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Preface

This book deals with the analytical study of nonlinear magnetization
dynamics in nanomagnetic devices and structures. This dynamics is
governed by the Landau–Lifshitz equation and its generalizations to the
case of spin-polarized current injection. The book is concerned with large
magnetization motions when the nonlinear nature of the Landau-Lifshitz
equation is strongly pronounced. For this reason, the book is distinctly
unique as far as its emphasis, style of exposition, scope and conceptual
depth are concerned. It is believed that the topics discussed in the book
are of interest to the broad audience of electrical engineers, material
scientists, physicists, applied mathematicians and numerical analysts
involved in the development of novel magnetic storage technology and
novel nanomagnetic devices.

In the book, no attempt is made to refer to all relevant publications,
although many of them appear in the reference list. The presentation of
the material in the book is largely based on the publications of the authors
that have appeared over the last ten years. This book and the research on
which it is based are the outcome of truly collective efforts of the three
authors. The names of the authors on the cover page are in alphabetic
order. This order has no other connotation, and it is invariant with respect
to circular permutations as far as the matter of merit is concerned.

We wish to express our gratitude to our former graduate students
R. Bonin, M. d’Aquino, and M. Dimian, who assisted us in our research
on nonlinear magnetization dynamics. We are also grateful to P. McAvoy
for his help in the preparation of the manuscript.

G. Bertotti, I. D. Mayergoyz, C. Serpico
October 2008
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CHAPTER 1

Introduction

The analytical study of magnetization dynamics governed by the
Landau–Lifshitz equation has been the focus of considerable research for
many years. Traditionally, this study has been driven by ferromagnetic
resonance problems. In these problems, the main part of magnetization
is pinned down by a strong constant in time (dc) magnetic field,
while only a small component of magnetization executes resonance
motions caused by radio-frequency (rf) fields. These small magnetization
motions have been studied by linearizing the Landau–Lifshitz equation
around the equilibrium state, i.e., the state corresponding to the applied
dc magnetic field. For this reason, the literature on magnetization
dynamics has been mostly concerned with the analytical solution of
the linearized Landau–Lifshitz equation. However, this linearization
approach is rather limited in scope and has little relevance to magnetic
data storage technology, where the magnetic writing process results in
large magnetization motions. In addition, new directions of research have
recently emerged that deal with large magnetization motions and that
require the analysis of the nonlinear Landau–Lifshitz equation. These new
areas of research are the fast precessional switching of magnetization in
thin films and the magnetization dynamics induced by spin-polarized
current injection in “nano-pillar” or “nano-contact” devices. Finally, the
comprehensive qualitative and quantitative understanding of nonlinear
magnetization dynamics is of interest in its own right, because it may
reveal new physics and, in this way, it may eventually lead to new
technological applications.

In spite of significant theoretical and practical interests, very few
books exist that cover nonlinear magnetization dynamics in sufficient
depth and breadth. It is hoped that this book will help to bridge this gap.

The book has the following salient and novel features:

• Extensive use of techniques of nonlinear dynamical system theory for
the qualitative understanding of nonlinear magnetization dynamics;

• Analytical solutions (in terms of elliptical functions) for large motions
of precessional magnetization dynamics and precessional switching;
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2 CHAPTER 1 Introduction

• Emphasis on the two-time-scale nature of magnetization dynamics
and the development of the averaging technique for the analysis of
damping switching;

• Exact analytical solutions for damped magnetization dynamics driven
by circularly polarized rf fields in the case of uniaxial symmetry;

• Analysis of spin-wave instabilities for large magnetization motions;
• Analytical study of large magnetization motions (including self-

oscillations) driven by spin-polarized current injection;
• Extensive analysis of randomly perturbed magnetization

dynamics and its power spectral density by using the theory of stochas-
tic processes on graphs;

• Extensive use of perturbation techniques around large magnetization
motions for the analytical study of nonlinear magnetization dynamics;

• Development of novel discretization techniques for the numerical
integration of the Landau–Lifshitz equation, their extensive testing and
their use for the analysis of chaotic magnetization dynamics.

The book contains 11 chapters. The detailed review of the book
content is given below, chapter by chapter. This review is presented
in purely descriptive terms, i.e., without invoking any mathematical
formulas, but rather emphasizing the physical aspects of the matter.

Chapter 2 deals with the discussion of the origin of the
Landau–Lifshitz equation. Here, micromagnetics is briefly reviewed
and the Landau–Lifshitz (LL) equation is introduced as a dynamic
constitutive relation that is compatible with micromagnetic constraints.
These constraints are the conservation in time of magnetization
magnitude and the alignment of magnetization with the effective
magnetic field at equilibria. The Landau–Lifshitz–Gilbert (LLG) equation
is then introduced and it is demonstrated that the latter equation is
mathematically equivalent to the classical Landau–Lifshitz equation. It
is pointed out that the interactions with the thermal bath, which result
in the physical phenomena of damping, are accounted for in the LL
and LLG equations by introducing different damping terms and by
slightly modifying the gyromagnetic constant γ in the precessional terms.
It is then shown that, by using the appropriate linear combination
of the Landau–Lifshitz and Gilbert damping terms, the LL and LLG
equations can be written in the mathematically equivalent form where
the precessional term is the same as in the absence of the thermal bath.
Equations for the free energy balance are derived from the LL and LLG
equation, and it is shown that the free energy is always a decreasing
function of time when the external field is constant in time. The nonlinear
Bloch equation for the magnetization dynamics is then introduced and
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discussed. This Bloch equation may serve as an alternative to the LL and
LLG equations in situations when the driving actions of applied magnetic
fields are so strong that the magnetization magnitude is no longer
preserved, at least during short transients before usual micromagnetic
states have emerged. The chapter is concluded with the discussion of
the normalized forms of the LL and LLG equations. These forms clearly
reveal that these equations have two distinct (fast and slow) time scales
associated with precession and damping, respectively.

Chapter 3 deals with spatially uniform magnetization dynamics.
This dynamics is of importance for several reasons. First, the spatially
uniform magnetization dynamics is often a preferable and desired mode
of operation in many nano-devices and structures. Second, exchange
forces strongly penalize spatial magnetization nonuniformities on the
nano-scale and favor the realization of spatially uniform magnetization
dynamics. Third, spatially nonuniform magnetization dynamics may
appear in nano-particles and nano-devices as a result of inherent
instabilities of spatially uniform magnetization dynamics. For this reason,
this spatially nonuniform magnetization dynamics can be studied by
means of perturbations of the spatially uniform magnetization dynamics.
Finally, the spatially uniform magnetization dynamics deserves special
attention because it is the simplest albeit nontrivial case of nonlinear
magnetization dynamics. The comprehensive study of this case may help
to distinguish the physical effects that can be ascribed to the presence
of spatial nonuniformities from those which can be still explained in the
framework of nonlinear spatially uniform magnetization dynamics.

It is stressed at the beginning of Chapter 3 that magnetization
dynamics is mathematically described by the LLG (or LL) equation
that is coupled through the effective field with the magnetostatic
Maxwell equations. These LLG–Maxwell equations are nonlinear partial
differential equations that can be exactly reduced to nonlinear ordinary
differential equations under the conditions of spatial uniformity of (1)
the applied field, (2) initial conditions for magnetization, (3) anisotropy
properties of ellipsoidal particles, as well as the absence of surface
anisotropy. Under these conditions, the particle magnetization is spatially
uniform and the solution of the magnetostatic Maxwell equations is given
in terms of the demagnetizing factors. As a result, the effective magnetic
field can be expressed as a vectorial algebraic function of the spatially
uniform magnetization and the entire system of LLG–Maxwell equations
is exactly transformed into a single nonlinear LLG (or LL) equation.
The vectorial forms of the LLG and LL equations are instrumental
in the discussion of theoretical issues; however, representations of
these equations in various coordinate systems may be convenient in
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applications. For this reason, the representations of the LLG equation in
spherical and stereographic coordinates are presented and discussed. The
spherical and stereographic coordinates explicitly account for the fact that
the magnetization dynamics occurs on the unit sphere. This leads to the
reduction of the number of state variables to two.

The structural aspects of the nonlinear magnetization dynamics
described by the LL equation are then studied. Basic qualitative features
of the dynamics under applied dc magnetic field directly follow from the
confinement of this dynamics to the unit sphere. These features are (1)
the existence of equilibrium states; (2) the number of these states is at
least two and it is always even; (3) chaos is precluded as a consequence
of the two-dimensional nature of the phase space; (4) distinct equilibrium
states are nodes, foci and saddles. It is demonstrated that for applied dc
magnetic fields the magnetic free energy is continuously decreased in time
as a result of magnetization dynamics. This implies that the LL equation
has a Lyapunov structure with the free energy being a global Lyapunov
function. This also implies that magnetization relaxations lead toward
equilibria where the magnetic free energy reaches minimum values. The
monotonic decrease in the magnetic free energy reveals that no self-
oscillations (limit cycles) are possible.

It is then discussed how the LLG and LL equations can be generalized
to situations when the magnetization dynamics is driven not only by the
applied magnetic field, but by some other forces such as, for instance,
spin-polarized current injection. In these situations, the critical points
of magnetization dynamics are distinct from micromagnetic equilibrium
states and the only constraint which remains is the confinement of the
magnetization dynamics to the unit sphere. It turns out that the most
general and natural way to account for this constraint is to use the
Helmholtz decomposition for vector fields defined on the unit sphere.
This decomposition reveals that the dynamics on the unit sphere is driven
by the gradients of two potentials. One of these potentials can be identified
with the magnetic free energy, while the mathematical expressions for
the other potential depend on the physical origin of driving forces
distinct from the applied magnetic field. In the particular case when
the magnetization dynamics is driven by spin-polarized current injection
in the presence (or absence) of applied magnetic fields, the explicit
expression for the second potential is given. This expression results in the
dynamic equation which has been suggested by J.C. Slonczewski.

Chapter 3 is concluded with the detailed discussion of equilibrium
states for the case when the component of the applied magnetic field along
one of the principal anisotropy axes is equal to zero. This case is important
in the applications related to thin film devices. It is demonstrated that
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in this case, the analytical theory for the characterization of equilibrium
states can be completely worked out and translated into geometric terms.
This theory can be regarded as the far-reaching generalization of the
Stoner–Wohlfarth theory for particles with uniaxial anisotropy.

Chapter 4 deals with the analytical study of large magnetization
motions of precessional dynamics. In the case of dc applied magnetic
fields, this dynamics is conservative in the sense that the magnetic
free energy is conserved. The study of the precessional dynamics is
important at least for two reasons. First, since the damping constant α
is usually quite small, the actual magnetization dynamics on a relatively
short time scale is very close to the undamped precessional dynamics.
This suggests that the actual dissipative dynamics can be treated as a
perturbation of conservative (precessional) dynamics. This perturbation
approach is extensively used throughout the book. Second, the study
of the precessional magnetization dynamics is also of importance in its
own right, because this study lays the foundation for the analysis of the
precessional switching of magnetization which is extensively discussed in
Chapter 6.

The chapter begins with the analysis of geometric aspects of the
conservative precessional dynamics revealed by its phase portrait. The
phase portrait of the precessional dynamics is completely characterized
by the energy extremal points, i.e., maxima, minima and saddles as well
as by the trajectories passing through saddles. These trajectories are called
separatrices because they create a natural partition of the phase portrait
into different so-called “central regions”, which may enclose energy
minima (low-energy regions), energy maxima (high-energy regions), or
separatrices (intermediate energy regions). A natural way to describe the
topological properties of the phase portrait for the precessional dynamics
is by introducing an associated graph, with graph edges representing
central regions and graph nodes representing saddle equilibrium with
associated separatrices. Then, the “unit-disk” representation of the phase
portrait of the precessional dynamics is introduced. In this representation,
cartesian axes coincide with the principal anisotropy axes, and it is
assumed that at least one cartesian component (for instance, haz) of
the applied dc magnetic field is equal to zero. Under these conditions,
magnetization trajectories of the precessional dynamics on the unit sphere
are projected on the (mx,my)-plane as the family of self-similar elliptic
curves confined to the unit disk. These elliptic curves completely represent
the phase portrait of the magnetization dynamics on the unit sphere.
Elliptic curves tangent to the unit circle are of particular importance
because they represent the separatrices of the magnetization dynamics,
with the tangency points corresponding to saddle points of the dynamics.



6 CHAPTER 1 Introduction

By using the unit-disk representation, shorthand symbolic (“string”)
notations that completely characterize the phase portraits on the unit
sphere are established. The elliptic nature of the projections of precessional
trajectories on the unit disk is utilized for the proper parametrization of
these trajectories. This parametrization, in turn, serves as the foundation
for the derivation of analytical formulas for precessional dynamics in
terms of Jacobi elliptical functions. The mathematical machinery of these
functions is extensively used to derive the analytical expressions for
magnetization components in high, low, and intermediate energy regions
for three distinct cases: (1) zero applied magnetic field, (2) applied
magnetic field perpendicular to the easy anisotropy axis, (3) applied
magnetic field directed along the easy axis. The period of precessional
dynamics along a specific trajectory is determined by the value of the
magnetic free energy along this trajectory. The analytical expressions for
these periods as functions of energy are given in terms of the complete
elliptical integrals. The chapter is concluded with the discussion of
the Hamiltonian structure of the undamped Landau–Lifshitz equation
that describes the precessional dynamics. It is immediately apparent
that the precessional Landau–Lifshitz equation written in cartesian
coordinate form does not have the canonical Hamiltonian structure
because the number of state variables is odd. However, it is demonstrated
that by using the special (so-called “rigid-body”) Poisson bracket, the
precessional Landau–Lifshitz equation can be written in non-canonical
Hamiltonian form. It is further pointed out that the classical canonical
form of the precessional Landau–Lifshitz equation can be achieved
by using spherical coordinates with φ and cos θ being generalized
momentum and coordinate, respectively.

Chapter 5 deals with dissipative (damping) magnetization dynamics.
This dynamics has two distinct time scales: the fast time scale of the
precessional dynamics and the relatively slow time scale of relaxational
dynamics controlled by the small damping constant α. The LL and
LLG equations are written in terms of magnetization components that
generally vary on the fast time scale. In this sense, the slow-time-scale
dynamics is hidden and obscured by the “magnetization form” of the
LL and LLG equations. One notable exception when the fast and slow
time scales of magnetization dynamics are completely decoupled is the
damping switching of uniaxial particles or uniaxial media. This type
of switching is also of considerable technological interest due to the
advent of the perpendicular mode of recording, where the damping
mode of switching of uniaxial media is utilized in the writing process.
This switching has been extensively studied in the past. The approach
presented in the book takes full advantage of the rotational symmetry
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of the problem and clearly separates the fast and slow time scales of
magnetization dynamics. Namely, it is demonstrated that the dynamics
of the magnetization component mz along the symmetry (anisotropy)
axis z is completely decoupled from the fast dynamics of the two other
components and entirely controlled by the damping constant α. Simple
analytical expressions are derived for the dynamics of mz and the critical
switching field. After computing mz(t), the fast dynamics of mx(t)
and my(t) can be studied. It is noted that the geometry of switching
trajectories on the unit sphere is universal in the sense that it does not
depend on the applied dc magnetic field. This geometry is controlled
only by the damping constant α and by the initial orientation of the
magnetization. In other words, the applied magnetic field controls only
the time parametrization of the universal damping-switching trajectories.

The slow and fast time scales of magnetization dynamics are
mathematically decoupled in the problem of damping switching of
uniaxial particles due to the unique symmetry properties of that problem.
In general, the slow-time-scale magnetization dynamics is concealed
and obscured because all three magnetization components vary on the
fast time scale. This is rather unsatisfactory because the slow-time-
scale dynamics reveals the actual rate of relaxation to equilibrium and,
consequently, the actual switching time. It is clear on physical grounds
that the magnetic free energy varies on the slow time scale. In other words,
the magnetic free energy is a “slow” variable whose time evolution is
not essentially affected by the fast precessional dynamics. For this reason,
it is desirable to derive dynamic equations containing the magnetic free
energy as a state variable. It is demonstrated that this can be accomplished
by using two different techniques. The first technique is based on the
two-time-scale reformulation of the LL equation, in which the coupled
dynamic equations are derived for the magnetic free energy and two
magnetization components. In this two-time-scale formulation, the slow
and fast magnetization dynamics are coupled. They can be completely
decoupled by using the averaging technique. In the averaging technique,
the first-order differential equation for the magnetic free energy is derived
through the averaging of certain terms over precession cycles. This
time averaging can be carried out analytically by using the formulas
derived in Chapter 4 for the precessional dynamics. The averaging
technique is used for the analytical study of magnetization relaxations
under zero applied magnetic field. Such relaxations are usually referred
to as “ringing” phenomena that typically occur during the final stages
of magnetization switching after the external magnetic field has been
switched off. The averaging technique is also used for the analytical
study of magnetization relaxations under applied magnetic fields, and
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the problem of damping switching of longitudinal media is discussed in
detail. Here, the expression for the critical field of such switching is given
and the relaxations are described in terms of Jacobi elliptic functions.

The chapter is concluded with the discussion of the Poincaré–
Melnikov theory, which is conceptually similar to the averaging
technique. This theory is instrumental for the identification of self-
oscillations (limit cycles) of magnetization dynamics when it is driven
not only by applied dc magnetic fields but by other stationary forces
as well (for instance, by spin-polarized current injection). If these forces
are of the same order of smallness as the damping, then along some
precessional trajectories the losses of energy due to the damping can
be fully balanced out by the influx of energy provided by these forces.
This energy balance, which occurs not locally in time but over a period
of precessional motion, is the physical mechanism for the formation
of limit cycles which lie on the unit sphere in close proximity to the
above-mentioned precessional trajectories. To identify these precessional
trajectories, the Melnikov function is introduced through the averaging
of specific terms of the LL equation over precessional trajectories. Since
each precessional trajectory corresponds to the specific value of the
magnetic free energy, the Melnikov function is a function of energy. The
central result of the Poincaré–Melnikov theory is that the zeros of the
Melnikov function are the values of the energy which correspond to
the precessional trajectories that can be identified as limit cycles, i.e.,
as trajectories corresponding to self-oscillations of magnetization. The
Poincaré–Melnikov theory is extensively used in Chapters 7 and 9 of the
book in the study of quasi-periodic magnetization motions under rotating
external field and magnetization self-oscillations caused by spin-polarized
current injection.

Chapter 6 is concerned with the analytical study of precessional
switching of magnetization in thin films. The physics of this switching
is quite different from the conventional damping switching. In the case of
damping switching, magnetization reversals are produced by applying
magnetic fields opposite to the initial magnetization orientations.
This makes initial magnetization states energetically unfavorable and
causes magnetization relaxations towards desired equilibrium states.
These relaxations are realized through numerous precessional cycles
and, for this reason, they are relatively slow. Recently, a new mode
of magnetization switching has emerged. This mode exploits fast
precessional magnetization dynamics and it is termed “precessional
switching”. Precessional switching is usually realized in magnetic nano-
films through the following steps. The magnetization is initially along the
film easy axis and a magnetic field is applied in the film plane almost
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orthogonal to the magnetization. This field produces a torque which
tilts the magnetization out of the film plane. This, in turn, results in a
strong vertical demagnetizing field, which yields an additional torque that
forces the magnetization to precess in the plane of the thin film away
from its initial position. The desired magnetization reversal is realized
by switching the applied magnetic field off when the magnetization
is close to its reversed orientation. After the field is switched off, the
magnetization relaxes to its reversed equilibrium state.

The chapter begins with the qualitative analysis of precessional
switching and the very notion of precessional switching is defined
in precise terms based on the properties of phase portraits of
nonlinear magnetization dynamics. Namely, it is demonstrated that the
application of an external magnetic field results in the modification
of the original phase portrait when heteroclinic trajectories are
broken into homoclinic trajectories. More importantly, new precessional
magnetization trajectories appear which connect the vicinities of the
two energy minima. It is along these trajectories that the precessional
switching occurs. However, the switching is realized only if the field pulse
duration is properly controlled such that the magnetic field is switched
off when the magnetization is close to its reversed orientation. If the
magnetic field is switched off when the magnetization is in the high
energy regions of the original (unmodified) phase portrait, the eventual
result of subsequent relaxations to equilibrium is practically uncertain.
This is because the high-energy regions of the phase portraits are very fine
mixtures of two basins of attraction, and the smaller the damping constant
α, the more intricate and finer the entanglement of the two basins of
attraction in the high-energy regions. This fine entanglement leads to the
seemingly stochastic nature of precessional switching if the applied field
is switched off when the magnetization is still in the high-energy regions.
This seemingly stochastic nature of switching has been experimentally
observed.

After the qualitative (phase portrait) analysis of precessional
switching, the analytical study of the critical fields for precessional
switching is presented. This study is based on the unit-disk representation
of precessional dynamics and it reveals that the critical fields depend on
the orientation of the applied field with respect to the easy axis. These
critical fields are appreciably lower than for the traditional damping
switching. It is noted that the presented analysis of the critical fields is
also valid for the precessional switching of perpendicular media. The
precessional switching of perpendicular media may be very appealing
from the technological point of view because it can be accomplished
by using the same heads as in longitudinal recording, i.e., without
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“probe” heads and soft magnetic underlayers for recording media. The
central issue for the realization of precessional switching is the proper
pulse duration. This issue is discussed for the precessional switching
of longitudinal and perpendicular media and analytical formulas are
derived for the bounds of pulse durations that guarantee the switching.
Then, the comparative analysis of precessional and damping switching
is presented. The described analysis of critical switching fields and
pulse durations that guarantee the precessional switching is carried
out for rectangular pulses of applied magnetic fields, which is a clear
limitation. To remove this limitation, the chapter is concluded with
the discussion of the “inverse-problem” approach that leads to explicit
analytical expressions for nonrectangular magnetic field pulses that result
in the precessional switching. In this approach, a desired precessional
switching dynamics is first chosen and the magnetic field pulse that
guarantees the chosen switching dynamics is then determined. A specific
version of the inverse-problem approach that is purely algebraic in nature
is fully developed and illustrated. As a byproduct, this approach leads
to analytical solutions for precessional nonconservative magnetization
dynamics.

Chapter 7 deals with the analytical study of magnetization dynamics
under dc bias and rf applied magnetic fields. In contrast with the classical
ferromagnetic resonance problems, the main focus of the chapter is to
find analytical solutions to the LLG equation for large magnetization
motions when the nonlinear nature of the LLG equation is strongly
pronounced. This is accomplished for spheroidal particles subject to dc
magnetic fields applied along the symmetry axis and circularly polarized
rf magnetic fields applied in the plane perpendicular to the symmetry axis.
These problems exhibit rotational symmetry that can be fully exploited
by using the rotating reference frame in which the external rf field
is stationary. The transformation to the rotating reference frame results
in the autonomous form of the magnetization dynamics on the unit
sphere. Some general properties of such autonomous dynamics are readily
available in mathematical literature. Namely, such dynamics has critical
(fixed) points which correspond to the uniformly rotating magnetization
dynamics in the laboratory reference frame. These periodic rotating
solutions to the LLG equation are termed P-modes. It is remarkable that
these periodic solutions are time-harmonic (i.e., without generation of
higher-order harmonics) despite the strongly nonlinear nature of the LLG
equation. The number of P-modes is predicted by the Poincaré index
theorem. This theorem asserts that the number of nodes or foci minus the
number of saddles for any autonomous dynamics on the sphere must be
equal to two. Therefore, the number of P-mode solutions is at least two
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and it is even under all circumstances. Furthermore, chaos is precluded,
because the phase space of autonomous magnetization dynamics is
two-dimensional. This means that the onset of chaotic dynamics is not
compatible with the simultaneous constraints of rotational symmetry
and spatial uniformity of the magnetization. Only if one or both of
these constraints are relaxed may chaotic phenomena appear. Finally,
the autonomous magnetization dynamics in the rotating frame may
have limit cycles which manifest themselves in the laboratory frame as
quasiperiodic solutions termed Q-modes.

The extensive analytical study of periodic and quasi-periodic
solutions is presented. The periodic time-harmonic solutions (P-modes)
correspond to the critical points of the autonomous dynamics in
the rotating reference frame and, in the case of constant damping
α, these critical points and P-modes can be found by solving a
specific quartic equation. This suggests that there are two or four P-
mode solutions. For these solutions to be physically realizable and
experimentally observable, the corresponding critical points must be
stable. The detailed analysis of stability of the critical points with respect
to the spatially uniform perturbations is given and the appropriate
stability diagram is constructed. It is noted that quasi-periodic solutions
(Q-modes) appear because periodic motion along limit cycles has to
be combined with the periodic motion of the rotating reference frame
and their periods are not commensurate. The mathematical machinery
of the Poincaré–Melnikov theory is used to analyze the limit cycles of
autonomous dynamics in the rotating frame and examples of quasi-
periodic solutions are given. The classification of phase portraits of
the autonomous dynamics in the rotating frame is introduced and the
detailed analysis of bifurcations (i.e., abrupt structural changes of phase
portraits) is presented. The saddle-node bifurcation, Andronov–Hopf
bifurcation, homoclinic-saddle-connection bifurcation and semi-stable-
limit-cycle bifurcation are discussed and the mathematical conditions
for these bifurcations are stated. The principles of the construction of
bifurcation diagrams are outlined and examples of bifurcation diagrams
are given.

The bifurcation analysis is applied to the study of nonlinear
ferromagnetic resonance phenomena with the special emphasis on its two
manifestations: foldover and rotating magnetic field induced switching.
It is demonstrated that the critical rf field for the onset of the foldover
phenomena can be exactly and analytically computed. In the typical case
when the product of the damping coefficient and radio frequency is quite
small, the approximate formula of P. Anderson and H. Suhl for the critical
foldover field is recovered. It is also demonstrated that the theory of
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the rotating magnetic field induced switching has strong similarities to
the Stoner–Wohlfarth theory of dc field induced switching of spheroidal
particles. Switching events are treated as bifurcations and the dynamic
analog and generalization of the Stoner–Wohlfarth astroid is introduced.

The chapter is concluded with the analysis of magnetization dynamics
in the case of deviations from rotational symmetry. Such deviations are
treated as perturbations. This perturbation approach leads to linearized
equations for magnetization perturbations. The perturbation technique is
developed in the rotating reference frame because this results in linear
ODEs with constant (in time) coefficients. In contrast with the traditional
approach, when the perturbation technique is used to obtain small motion
solutions around dc saturation states, the emphasis is on the derivation
of analytical formulas for the large motion solutions. These solutions are
obtained as perturbations around exact P-mode solutions. The accuracy
of the perturbation technique has been extensively tested through the
comparison with the numerical techniques and several examples of this
testing are presented.

