
grow to fill the space left behind (point e in Fig. 11.3.3). The jolts of the
wall heat transfer observed in Fig. 11.3.3b and of the wall pressure in
Fig. 11.3.4, therefore, are caused by the change of the dominant struc-
tures of the flow. The newly formed flow pattern of two vortex pairs
shown in Fig. 11.3.8f is not found to change any further and appears to
be stationary.
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Figure 11.3.8 Snapshots of the instantaneous velocity vector field for
the 2D simulation with the aspect ratio of 4:1, with color represent-
ing the flow vorticity magnitudes. Corresponding heat transfers are
shown in Fig. 11.3.3b at time point a–f (t = 17.72 − 834.83).

Stationary flow patterns. Once a flow develops into a stable stationary
flow pattern, the steady-flow properties sampled after the transition
should not change with further sampling. Figure 11.3.9a shows the
comparisons of long-time-averaged velocity profiles of u and v at y = 20
and at two different times of t = 177.25 and 912.81 for the 2:1 case.
The sampling begins at t = 88.62 when the flow appears to have be-
come fully developed. The associated flow pattern has been shown in
Figs. 11.3.5a. The profiles obtained over the large time span overlap
well, indicating that the flow has become stationary. Figure 11.3.9b
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Figure 11.3.8 (Continued)

shows the similar comparison for the 6:1 case. The profiles agree well,
which indicates that the flow shown in Fig. 11.3.5c for the 6:1 case has
also become stationary.

For the 2D cases simulated, it can be seen that the aspect ratio does
not have significant effects on the wall heat transfer rate and the aver-
aged wall pressure. On the other hand, the final flow patterns and the
process of their formation are significantly different among the cases
with the different aspect ratios. In all of the three cases simulated,
stationary states were found and these stable flows contain cells of vor-
tical flow structures, similar in appearance to the convection roll in the
Rayleigh-Bénard instability problem.



Perturbation in Microflows 317

x

u,
 v

0 50 100

(a)

150 200

−0.2

−0.1

0

0.1

0.2
u, t = 912.81
u, t = 177.25
v, t = 912.81
v, t = 177.25

x

u,
 v

0 100 200 300

(b)

400 500 600

−0.2

−0.1

0.1

0

0.2

u, t = 788.74
u, t = 177.25
v, t = 788.74
v, t = 177.25
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11.3.2 Three-dimensional flows

Three cases will be examined in 3D microchannels with the size ratio
of 2:2:1, 4:4:1, and 6:6:1, with the first two numbers representing the
box dimensions in the two directions with periodic boundary conditions
(x- and z-directions) and the third the direction normal to the walls
(y-direction). The simulation parameters are given in Table 11.3.2. The
physical flow conditions are the same as those used in the previous
2D cases, including the temperature ratio, the Froude, Knudsen, and
the Rayleigh numbers. The numbers for the rectangular field cells are
20 × 20 × 20, 40 × 40 × 20, and 60 × 60 × 20, respectively. The numbers
of simulated molecules are 2 million, 8 million, and 18 million. Simu-
lations were performed using 1, 4, and 9 processors for AR = 2, 4, and
6, respectively. In the following, the heat transfer and pressure on the
walls will first be described. The structural features of the simulated
flow will be examined.

Heat transfer and pressure. The evolutions of the heat transfer coeffi-
cients ch on the hot wall are shown in Fig. 11.3.10 for all of the three 3D
simulations. The three-stage developments of the wall heat transfer for
the three 3D cases are very similar to those found in the 2D simulations.
Initially, the wall heat transfer increases nearly linearly due to thermal
conduction. At about t = 28, the second stage begins with a much larger
rate of increase than that in the first stage. At the end of the second
linear stage, the wall heat transfer coefficients ch for the three flows
start to branch off. For the 2:2:1 case, this third stage, which begins at
about t = 58, gives an average heat transfer coefficient of −0.062 after
an initial overshoot has subsided, which is about the same as those for
the 2D cases when the flows have become stationary. The jolt found in
the 2D, 4:1 case during the third stage did not appear in the present
3D, 4:4:1 case. Instead, the heat transfer decreases slightly before it
reaches a steady average value of −0.059, about 5 percent lower than
that for the 2D cases.

TABLE 11.3.2 Parameters in 3D Flow Simulations

Case 4 Case 5 Case 6

AR 2:2:1 4:4:1 6:6:1
Grid size 20 × 20 × 20 40 × 40 × 20 60 × 60 × 20
Molecules 2 million 8 million 18 million
Processors 1 4 9

r 0.1 0.1 0.1
Fr 3.5 3.5 3.5
Kn 0.01 0.01 0.01
Ra 10,159 10,159 10,159
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Figure 11.3.10 Evolution of heat transfer coefficient on the hot wall in 3D
cases, with aspect ratio of 2:2:1, 4:4:1, and 6:6:1.

The evolutions of the Nusselt number on both the hot and cold walls
are presented in Fig. 11.3.11. In light of the similarity between the
development of the ch in the first two stages shown in Fig. 11.3.10 be-
tween the 2D and the 3D cases, it is not too surprising to find that the
Nusselt numbers for the three 3D cases also develop in parallel among
themselves as did the 2D cases. In the third stage, the Nusselt numbers
on the walls converge and develop steady averages of 3.34 and 3.14 for
the 2:2:1 and the 4:4:1 cases, respectively. For the largest domain case,
the Nusselt number appears to begin to level off toward the end of the
simulations.

Figure 11.3.12 shows the pressure coefficient history on the upper
cold wall. Despite the small variations for the 6:6:1 case, the average
values in the third stage for all the three simulations stays constant at
about 0.3. The difference in the wall pressure development among the
three 3D cases is far less apparent compared to the wall heat transfer.