Chapter 8 deals with spin-waves and parametric instabilities for large
magnetization motions. Previously, spin-wave instabilities were exten-
sively studied for spatially uniform small motions. It was realized that,
at some rf input powers, these motions could get strongly coupled to cer-
tain thermally generated spin-wave perturbations, forcing them to grow
up to nonthermal amplitudes through the so-called Suhl instabilities. The
analytical expression for large magnetization motions (P-modes) in parti-
cles with uniaxial symmetry opens the possibility to carry out the analysis
of spin-wave perturbations and spin-wave instabilities for spatially uni-
form large magnetization motions. This analysis reveals the remarkable
result that the rf input powers capable of inducing spin-wave instabilities
are bounded from below as well as from above. This implies that suffi-
ciently large spatially uniform magnetization motions are always stable.
Furthermore, it turns out that the stability of large magnetization motions
may depend on the history of their excitation.

The discussion in the chapter starts with the linearization of the
coupled Landau–Lifshitz–Gilbert and Maxwell equations around P-mode
solutions. To explicitly account for the conservation of magnetization
magnitude, the time-dependent basis in the plane normal to the
rotating magnetization of the P-mode is used for the representation of
magnetization perturbations. In this basis, the linearized LLG–Maxwell
equations form a set of two coupled integro-partial differential equations
with time-dependent integral operators that represent perturbations of
magnetostatic field components. By using these linearized equations,
the far-from-equilibrium generalizations of magnetostatic modes (Walker
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modes) are first studied. These magnetostatic modes naturally appear
when exchange forces can be neglected and magnetostatic boundary
conditions are dominant. The partial differential equation for the
magnetostatic potential inside the particle is derived. In comparison with
the Walker equation, the derived equation contains one additional term
which accounts for large motions of the unperturbed P-mode. Then,
the detailed analysis of far-from-equilibrium spin-wave perturbations is
presented. In contrast with the discussion of magnetostatic modes, the
exchange forces are fully taken into account in this analysis, while the
boundary conditions are treated at best approximately. In fact, spin-
wave perturbations are plane-wave perturbations that cannot satisfy
exactly the interface boundary conditions. The advantage of spin-wave
perturbation analysis is the essential mathematical simplification of
linearized equations. Indeed, it is demonstrated that for the plane-
wave perturbations, the linearized integro-partial differential equations
are reduced to two coupled ordinary differential equations with time-
periodic coefficients. The Floquet theory for this type of equation is briefly
reviewed and its implications to the analysis of spin-wave perturbations
are discussed. Some approximate analytical results for spin-wave
perturbations in the case of the special orientation of the wave-vector of
spin waves or the smallness of the P-mode motions are presented.

Next, the detailed analysis of instabilities of the plane-wave
perturbations of P-modes is carried out. It is stressed that these
instabilities are of parametric resonance nature and the mathematical
machinery of the one-period map and its eigenvalues (characteristic
multipliers) is extensively used in the analysis. The one-period map and
its eigenvalues can be computed numerically and an example of such
analysis is given. In this example, the stability diagram is constructed,
which reveals the pattern typical for parametric resonance phenomena
when instability is concentrated along so-called Arnold tongues.
The numerical analysis is complemented by the analytical perturbative

computations of the one-period map and simple analytical formulas
for the characteristic multipliers are obtained and used in the stability
analysis. The construction of the combined stability diagram, where the
results obtained for spatially uniform perturbations are presented along
with the results for spin-wave perturbations, is discussed. A special
emphasis is placed on the analysis of instabilities under conditions
when the ferromagnetic resonance phenomena occur. Various unique
physical features of the spin-wave instabilities of large P-mode motions
are uncovered. As particular cases of this study, all Suhl instabilities of
small magnetization motions are found and discussed. The chapter is
concluded with the analysis of spin-wave perturbations in ultra-thin films.



14 CHAPTER 1 Introduction

This is a special case where the magnetic charges induced by spin-wave
perturbations on the film surfaces must be properly accounted for. It is
demonstrated how this can be accomplished and shown that the final
equations for spin-wave perturbations are structurally similar to those
derived for bulk particles. For this reason, the mathematical techniques
developed in the chapter can be immediately used for the analysis of spin-
wave instabilities in ultra-thin films.

Chapter 9 deals with the analytical study of dynamics driven by
the joint action of applied magnetic fields and spin-polarized current
injection. This is a very active area of research with promising applications
to current-controlled magnetic random access memories and microwave
oscillators. Most experimental work and theoretical analysis in this
area are concerned with three-layer structures consisting of a “pinned”
magnetic layer with a fixed magnetization, a nonmagnetic spacer, and a
“free” magnetic layer. This trilayer structure is traversed by spin-polarized
electric current flowing in the direction normal to the plane of the
layers and profoundly affecting magnetization dynamics in the free layer.
This is the so-called “current-perpendicular-to-plane” configuration.
Nanopatterning has been extensively used to produce a “nanopillar”
version of the trilayer devices with a noncircular cross-section of layers.
This leads to in-plane shape anisotropy which results in a better control of
magnetization orientation in the fixed layer and in relatively stable single-
domain magnetization configurations in the free layer.

The chapter begins with the discussion of the generalization of the
LLG equation to the case of spin-polarized current injection. Following
the work of J.C. Slonczewski (based on the semiclassical approach),
an additional spin-torque term is introduced in the LLG equation and
various mathematically equivalent forms of the resulting equation are
discussed. It is stressed that the addition of the spin-transfer term
does not affect the conservation of the magnetization magnitude and
the normalized LLC–Slonczewski equation describes the magnetization
dynamics on the unit sphere. In contrast with the precessional torque
term, the spin-transfer term is inherently nonconservative and cannot be
described in terms of the gradient of the free energy. For this reason,
the LLG–Slonczewski equation describes novel physical effects which are
not observable in the classical LLG dynamics. Before discussing these
novel effects, the study of the stationary states of the LLG–Slonczewski
dynamics is presented. It is pointed out that in the case of dc spin-
polarized current injection, the phenomenon of chaos is precluded due
to dimensionality considerations, and the only possible stationary states
are static solutions, which are critical (fixed) points of the magnetization
dynamics, and self-oscillations (limit cycles). The static solutions (critical
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points) are then analyzed in the case when the direction of the applied
magnetic field and the spin-polarization of the injected current coincide
with the easy anisotropy axis. The analysis is performed along the same
line of reasoning as the analysis of equilibrium points in Chapter 3.
It is demonstrated that small spin-polarized currents do not change
the number of critical points which can be equal to six, four, or two
(depending on the value of the applied field). However, the spin-polarized
current injection does affect the stability of the critical points.

The phenomenon of self-oscillations (limit cycles) is then studied.
This is a novel physical effect which is attributed to spin-polarized
current injections. The physical origin of self-oscillations is the balancing
out of the energy dissipation due to the damping by the energy influx
due to the spin-polarized current injection. This balancing occurs not
locally in time, but rather over one precessional period. To identify the
precessional trajectories over which this balancing occurs, the appropriate
Melnikov function is introduced and the analytical expressions for this
Melnikov function are derived in terms of elliptical integrals for various
(central) regions of the phase portrait of precessional magnetization
dynamics. The limit cycles (self-oscillations) are then found by using
zeros of the Melnikov function. The central result of the chapter is
the construction of the stability diagrams through the study of various
bifurcation mechanisms. It is demonstrated that pitchfork bifurcations,
Hopf bifurcations, saddle-connection bifurcations, and semi-stable limit
cycle bifurcations may appear as a result of the variations of the
controlled parameters such as applied magnetic field and spin-polarized
current density. The calculation of bifurcation lines in the plane of
the controlled parameters is discussed and the example of a stability
diagram is presented for trilayer nanopillar devices. This stability diagram
reveals many interesting physical effects such as, for instance, hysteretic
transitions between self-oscillations and stationary states.

The chapter is concluded with the discussion of axially symmetric
nanopillar devices when the directions of the applied dc magnetic field
and the easy axes of the free and pinned layers are normal to the plane
of the layers. This case is quite interesting because the LLG–Slonczewski
equation is appreciably simplified due to the rotational symmetry. As a
result, the limit cycles of the autonomous magnetization dynamics can be
fully analyzed without resorting to the perturbative Poincaré–Melnikov
theory. Finally, phase locking between spin-polarized current-induced
self-oscillations and the action of applied circularly polarized rf fields
can be fully understood and the explicit conditions for this locking are
identified.
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Chapter 10 deals with the extensive study of randomly perturbed
magnetization dynamics. Random perturbations are caused by thermal
fluctuations which become increasingly pronounced in nano-scale
devices. Indeed, these thermal fluctuations may induce transitions
between various states of magnetization and increase the noise level of
output signals. The randomly perturbed magnetization dynamics is a
Markovian stochastic process with continuous samples on the unit sphere.
As such, it can be studied on two equivalent levels: on the level of random
magnetization trajectories which are described by stochastic differential
equations, and on the level of transition probability density which is
described by the Fokker–Planck–Kolmogorov equation.

The chapter starts with the discussion of randomly perturbed
magnetization dynamics described by stochastic differential equations. It
is pointed out that thermal fluctuations are traditionally accounted for by
introducing an additional stochastic term into the LL and LLG equations.
This term is a random precessional torque caused by a vectorial Gaussian
white-noise process. This process is treated as a random component
of the effective magnetic field. The LL (or LLG) equation with the
additional random term is a stochastic differential equation (SDE). It
is stressed that there are two interpretations of solutions to such SDEs
which belong to Itô and Stratonovich, respectively. It turns out that these
mathematical interpretations are closely related to the physical constraint
of conservation of magnetization magnitude. It is shown that if the
solution of the randomly perturbed LL (or LLG) equation is understood
in Stratonovich’s sense then the magnetization magnitude is conserved.
On the other hand, when the solution is understood in Itô’s sense, the
magnetization magnitude is conserved only if an additional deterministic
(drift) term proportional to magnetization is introduced in the randomly
perturbed LL (or LLG) equation. The discussion is then extended to the
case of randomly perturbed magnetization dynamics driven by spin-
polarized current injection.

Next, the discussion of the Fokker–Planck–Kolmogorov (FPK)
equation for the transition probability density of stochastic processes
generated by randomly perturbed magnetization dynamic equations is
presented. The FPK equation is written in terms of probability current
density and explicit expressions for this current are given for different
cases of randomly perturbed magnetization dynamics. The analytical
solution of the FPK equation for the stationary probability density is then
attempted. It is demonstrated that the explicit formula for this stationary
density can be found in the case when the probability current density can
be expressed in terms of the magnetic free energy and its derivatives. In
the case of thermal equilibrium, this stationary density coincides with
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the Boltzmann distribution. This fact is used for the derivation of the
“fluctuation-dissipation” relation between the damping constant and the
noise strength.

The most original part of the chapter is the analysis of randomly
perturbed magnetization dynamics by using stochastic processes on
graphs. This analysis takes advantage of the fact that the randomly
perturbed magnetization dynamics has two distinct time scales: the
fast time scale of precessional dynamics and the slow time scale of
magnetization dynamics caused by damping, thermal fluctuations, and
spin-polarized current injection. Randomly perturbed magnetization
dynamic equations are written in terms of magnetization components
which are “fast” variables. For this reason, the slow-time-scale stochastic
magnetization dynamics is concealed and obscured by the fast
time dynamics. It is demonstrated that the slow-time-scale stochastic
magnetization dynamics can be revealed by transforming the randomly
perturbed magnetization dynamic equations into a stochastic differential
equation (and Fokker–Planck–Kolmogorov equation) for energy. It turns
out that these equations for energy are defined on graphs which reflect
the structure of phase portraits of fast time precessional dynamics. It is
demonstrated that, by using the machinery of stochastic processes on
graphs, explicit formulas for the stationary probability density for energy
can be derived in the case of randomly perturbed spin-polarized current-
driven dynamics. Another useful application of stochastic dynamics on
graphs is the calculation of autocovariance and spectral density. The
classical result for linear time-invariant systems is that the spectral density
of the output signal is related to the spectral density of the input signal
through the square of the magnitude of the transfer function. This
general result is of little value for strongly nonlinear randomly perturbed
magnetization dynamics. For such random dynamics, the calculation of
autocovariance and spectral density must be based on the FPK equation.
The novel algorithm for the calculation of power spectral density based
on the FPK equation is presented. The central element of this algorithm is
the introduction of auxiliary “effective” probability density by integrating
over all degrees of freedom related to “backward” coordinates in the
transitional probability density. Calculations are further simplified by
employing stochastic dynamics on graphs, and they are finally reduced
to the solution of the specific boundary value problem for ordinary
differential equations defined on graphs.

The chapter is concluded with the discussion of stochastic dynamics
in nonuniformly magnetized objects. The discussion is centered around
two topics: discretization of the randomly perturbed dynamic problems
for continuous media and the calculation of the stationary probability
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density for the properly discretized randomly perturbed magnetization
dynamics. The explicit analytical expression for this density is derived
and compared with the Boltzmann distribution. On the basis of this
comparison, fluctuation-dissipation relations are obtained and used for
the identification of noise strength in spatially discretized randomly
perturbed magnetization dynamic equations.

Chapter 11 is concerned with the novel techniques for numerical
integration of LLG and LL equations. The main emphasis in this
chapter is on the derivation of finite difference schemes that preserve
the qualitative features of time-continuous magnetization dynamics. The
chapter starts with the discussion of the “midpoint” finite difference
scheme, which preserves the magnetization magnitude throughout the
numerical integration. The midpoint finite difference scheme is of second-
order accuracy in time, and it is suggested to use this scheme in
combination with the second-order extrapolation formula for so-called
generalized effective field. This midpoint finite difference scheme is
very convenient for the numerical analysis of spatially nonuniform
magnetization dynamics, where it leads to complete spatial decoupling
in computations. The midpoint scheme has been extensively tested
by comparing the numerical results obtained by using this scheme
with analytical results for P-mode solutions derived in Chapter 7
for the magnetization dynamics driven by circularly polarized rf
fields in uniaxially symmetric particles. The results of this comparison
demonstrate high accuracy and numerical stability of the midpoint finite
difference scheme. It is important to point out that the midpoint finite
difference scheme is consistent with the Stratonovich interpretation of
the solution to stochastic differential equations that describe randomly
perturbed magnetization dynamics. For this reason, the midpoint finite
difference scheme is very instrumental in Monte Carlo-type analysis of
stochastic magnetization dynamics. Next, the discussion of another and
more sophisticated finite difference scheme for LLG and LL equations is
presented. This finite difference scheme is designed in such a way that it
replicates (up to the second order of accuracy) the dynamics of magnetic
free energy. In particular, this scheme is exact for the precessional
magnetization dynamics in the sense that it preserves two integrals of
the precessional dynamics: magnetization magnitude and energy. As a
result, this finite difference scheme is expected to be very accurate for
slightly dissipative magnetization dynamics, which is a generic case in
most engineering applications.

The chapter contains many examples of numerical modeling of
magnetization dynamics problems. One such problem is of special
theoretical interest. This problem is related to the rotationally invariant
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magnetization dynamics in uniaxial particles studied in Chapter 7.
It is pointed out in that chapter that under a circularly polarized
rf magnetic field, the phenomenon of chaos is precluded due to
the dimensionality considerations related to rotational symmetry. This
prompted the numerical study of the possibility of chaotic dynamics in
uniaxial particles under elliptically polarized applied fields when the
rotational symmetry is broken. In this study, the elliptical polarization is
characterized by the Stokes parameters, which specify a polarization point
on the Poincaré sphere. It has been found that only in very close proximity
to the equator of the Poincaré sphere (i.e., when the polarization of the
rf field is practically linear) chaotic dynamics may appear. The reported
numerical simulations suggest that it is reasonable to conjecture that as
the elliptical polarization approaches linear, the transition to chaos occurs
through the so-called chaotic transient. Indeed, it has been found that
the time of chaotic transient (i.e., transient preceding the advent of the
periodic solution) progressively increases as the polarization point on the
Poincaré sphere approaches its equator. The performed simulations also
suggest that as far as the route to chaos through the change of polarization
is concerned, the chaotic phenomenon is quite rare and occurs only near
the Poincaré sphere equator.



CHAPTER 2

Basic Equations for
Magnetization Dynamics

2.1 LANDAU–LIFSHITZ EQUATION

The Landau–Lifshitz equation for magnetization dynamics in ferromag-
nets can be construed as a dynamic constitutive relation that is compati-
ble with micromagnetic constraints. To better understand the origin and
nature of this equation, it is appropriate to start with a brief discussion of
the micromagnetic description of ferromagnets subject to classical electro-
magnetic fields [10,79].

Micromagnetics is a continuum theory, which is highly nonlinear
in nature and includes effects on rather different spatial scales such
as short-range exchange forces and long-range magnetostatic effects.
In micromagnetics, the state of the ferromagnet is described by the
differentiable vector field M(r, t) representing the local magnetization at
every point inside the ferromagnet. When the temperature is well below
the Curie temperature of the ferromagnet, the strong exchange interaction
prevails over all other forces at the smallest spatial scale compatible with
the continuum hypothesis. This fact is taken into account by imposing the
following fundamental constraint:

|M(r, t)| = Ms, (2.1)

which means that the magnitude of the local magnetization vector at each
point inside the ferromagnet is equal to the spontaneous magnetization
Ms at the given temperature T . The direction of M(r, t) is in general
nonuniform, i.e., it varies from point to point. At equilibria, the spatial
distribution of M(r, t) results in extrema of an appropriate Gibbs–Landau
free energy GL(M(.); Ha). This free energy depends on the applied
magnetic field Ha and the temperature T . We omit the dependence of
GL and Ms on T , since in the subsequent discussion the temperature will
always be assumed to be uniform in space and constant in time.

21
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The micromagnetic free energy GL for a ferromagnet occupying the
region Ω is expressed as the following volume integral:

GL(M(.); Ha) =
∫

Ω

[
A

M2
s

((∇Mx)2 + (∇My)2 + (∇Mz)2)

+ fAN (M)− µ0

2
M ·HM − µ0M ·Ha

]
dV. (2.2)

The first term inside the integral represents the exchange energy, which
penalizes nonuniformities in the magnetization orientation. The constant
A is the so-called exchange stiffness constant; its value in ferromagnets is
usually of the order of 10−11 J m−1. The second term fAN (M) describes
crystal anisotropy effects, while the two last terms represent magnetostatic
energy and energy of interaction with the external magnetic field. The
magnetostatic contribution is governed by the field HM . This field is
determined by solving the following magnetostatic Maxwell equations:

∇×HM = 0, ∇ ·HM = −∇ ·M, (2.3)

subject to the appropriate interface conditions at the ferromagnet surface.
The applied field Ha is produced by external sources and, in subsequent
discussion, it will be considered as a given vector function of space
and time. The micromagnetic free energy may contain additional terms
describing other energy contributions, for example magnetoelastic effects.
These additional terms are beyond the scope of our discussion.

To find equilibrium magnetization states under given applied field
Ha, the free energy variation δGL with respect to arbitrary variations
of the vector field M(r) subject to the constraint (2.1) must first be
determined. By using standard variational calculus, one obtains that
δGL corresponding to magnetization variation δM(r) is given by the
expression:

δGL = −µ0

[∫
Ω

Heff · δM dV − 2A
µ0M2

s

∮
Σ

∂M
∂n
· δM dS

]
, (2.4)

where the second integral is over the surface Σ of the ferromagnet, while
∂/∂n represents the derivative with respect to the outward normal to Σ.
The effective field Heff is defined as:

Heff = Ha + HM + HAN + HEX , (2.5)
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where HAN and HEX are the anisotropy field and the exchange field,
respectively:

HAN = − 1
µ0

∂fAN

∂M
, HEX =

2A
µ0M2

s

∇2M. (2.6)

At equilibrium, δGL = 0 for any arbitrary variation δM consistent
with the constraint (2.1). Such a variation of M will be of the form:

δM = M× δv, (2.7)

where δv is a small but otherwise arbitrary space-dependent vector. By
substituting Eq. (2.7) into Eq. (2.4) and by taking into account that δGL = 0
for any arbitrary space-dependent variation δv, one finds that at each
point in Ω the following equation is valid:

M×Heff = 0, (2.8)

whereas at each point on Σ:

M× ∂M
∂n

= 0 i.e.
∂M
∂n

= 0. (2.9)

The above two forms of the boundary condition are equivalent because
∂M/∂n is perpendicular to M as a consequence of (2.1). Equation
(2.8) is known as Brown’s equation; it expresses the fact that the local
torque exerted on the magnetization by the effective field must be
zero at equilibrium [133,134]. The boundary condition given by Eq.
(2.9) is valid when no surface anisotropy is present. Surface anisotropy
may give rise to pinning effects that substantially alter the response
of the ferromagnet to external magnetic fields. In particular, spatially
nonuniform magnetization modes may appear under spatially uniform
driving fields in ellipsoidal ferromagnetic particles.

It is important to stress that Brown’s equation determines all possible
magnetization equilibria regardless of their stability. However, according
to the thermodynamic principle of free energy minimization, only GL

minima will correspond to stable equilibria and, thus, will be in principle
physically observable. The information on the nature of equilibria can be
obtained by computing the second variation of GL and determining if it is
positive under arbitrary variations of the vector field M(r), subject to the
constraint (2.1).
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When M ×Heff 6= 0, the system is not at equilibrium and will evolve
in time according to some appropriate dynamic equation. The equation
originally proposed by Landau and Lifshitz [429] is mostly used for the
description of magnetization dynamics. This equation is based on the
idea that in a ferromagnetic body the effective field Heff will induce a
precession of local magnetization M(r, t) of the form:

∂M
∂t

= −γM×Heff, (2.10)

where γ > 0 determines the precession rate. In the following, for
simplicity we shall identify γ with the gyromagnetic ratio associated
with the electron spin, which yields γ = 2.2 · 105 A−1 ms−1. The
dynamics described by Eq. (2.10) is such that the magnitude (length)
of magnetization |M| is conserved. Indeed, M · ∂M/∂t = 0 is an
immediate consequence of Eq. (2.10). Thus, Eq. (2.10) is consistent with
the fundamental micromagnetic constraint (2.1). However, this equation
cannot describe any approach to equilibrium resulting in energy decrease
due to interaction with a thermal bath. Indeed, by using Eqs (2.4) and (2.9)
it can be shown that under constant-in-time external field:

dGL

dt
= −µ0

∫
Ω

Heff ·
∂M
∂t

dV = 0, (2.11)

which means that the dynamics is nondissipative.
Energy relaxation mechanisms can be taken into account by

introducing an additional phenomenological term chosen through
heuristic considerations. In their original paper, Landau and Lifshitz
described damping by a term proportional to the component of Heff that
is perpendicular to the magnetization:

∂M
∂t

= −γLM×Heff + αγLMs

(
Heff −M

M ·Heff

M2
s

)
. (2.12)

Here, γL is a gyromagnetic-type constant which may be different from
γ in Eq. (2.10), while α is a damping constant. The rationale behind
Eq. (2.12) can be explained as follows. The effective field Heff identifies
in M-space the direction of steepest energy decrease, so it would
be the natural direction for magnetization relaxation. However, the
magnetization magnitude must be preserved as well. This suggests
that only the Heff component perpendicular to M may contribute to
∂M/∂t. It is apparent that this component coincides with the vector



2.1 Landau–Lifshitz Equation 25

−M × (M × Heff)/M2
s. Consequently, Eq. (2.12) can be written in the

equivalent form:

∂M
∂t

= −γLM×Heff −
αγL
Ms

M× (M×Heff) . (2.13)

This is the form in which the Landau–Lifshitz equation is mostly used
in the literature. The normalization used in Eq. (2.13) is such that the
damping constant α is dimensionless. Its value is quite small, of the order
of 10−4–10−3 in garnets and of the order of 10−2 in cobalt or permalloy.

One can compute the rate of energy change by starting from the
general relation:

dGL

dt
= −µ0

∫
Ω

Heff ·
∂M
∂t

dV − µ0

∫
Ω

M · ∂Ha

∂t
dV, (2.14)

which is valid assuming that homogeneous boundary conditions (2.9) are
valid during the dynamics. By substituting Eq. (2.13) for ∂M/∂t in the last
equation, one obtains:

dGL

dt
= −αµ0γL

Ms

∫
Ω

|M×Heff|2 dV − µ0

∫
Ω

M · ∂Ha

∂t
dV, (2.15)

which shows that the energy is always a decreasing function of time when
∂Ha/∂t = 0.

The Landau–Lifshitz equation can be justified on the basis of a
different line of reasoning, which reveals its universal nature [147]. To this
end, let us look for a dynamic equation consistent with the fundamental
micromagnetic constraints, namely, the preservation of the magnetization
magnitude and the validity of Brown’s equation at equilibria. We restrict
our choice to first-order dynamic equations:

∂M
∂t

= V (M, r, t) , (2.16)

where the vector field V may depend on the effective field Heff or on
other quantities characterizing the magnetization dynamics. The vector-
function V can always be decomposed at any instant of time along three
mutually orthogonal directions. As the direction of M plays a particular
role in our problem (no magnetization change can occur along M itself),
we choose M, M × a, and M × (M× a) as basis vectors, where a is
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an unknown vector to be determined. Then, Eq. (2.16) can be written as
follows:

∂M
∂t

= c1M + c2M× a + c3M× (M× a) . (2.17)

Let us discuss how the micromagnetic constraints affect the form of Eq.
(2.17). By taking the dot product of both sides of the equation with M,
we find that ∂|M|2/∂t = 2c1|M|2. Since the magnetization magnitude
must be preserved, it can be concluded that c1 ≡ 0. From the last fact
and Eq. (2.17), we find that at equilibrium the magnetization M satisfies
the following equation:

c2M× a + c3M× (M× a) = 0. (2.18)

Since the two terms on the left-hand side of Eq. (2.18) are mutually
orthogonal, their sum can be equal to zero only if M × a = 0. This
equilibrium condition is compatible with Brown’s equation (2.8) if a ≡
Heff. Thus, Eq. (2.17) is reduced to the Landau–Lifshitz equation (2.13)
with the notations c2 = −γL and c3 = −αγL/Ms.

The previous reasoning suggests that any dynamic equation of
the form (2.16) is reducible to the Landau–Lifshitz equation (2.13)
provided the dynamic equation preserves |M| and is consistent with
static micromagnetics. This implies that different forms of dynamic
equation are equivalent to the Landau–Lifshitz equation up to appropriate
renormalization of the coefficients γL and α. In this sense, the
Landau–Lifshitz equation is universal in nature. On the other hand, there
is no a priori reason for assuming that the coefficients γL and α should
be constant. In general they can be functions of the state of the system. It
is only for the sake of simplicity that these quantities are assumed to be
constant parameters in most studies of magnetization dynamics.