Flow structures in the third stage. The surface heat transfer and the sur-
face pressure data shown above indicate that, during the first two stages
of the simulations, the flow structures in the 3D simulations develop in a
similar manner to those in the 2D simulations. As noted, inertia effects
dominate in the first stage and the heat transfer is achieved mainly
by heat conduction. In the second stage, buoyancy effects become more
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significant and drive the formation of vortical flow structures. Initially
more apparent in the region near the top wall, the vortical structures
quickly grow in size and strength and eventually extend over the entire
channel height. There are, however, significant differences between the
third stages of their development, as indicated by the surface data. In
the following, the flow evolution in the third stage for each of the three
3D cases are examined in details. As will be seen, the flow structures in
the three 3D cases are fundamentally different from each other and, for
the 4:4:1 and the 6:6:1 cases, from those in the corresponding 2D flows.

2:2:1. For this smallest domain case, the average surface heat trans-
fer and pressure are constant, indicating that the flow has become
stationary. Figure 11.3.13 shows the pathlines and vorticity contours
of the steady flow at time t = 762.16. The flow field is sampled after
time t = 88.62. In Fig. 11.3.13a, the pathlines are plotted on the planes
at z = 20, 100, and 180 with contours representing the vorticity in the
z-direction. Figure 11.3.13b shows the flow vorticity contours on three
orthogonal planes at x = 20, y = 50 and z = 20. Figures 11.3.13a,b
show a flow pattern of two parallel Rayleigh-Bénard convection rolls
aligned with the z-direction. In fact, the flow is homogeneous in the
z-direction.

Figure 11.3.14 presents the velocity profiles of u and v at y = 20 in
the current 3D case and also the corresponding 2D simulation results
shown in Fig. 11.3.9a.

Other than an apparent difference in phase in the periodic x-direction,
the velocity component distributions are very similar. Therefore, for the
2:2:1 case, the cross-sectional flow in the 3D simulation produces essen-
tially the same results as that in the corresponding 2D simulation. It
should be noted that periodic boundary conditions are applied in the
x- and the z-directions. The orientation of the stationary conduction
rolls may be affected by many factors, such as the initial sampling and
the subsequent nonlinear effects in the flows. In fact, as will be seen in
the following case with AR = 4, the vortical structures can also align
in the x-direction.

4:4:1. Figures 11.3.15 and 11.3.16 shows the pathlines and vertical
velocity contours of the instantaneous flow field at time t = 53.17 and
t = 762.16, respectively. t = 53.17 corresponds roughly to the begin-
ning of the third stage and at t = 762.16 the wall heat transfer indicates
that the flow is stationary. At t = 53.17, the in-plane pathlines show
two pairs of vortex rolls of roughly equal size that are aligned with the
x-direction and the velocity contours show that the rollers are slightly
skewed. Figure 11.3.16 shows that at the later time of t = 762.16, two
counter rotating vortex rolls can still be identified, but their widths vary
significantly along their axes. It then becomes interesting to examine
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Figure 11.3.13 Path-lines and vorticity contours of the long-time-averaged flow
field for the 2:2:1 case at t = 762.16: (a) On three z-planes at z = 20, 100 and
180; (b) On three orthogonal planes at y = 50, x = 20, and z = 20.
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Figure 11.3.14 Velocity field comparisons between the 3D and the 2D sim-
ulations at y = 20 with the aspect ratio of 2:1.

how the vortical flow structures evolve in this stage of the flow devel-
opment where the flow eventually becomes stationary, according to the
surface data.

The evolution can be viewed with the series of snapshots presented
in Figs. 11.3.17a–f. The figures show, for a time sequence that begins
at t = 53.17 and ends at t = 762.16, the evolution of the instantaneous
vorticity contours in the plane through y = 50. The times for Figs.
11.3.17a–f are 53.17, 88.62, 124.07, 159.52, 372.22, and 762.16, respec-
tively. Therefore, the flows described by Figs. 11.3.17a,b have decreas-
ing wall heat transfer and those by Figs. 11.3.17c–f have constant wall
heat transfer. The interface boundaries between two counter rotating
vortex rolls skew slightly in Figs. 11.3.17a,b and the vortex contours are
wrinkled, especially compared to that in Fig. 11.3.13b for the 2:2:1 case.
These features suggest that the vortex pairs experience some levels of
perturbation that modulate and roughen their appearances during this
period. The perturbation eventually results in the wavy formation of
the vortex rolls at later times, as shown in Figs. 11.3.17c–f. The lateral
widths of the vortex rolls vary in a sinusoidal manner along their axes.
The interface boundaries between the “pinched” counter rotating vor-
tex rolls, however, are not wavy, as they were earlier (Figs. 11.3.17a,b),
but are quite straight. Moreover, a closer examination of the flow de-
velopment in this period shows that the pinched vortex rolls are not
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Figure 11.3.15 Path-lines and vertical velocity contours of the instantaneous
flow field for the 4:4:1 case at t = 53.17: (a) Path-lines on three x-planes
at x = 40, 200, and 360; (b) Vertical velocity field on three orthogonal planes
at y = 50, x = 40, and z = 40.

steady. The vortex rolls are found to move in the positive z-direction as
the simulation progresses.

Figure 11.3.18 shows the distribution of the spanwise velocity com-
ponent in the spanwise direction on the walls and at h/4 intervals be-
tween the walls at t = 53.17 and 762.16, respectively. One can define
an interface between two vortex rolls as the vertical plane where the
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Figure 11.3.16 Path-lines and vertical velocity contours of the instantaneous
4:4:1 flow field case at t = 762.16: (a) Path-lines on three x-planes at x = 40,
200, and 360; (b) Vertical velocity field on three orthogonal planes at y = 50,
x = 40, and z = 40.

spanwise velocity component is zero (w = 0). Figure 11.3.18a shows
that the z-coordinates of the interface (denoted by P) at the different
heights across the channel are the same, indicating that the interface P
is in an upright position, stretching between and perpendicular to the
walls, at t = 53.17. In fact, this interface P remains perpendicular to
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the walls at the later time of t = 762.16 (Fig. 11.3.18b). Moreover, the
interface has obviously moved from z = 84.74 to z = 278.04 during this
time period.

To track the translational movement of the flow, the locations of the
interface P at different times are recorded and shown in Fig. 11.3.19.
A linear curve fit shows a constant speed of 0.267. Therefore, the vorti-
cal flow structures in the present 3D, 4:4:1 case move in the z-direction
at a constant speed of 0.267. Such an advective movement of the vor-
tex rolls in the three-dimensional, unsteady MRBC problem, to the
best of our knowledge, has not been previously reported in the open
literature.

6:6:1. Figures 11.3.20 and 11.3.21 show the pathlines and vertical
velocity contours of the instantaneous flow field at time t = 53.17
and t = 762.16, respectively, which are the same times as those for
Figs. 11.3.15 and 11.3.16 for the 4:4:1 case. The flow patterns are more
complex for the large domain case. At t = 53.17, the pathlines plot
shows that there are six roller structures at x = 60 and 300. At x = 540,
there are seven rollers that extend between the walls and two of smaller
size near the walls at about z = 200. The vertical velocity contours of
Fig. 11.3.20b on the plane midway between the walls shows the emer-
gence of a new vortex roll in between the x = 300 and the x = 540 plane,
as is evident by the “Y” branching in the positive vertical velocity con-
tours. At t = 762.16, Fig. 11.3.21a indicates that there are four vortex
rolls in the flow. As can be seen from Fig. 11.3.21a, the patterns of the
vortex rolls are complex. It is apparent that the flow structures in the
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Figure 11.3.19 Locations of the interface P for the 4:4:1 case.
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Figure 11.3.20 Path-lines and vertical velocity contours of the instantaneous
flow field for 6:6:1 at t = 53.17: (a) Path-lines on three z-planes at x = 60,
300, and 540; (b) Vertical velocity field on three orthogonal planes at y = 50,
x = 60, and z = 60.

current 6:6:1 case change significantly in this stage, with continuous
generation, merging, and dissipation of vortex rolls.

Figures 11.3.22a–j show, in a sequence of time that begins at t = 53.17
and ends at t = 762.16, the evolution of the instantaneous vorticity
contours in the plane of y = 50. The times for Figs. 11.3.22a–j are
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Figure 11.3.21 Path-lines and vertical velocity contours of the instantaneous
flow field for 6:6:1 at t = 762.16: (a) Path-lines on the three x-planes at x = 60,
300, and 540; (b) vertical velocity field on the three orthogonal planes at y = 50,
x = 60, and z = 60.

53.17, 88.62, 124.07, 159.52, 194.97, 301.32, 336.77, 443.11, 478.56, and
762.16, respectively. As was described earlier, the vortex rolls continues
to split and merge initially (Figs. 11.3.22a,b). At later times, no more
splitting can be found and the merging of existing vortex rolls continues
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Figure 11.3.22 Evolutions of vorticity contours for the instantaneous flow field for
6:6:1 on the mid-plane of y = 50: (a) t = 53.17; (b) t = 88.62; (c) t = 124.07;
(d) t = 159.52; (e) t = 194.97; ( f ) t = 301.32; (g) t = 336.77; (h) t = 443.11; (i)
t = 478.56; (j) t = 762.16.
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Figure 11.3.22 (Continued )

to about t = 336.77 (Fig. 11.3.22g) when there are four distorted vor-
tex rolls in the flow. The four vortex rolls continues to evolve and at
t = 762.16, the interface between two nearby counter rotating vortex
cores become rather straight. Figure 11.3.23 shows the variation of the
location of the lower interface with time after t = 336.77. The figure
shows that the flow pattern moves at a speed of 0.332 in the positive
z-direction.

Two and three-dimensional MRBC flows have been simulated numer-
ically by using the DSMC method in an unsteady time-dependent man-
ner with different aspect ratios for a high Rayleigh number of 10,159
with the Knudsen number of 0.01. The flow fields were initialized homo-
geneously based on the temperature of the bottom, hot wall. Evolutions
of the convection flow patterns were studied, and their corresponding
pressure and heat transfer on the wall were calculated in terms of the
averaged pressure coefficient, the heat transfer rate ch and the Nusselt
number.
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Figure 11.3.23 Locations of the moving pattern along the z-direction for
6:6:1.

In the 2D cases simulated, the flows are fully developed to a station-
ary pattern of vortex cells. There are one, two, and four pairs of vortices
in the case with aspect ratio of 2:1, 4:1, and 6:1, respectively. The aspect
ratio does not have significant effects on the wall pressure and the wall
heat transfer. But it affects the final flow patterns and the process of
their formation.

For the 3D cases with aspect ratio of 2:2:1, the cross-sectional view of
the stationary flow is essentially the same as that in the 2D case with
aspect ratio of 2:1. The 3D cases with aspect ratios of 4:4:1 and 6:6:1,
however, produce unsteady, periodic flows, while the corresponding 2D
cases (4:1 and 6:1) are steady.

The unsteady DSMC method successfully captures three stages of the
pattern formation of the 2D and the 3D microRayleigh-Bénard prob-
lems. The inertia effect dominates the first stage with conduction being
the main heat transfer mechanism. Cellular vortex rolls appear and
continue to develop in the second stage where convective heat trans-
fer becomes important. In the first two stages, evolutions of the flow
structures, and their corresponding wall heat transfer and wall pres-
sure for the 2D and 3D cases appear very similar. In the third stage,
the flow structures in the three 3D cases are fundamentally different
from each other and, for the 4:4:1 and the 6:6:1 cases, from those in the
corresponding 2D flows.