The fact that the effective field Heff in Eqs (2.10)–(2.13) is the same
as in static Brown’s equation is the consequence of specific assumptions.
Indeed, the use of magnetostatic equations (2.3) implies that propagation
effects are neglected, which means that the electromagnetic wavelength
must be much larger than the linear dimensions of the ferromagnet under
study. It is also worth remarking that no contributions to Heff from eddy
currents are included. Strictly speaking, this is true for nonconducting
materials only. The presence of eddy currents may be roughly taken
into account by renormalizing the damping constant in the LL or LLG
dynamics. However, magnetization dynamics in metallic systems will not
be discussed in detail.
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2.2 LANDAU–LIFSHITZ–GILBERT EQUATION

Another equation for the description of magnetization dynamics in
ferromagnets has been proposed by Gilbert [284,285]. This equation has
the form:

∂M
∂t

= −γGM×Heff +
α

Ms
M× ∂M

∂t
. (2.19)

Equation (2.19) deserves special attention, because it can be derived
from a suitable Lagrangian formulation of magnetization dynamics and
a Rayleigh dissipation function [269]. By writing Eq. (2.19) in the form:

∂M
∂t

= −γGM×
(
Heff −

α

γGMs

∂M
∂t

)
, (2.20)

we observe that, in the Gilbert equation, relaxation to equilibrium is
accounted for by subtracting from the effective field a viscous-type term
proportional to the time derivative of magnetization. This is reflected also
in the equation for the energy balance. Instead of Eq. (2.15), one obtains:

dGL

dt
= − αµ0

γGMs

∫
Ω

∣∣∣∣∂M∂t
∣∣∣∣2 dV − µ0

∫
Ω

M · ∂Ha

∂t
dV. (2.21)

Equation (2.19) is mathematically equivalent to Eq. (2.13). The
equivalence is readily proven by applying the vector product operation
“M × . . .” to both sides of Eq. (2.13) and by using the identity: M ×
(M× (M×Heff)) = −M2

s (M×Heff). This leads to the formula:

γLM× (M×Heff) = −M× ∂M
∂t

+ αγLMs (M×Heff) . (2.22)

By substituting the last formula back into Eq. (2.13), we obtain:

∂M
∂t

= −γL
(
1 + α2

)
M×Heff +

α

Ms
M× ∂M

∂t
. (2.23)

The last equation coincides with the Gilbert equation (2.19) provided that:

γG
γL

= 1 + α2. (2.24)
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The mathematical equivalence of Eqs (2.13) and (2.19) is expected, because
Eq. (2.19) is consistent with the micromagnetic constraints |M(t)| = Ms

and M × Heff = 0 at equilibrium. As we have already demonstrated,
this type of magnetization dynamics can always be described by Eq.
(2.13). However, Eqs (2.13) and (2.19) may not be regarded as physically
equivalent, as far as the interpretation of precessional and damping terms
is concerned. This raises an interesting question of how to separate
in general precessional and relaxational dynamics. It is clear from the
previous discussion that the interaction with the thermal bath that leads
to damping is accounted for by introducing M × (M×Heff) or M ×
∂M/∂t terms and by slightly modifying the precessional term, i.e., by
slightly changing γ. In this sense, one might say that the true damping
is represented by a certain linear combination of terms M × Heff and
M×(M×Heff) or terms M×Heff and M×∂M/∂t. According to Eq. (2.22),
M×Heff can be expressed in terms of M×∂M/∂t and M×(M×Heff). This
suggests that the magnetization dynamic equation can always be written
in the form:

∂M
∂t

= −γM×Heff +
α1

Ms
M× ∂M

∂t
− α2γ

Ms
M× (M×Heff) , (2.25)

where the last two terms completely account for damping. It may be
interesting to point out that according to Eq. (2.22) the precessional term
can be always expressed as a linear combination of Landau–Lifshitz and
Gilbert damping terms. For this reason, the Landau–Lifshitz and Gilbert
equations can be written in the following equivalent mathematical form
that does not contain explicitly any precession-type term:

∂M
∂t

= c1M× (M×Heff) + c2M×
∂M
∂t

. (2.26)

The discussed issue is part of the general problem of the limits under
which the phenomenological introduction of damping is acceptable and
is in agreement with microscopic models of spin dynamics [147,648].

The mathematical form of the damping term in the Landau–Lifshitz–
Gilbert equation can be introduced by using the Rayleigh dissipation
function approach, as originally shown by Gilbert himself. According to
this approach, the effect of the thermal bath on magnetization dynamics
is accounted for by introducing an additional dissipation (damping) field
Hdis that depends on ∂M/∂t:

∂M
∂t

= −γGM× (Heff + Hdis) . (2.27)
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This dissipation field is defined in terms of the Rayleigh function defined
as a quadratic form in Ṁ = ∂M/∂t:

R =
1
2
Ṁ ·A · Ṁ, (2.28)

where A is a symmetric positive-definite matrix that does not depend on
Ṁ. The dissipation field is related to the Rayleigh function by the formula:

Hdis = − ∂R
∂Ṁ

. (2.29)

By using Eqs (2.28) and (2.29), Eq. (2.27) can be transformed as follows:

∂M
∂t

= −γGM×
(
Heff −A · Ṁ

)
. (2.30)

In the simplest case when:

R =
α|Ṁ|2

2γGMs
, (2.31)

we find that A is proportional to the identity matrix I :

A =
α

γGMs
I, (2.32)

and the dynamics equation (2.30) is reduced to the Landau–Lifshitz–Gilbert
equation (2.20).

2.3 OTHER EQUATIONS FOR THE DESCRIPTION OF
MAGNETIZATION DYNAMICS

The magnetization dynamics equation which is most widely used in the
case of nonferromagnetic media is the Bloch equation. In this equation, the
conservation of the magnetization magnitude is no longer a constraint.
Furthermore, two independent relaxation mechanisms are introduced
for the magnetization components parallel and perpendicular to the
dc external field. These relaxation mechanisms are controlled by two
different time constants, τss and τsl. The relaxation of the magnetization
component perpendicular to the applied dc field is attributed to the
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progressive disappearance of the phase coherence in the precession of the
individual spins and is therefore referred to as “spin–spin relaxation”. On
the other hand, the magnetization component along the external dc field
is assumed to relax to the equilibrium “saturation” magnetization M0 as a
consequence of thermal fluctuations. This process is termed “spin–lattice
relaxation”.

In the presence of a dc magnetic field H0 and a time-harmonic (rf)
field H1, the Bloch equation can be written as follows:

∂M
∂t

= −γM× (H0 + H1) +
e0 × (e0 ×M)

τss
+ e0

M0 −M · e0

τsl
, (2.33)

where e0 is the unit vector along the applied dc field H0. This form of the
Bloch equation is used in the description of nuclear magnetic resonance
phenomena and in magnetic resonance imaging.

In the Bloch equation, the direction of the applied dc field is assumed
to be dominant, as is expected to be the case in nonferromagnetic, weakly
interacting systems where no important contributions to the effective field
arise from internal coupling mechanisms. However, one may wonder if
a similar equation could be useful in the description of ferromagnetic
systems as well, under conditions where the driving action of the field
is so strong that the magnetization magnitude is no longer preserved,
at least during some short transients before usual micromagnetic states
are formed. Such an equation can be written down by using the
decomposition along three mutually orthogonal directions, as previously
discussed. If the effective field Heff is a dominating quantity, one may
expect that a useful choice for the orthogonal basis may be represented by
the vectors: Heff,Heff×M,Heff×(Heff×M). The magnetization vector M is
used because we want our dynamical equation to be eventually consistent
with Brown’s equation (2.8), which means that the combination Heff ×M
must appear in the formulation. By using this basis, one arrives at the
equation of the form:

∂M
∂t

= c1Heff + c2Heff ×M + c3Heff × (Heff ×M) . (2.34)

Equation (2.33) takes this form if one replaces the direction of the applied
dc field e0 by the direction eeff of the effective field. The result is the
nonlinear Bloch equation:

∂M
∂t

= −γM×Heff +
eeff × (eeff ×M)

τss
+ eeff

Ms −M · eeff

τsl
. (2.35)
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This equation has a number of interesting properties. First, it is consistent
with micromagnetics. Indeed, by imposing ∂M/∂t = 0, one finds that
each of the three orthogonal vectors in the right-hand side of Eq. (2.35)
must be zero. This yields: M × Heff = 0 and M · eeff = Ms. Thus, at
equilibria M is aligned along Heff due to the former equation and |M| =
Ms due to the latter. These are precisely the micromagnetic constraints
previously discussed. By using Eqs (2.4) and (2.9), it can be shown that
the volume integral of the dot product −µ0Heff · ∂M/∂t gives the time
derivative dGL/dt of the system free energy under the assumption that
the external field is constant in time. From Eq. (2.35) one finds that the
energy will certainly decrease, as required on thermodynamic grounds,
provided that M · eeff ≤ Ms.

2.4 LANDAU–LIFSHITZ–GILBERT EQUATION IN NORMALIZED
FORM

It is useful and insightful to rewrite the micromagnetic free energy,
the effective field, and magnetization dynamics equations in normalized
form, where magnetization and fields are measured in units of Ms, while
energies are measured in units of µ0M2

sV , where V is the volume of the
ferromagnet. Then, magnetization states are described by the unit vector:

m(r, t) =
M(r, t)

Ms
, (2.36)

and the fundamental micromagnetic constraint (2.1) assumes the form:

|m(r, t)| = 1. (2.37)

The normalized free energy gL associated with the vector field m is
the sum of normalized exchange, anisotropy, magnetostatic, and Zeeman
energies, respectively:

gL(m(.); ha) =
GL(M; Ha)
µ0M2

sV

=
1
V

∫
Ω

[
l2EX

2
|∇m|2 + ϕAN (m)− 1

2
hM ·m− ha ·m

]
dV,

(2.38)
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where:

lEX =

√
2A
µ0M2

s

(2.39)

is the so-called exchange length;

ϕAN (m) =
fAN (Msm)
µ0M2

s

(2.40)

is the normalized anisotropy energy; and

ha =
Ha

Ms
, hM =

HM

Ms
, (2.41)

are the normalized applied and magnetostatic fields. The latter is the
solution of the following magnetostatic Maxwell equations:

∇ · hM = −∇ ·m, ∇× hM = 0, (2.42)

subject to the appropriate interface conditions at the ferromagnet surface.
It is useful to express also lengths in normalized form, that is, in units of
the exchange length lEX . This normalization does not modify the form of
Eq. (2.42), while it transforms Eq. (2.38) as follows:

gL(m(.); ha)

=
1
V

∫
Ω

[
1
2
|∇m|2 + ϕAN (m)− 1

2
hM ·m− ha ·m

]
dV, (2.43)

where ∇ now represents the gradient with respect to the normalized
position r/lEX .

The first variation of gL with respect to an arbitrary variation δm of m
is given by:

δgL = − 1
V

∫
Ω

heff · δm dV +
lEX

V

{

Σ

∂m
∂n
· δm dS, (2.44)

where:

heff =
Heff

Ms
= ha + hM + hAN +∇2m, (2.45)
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while:

hAN = −∂ϕAN

∂m
=

HAN

Ms
(2.46)

is the normalized anisotropy field. An important case of anisotropy, which
will be extensively discussed in the sequel, is that of uniaxial anisotropy.
In this case, the anisotropy energy has the following form:

ϕAN (m) =
κ

2
[
1− (m · eAN )2

]
, (2.47)

where κ = 2K1/µ0M2
s is the normalized anisotropy constant, K1 is

the physical anisotropy constant, eAN is the easy axis unit vector. The
anisotropy field is then given by:

hAN (m) = κeAN (eAN ·m). (2.48)

Magnetization equilibrium states can be found by imposing δgL = 0
for variation of m consistent with the constraint (2.37), and this leads to
the normalized Brown’s equation:

m× heff = 0, (2.49)

with the boundary condition:

∂m
∂n

= 0. (2.50)

As previously mentioned in connection with Eq. (2.9), this boundary
condition corresponds to the absence of surface anisotropy.

The dynamics of the magnetization vector field m under nonequilib-
rium conditions is governed by the normalized version of the LL equation
(2.13) or LLG equation (2.19). The dimensionless equation is obtained after
a proper renormalization of time. It is convenient to choose the time unit
in such a way that the coefficient in front of the dimensionless precessional
term is reduced to unity. Thus, by measuring time in units of (γLMs)−1,
from Eq. (2.13) one obtains the normalized LL equation:

∂m
∂t

= −m× heff − αm× (m× heff) , (2.51)
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and the associated energy balance equation (see Eq. (2.15)):

dgL
dt

= − α
V

∫
Ω

|m× heff|2 dV − 1
V

∫
Ω

m · ∂ha

∂t
dV. (2.52)

Similarly, by measuring time in units of (γGMs)−1, from Eq. (2.13) one
obtains the normalized LLG equation:

∂m
∂t
− αm× ∂m

∂t
= −m× heff, (2.53)

and the energy balance equation (see Eq. (2.21)):

dgL
dt

= − α
V

∫
Ω

∣∣∣∣∂m∂t
∣∣∣∣2 dV − 1

V

∫
Ω

m · ∂ha

∂t
dV. (2.54)

Both time units (γLMs)−1 and (γGMs)−1 are expected to be of the order of
(γMs)−1. In permalloy, with γ = 2.2·105 A−1 ms−1 and Ms = 8·105 A m−1,
one finds γMs = 176 GHz, that is, (γMs)−1 ' 6 ps. The steps made in the
derivation of the normalized form of magnetization dynamics reveal that
there are three natural scales in the dynamics: the field and magnetization
scale is given by Ms, the space scale by lEX , and the time scale by (γMs)−1.
The qualitative properties of the dynamics are controlled by α and by the
parameters entering the dimensionless effective field heff.

In subsequent chapters, magnetization dynamics will be studied by
using either the LL or the LLG form of the equations, i.e., Eq. (2.51) or
Eq. (2.53), as convenient. It is worth recalling that these two equations
have been obtained by introducing different normalizations for the time
scale. Therefore, these different normalizations will have to be taken in
due account whenever the equations are transformed from one form to
another.



CHAPTER 3

Spatially Uniform
Magnetization Dynamics

3.1 SPATIALLY UNIFORM SOLUTIONS OF LLG–MAXWELL
EQUATIONS

Magnetization dynamics in ferromagnets is described by the LL equation
(2.51) or the LLG equation (2.53), coupled through the effective field (2.45)
with magnetostatic Maxwell equations (2.42). In the case where the Gilbert
form of the dynamics is used, the problem is described by the following
set of coupled equations:

∂m
∂t
− αm× ∂m

∂t
= −m× heff, (3.1)

heff = ha + hM + hAN +∇2m, (3.2)
∇ · hM = −∇ ·m, ∇× hM = 0, (3.3)

subject to the boundary conditions:

∂m
∂n

= 0, (3.4)

n× (h−M − h+
M ) = 0, n · (h−M − h+

M ) = n ·m, (3.5)

and the initial condition:

m(r, t = 0) = m0(r), (3.6)

where superscripts “+” and “−” denote the physical quantities inside and
outside the ferromagnet, respectively, while n is the unit vector directed
along the outward normal to the ferromagnet surface.

Equations (3.1)–(3.6) describe a highly nonlinear and spatially
distributed dynamical system that may exhibit very complex features
such as nonlinear resonances, quasi-periodicity, chaos, turbulence-like

35
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dynamics, nonlinear wave propagations. It is quite remarkable that such a
complicated set of equations may admit exact spatially uniform solutions
under certain conditions on geometrical and physical properties of the
system.

These spatially uniform solutions are of importance for several
reasons. First, magnetic storage technologies and spintronics are moving
toward the design of increasingly smaller devices with dimensions in
the nanometer range. On this spatial scale, exchange forces strongly
penalize magnetization nonuniformities and therefore spatially uniform
magnetization processes are expected to be the main and desirable modes
of operation. Second, the uniform mode theory provides a basis for
the study of more complex situations where magnetization dynamics is
not spatially uniform. In fact, nonuniform magnetization configurations
typically arise in small systems from uniform magnetization states
through inherent instabilities. These spatially nonuniform configurations
can be analyzed by using perturbation theory around spatially uniform
solutions. Finally, spatially uniform magnetization dynamics deserves
special attention because it is the simplest albeit nontrivial case of
nonlinear magnetization dynamics. This case should be the starting point
for the study of spatially nonuniform dynamics, because it may help
to discriminate phenomena which can be ascribed to the presence of
magnetization nonuniformities from those which can still be explained
by nonlinear spatially uniform magnetization dynamics.

It is demonstrated below that spatially uniform solutions of the
LLG–Maxwell equations exist under the following conditions:

1. the ferromagnet is of ellipsoidal shape (see Fig. 3.1);
2. no surface anisotropy is present, that is the boundary condition (3.4) is

valid at the ferromagnet surface;
3. the parameters (e.g., anisotropy constants, anisotropy axis direction)

which characterize the local anisotropy field hAN are spatially uniform;
4. the applied field ha is spatially uniform;
5. the initial distribution of magnetization is spatially uniform.

Under these conditions, the demagnetizing field hM will be spatially
uniform inside the particle if so is the magnetization. Indeed, the solution
of magnetostatic Maxwell equations (3.3) and (3.5) inside uniformly
magnetized ellipsoidal objects is spatially uniform and can be expressed
in terms of the demagnetizing tensor. By choosing a system of unit vectors
(ex, ey, ez) along the principal axes of the ellipsoid (see Fig. 3.1), one
obtains:

hM (m) = −Nxmxex −Nymyey −Nzmzez, (3.7)
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FIGURE 3.1 Ellipsoidal ferromagnet and cartesian reference frame.

where Nx, Ny , Nz are the demagnetizing factors and Nx + Ny + Nz
= 1. Moreover, uniform magnetization is consistent with the boundary
condition (3.4) and the exchange field (the last term in Eq. (3.2)) is equal
to zero.

The third condition guarantees that the anisotropy field hAN is
spatially uniform when m is spatially uniform. We shall limit our
discussion to the case of uniaxial anisotropy, where:

hAN (m) = κ(eAN · m)eAN . (3.8)

In this equation, κ is the normalized anisotropy constant, while eAN is the
unit vector along the easy axis direction.

Thus, under the stated conditions, the effective magnetic field
associated with a spatially uniform magnetization state is spatially
uniform. This suggests that Eqs (3.1)–(3.6) can be reduced to the solution
of the initial-value problem for the LLG ordinary differential equation:

dm
dt
− αm× dm

dt
= −m× heff(m, t), (3.9)

where:

heff(m, t) = ha(t) + κ(eAN · m)eAN

−Nxmxex −Nymyey −Nzmzez, (3.10)

and the initial condition is:

m(r, t = 0) = m0. (3.11)
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It is apparent that the solution of the initial value problem (3.9)–(3.11) is
fully consistent with LLG–Maxwell equations (3.1)–(3.6). In the case when
the LL form of the dynamics is used, the initial-value problem must be
solved for the equation:

dm
dt

= −m× heff(m, t)− αm× (m× heff(m, t)) , (3.12)

where heff(m, t) is still given by formula (3.10).
It is worth remarking that the sum of the fields hM (m) and hAN (m),

corresponding to the last four terms in formula (3.10), is a linear function
of m and thus it can be expressed as follows:

hM (m) + hAN (m) = −D ·m, (3.13)

where D is a symmetric matrix. This matrix D can be diagonalized by
using the cartesian reference frame associated with its eigenvectors e′x, e′y ,
e′z . In this reference frame,

heff =
(
h′ax −D′xm′x

)
e′x +

(
h′ay −D′ym′y

)
e′y +

(
h′az −D′zm′z

)
e′z,(3.14)

where h′ax,h
′
ay,h

′
az are the components of ha along e′x, e′y , e′z , and

D′x, D
′
y, D

′
z are the eigenvalues of D. In the sequel, the less general case

will be discussed where the easy axis direction eAN is aligned with one of
the principal axes of the ellipsoid, i.e., with one of the unit vectors ex, ey ,
ez . In this case:

heff = (hax −Dxmx) ex + (hay −Dymy) ey + (haz −Dzmz) ez, (3.15)

where the parameters Dx, Dy , Dz account for both demagnetizing and
crystal anisotropy effects. Under these conditions, the free energy density
is expressed in normalized form as follows:

gL(m; ha) =
1
2
(
Dxm2

x +Dym2
y +Dzm2

z

)
−haxmx − haymy − hazmz. (3.16)

The effective field (3.15) is related to the free energy by the expression:

heff = − ∂

∂m
gL(m; ha). (3.17)
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The LL and LLG equations (3.12) and (3.9) are written without any
reference to a specific coordinate system. In this sense, their forms are
coordinate-invariant. However, in applications, representations of these
equations in various coordinate systems can be often very convenient. In
particular, the representation in terms of spherical coordinates is quite
natural, since the magnitude of magnetization is preserved (|m| = 1)
during the magnetization dynamics, i.e., this dynamics occurs on the unit
sphere.

We limit the discussion to the LLG equation (3.9). In terms of spherical
coordinates (see Fig. 3.2), the unit vector m is uniquely defined by the two
spherical angles θ and φ through the formulas:

mx = sin θ cosφ, my = sin θ sinφ, mz = cos θ. (3.18)

By projecting Eq. (3.9) along the constant-φ and constant-θ directions, one
arrives at the following spherical coordinate form of the equation:

dθ
dt

+ α sin θ
dφ
dt

= − 1
sin θ

∂gL
∂φ

, (3.19)

−αdθ
dt

+ sin θ
dφ
dt

=
∂gL
∂θ

. (3.20)

Equations (3.19) and (3.20) can be written in matrix form as follows:(
1 α
−α 1

)(
dθ/dt

sin θdφ/dt

)
=
(
−(1/ sin θ)∂gL/∂φ

∂gL/∂θ

)
. (3.21)

By inverting the matrix in the left-hand side of Eq. (3.21), one obtains:(
dθ/dt

sin θdφ/dt

)
=

1
1 + α2

(
1 −α
α 1

)(
−(1/ sin θ)∂gL/∂φ

∂gL/∂θ

)
. (3.22)

Equation (3.22) coincides, apart from the 1/(1 + α2) factor, with the
LL equation (3.12). In this sense, the matrix inversion leading from Eq.
(3.21) to Eq. (3.22) provides an alternative straightforward proof of the
mathematical equivalence of the LL and LLG forms of the dynamics.

The spherical coordinate representation of the LLG equation explicitly
accounts for the conservation law |m| = 1 and, in this way, reduces the
number of state variables from the three cartesian components of m to the
two angles θ and φ. However, differential equations (3.19) and (3.20) have
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FIGURE 3.2 Spherical and stereographic representation of magnetization state. Σ
is the unit sphere, π is the (x, y)-plane and C is the unit circle on π. Top: In the
spherical coordinate representation, the point m on Σ is identified by the angles θ
(angle between m and ez) and φ (angle between the projection of m on the plane π
and ex). Bottom: In the stereographic representation, the point m on Σ is projected
into the point w of the plane π by finding the intersection between π and the line
connecting m to the south pole S of the unit sphere Σ.

singularities at the sphere poles. The use of stereographic coordinates
may have some advantage in this respect. The stereographic coordinates
wx and wy (see Fig. 3.2) are related to the cartesian coordinates by the
formulas:

wx =
mx

1 + mz
, wy =

my

1 + mz
. (3.23)

The last formulas can be easily inverted to yield the expressions:

mx =
2wx

1 + w2
, my =

2wy

1 + w2
, mz =

1− w2

1 + w2
, (3.24)

where w2 = w2
x + w2

y . By substituting the expressions (3.18) into
formulas (3.23), we obtain the following relations between stereographic
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and spherical coordinates:

wx =
sin θ cosφ
1 + cos θ

, wy =
sin θ sinφ
1 + cos θ

. (3.25)

In terms of wx and wy , the LLG equation (3.9) is expressed in matrix form
as: (

1 α
−α 1

)(
dwx/dt
dwy/dt

)
=
(

1 + w2

2

)2(−∂gL/∂wy

∂gL/∂wx

)
. (3.26)

The expressions for gL(wx,wy), ∂gL/∂wx and ∂gL/∂wy can be derived
by substituting formulas (3.24) into expression (3.16) and performing
appropriate differentiations.

3.2 STRUCTURAL ASPECTS OF SPATIALLY UNIFORM
MAGNETIZATION DYNAMICS

The magnetization dynamics described by Eq. (3.12) or Eq. (3.9) has
structural qualitative properties which are the direct consequence of two
key aspects: the fact that the magnetization magnitude |m| is preserved
by the dynamics; and the fact that there exists a balance equation for the
system free energy gL.

The physical consequences of the conservation law |m|2 = 1 are best
revealed by the LL form (3.12) of the magnetization dynamics. Equation
(3.12) can be expressed as:

dm
dt

= v(m, t), (3.27)

where:

v = −m× heff − αm× (m× heff). (3.28)

The vector field v(m, t) explicitly depends on time whenever the applied
field ha is time-dependent. The fact that the magnetization dynamics
preserves the magnitude of m implies that the dynamical system (3.27)
evolves on the surface of the unit sphere |m|2 = 1 and that the vector field
v(m, t) is tangential to this sphere at every point.

Remarkably, a number of results concerning the magnetization
dynamics derive from the very form of Eq. (3.27), as the direct
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consequence of the constraints imposed on the dynamics by the unit
sphere topology. We shall first discuss the particular case when the
dynamics is autonomous, i.e., the vector field v does not explicitly depend
on time (v = v(m)). Physically, this means that the applied magnetic
field is kept constant in time. Autonomous dynamical systems on the unit
sphere are characterized by the following properties:

• There always exist equilibrium states for the system, namely points
where v = 0. Indeed, a stationary vector field on the sphere necessarily
has singular points [529]. In general, these singular points can be
either zeros or poles where the magnitude of the vector field tends to
infinity. For magnetization dynamics, the vector field v is expected to
be continuous for physical reasons, which precludes the existence of
poles.

• The number of equilibria is at least two and it is always even. This
conclusion is derived from Poincaré index theorem [529], which asserts
that the number of nodes, foci and centers minus the number of
saddles of any autonomous dynamics on the sphere is equal to two.
The distinctive phase portraits of saddles, nodes, foci, and centers are
shown in Fig. 3.3(a)–(d) (see Refs. [529,741,358] for more details on the
classifications of equilibria in nonlinear dynamical systems).

• Chaos is precluded, because the phase space is two-dimensional
[741,358]. This is the consequence of the generalized version of the
Poincaré–Bendixson theorem, which states that on two-dimensional
manifolds the only possible steady states are either stationary states
associated with equilibria or self-oscillations associated with limit
cycles of the dynamics. The phase portrait of limit cycles is shown in
Fig. 3.4.