For the 4:4:1 case, the flow develops into a pattern of two pairs of
pinched vortex rolls that translate parallel to the plates at nearly a con-
stant speed. The lateral widths of the vortex rolls vary in a sinusoidal
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manner along their axes. The interface boundaries between the
“pinched” counter rotating vortex rolls, however, are quite straight. In
the 6:6:1 case, similar flow patterns in translational movement can also
be easily identified. The advective nature of the vortex rolls in the 3D,
unsteady MRBC flows simulated is a characteristic of the final states
of the MRBC problem that has not been reported at macroscales.
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physics of, 39–43, 62

pressure, 95
property of, 29
sampling to obtain properties of, 115
simple shear, 25
steady/unsteady, 86
turbulent, 249
vortical, 270, 273, 287, 313, 316, 321,

323
(See also Microflow(s))

Fluid density, 27
Fluid dynamics, 230, 249
Flux, molecular, 31–32
Flux-corrected transport filter, 85
Flynn, M., 158
Force, 31
Force field (between molecules), 5–6
Forced chaotic flows, 251
Forced microCouette flows, 250–253,

265
Forcing (forcing coefficient), 265–286
Forebody flow, 196–197
FORTRAN, 3, 113
Foster, I., 164
Fourier amplitudes, 257, 282, 284, 297
Fourier spectra, 280

steady specific kinetic energy of, 264
wave number, 256

Fourth-order finite difference schemes,
265

Fox, G. C., 159
Fr (see Froude number)
Free path, mean (see Mean free path)
Free stream:

and mean free path, 71
number density of, 247

Free stream forcing, 249
Free stream turbulence, 249
FreeBSD, 162
Freedom of movement, 5
Free-molecular flow, 41, 99
Friction factor, 230, 249
Froude number (Fr), 303, 307, 318
Functional decomposition (explicit

parallelism), 164
Fundamental modes, 257, 282

G2/A3 codes, 93
Gad-el-Hak, M., 2
Gadiga, T. T., 197
Garcia, A. L., 195, 196, 198
Gas constants, 71
Gas flow modeling, limits of, 42
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Gas flows:
and direct physical simulation, 252
and interface boundary conditions, 43
rarefied, 304
transitional, 304

Gas kinetic theory, 175
Gas microflow, 269
Gas models, inverse-power repulsive

force, 61–62
Gas slip-velocity, 220
Gas temperature, 222, 243
Gas(es), 5

average kinetic energy of, 10
and density, 40
dilute, 22, 23, 32, 84, 96
and distribution function, 175
equilibrium, 21
and flow field, 39
kinetic theory of, 25
macroscopic properties of, 6–8, 11, 25
microscopic properties of, 6–7, 9–11, 25
rarefied, 11, 41, 68, 249
statistical gas properties, 23–27
and thermodynamic equilibrium, 63

Gas-solid interactions, 43–44
Gas-surface interaction model, 85
Gas-surface interactions, 39, 95, 113,

175–192, 235
Cercignani/Lampis/Lord model,

180–182, 185–187
in DSMC simulations, 182–187
Maxwell’s models, 179–180, 183–184
phenomenological modeling of,

179–182
specular reflection model, 183
wall-slip models/continuum approaches,

187–191
Gatsonis, N. A., 197
Gauge pressure (pg), 69
Gauss theorem, 31
Gaussian distribution, 36, 187
Gauss-Seidel (LU-SGS) scheme, 70–71
Generalized hard sphere (GHS) model, 22,

84
Gersten, K., 230
GHS model (see Generalized hard sphere

model)
Glass, C. E., 197
Gnoffo, P. A., 197
Godreche, C., 303
Gombosi, T. I., 10
Gravitational acceleration, 304, 307

Gravitational force, 39, 251, 253, 305
Gropp, W., 166
Gross, E. P., 55
Guckel, H., 238

Half-flux method, 198
Hara, T., 303
Hard shell (HS) collision model, 115
Hard sphere (HS) model(s), 16, 19, 23, 64,

84
generalized, 22
variable, 20–21

Hard-cube model, 181
Harmonic modes, 257, 282, 302
Harmonic waves, 257–258
Hash, D. B., 22, 84, 198
Hassan, H. A., 22, 84, 198
He, X., 303
Heat conduction, 319
Heat conduction coefficient, 306
Heat flux, 55, 58, 61–64, 66, 69–70, 104,

195, 243
Heat transfer, 228, 230, 235, 248, 333

cold wall, 312
and microchannel flows, 237
in microRayleigh-Bénard flows,

307–311, 318–319
Heat transfer coefficients, 195, 313, 318
Heat transfer flux vector (qi), 52–53, 112
High-performance computing cluster

(HPCC), 158, 161–162
Beowulf system, 162–164
development of, 159–162
peak performance for, 160

High-speed Couette flows, 103
High-speed microflows, 237–248
Hixon, R., 265
Hot walls, Nusselt numbers for, 308–309,

319, 320
HPCC (see High-performance computing

cluster)
HS (see Hard shell collision model; Hard

sphere model(s))
Hsia, Y., 190
Hurst, J. E., 177
Hybrid approaches, 193–198

alternative, 196–198
breakdown parameters for, 194–196
for microfluid flow, 196

Hydrodynamic limits, 198, 251
Hypersonic flows, 85–86, 157, 166, 194,

196, 207
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IBM, 160
IBM SP-1, 158
IBM SP-2, 157–158
ICs (integrated circuits), 1
Imaged photoresist, 226
Impact parameter, 15, 21
Implementation procedures (IP method),

107–112
Implicit flow boundary, 211, 216
Implicit parallelism, 164
Incident shocks, 241
Incident velocity, 188
Inelastic collisions, 84, 89, 99
Inertia effects, 319
Inflow condition, 197
Information preservation (IP) method, 3,