It turns out that for the LL magnetization dynamics the only
admissible steady states under constant applied field are stationary states
associated with equilibria. No steady self-oscillations are possible. This
important conclusion is obtained from the energy balance equation (2.52),
which takes the following form for a uniformly magnetized particle:

dgL
dt

= −α |m× heff|2 −m · dha
dt

. (3.29)

Under constant applied field this equation is reduced to:

dgL
dt

= −α |m× heff|2 . (3.30)
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FIGURE 3.3 Qualitative sketches of magnetization dynamics on small portions
of the unit sphere in the neighborhoods of equilibrium points of different nature.
(a) Saddle equilibrium; (b) stable node (the sketch for the unstable node can be
obtained by reversing the arrows); (c) stable focus (the sketch for the unstable
focus can be obtained by reversing the arrows); (d) center (this kind of equilibrium
is generally present only in conservative (undamped) systems).

FIGURE 3.4 Schematic representation of limit cycles. (a) Stable limit cycle (a, i.e.,
attractive) surrounding unstable focus; (b) unstable limit cycle (r, i.e., repulsive)
surrounding stable focus.

Equation (3.30) permits one to reach the following conclusions concerning
the magnetization dynamics under constant applied field:

• The magnetization dynamics is such that the free energy gL is always
a decreasing function of time, as a consequence of energy dissipation
due to the interaction with the thermal bath.

• The time derivative dgL/dt is zero only when m × heff = 0, i.e., when
an equilibrium is reached. Since gL is always a decreasing function of
time, the dynamics always brings the system to one of gL-minima, and
these energy minima are stable equilibria of the dynamics.

• The emergence of magnetization self-oscillations is not possible.
Indeed, the necessary condition for the existence of self-oscillations is
that gL is a periodic nonmonotone function of time. This requirement
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is in contradiction with the monotone time decrease in the free energy
under constant field.

• Since the damping constant α is usually small, dgL/dt also tends to
be small. In other words, gL is a slow variable which evolves on slow
time scales in comparison with the magnetization m. This fact will be
instrumental in the development of the averaging technique for the
magnetization dynamics discussed in Chapter 5.

These conclusions are no longer valid under time-varying applied
fields, where more complicated dynamical behavior can be achieved, with
the appearance of periodic, quasi-periodic, and chaotic magnetization
motions [740].

3.3 GENERALIZED MAGNETIZATION DYNAMICS

The LLG and LL equations (3.9) and (3.12) for the magnetization dynamics
are consistent with the two basic micromagnetics constraints:

|m|2 = 1, m× heff = 0. (3.31)

The constraint m × heff = 0 corresponds to the equilibrium points
of magnetization dynamics when it is driven by a constant applied
magnetic field. This means that under a constant field, equilibrium states
always coincide with certain micromagnetic solutions of Brown equation.
However, in situations when the applied field is not constant or when the
micromagnetic effective field heff is not the only cause of magnetization
dynamics, the system can be brought to nonequilibrium steady-state
conditions for which the equation m × heff = 0 may no longer represent
the critical points of the dynamics. This is the case, for instance, when
the magnetization dynamics is driven by spin-polarized electric currents
giving rise to spin-transfer effects (see Chapter 9). This suggests that a
general approach to magnetization dynamics is to assume only that the
magnetization magnitude |m|2 = 1 is preserved, and then to investigate
the physical properties of the dynamics which are consistent with this
assumption.

Consider again the general magnetization dynamics equation:

dm
dt

= v(m, t), (3.32)

under the sole assumption that the vector field v(m, t) is tangential to the
unit sphere |m|2 = 1 at every point m. This guarantees that the magnitude
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of m is preserved and implies that the dynamical system (3.32) evolves on
the surface of the m sphere. The results discussed in the previous section,
concerning the number of equilibria and the absence of chaos, do not
depend on the specific nature of the vector field v and, thus, they remain
valid. Furthermore, intrinsic properties of the dynamics (3.32) are revealed
by expressing the vector field v(m, t) in a form that follows from the
Helmholtz decomposition theorem for vector fields defined on the sphere.
According to this theorem, v(m, t) can be always uniquely decomposed
into the sum of a divergence-free and a curl-free vector field, i.e.:

v(m, t) = m×∇ΣΓ−∇ΣΩ, (3.33)

where Γ and Ω are arbitrary twice differentiable functions, and the
subscript Σ indicates that the gradient operator ∇ is applied to a scalar
field defined on the unit sphere Σ. In terms of spherical coordinates, the
two terms in the right-hand side of Eq. (3.33) can be written as follows:

m×∇ΣΓ = − 1
sin θ

∂Γ
∂φ

eθ +
∂Γ
∂θ

eφ, (3.34)

∇ΣΩ =
∂Ω
∂θ

eθ +
1

sin θ
∂Ω
∂φ

eφ, (3.35)

where (eθ, eφ,m) is the right-handed triple of orthogonal unit vectors
directed along the constant-φ, constant-θ, and normal-to-Σ directions,
respectively. The divergence and curl properties of these two terms can
be verified by using the expressions for the operators divΣ and curlΣ in
spherical coordinates. Namely, for any generic vector a = aθeθ + aφeφ,
tangential to Σ, we have:

divΣa =
1

sin θ
∂

∂θ
(aθ sin θ) +

1
sin θ

∂aφ
∂φ

, (3.36)

curlΣa =
(
∂aθ
∂φ
− ∂aφ

∂θ

)
m. (3.37)

By using these expressions, it is easy to verify that the two terms in the
right-hand side of formula (3.33) represent divergence-free and curl-free
vector fields, respectively:

divΣ (m×∇ΣΓ) = 0, (3.38)
curlΣ (∇ΣΩ) = 0. (3.39)
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By taking the divergence and the curl of Eq. (3.33), one finds that Γ and Ω
satisfy the following Poisson equations on the unit sphere:

∆ΣΓ = m · curlΣv, (3.40)
∆ΣΩ = −divΣv, (3.41)

where ∆Σ = divΣ∇Σ denotes the Laplace operator on Σ. On this basis, it
can be demonstrated that the Helmholtz decomposition (3.33) is unique.
In fact, let Γ1 and Γ2 be two solutions of Eq. (3.40). Then their difference
Γ̃ = Γ1 − Γ2 satisfies the Laplace equation:

∆ΣΓ̃ = 0. (3.42)

By invoking the Green identity:

{

Σ
Γ̃∆ΣΓ̃dS=

{

Σ
|∇ΣΓ̃|2dS, (3.43)

and using Eq. (3.42) one finds that ∇ΣΓ̃ = 0, i.e., Γ̃ = const. Similarly, it
can also be concluded that Ω is defined by Eq. (3.41) up to a constant.

The performed analysis reveals that the most general form of
magnetization dynamics consistent with the constraint |m|2 = 1 is:

dm
dt

= m×∇ΣΓ−∇ΣΩ. (3.44)

Thus, the dynamics is fully determined by the two scalar potentials Γ
and Ω. The divergence-free term (dependent on Γ) may be referred to
as the precessional part of the dynamics. This is because, if only this
term were present, then the magnetization vector would precess along
closed trajectories corresponding to constant values of Γ. In contrast, the
curl-free term (dependent on Ω) may be referred to as the relaxational
part of the dynamics, because if this were the only term, then the
magnetization vector would steadily proceed from the maxima to the
minima of the potential Ω. This clear-cut separation between precessional
and relaxational effects in principle makes the above two potentials
directly accessible to experiments [733].

The generalized dynamic equation (3.44) admits a balance equation
for the potential Γ. This balance equation is similar to the energy balance
equation (3.29) for ordinary LL dynamics. However, its structure is
richer, which may result in the appearance of new types of dynamical
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phenomena. This balance equation is derived by dot-multiplying both
sides of Eq. (3.44) by∇ΣΓ. By taking into account that:

dΓ
dt

= ∇ΣΓ · dm
dt

+
∂Γ
∂t
, (3.45)

one obtains:

dΓ
dt

= −∇ΣΓ · ∇ΣΩ +
∂Γ
∂t
. (3.46)

The key issue now is the physical interpretation of the potentials
Γ and Ω. In the following, we shall use heuristic reasoning to identify
these potentials. To keep the discussion simple, we shall limit our
considerations to autonomous systems, i.e., when the potentials Γ and Ω
depend on time only through m, while the various control parameters of
the problem are kept constant. We anticipate that the reached conclusions
can be extended to nonautonomous conditions as well.

As previously mentioned, the important structural property of Eq.
(3.44) is the fact that, when the potential Ω is constant, the dynamics
proceeds along closed trajectories corresponding to constant values of
the potential Γ. It is natural to identify the conserved quantity Γ with
the energy of the system, up to some scaling factor which can be always
absorbed by an appropriate renormalization of the time scale. However,
the typical situation of interest is a system in contact with the thermal bath
and subject to some external action, for example to an applied magnetic
field. This suggests that the potential Γ should be identified with the
free energy, which is minimized at equilibrium. This free energy is the
micromagnetic free energy gL introduced in Chapter 2. Therefore, we can
write Eq. (3.44) as:

dm
dt

= m×∇ΣgL −∇ΣΩ. (3.47)

The potential Ω should describe the mechanism that brings the free energy
to its minimum. This interpretation is strongly supported by the fact that
there exists a general balance equation for the potential Γ, i.e., Eq. (3.46).
When Γ ≡ gL, this equation yields:

dgL
dt

= −∇ΣgL · ∇ΣΩ +
∂gL
∂t

. (3.48)
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This balance equation suggests that under autonomous conditions (i.e.,
when ∂gL/∂t = 0), gL decreases if the dot product on the right-hand
side of Eq. (3.48) is positive for any m. The following reasoning helps
to identify the appropriate potential Ω consistent with this requirement.
Imagine that the interaction with the thermal bath responsible for the
relaxation to equilibrium has been switched off. In this case, the system
precesses along one of the closed trajectories of constant energy gL. Let
T (g) be the period of this precessional motion. Now, assume that the
interaction with the thermal bath is switched on and that this interaction
is so small that the precessional motion is not substantially perturbed
on the time scale T (g). We shall see in subsequent chapters that this
assumption is satisfied in most cases of physical interest. Thus, on the
time scale T (g) the system approximately moves along one of the closed
trajectories of the precessional dynamics. The presence of relaxation
interactions may result in some small increase of T (g), which, however,
has no appreciable consequence and basically can be absorbed in the
proportionality constant between Γ and gL, i.e., in the renormalization of
the time scale. To quantify the relaxational effect along the precessional
trajectory, we note that the curl-free nature of the relaxation term in Eq.
(3.47) guarantees that its line integral along the precessional trajectory is
zero. In other terms, the relaxational part of the dynamics cannot alter
the average velocity at which the system moves along the precessional
trajectory. On the other hand, the relaxation effects are due to numerous
microscopic interactions with the thermal bath which are not correlated
to the large-scale precessional motion and, thus, cannot give rise to
large-scale distortions of the precessional velocity. This suggests that the
relaxational part of the dynamics must be orthogonal to the precessional
trajectories at every point, i.e.:

∇ΣΩ = α∇ΣgL. (3.49)

By using this equation in Eq. (3.48), one obtains:

dgL
dt

= −α |∇ΣgL|2 +
∂gL
∂t

, (3.50)

which implies that α > 0 to ensure relaxation to equilibrium under
autonomous conditions. It will be shown in Chapter 10 that the
assumption (3.49) is also consistent with statistical mechanics. Indeed,
it guarantees that the stochastic magnetization dynamics obtained by
introducing appropriate thermal noise terms in Eq. (3.47) asymptotically
approaches the equilibrium Boltzmann distribution for m.
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It is worth remarking that the precessional and relaxational parts of
the dynamics (3.47) are always orthogonal in the integral sense. Indeed,
by using the divergence theorem on the unit sphere and by taking into
account that divΣ (m×∇ΣgL) = 0 (see Eq. (3.38)), one finds:

{

Σ
(m×∇ΣgL) · ∇ΣΩ dS = −

{

Σ
Ω divΣ (m×∇ΣgL) dS = 0.

(3.51)

Equation (3.49) naturally satisfies this orthogonality relation, because of
the local orthogonality of precessional and relaxation terms.

The discussion presented so far can be viewed as another justification
for the LL dynamics. Indeed, under the assumption (3.49), Eq. (3.47) can
be written in the form:

dm
dt

= m×∇ΣgL − α∇ΣgL. (3.52)

This equation is identical to the LL equation (3.12), because:

m×∇Σf = m× ∂f

∂m
, ∇Σf = −m×

(
m× ∂f

∂m

)
, (3.53)

for any differentiable function f(m), and ∂gL/∂m = −heff. However,
the importance of Eq. (3.47) is fully revealed by the fact that it provides
a general framework for the description of physical situations that go
beyond ordinary LL dynamics. This occurs when the system is open and
subject to nonequilibrium flows that may drive it to out-of-equilibrium
steady-state conditions. As a result, the magnetization dynamics deviates
from the purely LL dynamics with the thermal relaxation law (3.49), and
an additional term appears in the curl-free part of the dynamics:

∇ΣΩ = α∇ΣgL +∇ΣΨ. (3.54)

As a consequence, the equation of motion (3.47) and the energy balance
equation (3.48) are respectively modified as follows:

dm
dt

= m×∇ΣgL − α∇ΣgL −∇ΣΨ, (3.55)

dgL
dt

= −α |∇ΣgL|2 −∇ΣgL · ∇ΣΨ +
∂gL
∂t

. (3.56)
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This generalized balance equation suggests that, even when the free
energy gL does not explicitly depend on time (i.e., ∂gL/∂t = 0), it may
still increase or decrease during the magnetization dynamics, due to
the competition between the energy loss caused by thermal relaxation
and the energy injection due to the physical processes described by
the potential Ψ. In particular, one may encounter situations where
these competing trends result in zero net balance on the average, that
is, over some characteristic time interval. When this is the case, self-
oscillations of magnetization (limit cycles) may occur. We know that this
possibility is ruled out for the conventional LL dynamics. A particularly
interesting example of generalized dynamics with these properties is the
magnetization dynamics driven by injected spin-polarized currents (see
Chapter 9).

Zero average energy change is possible when the two terms on the
right-hand side of Eq. (3.54) are of the same order of magnitude with
respect to α. In such situations, it is useful to introduce the potential Φ
defined as:

∇ΣΦ = ∇ΣgL +
1
α
∇ΣΨ, (3.57)

which (when α is constant) is equivalent to:

Φ = gL +
1
α

Ψ + const. (3.58)

In terms of Φ, the equation for the magnetization dynamics (3.47) and the
energy balance equation (3.48) are respectively expressed as:

dm
dt

= m×∇ΣgL − α∇ΣΦ, (3.59)

dgL
dt

= −α∇ΣgL · ∇ΣΦ +
∂gL
∂t

. (3.60)

These are the basic equations that will be further investigated and used
in subsequent chapters. By taking into account the relations (3.53), these
equations can be also expressed in the form:

dm
dt

= m× ∂gL
∂m

+ αm×
(
m× ∂Φ

∂m

)
, (3.61)

dgL
dt

= −α
(
m× ∂gL

∂m

)
·
(
m× ∂Φ

∂m

)
+
∂gL
∂t

. (3.62)
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By using Eq. (3.61) to express m × ∂gL/∂m, Eq. (3.62) can be also written
as follows:

dgL
dt

= −α
(
m× ∂Φ

∂m

)
· dm

dt
+
∂gL
∂t

. (3.63)

As previously mentioned, the analysis we have proposed to justify the
physical interpretation of the potentials in the generalized magnetization
dynamics is valid for autonomous systems. It is natural to extend these
results to nonautonomous conditions as well. In this respect, a peculiar
situation will be encountered in Chapter 7, where the magnetization
dynamics under time-harmonic applied fields will be studied. When the
ferromagnet has uniaxial symmetry and the time-varying applied field is
circularly polarized in the plane perpendicular to the symmetry axis of
the problem, the dynamics can be reduced to autonomous form in the
rotating reference frame where the circularly polarized field is stationary
[81]. In this frame, the LL equation takes the generalized form discussed
in this section.

3.4 ANALYSIS OF EQUILIBRIUM POINTS OF MAGNETIZATION
DYNAMICS

An essential step in the analysis of magnetization dynamics is the
determination of equilibrium points and the study of their stability. In
the case of LL and LLG dynamics and under the assumption (relevant
to switching and relaxation problems) that the applied field is constant
in time, these equilibrium points are found by solving the micromagnetic
Brown equation m × heff = 0. This vector equilibrium condition can be
rewritten in spherical coordinates as two scalar equations:

∂gL
∂θ

= 0,
∂gL
∂φ

= 0. (3.64)

As previously mentioned, this means that magnetization equilibria are
always critical points of the free energy gL(m) defined on the unit sphere.
Thus, these equilibria can be classified as energy maxima, energy minima
and energy saddles. If the geometrical shape of the ferromagnet and
its crystal anisotropy are invariant with respect to the angle φ, then gL
does not depend on φ and the second equation in (3.64) can be ignored.
This is the case analyzed in the Stoner–Wohlfarth model [639], which
permits one to give a complete description of the equilibria in the case
of magnetic systems with uniaxial symmetry. For more general cases,
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some appropriate extension of the Stoner–Wohlfarth theory is needed.
One rather general possibility is to study the system of equations:

heff(m) = λm, |m|2 = 1, (3.65)

which is equivalent to the equation m × heff = 0. Equations (3.65) are
four scalar equations for four unknowns, which are λ and the three
components of m. This approach, which has been proposed in Ref. [228],
leads to the identification of 2, 4, or 6 equilibrium points for the dynamics,
depending on the value and the orientation of the applied field.

Below, a different approach for the determination of equilibria is
presented under the assumption that one of the components of the applied
field ha is zero, which means that ha lies in one of the symmetry planes
of the ferromagnet. Although it is less general than the method based
on Eq. (3.65), this approach has the advantage that the solution can be
worked out analytically and can be translated into geometrical terms,
which generalize the Stoner–Wohlfarth model. We shall assume that haz =
0 and that the anisotropy parametersDx,Dy ,Dz appearing in the effective
field (3.15) are ordered as follows:

Dx ≤ Dy ≤ Dz. (3.66)

This means that the axis ex is the easy axis of the particle and that the
applied field has zero component along the hard axis ez . The method can
be extended to other combinations of anisotropy and applied field relative
orientation. These extensions will not be discussed here.

In the case when haz = 0, by using the fact that m2
z = 1−m2

x−m2
y , mz

can be eliminated from the expression of the free energy (see Eq. (3.16)).
This leads to the following formula:

gL(m; ha) = −Dz −Dx

2

[
(mx − ax)2 + k2 (my − ay)2 − p2

0

]
, (3.67)

where:

ax = − hax
Dz −Dx

, ay = − hay
Dz −Dy

, k2 =
Dz −Dy

Dz −Dx
, (3.68)

p2
0 = a2

x + a2
y +

Dz

Dz −Dx
. (3.69)

Equation (3.67) is written in the form that accounts for the constraint
|m|2 = 1. In addition, as it will be clear from the subsequent discussion,
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this form permits one to readily recognize the nature of equilibria, namely
whether they are energy maxima, minima or saddles.

In order to determine equilibria, we compute heff = −∂gL/∂m from
Eq. (3.67) and we substitute it into the Brown equation: m × heff = 0. In
cartesian coordinates, one obtains the following set of coupled equations:

(Dz −Dy) mz (my − ay) = 0, (3.70)
− (Dz −Dx) mz (mx − ax) = 0, (3.71)

(Dz −Dx) my (mx − ax)− (Dz −Dy) mx (my − ay) = 0. (3.72)

Due to the nature of Eqs (3.70)–(3.72), it is apparent that there are two cases
of equilibria: equilibria with mz 6= 0 and equilibria with mz = 0.

• Equilibrium points with mz 6= 0.
In this case Eqs (3.70)–(3.72) immediately suggest that mx = ax and
my = ay . The value of mz can be then determined from the constraint
|m| = 1. This leads to two equilibrium points:

mx = ax, my = ay, mz = ±
√

1− a2
x − a2

y, (3.73)

which are symmetric with respect to the (mx,my)-plane. It is clear that
this kind of equilibria is possible only when the applied magnetic field
is inside the region confined by the curve:

a2
x + a2

y = 1, (3.74)

which is the ellipse:

h2
ax

(Dz −Dx)2 +
h2
ay

(Dz −Dy)2 = 1. (3.75)

Equations (3.66) and (3.67) suggest that these equilibria are always
energy maxima.

• Equilibrium points with mz = 0.
This class of equilibria is characterized by the condition m2

x + m2
y = 1.

Thus, their positions on the unit circle in the (mx,my)-plane can be
described by the angle φ0 : mx = cosφ0, my = sinφ0. The angle φ0

associated with the equilibrium points is obtained by solving equation
(3.72) rewritten in the form:

(Dy −Dx) sinφ0 cosφ0 + hax sinφ0 − hay cosφ0 = 0. (3.76)
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FIGURE 3.5 Bifurcation lines in the (hax,hay) control plane. (a) Dz − Dy <
Dy − Dx; (b) Dz − Dy > Dy − Dx.

In order to grasp the meaning of Eq. (3.76), it is useful to express the
system free energy gL(m; ha) (see Eq. (3.16)) in terms of the angle φ0

for the case mz = 0:

gL (mz = 0, φ0; ha) =
1
2
Dx +

1
2

(Dy −Dx) sin2 φ0

−hax cosφ0 − hay sinφ0. (3.77)

This energy expression is identical to the one considered in the
Stoner–Wohlfarth model [639] with

hAN = Dy −Dx (3.78)

playing the role of anisotropy field. Equation (3.76) coincides with the
equation ∂gL/∂φ0 = 0. It can be inferred from this fact that all the
results known for the Stoner–Wohlfarth model are applicable to the
equilibrium points characterized by the condition mz = 0. In particular,
one immediately concludes that there will be either four equilibrium
points, two of which will be energy minima, or two equilibrium points,
one of which will be an energy minimum. The bifurcation line where
the number of energy minima changes from one to two or vice versa is
given by the astroid curve in the (hax,hay) control plane (see Fig. 3.5):

h2/3
ax + h2/3

ay = h2/3
AN . (3.79)

In conclusion, there are (at most) four distinct cases, separated by the
two bifurcation lines given by Eqs (3.75) and (3.79) (see Fig. 3.5).
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• Region A, 6 equilibrium points: 2 minima, 2 maxima, 2 saddles.
• Region B1, 4 equilibrium points: 1 minimum, 2 maxima, 1 saddle.
• Region B2, 4 equilibrium points: 2 minima, 1 maximum, 1 saddle.
• Region C, 2 equilibrium points: 1 minimum, 1 maximum.

In this classification, the number of saddles has been indirectly
determined on the basis of the Poincaré index theorem. It can be noted
that for certain values of the parameters Dx, Dy and Dz the region B2

may not exist. The condition for the existence of region B2 is that hAN =
Dy −Dx > Dz −Dy .

The classification of equilibria in terms of the free energy is also
instrumental for the understanding of their stability properties under
constant field. According to Eq. (3.30), if the system is not at equilibrium,
magnetization motion is such that the free energy decreases in time for
α > 0 and remains constant for α = 0. Thus, for α > 0, the dynamics
will always bring magnetization away from energy maxima and toward
energy minima. On the other hand, for α = 0 the magnetization will keep
on precessing around an energy minimum or maximum if it is initially
close to it. We conclude that for α > 0 energy maxima are unstable nodes
or foci, and energy minima are stable nodes or foci of the dynamics.
Conversely, for α = 0 energy maxima and minima are all centers of
the dynamics.

These results are related to an interesting geometric relation between
precessional (α = 0) and dissipative (α > 0) dynamics. This relation can
be established by introducing in Eq. (3.22) the angle ψ defined by:

tanψ = α. (3.80)

One obtains:(
dθ/dt

sin θdφ/dt

)
=

1√
1 + α2

(
cosψ − sinψ
sinψ cosψ

)(
−(1/ sin θ)∂gL/∂φ

∂gL/∂θ

)
.

(3.81)

On the other hand, when α = 0, Eq. (3.22) can be written as:(
dθ/dt

sin θdφ/dt

)
=
(
−(1/ sin θ)∂gL/∂φ

∂gL/∂θ

)
. (3.82)

By comparing Eqs (3.81) and (3.82), it can be concluded that the
vector field on the unit sphere that governs the dissipative dynamics is
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obtained from the vector field that governs the precessional dynamics
by a counterclockwise rotation through the angle ψ = tan−1 α and a
subsequent rescaling by the factor (1 + α2)−1/2.

In the limiting case of slightly dissipative (i.e. small α) magnetization
dynamics, the effect of damping is a small rotation through the angle
ψ ' α of the undamped vector field. This fact has direct consequences on
the nature of equilibrium points. When α = 0, the system is conservative
and for this reason it can only have two types of equilibria: saddles
and centers. It can be verified that a small counterclockwise rotation of
the vector field transforms centers into foci, while saddle equilibria still
remain. This is expressed in bifurcation theory by saying that saddle
equilibria are structurally stable with respect to generic perturbations
of the differential equation. On the other hand, in the case of strongly
dissipative (i.e. large α) dynamics, the rotation angle ψ is almost π/2,
which means that the magnetization evolves along the lines of steepest
energy descent toward energy minima. Equilibria are generally either
nodes or saddles.



CHAPTER 4

Precessional Magnetization
Dynamics

4.1 GEOMETRIC ASPECTS OF PRECESSIONAL DYNAMICS

Exact analytical solutions to LL or LLG equation exist for very few
special cases. However, in many problems related to magnetic storage,
spintronics, and other applications, the damping constant α is quite
small. This means that, on a relatively short time scale, the magnetization
dynamics is expected to be very close to the undamped precessional
dynamics. This suggests that a first fundamental step is to analyze the
conservative precessional magnetization dynamics. This dynamics can be
analytically studied by using the techniques developed in this chapter.
Due to the smallness of α, the actual dissipative dynamics can be then
treated as a perturbation of the conservative dynamics. This perturbation
approach will be extensively used throughout the book.

The starting point for the analysis of the conservative dynamics in
uniformly magnetized particles is the zero-damping (α = 0) equation:

dm
dt

= −m× heff = m× ∂gL
∂m

. (4.1)

As discussed in Chapter 3, this equation admits two integrals of motion,
namely, |m(t)|2 = 1 and gL(m; ha) = g0, where g0 is a constant
and gL(m; ha) is given by Eq. (3.16). Thus, magnetization trajectories of
precessional dynamics must fulfill the two constraints:

m2
x + m2

y + m2
z = 1, (4.2)

1
2
(
Dxm2

x +Dym2
y +Dzm2

z

)
− haxmx − haymy − hazmz = g0, (4.3)

where g0 is the free energy of the initial state of magnetization. This
means that magnetization trajectories can be viewed as intersections of the
unit sphere described by Eq. (4.2) with the quadric surface described by

57
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FIGURE 4.1 Precessional magnetization trajectories for ha = 0. s: energy minima;
u: energy maxima; d: energy saddles. (a) Trajectories on the unit sphere; (b)
stereographic projection.

Eq. (4.3). An illustrative example of such trajectories is shown in Fig. 4.1(a)
for the case ha = 0. In Fig. 4.1(b), the same trajectories are represented on
the stereographic plane (stereographic coordinates have been introduced
and discussed in Section 3.1).

The phase portrait of the precessional dynamics is completely
characterized by the energy critical points, i.e., maxima, minima and
saddles, as well as by the trajectories passing through saddles: either
homoclinic trajectories starting and ending at an individual saddle, or
heteroclinic trajectories starting at one saddle and ending at a different
one. These trajectories are called separatrices because they create a natural
partition of the phase portrait into different so-called “central regions”.
In order to clarify this notion, let us consider the stereographic phase
portrait shown in Fig. 4.2. This portrait corresponds to the case when the
anisotropy coefficients in Eq. (4.3) satisfy the ordering Dx < Dy < Dz

(the x axis and the z axis are the easy and hard magnetization axes,
respectively) and the external field is applied along the intermediate y
axis. Inspection of this figure reveals that the phase portrait is divided into
five regions separated by the saddle trajectories Γ1 and Γ2: two regions
associated with the two energy minima s1 and s2; two regions associated
with the two energy maxima u1 and u2; one region (indicated with I)
between the two homoclinic trajectories Γ1 and Γ2, which contains no
equilibrium points. Such regions are central regions in the sense that they
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FIGURE 4.2 (a) Stereographic-plane representation of precessional dynamics
phase portrait. The following notation is adopted: s for energy minima; u for
energy maxima; d for energy saddles. Bold lines Γ1 and Γ2 denote separatrices.
The dashed line is the unit circle. The symbol I labels the region between the two
homoclinic trajectories Γ1 and Γ2. The line Γ3 starts and ends at infinity, and it
separates trajectories traversed counterclockwise around the homoclinic trajectory
Γ2 from those traversed clockwise around u2. This special property of Γ3 is an
artifact of the stereographic projection and it is connected to the singularity of this
projection at mz = −1. On the unit sphere, the trajectory Γ3 is similar to all other
trajectories encircling u2. (b) Graph representation of the phase portrait.

are filled by a continuum of closed trajectories and in this respect they
resemble the behavior of a dynamical system around center equilibria.

The qualitative features of the precessional magnetization dynamics
are defined, once a list of the central regions and of the energy critical
points is specified. To this end, the following notation proves useful:
energy maxima are denoted as u, energy minima as s, and saddles as
d. Each central region will be indicated by the symbol ( ). If a central
region contains an energy minimum or maximum, then the notation (s)
or (u) will be used, respectively. In addition, since in generic situations
(i.e., situations with no particular symmetries or fulfillment of bifurcation
conditions), a saddle point is always associated with two homoclinic
trajectories, we will use the notation d( )( ) to indicate the saddle and
the two central regions associated with its homoclinic trajectories. It is
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remarkable that, by using these notations, all the fundamental properties
of the precessional magnetization dynamics can be specified in terms of
short strings of the introduced symbols. For example, the phase portrait
shown in Fig. 4.2 corresponds to the string {d1(s1)(s2), d2(u1)(u2), ( )}.
The empty parentheses ( ) correspond to the central region I which does
not contain equilibria. These notations can be further extended to indicate
the presence of particular symmetries in the phase portrait. In particular,
the exponent 2, i.e., ( )2, can be used for pairs of central regions ( )
exhibiting mirror symmetry with respect to the plane (mx,my).

A natural way to describe the topological properties of the
conservative phase portrait for the precessional magnetization dynamics
is by introducing an associated graph G defined as follows: each edge Ik
of the graph represents a central region, while each node corresponds
to a saddle equilibrium with the associated separatrices. Accordingly,
the nodes can be labeled with the same symbol used for saddles, i.e.,
d1, d2, . . . . As an example, the graph for the phase portrait presented
in Fig. 4.2(a) is shown in Fig. 4.2(b). This graph representation will
prove particularly useful in the discussion of slow-time-scale energy
dynamics in slightly dissipative systems (Chapter 5), as well as in the
analysis of stochastic magnetization dynamics (Chapter 10). In general,
the precessional trajectory on the unit sphere inside the central region
(graph edge) Ik will be denoted as Ck(g), and the corresponding period
as Tk(g), where g = gL(m; ha) is the constant energy value along the
trajectory.

We shall next analyze the geometrical aspects of the precessional
magnetization dynamics in some more detail. As in Section 3.4, it will
be assumed that one of the cartesian components of ha is equal to zero,
namely haz = 0, and that the anisotropy parametersDx,Dy ,Dz satisfy the
ordering: Dx ≤ Dy ≤ Dz . In this case, Eq. (4.1) can be written in cartesian
coordinates as follows:

dmx

dt
= (Dz −Dy) mz (my − ay) , (4.4)

dmy

dt
= − (Dz −Dx) mz (mx − ax) , (4.5)

dmz

dt
= (Dz −Dx) my (mx − ax)− (Dz −Dy) mx (my − ay) , (4.6)

where:

ax = − hax
Dz −Dx

, ay = − hay
Dz −Dy

. (4.7)
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When haz = 0, mz appears in Eq. (4.3) only as a square and thus it can
be eliminated by using Eq. (4.2). This leads to the following formula:

(mx − ax)2 + k2 (my − ay)2 = p2, (4.8)

where:

p2 = a2
x + k2a2

y +
Dz − 2g0
Dz −Dx

, (4.9)

k2 =
Dz −Dy

Dz −Dx
. (4.10)

Equation (4.8) shows that the projections of magnetization trajectories
on the (mx,my)-plane are the family of self-similar elliptic curves with
aspect ratio k. All these ellipses are centered at the point (ax, ay). The
above family of ellipses is generated by varying the free energy value g0
within an appropriate range. Indeed, for a given value of ha, the constant
g0 controls the size of the ellipses through Eqs (4.8)–(4.10). It must be
pointed out that only those portions of the ellipses which lie inside the
circle m2

x + m2
y ≤ 1 are accessible to the magnetization dynamics. On

the other hand, mz does not appear explicitly in Eq. (4.8), which means
that there exist motions with opposite values of mz resulting in identical
projections on the (mx,my)-plane. By analyzing Eqs (4.4)–(4.6), one finds
that for any point (mx,my) a change in the sign of mz produces a change of
the sign of dmx/dt and dmy/dt. This means that the mirror transformation
(mx,my,mz) → (mx,my,−mz) results in the transformation dmx/dt →
−dmx/dt, dmy/dt → −dmy/dt, dmz/dt → dmz/dt. It can be inferred
from this symmetry property that when the curve described by Eq. (4.8)
contains no point on the unit-disk boundary m2

x + m2
y = 1, then Eq.

(4.8) corresponds to two distinct trajectories; in the opposite case, Eq.
(4.8) represents two mirror parts of the same trajectory with positive and
negative mz traversed in succession during the magnetization motion.

Based on these observations, a useful “unit-disk” representation of the
phase portrait of the precessional dynamics can be introduced. Although
this representation involves only two components of magnetization,
information on the third component mz can be immediately obtained via
the relation m2

z = 1− (m2
x+ m2

y). For example, mz = ±1 when (mx,my) =
(0, 0); mz = 0 when (mx,my) lies on the unit circle. Information about the
sign of mz can then be obtained by analyzing the unit-disk representation
in the light of the mirror symmetry property discussed above.

Two examples of unit-disk representations are shown in Fig. 4.3. In
order to clarify the interpretation of this representation, it is useful to
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FIGURE 4.3 Sketches of the unit-disk representation for two different values of
ha. Magnetization trajectories correspond to those portions of the ellipses given
by Eq. (4.8) that are enclosed by the unit circle m2

x + m2
y = 1. The dashed portions

of the ellipses are irrelevant to the actual trajectories. The following notation
is adopted to indicate equilibrium points: s denotes energy minima, u denotes
energy maxima, and d denotes energy saddles. Bold lines Γ1 and Γ2 correspond to
the projections of separatrices.

discuss this figure in some detail. The ellipses that do not intersect the unit
circle (see trajectory L1 in Fig. 4.3(a)) represent two distinct trajectories
on opposite hemispheres, which have exactly the same projection on
the (mx,my)-plane but opposite directions of motion. These types of
trajectory exist only in the case when a2

x + a2
y < 1, and they always

encircle an energy maximum located at mx = ax,my = ay . Next, let
us discuss how to interpret the unit-disk representation in the case of
ellipses that intersect with the unit circle. Consider the ellipse L2 shown
in Fig. 4.3(a). Suppose that the sign of mz is such that the motion along
the ellipse L2 is from point 1 toward point 2. When point 2 is reached, mz

achieves zero value and subsequently changes its sign. This means that
the magnetization motion continues on the opposite hemisphere and the
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projection of the magnetization trajectory on the (mx,my)-plane retraces
the curve L2 in the opposite direction, that is, from 2 to 1.

The critical curves separating the above two classes of ellipses are
those tangent to the unit circle. At the point of tangency, the normal to
the constant-energy surface described by Eq. (4.3) is parallel to the normal
to the unit sphere. Since the former coincides with the direction of the
effective field heff and the latter with the direction of m, one concludes
that the tangency point is an equilibrium, because heff is aligned with m.
There are three different cases of tangency: tangency from inside (curves
Γ1, Γ2 in Fig. 4.3(a)); tangency from outside with inward convexity (curve
L3 in Fig. 4.3(a)); tangency from outside with outward convexity (curve
L4 in Fig. 4.3(b)). By taking into account that according to Eqs (4.8)–
(4.10) an increase in energy g0 results in a decrease in the ellipse size,
one concludes that tangency from inside corresponds to saddle points,
tangency from outside with inward convexity corresponds to energy
minima, and tangency from outside with outward convexity corresponds
to energy maxima.

Ellipses tangent from inside play a particularly significant role. Since
a tangency point from inside is a saddle, the corresponding tangent
ellipse represents a separatrix. As previously discussed, separatrices
identify central energy regions and thus define the essential aspects of
the phase portrait. This simple geometrical interpretation of separatrices
makes the unit-disk representation very useful for the classification of
precessional phase portraits, especially when it is used in conjunction
with the previously introduced string notations for phase portraits. As an
example, Fig. 4.4(a)–(d), depict unit-disk representations corresponding to
the four regions A, B1, B2, C defined in Fig. 3.5 from Chapter 3. Figure 4.5
presents the highly symmetric case where the field is aligned along the
x-axis (easy axis). This case is interesting because it exhibits the presence
of heteroclinic trajectories. We shall use the special notation d2( )2( )( ),
without commas, to indicate the two saddles connected by heteroclinic
trajectories and the four associated central energy regions.

4.2 ANALYTICAL STUDY OF PRECESSIONAL DYNAMICS

The starting point for the derivation of analytical solutions for
precessional magnetization dynamics is Eq. (4.8), which reveals that
the projection of the magnetization trajectory onto the (mx,my)-plane
is an elliptical curve. Therefore, the trajectory can be expressed in the
parametric form:

mx = ax − p cosu, my = ay +
p

k
sinu, (4.11)
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FIGURE 4.4 Classification of phase portraits by means of unit-disk representation
for different regions in the control plane (hax, hay). In particular, unit-disk
representations are shown for applied fields in regions A (a), B1 (b), B2 (c), C
(d), defined in Fig. 3.5.

where the connection between the parametric variable u and time is to
be determined. Equation (4.11) implies that the remaining magnetization
component mz is given by:

mz = ±
√

1− (ax − p cosu)2 − (ay + (p/k) sinu)2. (4.12)
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FIGURE 4.5 Unit-disk representation and corresponding string description of
phase portraits under x-directed field. (a) Zero-field case characterized by the
existence of symmetric heteroclinic trajectories; (b) portrait under nonzero field
when heteroclinic trajectories are still present; (c) portrait under larger field when
heteroclinic trajectories have been transformed into homoclinic ones.

By inserting Eq. (4.11) into Eq. (4.5) one finds:

du
dt

= k (Dz −Dx) mz, (4.13)

which yields the desired equation for u(t), since mz depends on u only. By
using the method of separation of variables, one obtains:
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du√
1− (ax − p cosu)2 − (ay + (p/k) sinu)2

= k (Dz −Dx) dt, (4.14)

where the “±” signs are omitted because the last equation is to be
construed as an equation for a multi-branch function.

Equation (4.14) is solvable in terms of elliptic integrals and elliptic
functions. This can be shown by carrying out the substitution:

w = tan(u/2), (4.15)

which transforms Eq. (4.14) into the equation:

dw√
P4(w)

=
k

2
(Dz −Dx) dt, (4.16)

where P4(w) represents the fourth-order polynomial:

P4(w) =
(
1 + w2

)2 − [ax(1 + w2)− p(1− w2)
]2

−
[
ay(1 + w2) + (2p/k)w

]2
. (4.17)

By integrating Eq. (4.16), we obtain:

∫ w

0

dw′√
P4(w′)

=
k

2
(Dz −Dx) t. (4.18)

The integral in the left-hand side of Eq. (4.18) belongs to the class of
incomplete elliptic integrals. The equation can be inverted, i.e., it can be
solved for w as a function of t. This inversion leads to the expression for
w in terms of elliptic functions. To ascertain the nature of these elliptic
functions, detailed information is needed on the roots of the polynomial
P4(w). This is not an easy task, because these roots are given by rather
complicated formulas. For this reason, before attempting the study of
Eq. (4.14) in all its complexity, it is useful to get some insight into the
properties of precessional magnetization dynamics by considering the
particular case of zero applied field. This case is simple enough to be
solved without complicated technical discussions. The phase portrait
corresponding to this case is shown in Fig. 4.1. Under zero field, ax =
ay = 0 (see Eq. (4.7)). Hence, the magnetization components (Eqs (4.11)
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and (4.12)) can be expressed as functions of:

w = sinu. (4.19)

Indeed, one finds:

mx = ∓p
√

1− w2, my =
p

k
w, mz = ±k

′p

k

√
w2

0 − w2, (4.20)

where:

w0 =
k

k′p

√
1− p2, (4.21)

k′2 = 1 − k2, and p2 is linearly related to the system energy through Eq.
(4.9), which for zero field is reduced to:

p2 =
Dz − 2g0
Dz −Dx

. (4.22)

By making the change of variable (4.19) in Eq. (4.14), one obtains the
following equation:

dw√
(1− w2) (1− k2

Hw
2)

= ΩH dt, (4.23)

where:

kH =
1
w0

=
k′p

k

1√
1− p2

, (4.24)

ΩH = k
√

1− p2 (Dz −Dx) . (4.25)

By integrating Eq. (4.23), one finds:∫ w

0

dw′√
(1− w′2) (1− k2

Hw
′2)

= ΩH t. (4.26)

The left-hand side of this formula is the incomplete elliptic integral of the
first kind F(w, kH ). By inverting this integral, i.e., by solving Eq. (4.26)
with respect to w as a function of t, one arrives at the expression for w in



68 CHAPTER 4 Precessional Magnetization Dynamics

terms of the sn(x, k) Jacobi elliptic function [321]:

w = sn (ΩH t, kH ) . (4.27)

The function sn(x, k) can be regarded as a generalization of the
trigonometric “sin” function, as implied by its notation. For real x and
0 ≤ k2 < 1, sn(x, k) is periodic in x with period 4K(k), where K(k) is the
complete elliptic integral of the first kind:

K(k) =
∫ 1

0

dx√
(1− x2) (1− k2x2)

. (4.28)

The connection with trigonometric functions is revealed by the fact that
sn(x, 0) ≡ sinx, sn(0, k) = 0. In addition to sn(x, k), there exist two other
Jacobi elliptic functions cn(x, k) and dn(x, k), related to sn(x, k) through
the formulas:

sn2(x, k) + cn2(x, k) = 1, (4.29)
k2sn2(x, k) + dn2(x, k) = 1. (4.30)

The period of cn(x, k) and dn(x, k) is 4K(k) and 2K(k), respectively.
Furthermore, cn(x, 0) ≡ cosx, cn(0, k) = 1, dn(x, 0) ≡ 1, dn(0, k) = 1.

By inserting Eq. (4.27) into Eq. (4.20) and by taking into account
relations (4.29)–(4.30), one obtains the following expressions for the
magnetization components:

mx = ∓p cn (ΩH t, kH ) , (4.31)

my =
p

k
sn (ΩH t, kH ) , (4.32)

mz = ±
√

1− p2 dn (ΩH t, kH ) . (4.33)

One finds two sets of solutions, depending on the choice made for the sign
of mz . The appropriate sign of mx is determined by using Eq. (4.4).

Magnetization components mx, my , and mz given by Eqs (4.31)–
(4.33) depend on the energy g0 of the precessional dynamics through the
parameter p defined by Eq. (4.22). This parameter has clear geometrical
meaning. It is evident from Eq. (4.8) that p measures the size of the
ellipse that corresponds to the magnetization dynamics in the unit-disk
representation. According to Eq. (4.3), in the case of zero applied field the
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FIGURE 4.6 Unit-disk representation of phase portrait under zero field. The
following notation is used: s for energy minima; u for energy maxima; d for energy
saddles. Labels H and L denote high-energy and low-energy regions, respectively.
They are separated by doubly-connected separatrices Γ.

energy values are in the range:

Dx

2
≤ g0 ≤

Dz

2
. (4.34)

By using this result in Eq. (4.22), one finds that the corresponding range
for p is 0 ≤ p2 ≤ 1. When the energy is varied in this interval, Eqs (4.31)–
(4.33) generate the unit-disk phase portrait shown in Fig. 4.6. The energy
maxima correspond to p = 0. In this case, the constant-energy ellipse (see
Eq. (4.8)) is reduced to the point (ax, ay). On the other hand, when p = 1
the energy minima are achieved and the corresponding ellipse is tangent
to the unit circle from outside. The heteroclinic separatrix trajectories (bold
lines in Fig. 4.6) divide the unit-disk portrait into the high-energy (H) and
low-energy (L) regions.
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• Region H
This region consists of two separate subregions, which are mirror

images with respect to the (mx,my)-plane. In this region, the system
energy varies in the interval Dy/2 ≤ g0 ≤ Dz/2, that is:

0 ≤ p2 ≤ k2. (4.35)

According to Eq. (4.24), 0 ≤ kH ≤ 1 in this region. This implies that
the magnetization dynamics is a precessional motion around the hard
z axis. The precession period is given by the expression:

T (g0) =
4K(kH )

ΩH
, (4.36)

where K(kH ) (see Eq. (4.28)) represents the complete elliptic integral of
the first kind.

• Region L
This region consists of two separate subregions, which are mirror
images with respect to the (my,mz)-plane. In this region, the energy
varies in the interval Dx/2 ≤ g0 ≤ Dy/2. Therefore:

k2 ≤ p2 ≤ 1, (4.37)

which implies that 1 ≤ kH ≤ ∞. The nature of the corresponding
magnetization dynamics becomes clear once we observe that the
cn(x, k) and dn(x, k) Jacobi functions are transformed into one another
when k > 1. By using known transformation rules for Jacobi functions,
one can write Eqs (4.31)–(4.33) as follows:

mx = ∓pdn (ΩLt, kL) , (4.38)

my =
1
k′

√
1− p2 sn (ΩLt, kL) , (4.39)

mz = ±
√

1− p2 cn (ΩLt, kL) , (4.40)

where:

ΩL = kH ΩH = k′p (Dz −Dx) , (4.41)

kL =
1
kH

=
k

k′p

√
1− p2. (4.42)
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It can be verified that 0 ≤ kL ≤ 1. This implies that Eqs (4.38)–(4.40)
describe a precessional dynamics around the x axis. The precession
period is:

T (g0) =
4K(kL)

ΩL
. (4.43)

In the following two sections, we discuss in some detail the solution
of Eq. (4.14) under nonzero field in the cases of particular physical interest
when the applied magnetic field is aligned along one of the anisotropy
axes.

4.3 PRECESSIONAL DYNAMICS UNDER TRANSVERSE
MAGNETIC FIELD

In this section, we shall discuss the case of transverse field, when hax =
haz = 0, while hay 6= 0. This case is of particular importance in the analysis
of the precessional switching phenomena discussed in Chapter 6. The
phase portrait for this case and the corresponding energy graph are shown
in Fig. 4.7. The same phase portrait was also previously presented as an
example in Fig. 4.2 in stereographic projection form. To avoid ambiguities,
we shall assume hay > 0, i.e., ay < 0 (see Eq. (4.7)). We shall next use the
change of variables given by Eq. (4.19). In terms of w, the magnetization
components (Eqs (4.11) and (4.12)) are expressed as follows:

mx = ∓p
√

1− w2, my = ay +
p

k
w,

mz = ±k
′p

k

√
(w − w−)(w+ − w),

(4.44)

where:

w± = − kay
pk′2

± k

k′p

√
1− p2 +

k2a2
y

k′2
. (4.45)

By making the same change of variables in Eq. (4.14), one obtains:

dw√
(1− w2) (w − w−) (w+ − w)

= k′p (Dz −Dx) dt. (4.46)

The integration and inversion of Eq. (4.46) in order to obtain w as
a function of time depend on how the four roots of the integrand
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FIGURE 4.7 (a), (b) Phase portrait of the precessional magnetization dynamics
on the unit sphere when the applied field is directed along the positive y axis.
Full dot: energy minimum; open dot: energy maximum; cross: energy saddle; bold
lines: separatrices. (c) Corresponding graph. s1, s2: minima; d1, d2: saddles; u1, u2:
maxima. I1, I2, I3, I4, I5: central energy regions.

denominator are ordered for various energy ranges. To understand this
root ordering, we shall consider the unit-disk representation of the phase
portrait of the magnetization dynamics shown in Fig. 4.8 for the case
ax = 0, ay < 0, and |ay| < 1. It is apparent from Eq. (4.44) that w is a linear
function of my and that the equalities w = w± are equivalent to mz = 0,
which means that the corresponding points are on the boundary of the
unit disk. The presence of the field breaks the heteroclinic connections
shown in Fig. 4.6 into two pairs of homoclinic trajectories represented by
the bold lines in Fig. 4.8. These trajectories divide the phase portrait into
high-energy (H), intermediate-energy (I), and low-energy (L) regions.

• Region H
The region H exists only if |ay| < 1. It consists of two separate
subregions which are symmetric with respect to the (mx,my)-plane. In
this region, the parameter p varies in the interval:

0 ≤ p2 ≤ k2 (1− |ay|)2 , (4.47)

and the root ordering is: w− < −1 < 1 < w+. The variable w varies
in the interval (−1, 1) during the magnetization dynamics. When p = 0
(energy maxima), w− → −∞, w+ → +∞. Conversely, w− = −1, w+ >
1 when p = k(1− |ay|).

• Region I
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FIGURE 4.8 Unit-disk representation of phase portrait when field is applied along
the positive y axis. Adopted notation is as follows. s: energy minima; u: energy
maxima; d: energy saddles. Labels H , I and L denote high-energy, intermediate-
energy, and low-energy regions, respectively. Lines Γ1 and Γ2 correspond to
separatrices.

The region I is symmetric with respect to the (mx,my)- and (my,mz)-
planes. In this region, the parameter p varies in the interval:

k2 (1− |ay|)2 ≤ p2 ≤ k2 (1 + |ay|)2 , (4.48)

and the root ordering is: −1 < w− < 1 < w+. The variable w varies in
the interval (w−, 1) during the magnetization dynamics.

• Region L
The region L exists only if |ay| < k′2/k2. It consists of two subregions
which are symmetric with respect to the (my,mz)-plane. In this region,
the parameter p varies in the interval:

k2 (1 + |ay|)2 ≤ p2 ≤ 1 +
k2a2

y

k′2
, (4.49)
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and the root ordering is: −1 < w− < w+ < 1. The variable w varies in
the interval (w−, w+) during the magnetization dynamics. When p2 =
k2 (1 + |ay|)2, then w− > −1 and w+ = 1, whereas −1 < w− = w+ < 1
when p2 = 1 + k2a2

y/k
′2.

We shall first discuss regions H and L. Region I will require a slightly
different treatment.

Solution for region H

In order to integrate Eq. (4.46), it is useful to carry out a transformation
leaving the ±1 roots of the denominator unchanged, while transforming
the roots w+ and w− into roots with opposite values. This can be achieved
by using the following Möbius transformation [588]:

ξ =
w − q
1− qw

, w =
ξ + q

1 + qξ
. (4.50)

This transformation maps w = ±1 into ξ = ±1, respectively. The
parameter q has to be chosen in such a way that ξ+ + ξ− = 0, where
ξ± = (w± − q)/(1− qw±). This leads to the equation:

q2 − 2sq + 1 = 0, (4.51)

where:

s =
1 + w+w−
w+ + w−

. (4.52)

The solutions q = s ±
√
s2 − 1 of Eq. (4.51) are real only when s2 − 1 ≥ 0.

It can be verified that s2 − 1 = (w2
+ − 1)(w2

− − 1)/(w+ + w−)2. Thus,
s2 − 1 ≥ 0 when the w± roots are both outside or both inside the interval
(−1, 1). This is precisely the root ordering associated with regions H and
L, respectively. The Möbius transformation given by Eq. (4.50) has the
determinant equal to 1 − q2. Therefore, of the two acceptable values of
q, it is convenient to use the one for which 1 − q2 > 0. Indeed, this is
because this choice of q preserves the order of the polynomial roots when
making the change of variable from w to ξ. Thus, we choose:

q = s

(
1−

√
1− 1

s2

)
. (4.53)
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By applying the change of variables (4.50) in Eq. (4.46) and integrating,
after straightforward but somewhat lengthy transformations one finds
that: ∫ ξ

0

dξ′√
(1− ξ′2) (1− k2

H ξ
′2)

= ΩH t, (4.54)

where:

k2
H =

(
1− qw+

w+ − q

)2

=
(

1− qw−
w− − q

)2

, (4.55)

ΩH = k′p

√
1− q2
k2
H − q2

(Dz −Dx) . (4.56)

It must be noted that the function under the square root in Eq. (4.56)
is positive. Indeed, it can be verified that (1 − q2)/(k2

H − q2) = (q −
w−)(w+−q)/(1−q2). The latter quantity is positive becausew− < q < w+.
This is the consequence of the order-preserving property of the w → ξ
transformation and of the fact that w = q is transformed into ξ = 0
by Eq. (4.50).