45, 99–112, 195, 196
applications of, 99–100
cell information update phase in, 111
development of, 99
DSMC modeling for, 103–105
and energy flux model for preserved

temperature, 105–107
of Fan and Shen, 100–101
flow property sampling phase in, 112
governing equations in, 102–103
implementation procedures, 107–112
initialization phase in, 109
and low-speed microflows, 99
particle collision phase in, 110
particle information modification phase

in, 111
particle movement phase in, 109–110
scatter analysis using DSMC vs.,

119–124
and statistical method, 99–112
and statistical scatter in DSMC

method, 100
of Sun and Boyd, 101, 102

Information preserved equations (IPE),
102

Information velocity, 99–101
Initialization:

and DSMC methodology, 86–87
and information preservation

implementation, 109
Inlet boundaries, 88, 207
Inlet conditions, 210, 227
Inlet flow temperature, 210, 233
Inlet pressure, 227
In-plane pathlines, 287, 297
Instantaneous kinetic energy spectra, 302

Integrals (in distributions functions), 38
Integrated circuits (ICs), 1
Intel, 160–161
Intel Itanium2, 161
Interface boundary, 43, 194
Interface flux evaluation, 196
Interior flow domain, 217
Interior nodes, discretization for,

265–266
Intermolecular collision, 5, 7, 83
Intermolecular force, 11, 25 (See also

Molecular force-field models)
Internal energy, 209
Internal energy modes, continuous, 22
Internal flow, 217, 226
Internet, 2
Inverse collision, 15, 18
Inverse power law, 20, 22
Inverse-cumulative method, 124–126
Inverse-power repulsive force gas models,

61–62
Inviscid fluid dynamics, 111
IP method (see Information preservation

method)
IP1D program, 113–119

with microCouette flows, 116–119
source code, 129–154

IPE (information preserved equations),
102

Isothermal flow fields, 116
Isothermal wall, 71, 99, 189
Isotropic scattering law, 21
Isotropic surfaces, 180

Jacobian matrices, 79–81
Jacobian transformation, 67
Jacobians, 70
Jameson, A., 70
Janson, S. W., 238
Janus, J. M., 210

Kaplan, C. R., 85
Karniadakis, G. E., 2, 190, 204, 206, 221
Kendall Square, 160
Kessler, R., 303
Kinematic viscosity, 304
Kinematics (of binary collisions), 11–14
Kinetic energy, 52, 243, 300

average, 10
as collision invariant, 34
per molecule, 9
translational, 8, 14
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Kinetic energy spectra, 291, 297
and disturbance, 302
and instantaneous, 302

Kinetic theory, 5–38
binary collisions, 11–22
Boltzmann equation, 30–35
of gas, 25
macroscopic properties of gases, 6–8,

11, 25
Maxwellian distribution function, 35–37
microscopic properties of gases, 6, 9–11,

25
molecular model, 5–6
position distribution functions, 27–28
statistical gas properties, 23–27
velocity distribution functions, 27–30

Knox, E. C., 85
Knudsen layer, 175, 235
Knudsen number (Kn), 39–41

cell, 238
and Chapman-Enskog theory, 2–3,

189–190, 193, 195
defined, 113
finite, 201
and flow, 203
for high-speed microflows, 237–248
and hybrid methods, 193–195
for microchannels with surface

roughness, 231, 233, 235
for microCouette flows, 210, 211
and microflow perturbation, 250, 253,

259–260, 263, 266, 269, 278, 286,
302–303, 306, 318, 332

for microPoiseuille flows, 216, 221, 226
and moment method, 47, 54, 62, 68,

70–72
for patterned microchannel flow, 227,

230
and surface phenomena, 43–44

Koga, T., 179
Koura, K., 21–22, 84
Krook, M., 55
Krook equation, 55–58, 61, 62
Kruger, C. H., 33, 59
Kuščcer, J., 177

Lagrangian inviscid fluid dynamics
equations, 111

Laminar flow, 249
Laminar regime, 304
Lampis, M., 180
LAN (local area network), 162

Landau, L. D., 252
Larsen, P. S., 22, 84
Larsen-Borgnakke phenomenological

model, 22
Lattice Boltzmann method, 193, 303
LeBeau, G. J., 94, 157, 158, 166
Lele, S. K., 265
Lennard-Jones (L-J) model, 19–20
Lennard-Jones potential, 182
LeTallec, P., 198
Li, D., 230
Lian, Y. Y., 198
Lifshitz, E. M., 252
Linear momentum, conservation of, 12
Linear stress, 62
Ling, F., 182
Linux, 162, 164
Liou, W. W., 116, 166, 170, 207, 211, 213,

227, 230, 240, 252, 265, 270
Liouville equation, 33, 175
Lipavskii, M. V., 265
Little, W. A., 232
L-J model (see Lennard-Jones model)
Lobular distribution, 180
Lobular scattering pattern, 181
Local area network (LAN), 162
Local stream (gas), 23–24
Local velocity difference, 302
Lockerby, D. A., 63
Logan, R. M., 181
Longitude plane, forced microCouette flow

in, 253–258
Lord, R. G., 181, 185, 187
Low-density islands, 242
Low-speed Couette flow, 99
Low-speed microflows, 99, 101, 196,

201–235, 211
analytical solutions for, 201–207
boundaries, 220
channel surface roughness in, 230–235
microCouette flows, 201–204, 210–213
microPoiseuille flows, 204–207,

213–226
numerical flow simulations of, 207–235
patterned microchannel flow, 226–230
statistical scatter for, 85
subsonic flow boundary conditions in,

207–210

Mach number, 68, 240
Macroscales, 30, 235, 249
Macroscopic information, 106, 107
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Macroscopic properties, 92, 94, 99, 266
kinetic theory, 6–8, 11, 25
and sampling, 94–96

Macroturbulent boundary layer, 230
Magnetic external forcing, 39
Mala, G. M., 230
Malek Monsour, M., 251
Mallinger, F., 198
Manneville, P., 303
Marshak condition, 198
Mass:

center of, 12, 13
conservation of, 198, 209
and half-flux, 197
as molecular quantity, 41
particle of, 13