By inverting Eq. (4.54), one obtains a solution for ξ in terms of Jacobi
elliptic functions:

ξ = sn (ΩH t, kH ) . (4.57)

By using Eqs (4.50) and (4.57) in Eq. (4.44) one obtains the expressions for
the magnetization components in region H :

mx = ∓p
√

1− q2 cnH

1 + qsnH
, (4.58)

my = ay +
p

k

q + snH

1 + qsnH
, (4.59)

mz = ±k
′p
√

1− q2
k

√
1− q2
k2
H − q2

dnH

1 + qsnH
, (4.60)

where snH , cnH , and dnH denote the corresponding Jacobi elliptic
functions of argument (ΩH t, kH ). According to Eq. (4.55), 0 < k2

H < 1,
because w+ > 1 for region H . The ± signs in Eqs (4.58) and (4.60) reflect
the fact that region H consists of two subregions which are symmetric
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with respect to the (mx,my)-plane (see Fig. 4.8), and cover the same energy
range. From Eqs (4.58)–(4.60), one finds that the precession period is:

T (g0) =
4K(kH )

ΩH
. (4.61)

Solution for region L

Equations (4.58)–(4.60) are valid for region L too. The only essential
difference is that k2

H > 1. This can be inferred from Eq. (4.55) and the
inequality −1 < w+ < 1, which is valid in region L. The solution can be
reduced to elliptic functions with modulus smaller than 1 by using Jacobi
function identities [321,625]. The final result is:

mx = ∓p
√

1− q2 dnL

1 + qkLsnL
, (4.62)

my = ay +
p

k

q + kLsnL

1 + qkLsnL
, (4.63)

mz = ±k
′p
√

1− q2
k

√
1− q2

1− q2k2
L

kLcnL

1 + qkLsnL
, (4.64)

where k2
L = 1/k2

H . The symbols snL, cnL, and dnL are the notations for
the corresponding elliptic functions of argument (ΩLt, kL), where ΩL =
kH ΩH . The precession period is:

T (g0) =
4K(kL)

ΩL
. (4.65)

Solution for region I

In this case, it is convenient to apply two sequential transformations of
Eq. (4.46). First, the ordering −1 < w− < 1 < w+ is transformed
into w∗− < −1 < 1 < w∗+ by an intermediate transformation leaving 1
unchanged and transforming w− into −1. This transformation is given by
the formula:

w∗ = 1− 2
1− w

1− w−
, w = 1 +

1
2

(1− w−) (w∗ − 1) . (4.66)



4.3 Precessional Dynamics under Transverse Magnetic Field 77

In terms of the new variable w∗, Eq. (4.46) can be written as follows:

dw∗√
(1− w∗2)

(
w∗ − w∗−

) (
w∗+ − w∗

) = ck′p (Dz −Dx) dt, (4.67)

where:

c =
1− w−

2
, (4.68)

w∗− = 1− 4
1− w−

, w∗+ = 1− 2
1− w+

1− w−
, (4.69)

and w∗− < −1 < 1 < w∗+. Given this inequality, Eq. (4.67) can be integrated
and inverted by the method previously used for region H . By introducing
the notations:

s∗ =
1 + w∗+w

∗
−

w∗+ + w∗−
, (4.70)

q∗ = s∗

(
1−

√
1− 1

s∗2

)
, (4.71)

one arrives at the following equation, analogous to Eq. (4.54):

∫ ξ∗

0

dξ′√
(1− ξ′2) (1− k2

I ξ
′2)

= ΩI t, (4.72)

where:

k2
I =

(
1− q∗w∗+
w∗+ − q∗

)2

=
(

1− q∗w∗−
w∗− − q∗

)2

, (4.73)

ΩI = ck′p

√
1− q∗2
k2
I − q∗2

(Dz −Dx) . (4.74)

By inverting Eq. (4.72), one finds the solution for ξ∗ in terms of Jacobi
elliptic functions:

ξ∗ = sn (ΩI t, kI ) . (4.75)
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The connection between ξ∗ and the magnetization components is more
complicated than before, because of the intermediate transformation from
w to w∗. After algebraic manipulations analogous to those carried out
for region H and an appropriate change of the time origin, the following
analytical expressions are obtained:

mx = cp (1− q∗)
√

1 + q∗

kI − q∗

×
√

(dnI − kI cnI ) (1 + dnI )
dnI − q∗cnI

cn (ΩI t/2, kI ) , (4.76)

my = ay +
p

k
− cp (1− q∗)

k

dnI + cnI

dnI − q∗cnI
, (4.77)

mz = −cpk
′ (1 + q∗)
k

√
1− q∗
kI + q∗

×
√

(dnI + kI cnI ) (1 + dnI )
dnI − q∗cnI

k′I sn (ΩI t/2, kI )
dn (ΩI t/2, kI )

, (4.78)

where k′2I = 1 − k2
I . The symbols snI , cnI , and dnI denote the

corresponding elliptic functions of argument (ΩI t, kI ).

4.4 PRECESSIONAL DYNAMICS UNDER LONGITUDINAL
MAGNETIC FIELD

This is the case when hax 6= 0, while hay = haz = 0. This
case will be instrumental in the analysis of magnetization relaxation
discussed in Chapter 6 and in the treatment of spin-transfer-driven
dynamics presented in Chapter 9. The phase portrait for this case and the
corresponding energy graph are shown in Fig. 4.9. To avoid ambiguities,
we shall assume that hax > 0, i.e., ax < 0 (see Eq. (4.7)). We shall next
introduce the variable:

w = − cosu. (4.79)

In terms of w, the magnetization components (Eqs (4.11) and (4.12)) are
expressed as follows:

mx = ax + pw, my = ±p
k

√
1− w2,

mz = ±k
′p

k

√
(w − w−)(w − w+),

(4.80)



4.4 Precessional Dynamics under Longitudinal Magnetic Field 79

FIGURE 4.9 (a) Phase portrait of the precessional magnetization dynamics on
the unit sphere when the applied field is directed along the positive x axis. Full
dot: energy minimum; open dot: energy maximum; cross: energy saddle; bold
lines: separatrices. (b) Corresponding graph. s1, s2: minima; d1, d2: saddles; u1,
u2: maxima. I1, I2, I3, I4: central energy regions.

where:

w± =
k2ax
k′2p

± 1
k′p

√
p2 − k2

(
1− a2

x

k′2

)
. (4.81)

We shall see that the expression under the square root may become
negative under certain conditions, i.e., w± can be complex conjugate. By
using the transformation (4.79) in Eq. (4.14), one obtains:

dw√
(1− w2) (w − w−) (w − w+)

= k′p (Dz −Dx) dt. (4.82)

The integration and inversion of Eq. (4.82) in order to obtain w as a
function of time depend on the nature of the roots w±, which may be
real or complex conjugate. When the roots are real, the nature of their
ordering affects the inversion as well. The unit-disk representation of the
phase portrait of the magnetization dynamics is shown in Fig. 4.10. It is
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FIGURE 4.10 Unit-disk representation of the phase portrait when the magnetic
field is applied along positive x axis. Adopted notation is as follows. s: energy
minima; u: energy maxima; d: energy saddles. Labels H and L± denote high-
energy and low-energy regions, respectively. They are separated by doubly-
connected separatrices Γ.

apparent from this figure that the presence of the applied magnetic field
does not break the heteroclinic connections originally present in Fig. 4.6,
but rather shifts them. As a result, the portrait is divided into high-energy
(H) and low-energy (L) regions as in the case of zero field.

• Region H
This region exists only if |ax| < 1. It consists of two separate subregions
which are symmetric with respect to the (mx,my)-plane. The range of
variation of the parameter p depends on whether region L− exists or
not, namely:

0 ≤ p2 ≤ k2

(
1− a2

x

k′2

)
if |ax| ≤ k′2,

0 ≤ p2 ≤ (1− |ax|)2 if |ax| ≥ k′2.
(4.83)
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The roots w± are complex conjugate if p2 < k2
(
1− a2

x/k
′2) (see Eq.

(4.81)), otherwise they are real and follow the ordering: w− < w+ <
−1 < 1. The variable w varies in the interval (−1, 1) during the
magnetization dynamics.

• Region L+

This is the low-energy region around the energy minimum at mx = 1.
Under positive field (i.e., ax < 0), this region is always present. The
range of variation of the parameter p depends on whether region L−
exists or not, namely:

k2

(
1− a2

x

k′2

)
≤ p2 ≤ (1 + |ax|)2 if |ax| ≤ k′2,

(1− |ax|)2 ≤ p2 ≤ (1 + |ax|)2 if |ax| ≥ k′2.
(4.84)

The corresponding root ordering is: −1 < w− < w+ < 1 if p2 <

(1− |ax|)2; otherwise: w− < −1 < w+ < 1. The variable w varies in
the interval (w+, 1) during the magnetization dynamics.

• Region L−
This is the low-energy region around the energy minimum at mx = −1.
Under positive field (i.e., ax < 0), this region exists only if |ax| ≤ k′2.
The parameter p varies within the range:

k2

(
1− a2

x

k′2

)
≤ p2 ≤ (1− |ax|)2 , (4.85)

and the corresponding root ordering is: −1 < w− < w+ < 1. The
variable w varies in the interval (−1, w−) during the magnetization
dynamics.

The analytical formulas for the magnetization dynamics in the
different energy regions can be obtained by applying the same line of
reasoning as in the previous section. For this reason, we shall refer to that
section for the definition of the various parameters that will be used in the
subsequent discussion. Depending on the properties of the roots w±, one
can conveniently identify two cases which are solved through different
variable transformations.

Case 1

This is the case when the roots w±: (i) are real and follow the ordering
−1 < w− < w+ < 1 (region L−; region L+ for p2 < (1− |ax|)2); or (ii)
are complex conjugate (region H for p2 < k2

(
1− a2

x/k
′2)). The derivation
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proceeds by applying the Möbius transformation (4.50) already used in
the previous section. This leads to the equation:

∫ ξ

1

dξ′√
(1− ξ′2) (ξ′2 − k′2L )

= ∓ΩLt, (4.86)

where the ∓ sign refers to regions L+ and L−, respectively, while:

k′2L =
(
w+ − q
1− qw+

)2

=
(
w− − q
1− qw−

)2

, (4.87)

ΩL = k′p

√
1− q2

1− q2k′2L
(Dz −Dx) , (4.88)

and q is defined by Eqs (4.53), (4.52) and (4.81). The elliptic integral in Eq.
(4.86) can be inverted by using the Jacobi elliptic function “dn”:

ξ = ±dn (ΩLt, kL) , (4.89)

where k2
L = 1− k′2L .

• Regions L+ and L−
By using Eqs (4.89), (4.50) and (4.80), one obtains the following

analytical expressions for the magnetization components:

mx = ax + p
q ± dnL

1± qdnL
, (4.90)

my = −p
k

√
1− q2 kLsnL

1± qdnL
, (4.91)

mz = ±k
′p
√

1− q2
k

√
1− q2

1− q2k′2L
kLcnL

1± qdnL
, (4.92)

where the ± signs refer to region L+ and region L−, respec-
tively, whereas snL, cnL, and dnL are the notations for the corre-
sponding elliptic functions of argument (ΩLt, kL). The precession
period is:

T (g0) =
4K(kL)

ΩL
. (4.93)
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• Region H
Formulas (4.90)–(4.92) are also valid for regionH . However, in this case
the roots w± are complex conjugate and, according to Eq. (4.87), k′2L < 0
and k2

L > 1. The transformation rules for the Jacobi elliptic functions
[321,625] can be used to represent Eqs (4.90)–(4.92) in terms of Jacobi
elliptic functions with a modulus smaller than 1. After taking proper
account of sign consistencies, one obtains the following result:

mx = ax + p
q + cnH

1 + qcnH
, (4.94)

my = ±p
k

√
1− q2 snH

1 + qcnH
, (4.95)

mz = ∓k
′p
√

1− q2
k

√
1− q2

k2
H + q2k′2H

dnH

1 + qcnH
, (4.96)

where k2
H = 1/k2

L, k′2H = 1 − k2
H , and the two signs refer to the two

subregions with opposite values of mz that form regionH . The symbols
snH , cnH , and dnH are notations for the corresponding elliptic functions
of argument (ΩH t, kH ), where ΩH = kLΩL. As before, the precession
period is:

T (g0) =
4K(kH )

ΩH
. (4.97)

Case 2
This is the case when the roots w±: (i) follow the ordering w− < −1 <

w+ < 1 (region L+ for p2 > (1− |ax|)2); or (ii) follow the ordering
w− < w+ < −1 < 1 (region H for p2 > k2

(
1− a2

x/k
′2)). The derivation

proceeds by applying the same sequence of transformations already used
in the previous section when region I was discussed. By first applying the
intermediate transformation given by Eq. (4.66) one obtains:

dw∗√
(1− w∗2)

(
w∗ − w∗−

) (
w∗ − w∗+

) = ck′p (Dz −Dx) dt, (4.98)

where −1 < w∗− < w∗+ < 1 for region L+ and −1 < w∗+ < w∗− < 1 for
region H . Equation (4.98) can be integrated and inverted by the method
used for case 1. Due to the different ordering of w∗− and w∗+ in region
L+ and region H , different formulas are obtained for the magnetization
components:
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• Region L+

mx = ax + p− cp(1− q∗) 1− dn∗

1 + q∗dn∗
, (4.99)

my = −cp (1− q∗)
k

√
1 + q∗

1− q∗k∗′

√
dn∗ + k∗′

1 + dn∗
k∗sn∗

1 + q∗dn∗
, (4.100)

mz =
ck′p (1 + q∗)

k

√
1− q∗

1 + q∗k∗′

√
1 + dn∗

dn∗ + k∗′
k∗cn∗

1 + q∗dn∗
. (4.101)

• Region H

mx = ax + p− cp(1− q∗) 1− dn∗

1 + q∗dn∗
, (4.102)

my = ±cp (1− q∗)
k

√
1 + q∗

1 + q∗k∗′

× 1√
(dn∗ + k∗′) (1 + dn∗)

k∗2sn∗cn∗

1 + q∗dn∗
, (4.103)

mz = ∓ck
′p (1 + q∗)

k

√
1− q∗

1− q∗k∗′

×
√

(dn∗ + k∗′) (1 + dn∗)
1

1 + q∗dn∗
. (4.104)

The two signs correspond to the two subregions with opposite mz that
form region H .

In the previous expressions, q∗ is defined by Eqs (4.69)–(4.71) and
(4.81), while:

k∗′2 =
(
w∗+ − q∗

1− q∗w∗+

)2

=
(
w∗− − q∗

1− q∗w∗−

)2

, (4.105)

and k∗2 = 1− k∗′2. The symbols sn∗, cn∗, and dn∗ are the notations for the
corresponding elliptic functions of argument (Ω∗t, k∗), where:

Ω∗ = k′p

√
1− q∗2

1− q∗2k∗′2
(Dz −Dx) . (4.106)
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The product sn∗cn∗ in Eq. (4.103) has the same period as dn∗. This means
that the period of the precessional dynamics in Region H is:

T (g0) =
2K(k∗)

Ω∗
. (4.107)

4.5 HAMILTONIAN STRUCTURE OF PRECESSIONAL DYNAMICS

It is known that conservative mechanical systems can be described by the
canonical Hamiltonian equations:

dp
dt

= −∂H
∂q

, (4.108)

dq
dt

=
∂H
∂p

, (4.109)

where the state variables p and q are “generalized” momenta
and coordinates, respectively, while the function H(q(t),p(t)), called
Hamiltonian, has the physical meaning of energy.

The Hamiltonian system (4.108)–(4.109) can also be written in the
matrix form: (

dp/dt
dq/dt

)
= S ·

(
∂H/∂q
∂H/∂p

)
, (4.110)

where S is the antisymmetric matrix:

S =
(

0 −I
I 0

)
, (4.111)

with I representing the identity matrix.
Hamiltonian equations play a central role in modern physics

because they reveal that the underlying dynamics is controlled by
energy. This fundamental physical feature is replicated in the structure
of quantum mechanics. The Hamiltonian equations (4.108)–(4.109) are
highly symmetric, an aspect widely exploited in the development of
the extensive mathematical theory of Hamiltonian systems. The most
salient results of this theory are the conservation of phase volumes,
the conservation of “symplectic areas”, and the existence of the
Poincaré–Cartan integral invariant.
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Due to the importance of Hamiltonian systems, it is interesting to
examine if the structure of the precessional Landau–Lifshitz equation:

dm
dt

= m× ∂gL
∂m

(4.112)

is Hamiltonian. One important distinction between canonical Hamilto-
nian equations like (4.108)–(4.109) and magnetization dynamic equation
(4.112) is immediately apparent: the number of state variables in Eq.
(4.112) is odd, while the number of state variables in canonical Hamil-
tonian systems is always even. However, there is some similarity as well.
In fact, Eq. (4.112) can be written in the matrix form:

dm
dt

= Λ · ∂gL
∂m

, (4.113)

where Λ is the antisymmetric matrix:

Λ =

 0 −mz my

mz 0 −mx

−my mx 0

 . (4.114)

This form of Eq. (4.112) resembles Eq. (4.110) of Hamiltonian dynamics.
To further reveal the Hamiltonian structure of Eq. (4.112), it is

appropriate to mention that canonical Hamiltonian equations like
(4.108)–(4.109) can be written in terms of Poisson brackets. The classical
(canonical) Poisson bracket for two differentiable functions f and h of p(t)
and q(t) is defined by the formula:

{f, h} =
∑
k

(
∂f

∂pk

∂h

∂qk
− ∂f

∂qk

∂h

∂pk

)
, (4.115)

where pk and qk are the components of p and q, respectively.
By using formula (4.115), Hamiltonian equations (4.108)–(4.109) can

be represented in the form:

dpk
dt

= {H, pk},
dqk
dt

= {H, qk}. (4.116)

It turns out that Eq. (4.112) for precessional dynamics can also be written
in the form (4.116), if we use the so-called “rigid-body” Poisson bracket
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defined as:

{f, h} = m ·
(
∂f

∂m
× ∂h

∂m

)
. (4.117)

It can be shown that the bracket defined by Eq. (4.117) has the same four
fundamental properties as the classical Poisson bracket: (i) bilinearity; (ii)
antisymmetry; (iii) Leibnitz relation; (iv) Jacobi identity.

The Poisson bracket (4.117) can also be written as follows:

{f, h} =
∂h

∂m
·
(
m× ∂f

∂m

)
. (4.118)

By choosing:

h = mx, f = gL, (4.119)

we obtain:

{gL,mx} = ex ·
(
m× ∂gL

∂m

)
=

dmx

dt
. (4.120)

Now, it is apparent that Eq. (4.112) for the precessional magnetization
dynamics can be written in the form:

dmx

dt
= {gL,mx},

dmy

dt
= {gL,my},

dmz

dt
= {gL,mz}, (4.121)

which is similar to the form (4.116) of canonical Hamiltonian equations.
Thus, it can be concluded that precessional magnetization dynamics has
noncanonical Hamiltonian structure that can be represented in terms of
“rigid-body” Poisson bracket (4.117) in the same mathematical form as
canonical Hamiltonian equations written in terms of classical Poisson
bracket (4.115).

Next, we consider the condition for the function h(m(t)) being an
integral of motion for the precessional dynamics. One has:

dh
dt

=
∂h

∂m
· dm

dt
=

∂h

∂m
·
(
m× ∂gL

∂m

)
. (4.122)
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By using Eq. (4.118) in the last equation, we obtain:

dh
dt

= {gL, h}. (4.123)

Thus, the conservation of h(m(t)) can be written in the familiar form:

{gL, h} = 0. (4.124)

Casimir integrals of motion are integrals of motion that satisfy the
equality:

{f, C(m)} = 0 (4.125)

for any differentiable function f . The function:

C(m(t)) = |m(t)|2 (4.126)

is a Casimir integral of motion for the precessional dynamics. Indeed,
according to Eqs (4.118) and (4.126):

{f, C(m)} = 2m ·
(
m× ∂f

∂m

)
= 0. (4.127)

It is interesting to point out that the canonical Hamiltonian structure for
precessional magnetization dynamics can be achieved by representing
this dynamics in spherical coordinates. Indeed, according to Eqs (3.19) and
(3.20) from Chapter 3, the precessional (i.e., with α = 0) magnetization
dynamics is described in spherical coordinates by the following
equations:

dφ
dt

=
1

sin θ
∂gL
∂θ

, (4.128)

− sin θ
dθ
dt

=
∂gL
∂φ

. (4.129)

The last two equations can be reduced to the canonical Hamiltonian form:

dφ
dt

= − ∂gL
∂ cos θ

, (4.130)
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d cos θ
dt

=
∂gL
∂φ

, (4.131)

with φ and cos θ as generalized momentum and coordinate, respectively.
It is worthwhile noting that the magnetization magnitude conservation is
automatically accounted for by Eqs (4.130)–(4.131), due to the very nature
of spherical coordinates.



CHAPTER 5

Dissipative Magnetization
Dynamics

5.1 DAMPING SWITCHING IN UNIAXIAL MEDIA

Landau–Lifshitz magnetization dynamics contains two distinct time
scales: the fast time scale of precessional dynamics and the relatively slow
time scale of the relaxational dynamics controlled by the small damping
constant α. The Landau–Lifshitz and Landau–Lifshitz–Gilbert equations
are written in terms of magnetization components that generally vary on
the fast time scale, and for this reason the underlying slow-time-scale
dynamics is not immediately revealed. However, there is one notable
exception where fast and slow time scales of magnetization dynamics
can be completely separated. This exception is the “damping” switching
of uniaxial media. This type of switching is of significant technological
interest due to the advent of perpendicular magnetic recording, where
the damping switching of uniaxial media is instrumental to the writing
process.

To start the discussion, consider a spatially uniform pulsed magnetic
field applied along the easy anisotropy axis of uniaxial (perpendicular)
media (see Fig. 5.1). The analytical study of the magnetization dynamics
caused by this applied field will be carried out by using the LL equation
in the dimensionless form (2.51):

dm
dt

= −m× heff − αm× (m× heff). (5.1)

Under the assumption that the anisotropy axis of the medium and the
applied field are both parallel to the z coordinate axis, the effective field
heff is expressed as (see Eq. (3.15)):

heff = hazez −D⊥(mxex + myey)−Dzmzez, (5.2)

where D⊥ = Dx = Dy and Dz < D⊥, while the normalized applied
field haz is assumed to be constant during the pulse duration. The last

91
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FIGURE 5.1 Damping-switching mechanism in uniaxial particle with easy axis
along the ez direction. The applied field is opposite to the initial magnetization.

expression for the effective field can be mathematically transformed as
follows:

heff = hazez + (D⊥ −Dz) mzez −D⊥m. (5.3)

It is clear from the mathematical form of LL equation (5.1) that there exists
an equivalence class of effective magnetic fields which all result in the
same magnetization dynamics. This class is described by the formula:

h(eq)
eff = heff + χm, (5.4)

where heff is a generic element of this class, while χ is an arbitrary scalar
function of m. By using the last observation, Eq. (5.3) for the effective field
can be simplified as follows:

heff = (haz + κeffmz) ez, (5.5)

where we have introduced the effective anisotropy constant:

κeff = D⊥ −Dz > 0, (5.6)

which accounts for both demagnetizing fields and crystal anisotropy. The
magnetic free energy which corresponds to the effective field (5.5) is given
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by the formula:

gL = −κeff

2
m2
z − hazmz. (5.7)

It is worthwhile pointing out that Kikuchi [394] considered a similar
problem for an isotropic ferromagnetic sphere, where the effective field is
defined by the expression:

heff = −1
3
m + hazez. (5.8)

The difference in the mathematical forms of Eqs (5.5) and (5.8) results
in a profound difference in magnetization switching. In the case of the
effective field (5.8), there exists an infinite set of equilibrium states for
haz = 0 and no critical field is required to switch from one equilibrium
state to another. In contrast, in the case of the effective field (5.5), there
are only two equilibrium states for haz = 0 with m = −ez and m = ez ,
respectively, and the switching from one equilibrium state to the other is
only possible if the applied field haz exceeds some critical value.

Mallinson studied in [459] the damping switching with the effective
field given by Eq. (5.5). His analysis is based on the solution of the
LLG equation in spherical coordinates. The approach presented below is
simpler because it takes explicit advantage of the rotational symmetry
of the problem and clearly separates fast and slow time scales of
magnetization dynamics.

The mathematical forms of Eqs (5.1) and (5.5) are invariant with
respect to rotations of coordinate axes x and y around the z axis. In other
words, the mathematical forms of Eqs (5.1) and (5.5) are the same for any
choice of directions of axes x and y in the plane perpendicular to the z axis.
As a result of this rotational symmetry, it is expected that dmz/dt depends
only on the z component of m. Indeed, by using simple algebra, one finds
from Eq. (5.5) that:

(m× heff)z = 0, (5.9)
(m× (m× heff))z = − (haz + κeffmz)

(
1−m2

z

)
. (5.10)

By using Eqs (5.9) and (5.10) in Eq. (5.1), we arrive at the equation:

dmz

dt
= α (haz + κeffmz)

(
1−m2

z

)
. (5.11)
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It is clear from the last equation that the magnetization switching from
the state m = −ez to the state m = ez (or vice versa) is driven exclusively
by damping. In this sense, this switching can be termed as “damping”
switching. The dynamics of mz occurs on the slow time scale. This slow
relaxational dynamics is completely decoupled from the fast precessional
dynamics of mx and my .

Equation (5.11) shows that no switching is possible if the
magnetization is initially in the equilibrium state m = −ez . However,
due to thermal effects, the magnetization slightly fluctuates around the
aforementioned equilibrium state. As a result, the value of mz at the
instant when the applied field is turned on may be slightly different
from −1 and the switching process is initiated. This argument justifies the
solution of Eq. (5.11) with the initial condition:

mz|t=0 = mz0, (5.12)

where mz0 is close to −1. It is apparent from Eq. (5.11) that:

dmz

dt
> 0 if haz > κeff, (5.13)

and switching to the equilibrium state m = ez will proceed for any
mz0 > −1. On the other hand, for mz sufficiently close to −1 we have:

dmz

dt
< 0 if haz < κeff, (5.14)

and no switching is possible. The above argument clearly reveals that:

hcrit = κeff (5.15)

plays the role of critical field for switching. In the sequel, it is assumed
that haz > hcrit.

By separating variables in Eq. (5.11), we obtain:

∫ mz

mz0

dmz

(1−m2
z)(haz + κeffmz)

= αt. (5.16)
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By performing the integration, we arrive at:

αt =
1

2(haz − κeff)
ln

1 + mz

1 + mz0

− 1
2(haz + κeff)

ln
1−mz

1−mz0
− κeff

h2
az − κ2

eff

ln
haz + κeffmz

haz + κeffmz0
. (5.17)

By using the last equation, the minimal pulse time needed for
switching can be evaluated. Indeed, if the duration of the field pulse is
such that a positive value of mz is reached, then the magnetization will be
in the basin of attraction of the reversed state m = ez , and the switching
will be achieved. Thus, the minimal pulse duration τ can be found by
substituting mz = 0 in Eq. (5.17). We derive the following expression for
τ :

τ =
1
α

[
ln(1 + cos θ0)
2(haz + hcrit)

− ln(1− cos θ0)
2(haz − hcrit)

− hcrit

h2
az − h2

crit
ln

haz
haz − hcrit cos θ0

]
, (5.18)

where:

hcrit = κeff, (5.19)

mz0 = − cos θ0, (5.20)

i.e., θ0 is the angle formed by the initial magnetization with the negative z
axis.

It is interesting to point out that for the typical case of small angle
θ0, the minimal pulse time τ is very close to the actual switching time at
which mz reaches a value almost equal to 1. This is because for sufficiently
small mz (large angles θ), mz increases much faster (see Eq. (5.11)) than
when mz is close to equilibrium values. The last observation is supported
by the calculations performed by using the analytical formula (5.17) and
shown in Fig. 5.2. It is clear from this figure that the initial dynamics
of mz near equilibrium is very slow and takes most of the time, while
magnetization dynamics away from equilibrium is significantly faster.
Thus, the switching time is close to the minimal pulse time τ calculated
above.
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FIGURE 5.2 Evolution of mz with time calculated from Eq. (5.17), with mz0 =
− cos θ0. Continuous line: θ0 = 1◦; dashed line: θ0 = 0.3◦; dash-dotted line:
θ0 = 0.1◦. Parameter values: α = 0.01, κeff = 0.25, haz = 1.2κeff. Time is in
units of (γMs)−1.

FIGURE 5.3 Inverse of minimum pulse duration 1/τ versus ratio between applied
field and critical switching field hcrit = κeff, calculated from Eq. (5.18) for damping
switching. (a) θ0 = 1◦; : κeff = 0.125; ◦: κeff = 0.25; ∗: κeff = 0.5. (b) κeff = 0.25;
continuous line: θ0 = 1◦; dashed line: θ0 = 0.3◦; dash-dotted line: θ0 = 0.1◦.
Damping constant is α = 0.01. Duration τ is measured in units of (γMs)−1.

Figure 5.3 presents the dependence of 1/τ on the applied field
calculated by using Eq. (5.18). This dependence is almost linear, except
for field values very close to the critical field hcrit. Indeed, for small values
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of the initial angle θ0, the second term in the right-hand side of Eq. (5.18)
is dominant. By neglecting the two other terms and by using standard
trigonometric formulas, one arrives at the following expression:

1
τ
' −α ln(θ0/

√
2) (haz − hcrit) . (5.21)

According to the last formula, in the limit of short pulse durations the
value of the applied field needed for switching is inversely proportional
to the pulse duration τ . For this reason, one may say that dynamic (short
time) coercivity appreciably exceeds the static coercivity hcrit. This fact has
been observed in numerous experiments [669,229,564], from which the
following expression has been deduced:

1
τ

=
1
S

(haz − hcrit). (5.22)

Expressions (5.21) and (5.22) become identical if:

S = − 1
α ln(θ0/

√
2)
. (5.23)

Up to this point, our discussion has been concerned with the slow-
time-scale dynamics of mz(t). Next, we shall discuss the fast-time-scale
dynamics of mx(t) and my(t). This dynamics can be analyzed by using
cylindrical coordinates:

φ(t) = arctan
my(t)
mx(t)

, (5.24)

ρ(t) =
√

m2
x(t) + m2

y(t), (5.25)

and by deriving the differential equation for φ(t) in terms of mz(t). To this
end, we shall first differentiate Eq. (5.24):

dφ
dt

=
1

m2
x + m2

y

(
mx

dmy

dt
−my

dmx

dt

)
. (5.26)

By using Eq. (5.1), it can be shown that:

dmx

dt
= −myheff − αmxmzheff, (5.27)
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dmy

dt
= mxheff − αmymzheff, (5.28)

where:

heff = haz + κeffmz. (5.29)

By substituting Eqs (5.27) and (5.28) into Eq. (5.26), we obtain:

dφ
dt

= heff. (5.30)

By using Eqs (5.11) and (5.29), we arrive at the following equation:

dφ
dt

=
1

α(1−m2
z)

dmz

dt
. (5.31)

The fact that the small damping constant α appears in the denominator
of the right-hand side of Eq. (5.31) reveals that magnetization precession
takes place on the fast time scale. By performing the integration in Eq.
(5.31), we derive:

φ(t) =
1

2α
ln

1 + mz(t)
1−mz(t)

+ 2C, (5.32)

where:

C =
φ0

2
− 1

4α
ln

1 + mz0

1−mz0
, (5.33)

φ0 = arctan
my0

mx0
. (5.34)

By inverting Eq. (5.32), we can express mz in terms of φ. Then, by using Eq.
(5.25), ρ can also be expressed in terms of φ. In this way, we arrive at the
following cylindrical coordinate equations for the trajectory of damping
switching:

mz(t) = tanh(αφ(t)− C), (5.35)
ρ(t) = sech(αφ(t)− C). (5.36)

It is remarkable that the applied magnetic field haz does not appear in
these equations. This means that the magnetization trajectory of damping
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switching is independent of the applied magnetic field. The shape of the
trajectory is determined only by the damping constant α and by the initial
orientation of the magnetization. For different applied magnetic fields, the
same trajectory will be traversed with different speeds. In other words,
the applied magnetic field determines the time parametrization of the
universal damping-switching trajectory. The number N of precessional
cycles during the switching time τ can be evaluated by using Eqs (5.32)
and (5.33), and by taking into account that mz(τ) = 0 according to the
definition of τ . The final formula is as follows:

N =
[
φ(τ)− φ0

2π

]
int

=
[

1
4πα

ln
1 + mz0

1−mz0

]
int
, (5.37)

where [λ]int stands for the integer part of λ.
Finally, it is worthwhile pointing out that the exact differential

equation for the time evolution of the system free energy gL can be derived
in the case of the damping switching of uniaxial media. The starting point
of this derivation is the equation:

dgL
dt

=
∂gL
∂m
· dm

dt
= −heff ·

dm
dt

. (5.38)

By using Eqs (5.7) and (5.11), we obtain:

dgL
dt

= −α(haz + κeffmz)2(1−m2
z). (5.39)

Equation (5.7) can be treated as a quadratic equation with respect to mz ,
which, once account is taken of the fact that haz > κeff, leads to:

mz =
−haz + sign(gL)

√
h2
az − 2κeffgL

κeff
. (5.40)

By substituting Eq. (5.40) into Eq. (5.39), we obtain the differential
equation for the free energy:

dgL
dt

= −αf(gL,haz, κeff), (5.41)
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where the expression for f(gL,haz, κeff) is as follows:

f(gL,haz, κeff) = (h2
az − 2κeffgL)

×

1−

(
−haz + sign(gL)

√
h2
az − 2κeffgL

)2

κ2
eff

 .
(5.42)

This idea of using the differential equation for the free energy to study the
slow time scale of magnetization dynamics will be extensively used in this
chapter and throughout this book.

5.2 TWO-TIME-SCALE FORMULATION OF LLG DYNAMICS AND
AVERAGING TECHNIQUE

It has been demonstrated in the previous section that fast and slow time
scales of magnetization dynamics can be separated and mathematically
decoupled in the problem of damping switching of uniaxial media.
This has been achieved due to the unique symmetry properties of that
problem. In the general case, the slow-time-scale magnetization dynamics
is concealed and obscured by the “magnetization form” of LL and LLG
equations, because all three magnetization components usually vary on
the fast time scale. This is rather unsatisfactory because the slow-time-
scale dynamics reveals the actual rate of relaxation to equilibrium. It
is clear on physical grounds that the magnetic free energy gL varies
on the slow time scale. In other words, the magnetic free energy is
a “slow” variable whose time evolution is not essentially affected by
the fast precessional dynamics. For this reason, it is desirable to derive
dynamic equations containing the magnetic free energy as one of the state
variables. These equations will represent the two-time-scale formulation
of magnetization dynamics.

To start the derivation, consider a thin uniformly magnetized film
subject to a spatially uniform magnetic field, held constant in time. The
magnetization dynamics is described by the LL equation (5.1), where the
magnetic free energy and the effective magnetic field are given by Eqs
(3.15) and (3.16), namely:

heff = −Dxmxex −Dymyey −Dzmzez + ha, (5.43)

gL(m; ha) =
1
2
Dxm2

x +
1
2
Dym2

y +
1
2
Dzm2

z − ha ·m. (5.44)
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Here, as before, Dx, Dy , and Dz are the anisotropy constants along the
principal directions, while ha is the applied magnetic field, expressed in
units of Ms.

In the presence of the applied field, at least one of its components must
be nonzero. Let us designate hay as this component. Furthermore, we shall
recall that the magnetization magnitude is conserved. Thus:

m2
x + m2

y + m2
z = 1. (5.45)

By using formulas (5.44) and (5.45), the following expression for my can
be derived:

my =
Dx −Dy

2hay
m2
x +

Dz −Dy

2hay
m2
z

− hax
hay

mx −
haz
hay

mz −
gL
hay

+
Dy

2hay
. (5.46)

This expression suggests using mx, mz , and gL as the state variables for the
description of magnetization dynamics. This dynamics occurs not on the
surface of the unit sphere (Eq. (5.45)), but rather on the manifold described
by the following equation:

(
Dx −Dy

2hay
m2
x +

Dz −Dy

2hay
m2
z −

hax
hay

mx −
haz
hay

mz −
gL
hay

+
Dy

2hay

)2

+ m2
x + m2

z = 1, (5.47)

which is obtained by substituting Eq. (5.46) into Eq. (5.45). Next, we
shall derive the equations for the magnetization dynamics in terms of the
variables mx, mz , and gL. The first step in this direction is to consider the
balance equation (3.30) for gL:

dgL
dt

= −α |m× heff|2 . (5.48)

Now, we shall combine the LL dynamic equations for mx and mz from Eq.
(5.1) with the dynamic equation (5.48) for the energy gL and express the
right-hand sides of these equations in terms of mx, mz , and gL:

dmx

dt
= −Q0 (mx,mz, gL)− αQ1 (mx,mz, gL) , (5.49)
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dmz

dt
= −P0 (mx,mz, gL)− αP1 (mx,mz, gL) , (5.50)

dgL
dt

= −αR (mx,mz, gL) . (5.51)

The expressions for Q0, P0, and R are as follows:

Q0 (mx,mz, gL) = −haymz − [(Dz −Dy) mz − haz] my, (5.52)
P0 (mx,mz, gL) = haymx + [(Dx −Dy) mx − hax] my, (5.53)

R (mx,mz, gL) = |m× heff|2 . (5.54)

The above functions are polynomial functions of mx, mz , and gL under
the condition that Eq. (5.46) is substituted for my .

Polynomial functions for Q1 and P1 can be explicitly written as
follows:

Q1 (mx,mz, gL) = −hax +
(
Dx −

Dy

2

)
mx

− Dx −Dy

2
m3
x −

Dz −Dy

2
mxm2

z −mxgL, (5.55)

P1 (mx,mz, gL) = −hax +
(
Dz −

Dy

2

)
mz

− Dz −Dy

2
m3
z −

Dx −Dy

2
mzm2

x −mzgL. (5.56)

Equations (5.49)–(5.51) represent the two-time-scale formulation of
magnetization dynamics in terms of the fast variables mx and mz and
of the slow variable gL. This formulation is mathematically equivalent
to the LL dynamics described by Eq. (5.1). One of the immediate
applications of this two-time-scale formulation is the development of the
perturbation technique with respect to the small damping parameter α. In
this perturbation approach, it is assumed that α � 1, and the following
perturbation expansions are used:

m(t) = m0(t) + αm1(t) + . . . , (5.57)
gL(t) = g0(t) + αg1(t) + . . . . (5.58)

By substituting Eqs (5.57) and (5.58) into Eqs (5.49)–(5.51) and by equating
the terms of zero order with respect to α, we obtain:

dg0

dt
= 0, g0(t) = const, (5.59)
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dm0

dt
= −m0(t)× heff (m0(t)) . (5.60)

In the derivation of the last equation, the equivalence of Eqs (5.49)–(5.51)
and Eq. (5.1) has been used. Equation (5.60) describes the conservative
magnetization dynamics that has been extensively studied in the previous
chapter. The results from that chapter can be used for the computation of
m0(t).

By substituting the expansions (5.57) and (5.58) into Eq. (5.51) and by
equating the terms of first order with respect to α, we obtain:

dg1

dt
= − |m0(t)× heff (m0(t))|2 . (5.61)

Hence:

gL(t) = g0 − α
∫ t

0

|m0(t′)× heff (m0(t′))|2 dt′. (5.62)

Thus, by using the zero order (i.e., conservative) approximation for the
fast variables, we can derive the explicit expression (5.62) for the first-
order approximation for the slow variable gL.

The two-time-scale formulation (5.49)–(5.51) of magnetization dy-
namics has two substantial shortcomings. On the one hand, while the ap-
proximation (5.62) is quite accurate for short times, its accuracy deterio-
rates for longer times. On the other hand, the slow-time-scale magnetiza-
tion dynamics described by Eq. (5.51) is mathematically coupled with the
fast-time-scale dynamics described by Eqs (5.49)–(5.50), which prevents
one from obtaining separate information about the slow-time-scale dy-
namics. However, there exists a powerful (albeit approximate) method to
decouple the slow-time-scale dynamics from the fast one. This method is
the so-called averaging technique, which we shall discuss next.

The starting point for the exposition of the averaging technique is the
equation:

dgL
dt

= −α
∣∣∣∣dm

dt

∣∣∣∣2 , (5.63)

derived in Chapter 3 for the case of a uniformly magnetized ferromagnet
subject to a constant-in-time applied magnetic field. The development of
the averaging technique is based on the following reasoning. For small α,
the magnetization dynamics during one precession cycle closely mimics
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the undamped conservative dynamics. Thus, it can be assumed with high
accuracy that during one precession cycle the energy is constant and
therefore:

m(t) 'mc(t; g), (5.64)

where mc(t; g) represents the conservative trajectory with energy g in
some central energy region. By substituting Eq. (5.64) into Eq. (5.63) and
by averaging the resulting equation over one period of the precessional
conservative dynamics, we obtain:

dḡ
dt

= − α

T (ḡ)

∫ T (ḡ)

0

∣∣∣∣dmc(t; ḡ)
dt

∣∣∣∣2 dt, (5.65)

where ḡ stands for the value of the free energy averaged over one
precession period, T (ḡ) is the period of the precessional dynamics along
the trajectory corresponding to the free energy value ḡ and mc(t; ḡ)
is the magnetization for the conservative motion along the previously
mentioned trajectory. Equation (5.65) can be written in the form:

dḡ
dt

= −αf(ḡ), (5.66)

where:

f(ḡ) =
1

T (ḡ)

∫ T (ḡ)

0

∣∣∣∣dmc(t; ḡ)
dt

∣∣∣∣2 dt (5.67)

is some function of ḡ which can be computed from the analysis of
conservative precessional dynamics carried out in Chapter 4. Equation
(5.66) can be integrated by using the separation of variables:

F(ḡ)−F(ḡ0) =
∫ ḡ

ḡ0

dḡ′

f(ḡ′)
= −α(t− t0). (5.68)

It is worthwhile pointing out the distinction between Eqs (5.51) and
(5.66). In Eq. (5.51) the time dynamics of energy depends on the details of
the fast-time-scale dynamics of magnetization, while this fast-time-scale
dynamics does not appear in Eq. (5.66) because it has been eliminated
through the averaging process. In this sense, in Eq. (5.66) the slow-time-
scale dynamics of energy is completely decoupled from the fast-time-scale
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dynamics of the magnetization components. After the slow dynamics of
the free energy is found through the solution of Eq. (5.66), Eq. (5.47) can be
used to find the expression for mz in terms of mx and ḡ(t). This expression
for mz can then be substituted into Eq. (5.49) to arrive at the differential
equation for mx(t) only. By solving the latter equation, the fast-time-scale
dynamics of magnetization components can be fully recovered.

In the case of the damping switching of uniaxial media previously
discussed, an equation identical in form to Eq. (5.66), i.e., Eq. (5.41)
holds for the energy. This equation was derived without resorting to
any averaging, by taking advantage of the rotational invariance in the
problem. Thus, in uniaxial systems the decoupling of the slow-time-scale
relaxation of the system free energy from the fast-time-scale dynamics of
the magnetization is an inherent property of the dynamics which is always
valid and requires no approximations. In particular, it does not require
any assumption concerning the smallness of the damping constant α. This
suggests that the averaging technique may be accurate even in cases when
α is not particularly small.

The averaging technique reveals a direct connection between the
slow-time-scale dynamics of the energy and the phase portrait of the
undamped precessional dynamics, discussed in Chapter 4. In particular,
there exists one function f(ḡ) (see Eq. (5.67)) for each central energy region
of the phase portrait. This means that the time evolution of the energy
occurs on the graph introduced in Chapter 4, whose edges and nodes
represent central energy regions and separatrices, respectively [103]. This
graph representation of the energy dynamics will prove particularly
useful in the investigation of stochastic magnetization dynamics in
Chapter 10.

5.3 MAGNETIZATION RELAXATION UNDER ZERO APPLIED
MAGNETIC FIELD

In this section, we shall apply the averaging technique to the analysis of
magnetization relaxation to equilibrium when no external magnetic field
is applied. Such relaxations are usually termed “ringing” phenomena.
They typically occur during the final stages of magnetization precessional
switching (see Chapter 6), after the external magnetic field has been
switched off [38,39,587,377]. During ringing, the magnetization is in the
energy well around the desired equilibrium state and it relaxes to this state
(see Fig. 6.8).

To be specific, consider a thin, uniformly magnetized film character-
ized by anisotropy constants Dx, Dy , and Dz , with Dx < Dy < Dz (i.e.,
the x axis is the easy axis). We assume that the value g0 of the magnetic
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free energy immediately after the switching-off of the external magnetic
field is known. This value will be used as the initial condition for the dif-
ferential equation (5.66):

ḡ(0) = g0. (5.69)

To utilize Eq. (5.66), we have to find the expression for f(ḡ) in terms of
ḡ. This can be accomplished by using Eq. (5.67) and taking into account
that mc(t; ḡ) in this formula corresponds to the precessional dynamics
under zero applied field. This dynamics has been extensively discussed
in Chapter 4.

To start the derivation of the expression for f(ḡ), we shall first use the
formula:

∣∣∣∣dmc(t; ḡ)
dt

∣∣∣∣2 =
∣∣∣∣dmc(t; ḡ)

dw

∣∣∣∣2 ∣∣∣∣dwdt
∣∣∣∣2 , (5.70)

where the variable w is related to the components of mc(t; ḡ) through Eq.
(4.20), namely:

mx = ∓p
√

1− w2, my =
p

k
w, mz = ±k

′p

k

√
w2

0 − w2, (5.71)

where:

p2 =
Dz − 2ḡ
Dz −Dx

, w0 =
k

k′p

√
1− p2, k′2 = 1− k2. (5.72)

By using Eqs (5.70) and (5.71), one finds:

∣∣∣∣dmc(t; ḡ)
dw

∣∣∣∣2 =
p2

1− w2
+
k′2

k2

w2
0p

2

w2
0 − w2

. (5.73)

On the other hand, one has (see Eqs (4.23)–(4.25) from Chapter 4):

dw
dt

= k′p (Dz −Dx)
√

(1− w2) (w2
0 − w2). (5.74)
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By substituting Eqs (5.73) and (5.74) into Eq. (5.70), after simple
transformations we obtain:∣∣∣∣dmc(t; ḡ)

dt

∣∣∣∣2 dt

= k′p3w0 (Dz −Dx)

√1− w2/w2
0

1− w2
+
k′2

k2

√
1− w2

1− w2/w2
0

 dw. (5.75)

By inserting this expression into Eq. (5.67), one obtains an integral which
can be reduced to canonical elliptic integrals of the first and second kind.
Moreover, the variable of integration w spans four times the interval of
integration (0, w0) during one precession period. By taking this fact into
account as well as Eq. (4.43) for T (ḡ), the following differential equation is
derived for ḡ:

dḡ
dt

= −α (Dz − 2ḡ)
[
2ḡ + (Dy −Dx)

E(kL(ḡ))
K(kL(ḡ))

−Dy

]
, (5.76)

where K and E represent the complete elliptic integrals of the first and
second kind, respectively, while:

k2
L = w2

0 =
Dz −Dy

Dy −Dx

2ḡ −Dx

Dz − 2ḡ
. (5.77)

Equation (5.76) is a first-order differential equation that can be
integrated by the method of separation of variables. Explicit analytical
solutions to Eq. (5.76) can be obtained when the magnetization is
sufficiently close to the equilibrium state, that is, when:

ḡ ' Dx

2
. (5.78)

Under such condition, according to Eq. (5.77), we have that k2
L � 1, so the

following asymptotic approximations can be used for the elliptic integrals
K and E:

K(kL) ' π

2

(
1 +

k2
L

4

)
, (5.79)

E(kL) ' π

2

(
1− k2

L

4

)
. (5.80)
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By substituting these asymptotic expansions into Eq. (5.76), we derive the
following differential equation for ḡ:

dḡ
dt

= −α (2ḡ −Dx) (Dyz − 2ḡ) , (5.81)

where:

Dyz =
Dy +Dz

2
. (5.82)

Equation (5.81) can be integrated by the method of separation of
variables. The final result is:

ḡ(t) =
Dx

2
+

(Dyz −Dx) (g0 −Dx/2)
(2g0 −Dx) + (Dyz − 2g0) exp [2α (Dyz −Dx) t]

. (5.83)

The accuracy of the averaging technique has been tested by first
numerically integrating the LLG equation for a thin magnetic film with
anisotropy constants: Dx = −0.05, Dy = 0, Dz = 1, and initial energy
g0 = −0.005. The results of the numerical integration are shown in Figs 5.4
and 5.5. By using the results of the numerical integration in the expression
for the energy (see Eq. (5.44)):

gL(t) = −0.025m2
x(t) + 0.5m2

z(t), (5.84)

the time evolution of the energy gL(t) was computed. The result is
shown by the continuous line in Fig. 5.5. The dashed line on the same
figure represents the time variation of the energy ḡ(t) computed through
integration of Eq. (5.76). Finally, the dotted line represents the time
evolution of ḡ(t) computed by using the analytical expression (5.83).
It is clear from the figure that the averaging technique leads to quite
accurate results. The approximate analytical formula (5.83) is also quite
satisfactory, especially if one takes into account that the initial state is far
from equilibrium and corresponds to kL ' 0.89.

5.4 MAGNETIZATION RELAXATION UNDER APPLIED
MAGNETIC FIELDS

In this section, we shall apply the averaging technique to the analysis
of magnetization relaxation to equilibrium caused by applied magnetic
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FIGURE 5.4 Magnetization components versus time obtained by numerical
integration of LLG equation. Parameters: α = 0.01, Dx = −0.05, Dy = 0, Dz = 1,
g0 = −0.005. Time is measured in units of (γMs)−1.

fields. As before, we consider the case of uniformly magnetized thin-
film media characterized by anisotropy constants Dx, Dy , Dz , with Dx <
Dy < Dz . To be specific, it will be assumed that the medium is initially
magnetized along the −ex direction and that a rectangular pulse of
magnetic field is applied opposite to the magnetization, that is in the
ex direction, with the purpose of switching the magnetization to the
m = ex equilibrium state. This is actually the problem of damping
switching of longitudinal media, and it is of technological interest in
longitudinal recording. For switching to be initiated, the equilibrium state
corresponding to the initial condition m = −ex must become unstable
as a result of the action of the applied field. According to the analysis
presented in Chapter 3, this will occur if the applied field exceeds the
value Dy −Dx. In this sense, the following expression for the critical field
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FIGURE 5.5 Comparison between numerically and analytically computed energy
relaxation to equilibrium. Continuous line: numerical integration of LLG equation;
dashed line (omitted in the main diagram for the sake of clarity but shown in
the inset): numerical integration of Eq. (5.76); dotted line: Eq. (5.83). Parameters:
α = 0.01, Dx = −0.05, Dy = 0, Dz = 1, g0 = −0.005. Time is measured in units of
(γMs)−1.

hcrit of damping switching of longitudinal media is valid:

hcrit = Dy −Dx. (5.85)

In the sequel, we consider the case when the applied field hax satisfies
the inequalities:

Dy −Dx < hax < Dz −Dx. (5.86)

As discussed in Chapter 4, there are four critical points under the
condition (5.86). They are: the energy minimum mx = 1; the saddle
point mx = −1; the two energy maxima mx = ax, my = 0, mz =
±
√

1− a2
x, where ax = −hax/(Dz − Dx) (see Eq. (4.7)). This situation is

illustrated by the unit-disk representation (see Chapter 4 for the meaning
of this representation) shown in Fig. 5.6. In this figure, the gray region
L represents the magnetization states with energy below the energy of
the saddle point. Magnetization relaxation towards the minimum energy
state mx = 1 proceeds through this gray region L. Thermal perturbations
move the magnetization away from the saddle point and result in nonzero
initial torque that drives thermal relaxation. Since magnetization states in
region L have lower free energy than the energy of the saddle point state,
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FIGURE 5.6 Unit-disk representation with indication of the critical points of the
dynamics present when hax > Dy − Dx (min: energy minimum, max: energy
maximum, saddle). Heavy line trajectory passing through the saddle divides
phase space into energy regions containing the non-saddle fixed points. Grayed
region: L region containing energy minimum. Broken line: example of trajectory
belonging to L region with indication of corresponding interval of variation of w.

initially thermal perturbations most likely drive magnetization to one of
the gray region states. This justifies the following condition for the initial
free energy g0:

g0 <
Dx

2
+ hax. (5.87)

Next, we shall use Eq. (5.66) to analyze the time evolution of ḡ(t). The
first and most important step in this direction is to find the expression for
f(ḡ) by using Eq. (5.67). We recall that mc(t; ḡ) in this formula corresponds
to the precessional dynamics under magnetic field applied along the easy
axis. This dynamics has been extensively discussed in Chapter 4 and we
shall use the basic formulas derived in that chapter in the expressions
relevant to our considerations. It is shown in Chapter 4 that the unit-
disk projection of a precessional trajectory of magnetization is an elliptical
curve (see the dashed line in Fig. 5.6), described by the equation:

(mx − ax)2 + k2my
2 = p2, (5.88)
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where ax is given by Eq. (4.7), while p and k are defined as follows:

p2 = a2
x +

Dz − 2ḡ
Dz −Dx

, k2 =
Dz −Dy

Dz −Dx
. (5.89)

Equation (5.88) can be written in parametric form in terms of w as a
parameter:

mx = ax + pw, (5.90)

my = ±p
k

√
1− w2, (5.91)

mz = ±k
′p

k

√
(w − w+)(w − w−), (5.92)

where k′2 = 1− k2, while:

w+ = b+ r, w− = b− r, (5.93)

b =
k2ax
k′2p

, r2 =
1

k′2p2

[
p2 − k2

(
1− a2

x

k′2

)]
. (5.94)

As shown in Chapter 4, the dynamic equation for mc(t; ḡ) can be
written in parametric form as follows:

dw√
(1− w2)(w − w−)(w − w+)

= ±k′p (Dz −Dx) dt. (5.95)

To evaluate |dmc(t; ḡ)/dt|2 in Eq. (5.67), we shall use Eq. (5.70) along with
the parametric equations (5.90)–(5.92). This leads to the following result:

∣∣∣∣dmc(t; ḡ)
dt

∣∣∣∣2 dt =
k′p3

k2
(Dz −Dx)

×

[√
(w − w−)(w − w+)

1− w2

+ k′2r2

√
1− w2

(w − w−)(w − w+)

]
dw. (5.96)

By substituting the last expression into Eq. (5.67) and by taking into
account that the variable of integration spans four times the interval
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of integration (w+, 1) during one precessional period, the following
expression is derived after lengthy but simple transformations:

dḡ
dt

= − 4αk′p3

T (ḡ)k2
(Dz −Dx)

[
I1 (w−, w+) + k′2r2I2 (w−, w+)

]
, (5.97)

where the following notations have been introduced:

I1 =
∫ 1

w+

√
(w − w−)(w − w+)

1− w2
dw, (5.98)

I2 =
∫ 1

w+

√
1− w2

(w − w−)(w − w+)
dw. (5.99)

We recall that T (ḡ) in Eq. (5.97) is the precessional period, which is
completely described by the following relations:

T (ḡ) =
4K(k∗)

Ω∗
, (5.100)

Ω∗ = k′p (Dz −Dx)
√

1− b∗q∗, (5.101)

k∗2 =
b∗q∗−1 − b∗q∗

1− b∗q∗
, (5.102)

q∗ =
1

2b∗

[
1 + w∗1w

∗
2 −

√
(1− w∗21 ) (1− w∗22 )

]
, (5.103)

b∗ =
2(r − 1)
1− b+ r

, w∗1 = 1− 4
1− w−

,

w∗2 = 1− 2(1− w+)
1− w−

.