Mass balance, 210
Mass density, 28
Mass flow rates, 2, 232, 233
Massively parallel processing system

(MPP), 159
Matsumoto, H., 21–22, 84
Matsumoto, Y., 182
Maxwell, J. C., 85, 179, 180, 189, 212, 221,

237
Maxwellian diffuse reflection model, 88,

113–114, 183
Maxwellian distribution function, 35–37,

194, 238
and CLL model, 181
and microfluid flow properties, 40–41,

44
and moment method, 52, 55, 60
nondimensional, 56
with subsonic flow boundary conditions,

208
and wall-slip models, 188
and Wilmoth hybrid approach, 197

Maxwellian model(s), 20, 85, 184
Maxwellian molecules:

coefficients for, 74–75
and repulsive force, 63

Maxwell-Smoluchowski slip boundary,
116, 266

MD (see Molecular dynamics)
Mean collision rate, 24
Mean collision time, 40, 83, 88, 238
Mean flow, 55, 94–95, 101, 210, 306
Mean free path, 23–24, 27, 39–41, 62, 71,

116, 175, 188, 189, 238, 250, 253, 260,
303, 306

Mean molecular velocity, 207

Mean thermal speed, 25
Mean velocity, 121, 166, 217, 243
Mehregany, M., 1
Meiburg, E., 93
MEMS (see Microelectromechanical

systems)
Message passing interface (MPI), 162,

164, 166, 169
Micro gas flow behavior, 47
Microbearings, 201
Microchannel flow(s), 230, 239

computation of, 266
and heat transfer, 237
high-speed, 237–248
patterned, 226–230
three-dimensional (see

Three-dimensional microchannel
flows)

two-dimensional (see Two-dimensional
microchannel flows)

(See also Microflow(s))
Microchannel(s):

centerline of, 205, 216, 243, 276
and compression shocks, 243
height of, 210, 237, 250, 286, 321
and high density region, 242
and low-density islands, 242
microfluid flows in, 171
midsection of, 247
surface roughness in, 230–235

MicroCouette flows, 63, 99, 166, 182, 190,
226

analytical flow solutions for, 201–204
domain sizes, effects of, 286–297
forcing coefficient, effects of, 265–286
geometry of, 201
IP1D applied to, 116–119
numerical simulations of, 210–213
one-dimensional nature of, 213
perturbation in forced, 250–302
plate speeds, effects of, 297–302
simulated, 117–119, 210
statistical scatters, 120–121
three-dimensional simulations of,

260–302
two-dimensional, 253–260

Microelectromechanical systems (MEMS),
1–2, 207, 226, 237–238, 248

Microengines, 238
Microflow(s), 39–45

average property of, 48
basic modeling approaches to, 44–45
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Microflow(s) (Cont.):
deceleration of, 241–242
external forcing on, 250
and heat transfer, 235
high-speed, 237–248, 241
internal, 220
of locally equilibrium gas, 53
low-speed (see Low-speed microflows)
macroscopic properties of, 52
and mean gradients, 55
and natural convection, 304
near-wall behavior of, 237
of nonequilibrium gas, 54
perturbation in (see Perturbation)
physics of, 39–43
Rayleigh number in, 306–307
sampling of, 112, 168–169
simulated, 253
surface phenomena in, 43–44
thermodynamic behavior of, 230
three-dimensional, 260–302, 318–334
transition, 250
translational movement of, 328
two-dimensional, 307–317
in two-dimensional planes, 253–260
viscosity of, 110

Microfluid flows (see Microflow(s))
Microfluidics, 193
Microfluids, 196
Micromotors, 201, 238
MicroPoiseuille flows, 63, 99, 166, 171,

204–205, 213–226, 228, 230
analytical flow solutions for, 204–207
numerical simulations of, 213–226

Micropumps, 201
MicroRayleigh-Bénard convection

problem (MRBC), 304–306, 332
MicroRayleigh-Bénard flows, 250,

302–334
convection problem, basic equation

for, 304–306
4:2:1 case, 321, 323–328, 333
heat transfer in, 307–311, 318–319
perturbation in, 302–334
6:2:1 case, 328–334
stationary flow patterns in,

311–317
third stage, flow structures in,

319–334
three-dimensional, 318–334
2:2:1 case, 321–323, 333
two-dimensional, 307–317

Microscale devices, 201
Microscopic properties (kinetic theory),

6–7, 9–11, 25, 35
MIMD (see Multiple instruction/multiple

data)
MISD (see Multiple instruction/single

data)
MLG (Monotonic-Lagrangian-Grid), 85
Modeling, basic approaches to, 44–45
Modes, 282
Molecular chaos, 84, 96
Molecular collisions, 18, 25, 32, 101, 104,

168–169
Molecular diffusion, 22
Molecular distribution, 101
Molecular dynamics (MD), 84, 178,

181–182, 193, 196
Molecular flow, 41
Molecular flux, 31–32
Molecular force-field models (binary

collisions), 19–22
generalized hard sphere model, 22
inverse power law model, 20
Larson-Borgnakke phenomenological

model, 22
Lennard-Jones (L-J) model, 19–20
variable hard sphere model, 20–21
variable soft sphere model, 21–22

Molecular Gas Dynamics and the Direct
Simulation of Gas Flows (G. A. Bird),
84

Molecular interaction (wall), 10
Molecular mass, 7
Molecular mean collision time, 86
Molecular model:

hard sphere, 16
and input data, 98
in kinetic theory, 5–6

Molecular momentum, 110
Molecular motion, 7, 25, 30, 83
Molecular rotational energy, 239
Molecular speed, 181
Molecular tagging, 249–250
Molecular thermal speed, 37
Molecular translational kinetic energy,

8
Molecular translational motion, 6, 8
Molecular velocity, 7, 11, 100, 102, 115,

120–121, 179
Molecular viscosity, 231
Molecule information velocity, 112
Molecule velocity component, 309



Index 347

Molecule(s):
average kinetic energy per, 9
coeffecients for Maxwellian, 74–75
continuous internal energy modes, 22
defined, 5
force field between, 5–6
internal structure of, 6, 10
kinetic energy per, 9
number flux of, 207–208
number rate of, 248
random thermal motion, 25
velocity of, 27

Moment equations, 49, 56
Moment method, 47–82

Boltzmann equation in, 47–54, 58–59
Chapman-Enskog expansion in, 54–59
closure models in, 59–66
and Jacobian matrices, 79–81
Krook equation in, 55–58
(See also Burnett equation(s))

Momentum:
angular, 13, 250
collision and change in, 7
as collision invariant, 34
conservation of linear, 12
and half-flux, 197
preserved, 103–104

Momentum change, 26
Momentum conservation, 198
Momentum flux, 95, 188
Momentum flux tensor, 50
Monotonic-Lagrangian-Grid (MLG), 85
Moody chart, 230
Moore’s law, 159
Moss, J. N., 84, 86, 157
MPE (multiprocessing environment), 162
MPI (see Message passing interface)
MPP (massively parallel

processing)system, 159
MRBC (see MicroRayleigh-Bénard

convection problem)
Multidisciplinary Design Optimization,

164
Multiple instruction/multiple data

(MIMD), 158–159
Multiple instruction/single data (MISD),

158–159
Multiprocessing environment (MPE),

162
Multi-stage gas-surface interaction

model, 182
Myrinet, 162, 164

NACA0012, 99–100, 103
Nanbu, K., 84, 250
Nance, R. P., 210
NASA Goddard Space Flight Center, 162
Natural convection, 303
Natural fluid dynamics, 249
Navier-Stokes equations, 3, 41, 43

and channel surface roughness, 231,
233

and continuum assumption, 44
and continuum fluid mechanics, 48
and hybrid continuum/particle method,

193–196, 198
and microCouette flows, 116, 202, 212
and microPoiseuille flows, 204, 220–221
and microRayleigh-Bénard flows, 303
and moment method, 61–62, 68–70,

72–73
and perturbation in microflows,

265–266, 306
and wall-slip models, 187–189

Navier-Stokes model, 198, 269, 276, 278,
279

Navier-Stokes simulations, 250, 257, 273
NB2D code, 3, 68, 70–73, 230
NEC SX-6, 161
Net energy flux, 106
Net heat flux, 225, 237
Net molecular energy, 239
Nguyen, N. T., 2
Nie, X. B., 196
Nondimensional form (moment

equations), 56–57
Nondimensional Maxwellian distribution

function, 56
Nondimensionalization, 240
Nonequilibrium continuum flow, 83
Nonequilibrium gas flows, 54
Nonequilibrium patches, 197
Nonorthogonal coordinates, 70
Nonuniform memory access (NUMA), 164
Normalization condition, 177
No-slip boundary conditions, 43, 189–190,

202, 205
No-slip velocity boundary conditions, 70
No-time counter (NTC), 85, 88, 91–92
NS (see Navier-Stokes equations)
NTC (see No-time counter)
NTC (no-time counter) technique, 92
NUMA (nonuniform memory access), 164
Number density (n), 5, 27–28, 31–32, 111,

166, 209, 238, 247
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Number flux, 176, 183
Numerical flow simulations, 207–235
Numerical method, 68–71
Numerically simulated MRBC, 332
Nusselt number (Nu), 303, 332

and cold walls, 308–309, 319–320
and hot walls, 308, 319–320

Oh, C. K, 240
Oran, E. S., 85, 86
Oscillations, finite amplitude, 255
Outflow boundary conditions, 99
Outlet boundaries, 88, 207
Outlet pressure, 231
Ozal, H., 303

Pade series, 265
Parabolic streamwise velocity profile, 205
Parallel computing, 157–165

architecture, 158–159
Beowulf system, 162–164
cost-effectiveness of, 158–165
and development of HPCC, 159–162
and DSMC, 157–158
parallel architecture, 158–159
programming, 164–165

Parallel Computing Works (G. C. Fox),
159

Parallel Direct Simulation Monte Carlo
(PDSMC) method, 165–174

and computing mast (CEPCOM),
170–171

and data communication, 168–170
and data distribution, 167–168
flowchart for, 170
implementation of, 165–171
performance of, 171–173

Parallel DSMC (PDSMC) simulations, 62,
260

Parallel paradigms, 165
Parallel programming, 164–165
Parallel Rayleigh-Bénard convection rolls,

321
Parallel virtual machine (PVM), 162
Particle distribution function, 30
Particle information modification, 111
Particle movement, 103, 109, 166
Particle of mass, 13
Patterned microchannel flow, 226–230
PCN, 164
PDF (see Probability distribution

function)

PDSMC method (see Parallel Direct
Simulation Monte Carlo method)

Peiyi, W., 232
Pentium III processor, 171, 227
Periodic boundary conditions, 291, 305,

318, 321
Perturbation, 176, 194, 249–334

and Boussineq equation, 306
in forced microCouette flows, 250–302
in microRayleigh-Benard flows,

302–334
and positive vertical velocity, 253–254
and vertical velocity, 253, 255–256
and vortex rolls, 323–324

Perturbation approach, 54
Phase space, 29–32, 47, 96–97
Phenomenological collision model, 110
Phenomenological modeling:

Cercignani, Lampis, Lord model,
180–182

and gas-surface interface mechanisms,
179–182

Maxwell (specular/diffusive reflection
models), 179–180

Photoresist, imaged, 226
Physical flow signals, 284
Physical space, 30–32, 47
Piekos, E., 214
Plane(s):

collision, 18
forced microCouette flow in longitude,

253–258
forced microCouette flow in spanwise,

258–260
longitude, 253–258
reference, 18
spanwise, 258–260

Plate speeds, 297–302
Plates, upper/lower, 276
Polar coordinates, 14–15
Position distribution functions, 27–28
Postcollision components, 115
Postcollision molecular velocities, 88
Postcollision properties, 14, 16–19
Postcollision velocity, 13, 14, 16–18
Postreflection speed, 183
Prandtl number, 212
Prandtl’s mixing length model, 231
Pre-collision velocity, 14
Preserved energy, 103–104
Preserved information, 107
Preserved macroscopic velocity, 102
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Preserved mass, 103–104
Preserved momentum, 103–104
Pressure, 7–8, 195

as calculated, 217
constant reference, 69
density, 68
exit, 227
and flow fluxes, 112
and heat transfer, 318–319
inlet, 227
in microRayleigh-Benard flows,

318–319
outlet, 231
specific heat and constant, 306
and temperature, 8–9
vertical distributions of, 266
wall, 316, 333

Pressure coefficient, 309
Pressure field, 111
Pressure gradient, 205, 207, 232, 266
Pressure ratios, 213
Pressure tensor, 50
Pressure-driven flow, 204
Primed coordinate system, 16
Probability density, 28
Probability distribution function (PDF):

acceptance-rejection method, 126–127
inverse-cumulative method, 124–126
sampling from, 124–127

Processors, peak performance of, 161
PVM (parallel virtual machine), 162, 164

Quasiparticle approach, 197
Quasiperiodic state, 255, 257

Raju, R., 240
Random motion, 25
Random velocity, 11, 207
Rarefaction, 41–42, 235, 270, 279
Rarefied Couette flows, 198
Rarefied gas effects, 306
Rarefied gas flows, 99, 157, 304
Rault, A. G., 157, 166
Rayleigh, L., 303, 306
Rayleigh flow, 99–100 (See also

MicroRayleigh-Benard flows)
Rayleigh number (Ra), 303, 318, 332

critical, 304
in microflows, 306–307

Rayleigh-Bénard cells, 303
Rayleigh-Bénard convection (RBC), 302,

304

Rayleigh-Bénard instability problem, 316
RBC (see Rayleigh-Bénard convection)
Reciprocity condition, 177, 181
Recombination coefficient, 178
Red Hat Linux 7.0, 171
Reese, J. M., 63
Reference plane, 18
Reference temperature, 20–21, 107
Reference velocity, 54
Reflected components, 186
Reflected molecules, 187
Reflected velocity, 183
Reflection probability, 176
Relative velocity, 12, 14
Repulsive force, 5–6, 12, 63
Reynolds number(s), 2, 205, 230, 249, 260,

286, 297, 302
Riechelmann, D., 250
Rigid elastic bodies, 181
Rigid sphere model, 6, 20
Rotational energy, 182, 209, 247
Rotational temperature, 239
Rotor/stator gap:

and microengines, 238
and micromotors, 238

Rough wall, 232
Roughness height, 230, 232
Roughness Reynolds number, 230
Roughness viscosity, effective, 231
Roveda, R., 197
Roy, S., 240
Runge-Kutta scheme, third-order

low-storage, 265

Sandia National Laboratories, 163
Scattered point finite cloud method, 196
Scattering:

anistropic, 21
out-of-plane, 177
partly diffuse, 180
partly specular, 180
rate of, 97

Scattering distribution, 181
Scattering kernel, 176, 178, 180
Schamberg, R., 190
Schlichting, H., 230
Second order tensor, 16
Secondary flow, 297, 300
Second-order metrics of transformation,

75–79
Second-order modeling (closure models),

62–66
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SGI Octane, 211, 213
Shan, X., 303
Shared memory parallel computer, 159
Shavaliev, M. S., 55
Shear, 96, 112
Shear rate, 190–191
Shear stress, 188–189
Shear stress tensor, 58
Shearing components, 52–53
Shen, C., 85, 99, 100–101, 103–104
Shock structures, 237, 240
Shuen, J. S., 68, 70
SIMD (see Single instruction/multiple

data)
Simple shear flow, 25
Single instruction/multiple data (SIMD),

158–159
Single instruction/single data (SISD), 158
Single-program multiple data (SPMD),

165
SISAL, 164
SISD (single instruction/single data), 158
Skin friction coefficient, 204
Slip boundary conditions, 72, 190, 210,

212, 265, 304
effects of, 279–280
Maxwell-Smoluchowski, 266
second-order, 190

Slip flow solutions, 203–204, 205–206
Slip regime, 99
Slip velocity, 189, 207, 220, 233, 266, 276
Slip velocity ratio, 221
Slip wall boundary conditions, 217,

220–221, 231
Slip-flow regime, 201
Smooth wall, 232
SMP (symmetric multiprocessors), 159
Sobek, D., 237
Solar panels, 197
Solid surfaces, 43, 87
Sone, Y., 304
Space:

phase, 29–32
physical, 30–32
velocity, 28–32, 36–37, 49

Space Shuttle, 157
Space vehicle reentry, 198
Spanwise distributions, 266, 276
Spanwise planes, 258–260
Spanwise velocity, 269, 273, 276, 324–325
Spatial derivatives, 187
Specific enthalpy, 69

Specific heat, 10, 306
Specific kinetic energy, 254, 264
Specular reflection, 7, 179, 181, 183
Specular reflection model, 179, 182, 183,

188
Specular wall, 188
Specular/diffusive reflection models,

179–180
Sphere model, 6, 20–22
SPMD (single-program multiple data),

165
Stable stationary flow patterns, 311–315
Standard atmospheric pressure, 39–40
State, equation of, 209
Stationary flow, 83, 107, 184, 269,

315–317, 333
Stationary macroscopic flow properties,

273
Stationary states, 112, 120, 260, 269, 308,

316
Statistical gas properties, 23–27
Statistical oscillations, 262
Statistical scatter, 196, 273

DSMC, 198
and information preservation, 100
and IP method, 100
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