(5.104)

Equation (5.97) is a differential equation of the type (5.66), because
the right-hand side of this equation depends on energy ḡ and the applied
field hax through the parameters p, T (ḡ), r2, w−, and w+. This equation
can be integrated to find the time evolution of ḡ(t) during the relaxation
to equilibrium. In the example presented in Fig. 5.7, ḡ(t) was computed
by using Eq. (5.97) with the initial condition g0 = Dx/2 + 0.98hax, that is,
close to the saddle point.

It has been emphasized before that when α � 1 the damped
magnetization motion at time t is very close to the precessional motion
corresponding to the energy ḡ(t). For this reason, it can be expected that
a fairly accurate description of damped magnetization dynamics can be
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FIGURE 5.7 Time evolution of mean energy g obtained from Eq. (5.97) and
corresponding evolution of precessional frequency f = Ω∗/4K(k∗). Parameters:
Dx = −0.05, Dy = 0, Dz = 1, α = 0.01, hax = 4 (Dy − Dx). Initial energy of the
motion is g0 = (Dx/2 + hax) − 0.02hax. Time is expressed in units of (γMs)−1,
frequency in units of γMs, energy density in units of µ0M2

s.

obtained by substituting the solution of Eq. (5.97) into the solution of the
precessional dynamics, that is (see Chapter 4):

mx ' ax − (c− 1)p+ cp
q∗ + dn∗

1 + q∗dn∗
, (5.105)

my ' −
cp(1− q∗)

k

√
(1 + q∗)(dn∗ + k∗′)
(1− q∗k∗′)(1 + dn∗)

k∗sn∗

1 + q∗dn∗
, (5.106)

where dn∗ and sn∗ denote the corresponding Jacobi elliptic functions of
argument (Ω∗t, k∗), while:

c =
1− w−

2
, k∗′2 = 1− k∗2. (5.107)

Figure 5.8 presents the results of such calculations for the case where
ḡ(t) varies as shown in Fig. 5.7. It is evident from Fig. 5.8 that the
fast-time-scale magnetization dynamics exhibits some nontrivial features.
Namely, the amplitude of my does not decay monotonically with time. In
addition, the nonlinear nature of the relaxation process manifests itself in
a continuous change of the precessional frequency during the relaxation
process. It is apparent that the fast-time-scale magnetization dynamics
shown in Fig. 5.8 can be quite accurate for fairly small values of α, that is,
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FIGURE 5.8 Time evolution of normalized magnetization components mx and
my calculated from Eqs (5.105) and (5.106), when the energy relaxes as shown in
Fig. 5.7. Parameters and time normalization are the same as for Fig. 5.7.

when the magnetization undergoes many precessional oscillations before
reaching equilibrium.

5.5 SELF-OSCILLATIONS AND POINCARÉ–MELNIKOV THEORY

A technique conceptually similar to the averaging technique can be
used in the study of self-oscillations in magnetization dynamics. These
oscillations may occur in the case of the generalized magnetization
dynamics introduced in Section 3.3 for situations where other forces in
addition to the micromagnetic effective field heff drive the magnetization
dynamics. It was demonstrated there that the general equation for the
magnetization motion is Eq. (3.61):

dm
dt

= m× ∂gL
∂m

+ αm×
(
m× ∂Φ

∂m

)
, (5.108)
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where:

Φ = gL +
1
α

Ψ. (5.109)

The potential Φ contains two terms: gL, which is associated with thermal
relaxation processes; and Ψ/α, which describes additional driving actions
of nonconservative nature. The energy balance equation for this type of
dynamics is given by Eqs (3.62) or (3.63). When the potentials gL and Ψ
do not explicitly depend on time, this balance equation takes the simple
form:

dgL
dt

= −αP(m(t), ζ), (5.110)

where:

P(m, ζ) =
(
m× ∂gL

∂m

)
·
(
m× ∂Φ

∂m

)
=
(
m× ∂Φ

∂m

)
· dm

dt
, (5.111)

while ζ generically denotes the control parameters associated with the
additional non-conservative driving actions. The function P(m, ζ) is
proportional to the rate at which energy is lost (P(m, ζ) > 0) or gained
(P(m, ζ) < 0) by the system during the magnetization dynamics. For
this reason, it will be called the power function of the magnetization
dynamics. The function P(m, ζ) plays a particularly important physical
role, because, as mentioned in Section 3.3, P(m, ζ) may have either
sign. This implies the possibility that periodic magnetization motions, or
limit cycles, may exist. Indeed, periodic solutions mp(t) may occur for
trajectories along which an average balance of energy takes place, i.e.:

gL(Tp)− gL(0) = −α
∫ Tp

0

P(mp(t), ζ)dt = 0, (5.112)

where Tp is the period of the periodic motion. In other words, Eq. (5.112)
represents a necessary condition for the existence of periodic solutions
mp(t).

The study of these periodic magnetization motions is particularly
challenging. In fact, there are no general mathematical techniques for
the prediction of the number, the position, and the period of limit cycles
for nonlinear dynamical systems. This is true even in the simplest case
when the dynamics occurs on a two-dimensional planar or spherical
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surface. Nevertheless, there exists a case for which significant albeit
approximate analytical results can be worked out. This is when the
magnetization dynamics can be viewed as a small perturbation of the
precessional dynamics dm/dt = −m × heff. In terms of Eqs (5.108) and
(5.109), this occurs when the damping constant α and the potential Ψ
are both small quantities, α � 1 and Ψ � 1. These conditions are not
unrealistic. In fact, it is well known that the condition α � 1 is typically
satisfied in magnetic materials. Moreover, there are physical phenomena
where also the condition Ψ � 1 is satisfied. An important example is
the magnetization dynamics under the action of spin-polarized electric
currents (see Chapter 9).

Assuming that α and Ψ are of the same order of magnitude, i.e.,
α � 1, Ψ � 1, Ψ/α ∼ 1, predictions on periodic magnetization motions
can be obtained by invoking a powerful perturbation technique known
as the Poincaré–Melnikov method. This method is applicable to the study
of the existence, the position, the stability, and the bifurcations of limit
cycles for two-dimensional autonomous dynamical systems. This class of
systems includes dynamical systems on the plane and on regular two-
dimensional manifolds (e.g., sphere, torus, etc.). In this section, we shall
apply the method to the generalized magnetization dynamics on the unit
sphere, under the assumption that the free energy gL and the potential Ψ
do not explicitly depend on time. The general and rigorous mathematical
discussion of the method can be found in Refs. [528,529].

For the application of the Poincaré–Melnikov method, it is convenient
to introduce a system of curvilinear coordinates (x1, x2) for m, which map
a certain region of the unit sphere onto the plane. The nature and the
properties of this region will become clear as the analysis proceeds. We
shall assume that the mapping is invertible in this region. We shall use the
vector notation:

x =
(
x1

x2

)
, (5.113)

and we shall write all equations for x in vector form. In particular, once
expressed in terms of x, the equation for the magnetization dynamics
(5.108) becomes:

dx
dt

= f0(x) + αf1(x, ζ), (5.114)

where the vector functions f0(x) and f1(x, ζ) correspond to the
precessional and relaxational part of the dynamics, respectively, while α
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is the perturbation parameter. The unperturbed equation:

dx
dt

= f0(x) (5.115)

corresponds to the precessional dynamics dm/dt = −m × heff. This
implies that the general form of the function f0(x) must be:

f0(x) = λ(x)
(

∂gL/∂x2

−∂gL/∂x1

)
, (5.116)

where gL(x) is the free energy gL(m) expressed in terms of x, while λ(x)
is a scalar function dependent on the choice of curvilinear coordinates.
Indeed, the form (5.116) guarantees that the free energy gL(x) is an
integral of motion of the unperturbed dynamics (5.115). This is verified
by computing dgL/dt along the trajectories of the unperturbed dynamics.
By using Eqs (5.115) and (5.116), one obtains:

dgL
dt

=
∂gL
∂x
· dx

dt
=
∂gL
∂x
· f0(x) = 0, (5.117)

where the dot notation represents the usual dot product of vectors, while:

∂gL
∂x

=
(
∂gL/∂x1

∂gL/∂x2

)
(5.118)

is the vector of partial derivatives of gL with respect to (x1, x2). If the x
coordinates are chosen in such a way that λ(x) = 1, then the unperturbed
dynamics (5.115) acquires Hamiltonian form with gL, x1, and x2 being
the Hamiltonian, the canonical coordinate, and the canonical momentum,
respectively. The Hamiltonian nature of Eq. (5.115) results in the following
property:

∇ · f0 = 0, (5.119)

where:

∇ · f0 =
∂f0,1
∂x1

+
∂f0,2
∂x2

. (5.120)

The existence of the integral of motion gL(x) implies that the
trajectories of the unperturbed dynamics are given by the curves C(g0)
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FIGURE 5.9 Portion of the phase portrait of the unperturbed dynamics with a
central region enclosed by the homoclinic trajectory Γ starting and ending on the
saddle equilibrium d. The trajectories correspond to different values of the integral
of motion gL(x). Point s is a local energy minimum.

defined implicitly by the equation gL(x) = g0. These trajectories have been
extensively discussed in Chapter 4. It has been shown there that in general
the phase portrait of the precessional dynamics consists of several central
regions separated by homoclinic or heteroclinic trajectories. Each central
region is filled with the family of closed constant-energy trajectories (see
Fig. 5.9 for an example). The coordinates (x1, x2) map one of these central
energy regions onto the plane. In the sequel, we will denote by xc(t; g0)
the solution of the unperturbed dynamics with energy g0 and by T (g0)
the corresponding period.

The solutions of the perturbed dynamics (5.114) slightly deviate from
the constant-energy trajectories of the unperturbed dynamics. To study
these deviations, the “Poincaré map” is used. To obtain this map, we
first have to choose a Poincaré section, namely a curve in the plane with
the property of being transversal (nontangent) to the trajectories of the
dynamical system (5.114) in the central region of interest. In Fig. 5.10, this
Poincaré section is denoted by L. The situation shown in Fig. 5.10 is when
the central region is around a center equilibrium. However, the discussion
can be readily extended to any other type of central region. Since the
form of the Poincaré section does not affect the results of the method, in
the following we consider a transversal line L normal everywhere to the
unperturbed vector field f0(x).

Let us consider the state xa on the Poincaré section (see Fig. 5.10). The
Poincaré map is defined as the map:

xb = MP (xa, ζ, α), (5.121)

where xb is the first state on the Poincaré section reached by the trajectory
that originates from xa. In principle, the limit cycles of the perturbed
dynamics could be found by determining the fixed points of the Poincaré
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FIGURE 5.10 Graphical representation of Poincaré section with definition of the
various quantities involved in the Poincaré–Melnikov method.

map, Eq. (5.121). However, explicit formulas for the Poincaré map are
generally not available, for two reasons. First, the analytical solution
to the nonlinear differential equation (5.114) is in general not known;
and, second, the time necessary for a trajectory to come back to a point
of the Poincaré section is not a priori known. These difficulties can be
circumvented in the limit of small α by using perturbation methods to
derive a suitable expression for the displacement d(g0, α) between the
points xb and xa [528,529]:

d2(g0, α) = (xb,1 − xa,1)2 + (xb,2 − xa,2)2
. (5.122)

To this end, one first considers the quantity:

x̃(t, α) = x(t, α)− xc(t; g0), (5.123)

which represents the deviation of the trajectory x(t, α) of the perturbed
dynamics starting from xa from the trajectory xc(t; g0) of the unperturbed
dynamics starting from the same point. Then, one assumes that x̃(t, α)
admits the following perturbation expansion:

x̃(t, α) = α∆x(t) +O(α2). (5.124)

By substituting Eq. (5.124) into Eq. (5.114) and by keeping only first-order
terms in α, one ends up with the equation:
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d
dt

∆x =
∂f0

∂x
(xc(t; g0)) ·∆x + f1(xc(t; g0), ζ). (5.125)

Equation (5.125) is a linear differential equation with periodic coefficients,
because the Jacobian ∂f0/∂x is computed along the periodic unperturbed
trajectory xc(t; g0) of period T (g0). No general analytical method is known
for the solution of this type of equation. However, this difficulty can be
partially circumvented by introducing a vector basis for ∆x(t) that takes
into account the periodicity of the problem. Namely, let us introduce the
pair of time-dependent orthogonal unit vectors:

eτ (t; g0) =
f0(xc(t; g0))
|f0(xc(t; g0))|

, eη(t; g0) =
(
eτ,2(t; g0)
−eτ,1(t; g0)

)
, (5.126)

which are respectively tangent and perpendicular to the trajectoryC(g0) at
the point xc(t; g0) (see Fig. 5.10). The perturbation ∆x(t) can be expressed
in terms of eτ (t; g0) and eη(t; g0) as follows:

∆x(t) = ∆xτ (t)eτ (t; g0) + ∆xη(t)eη(t; g0). (5.127)

By substituting Eq. (5.127) into Eq. (5.125) one finds that the displacement
d(g0, α) (see Eq. (5.122) and Fig. 5.10) is related only to the component
∆xη(t):

d(g0, α) = α∆xη(T (g0)) +O(α2). (5.128)

At the same time, it turns out that the equation for ∆xη(t) is independent
of ∆xτ (t). More precisely, we define the quantity:

ρ(t) = ∆xη(t)|f0(xc(t; g0))| = ∆x(t) ∧ f0(xc(t; g0)), (5.129)

where the symbol v∧w represents the so-called wedge product of the two
generic vectors v = (v1, v2) and w = (w1, w2):

v ∧w = v1w2 − w2v1. (5.130)

By using the above expressions, one finds that the evolution of ρ(t) is
governed by the following differential equation:

dρ
dt

= [∇ · f0(xc(t; g0))] ρ− f0(xc(t; g0)) ∧ f1(xc(t; g0), ζ). (5.131)
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This equation can be solved by the method of separation of variables. One
obtains:

ρ(t) = − exp
[∫ t

0

∇ · f0(xc(t′; g0))dt′
] ∫ t

0

f0(xc(t′; g0)) ∧ f1(xc(t′; g0), ζ)

× exp

[
−
∫ t′

0

∇ · f0(xc(t′′; g0))dt′′
]

dt′. (5.132)

By using Eqs (5.128) and (5.129), one can express the displacement d(g0, α)
as:

d(g0, α) = α
ρ(T (g0))
|f0(xa)|

+O(α2), (5.133)

where ρ(T (g0)) is computed from Eq. (5.132).
As previously mentioned, limit cycles are periodic orbits correspond-

ing to fixed points of the Poincaré map, that is, to states xa for which
d(g0, α) = 0. Since |f0(xa)| 6= 0, one can infer from Eq. (5.133) that, for
sufficiently small α, the zeros of d(g0, α) can be computed from the zeros
of the function M(g0, ζ) = ρ(T (g0)), known as the Melnikov function:

M(g0, ζ) = − exp

[∫ T (g0)

0

∇ · f0(xc(t; g0))dt

]

×
∫ T (g0)

0

f0(xc(t; g0)) ∧ f1(xc(t; g0), ζ)

× exp
[
−
∫ t

0

∇ · f0(xc(t′; g0))dt′
]

dt. (5.134)

The simplest form for M(g0, ζ) is obtained when the (x1, x2) representa-
tion of the unperturbed dynamics has Hamiltonian form, i.e., ∇ · f0 = 0.
Then one has:

M(g0, ζ) =
∫ T (g0)

0

f1(xc(t; g0), ζ) ∧ f0(xc(t; g0))dt. (5.135)

By taking into account that Eq. (5.115) holds along the precessional
trajectory xc(t; g0), the last expression can be transformed into the
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following line integral along the precessional trajectory C(g0):

M(g0, ζ) =
∮
C(g0)

f1(x, ζ) ∧ dx. (5.136)

This equation shows that the Melnikov function does not really depend on
the details of the time evolution of xc(t; g0), but only on the geometrical
shape of the precessional trajectory of energy g0.

The Melnikov function for the generalized magnetization dynamics
(5.108) can be computed from Eq. (5.135), once the (x1, x2) representation
has been chosen in such a way that the precessional part of the dynamics
has Hamiltonian form. As discussed in Chapter 4, a choice satisfying this
requirement is:

x1 = cos θ, x2 = φ, (5.137)

where θ and φ are the usual spherical coordinates on the unit sphere. In
this coordinate system, Eq. (5.108) is written as:

d cos θ
dt

=
∂gL
∂φ
− α sin2 θ

∂Φ
∂ cos θ

, (5.138)

dφ
dt

= − ∂gL
∂ cos θ

− α

sin2 θ

∂Φ
∂φ

. (5.139)

By comparing Eqs (5.138) and (5.139) with Eq. (5.114), one finds that:

f0(cos θ, φ) =
(

∂gL/∂φ
−∂gL/∂ cos θ

)
, (5.140)

f1(cos θ, φ, ζ) =
(
− sin2 θ ∂Φ/∂ cos θ
−(1/ sin2 θ)∂Φ/∂φ

)
. (5.141)

The unperturbed motion is indeed Hamiltonian as anticipated, i.e.,∇·f0 =
0. By substituting Eqs (5.140) and (5.141) into Eq. (5.135), one obtains:

M(g0, ζ) =
∫ T (g0)

0

[
∂gL
∂θ

∂Φ
∂θ

+
1

sin2 θ

∂gL
∂φ

∂Φ
∂φ

]
mc(t;g0)

dt, (5.142)

where the subscript mc(t; g0) indicates that the integrand is to be
computed along the precessional magnetization trajectory mc(t; g0) with
energy g0. By using the expression for the gradient operator ∇Σ on the
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sphere:

∇Σ = eθ
∂

∂θ
+ eφ

1
sin θ

∂

∂φ
, (5.143)

formula (5.142) can be written in the following coordinate-invariant form:

M(g0, ζ) =
∫ T (g0)

0

[∇ΣgL · ∇ΣΦ]mc(t;g0) dt. (5.144)

This expression reveals the intimate connection existing between the
Melnikov function and the power function (5.111). Indeed, by using the
vector identity:

∇ΣgL · ∇ΣΦ =
(
m× ∂gL

∂m

)
·
(
m× ∂Φ

∂m

)
, (5.145)

and by taking into account the expression (5.111) for P(m, ζ), one obtains:

M(g0, ζ) =
∫ T (g0)

0

P(mc(t; g0), ζ)dt. (5.146)

Thus, the quantity αM(g0, ζ) represents the total energy loss (ifM(g0, ζ) >
0) or gain (if M(g0, ζ) < 0) over one period of motion of the system along
the precessional trajectory mc(t; g0). The actual magnetization motion
does not occur precisely on this unperturbed trajectory. However, as
previously discussed, it remains very close to it during the time interval
T (g0), due to the smallness of α. To the first order in α, the quantity
αM(g0, ζ) gives the energy gain or loss along the actual trajectory and
M(g0, ζ) = 0 provides the condition for the existence of a limit cycle. In
fact, by using the Poincaré–Melnikov method it can be proven that the
necessary condition (5.112) for the existence of a periodic motion is the
sufficient condition as well [528].

It was mentioned above that the Melnikov function eventually
depends only on the geometrical shape of the precessional trajectory,
rather than the time evolution of the magnetization along it. In the case of
Eq. (5.146), this property is the straightforward consequence of the second
expression for P(m, ζ) in Eq. (5.111). By using this formula in Eq. (5.146),
one expresses the Melnikov function as the following line integral along
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the precessional trajectory C(g0):

M(g0, ζ) =
∮
C(g0)

(
m× ∂Φ

∂m

)
· dm. (5.147)

The perturbation analysis presented in this section applies to each
central energy region of the phase portrait of the precessional dynamics.
Therefore, there will exist one Melnikov function for each central region.
In this sense, the Melnikov function is defined on the graph G introduced
in Chapter 4 to describe the energy landscape and the connection between
central energy regions. According to the notation introduced in that
chapter, each central region corresponds to one of the graph edges,
denoted as Ik. The trajectory of energy g inside the central region Ik has
been denoted as Ck(g) and the corresponding period as Tk(g). It is only
natural that the Melnikov function for the same central region will be
denoted as Mk(g, ζ).

Although the Melnikov function has been introduced here for the
study of limit cycles and self-oscillations, the fact that it represents the
energy loss or gain in the system during one precessional period makes
it intimately related to the averaging technique previously discussed in
Section 5.2. Indeed, the time integral in Eq. (5.65) is nothing else but the
Melnikov function for ordinary LLG magnetization dynamics. It is easy to
see that the averaging technique can be applied with little change to the
generalized magnetization dynamics discussed in this section. Whenever
the relaxational part of the dynamics is small, the energy is a slow variable,
the system executes many precessional oscillations before the energy is
appreciably changed, and one can average the energy balance equation
(5.110) over one period of constant-energy precessional motion with no
appreciable error. Since the time integral of the power function P(m, ζ)
over one precessional period is precisely the Melnikov function (see Eq.
(5.146)), one immediately concludes that the averaged energy inside the
central energy region Ik follows the equation:

dḡ
dt

= −αMk(ḡ, ζ)
Tk(ḡ)

. (5.148)

Equation (5.148) can be rewritten in the form:

dḡ
dt

= −α∂Uk
∂ḡ

, (5.149)
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where the effective potential Uk(ḡ) is defined, up to a constant, as:

Uk(g) =
∫ g

g−k

Mk(u, ζ)
Tk(u)

du, (5.150)

where g−k is the minimum energy value in the central region Ik. Equation
(5.149) shows that, to the first order in α, the energy follows a viscous-
like dynamics governed by the effective potential Uk(g, ζ). The smaller
the value of α, the more accurate this description. Finally, we note that the
critical points of Uk defined by ∂Uk/∂g = 0 correspond to fixed points
and limit cycles of the magnetization dynamics. More specifically, since
∂U2

k/∂g
2 = (∂Mk/∂g)/Tk(g) when ∂Uk/∂g = 0, minima and maxima

of Uk correspond to stable and unstable steady states, respectively, since
∂Mk/∂g is positive or negative for these states, respectively.



CHAPTER 6

Magnetization Switching

6.1 PHYSICAL MECHANISMS OF PRECESSIONAL SWITCHING

In the previous chapter, the detailed analysis of damping switching
of magnetization has been carried out. In this type of switching,
magnetization reversal is produced by applying magnetic fields oriented
almost antiparallel to the initial magnetization direction. This makes
the initial magnetization state energetically unfavorable and causes
magnetization relaxation toward the desired final equilibrium state. This
relaxation is realized through numerous precessional oscillations and,
as a result, it is relatively slow. Recently, a new mode of magnetization
switching has emerged [587]. This mode exploits fast precessional
magnetization dynamics and, for this reason, it has been termed
“precessional switching”. This mode of switching has been mostly studied
experimentally and through numerical solution of LLG equation. It has
been found that this type of switching is very sensitive to the duration
of the magnetic field pulse inducing the switching. At the same time, the
seemingly stochastic nature of precessional switching has been observed
for some ranges of pulse durations. Limited analytical and qualitative
study of precessional switching has been performed and the very notion
of precessional switching has not been defined in precise terms based on
the properties of phase portraits of nonlinear magnetization dynamics.

In this section, we present a complete qualitative analysis of
precessional switching by using phase portraits of magnetization
dynamics. Precessional switching is usually realized in nano-scale thin
magnetic films [54] through the following steps (see Fig. 6.1). The
magnetization is initially along the film easy axis and a magnetic field
is applied approximately orthogonal to the easy axis in the film plane.
This field produces a torque which tilts the magnetization out of the film
plane. This results in a strong vertical demagnetizing field which yields an
additional torque that forces the magnetization to precess in the plane of
the film away from its initial position. Magnetization reversal is realized
by switching off the applied magnetic field when the magnetization
is close to its reversed orientation. After the field is switched off, the
magnetization relaxes to the reversed equilibrium state.

127
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FIGURE 6.1 Different stages of precessional switching. (a) The torque exerted
by the applied field tilts the magnetization from the position m(0) to the out-of-
plane position m(1). (b) The resulting vertical demagnetizing field hM produces
an additional torque which drives the magnetization from the position m(1) to the
position m(2) toward the reversed state −ex.

It is apparent that, in contrast with damping switching, precessional
switching is accomplished by controlling the magnetization precession
within a time interval so short that the role of dissipation is usually
negligible. This type of switching can be considerably faster and it may
require lower applied fields in comparison with traditional switching.
However, the switching is realized only if the field pulse duration is
accurately controlled in such a way that the magnetic field is switched
off when the magnetization is close to its reversed orientation.

The basic properties of the precessional switching are revealed by
the examination of the phase portrait of conservative magnetization
dynamics. The phase portrait on the stereographic plane for the case
when no field is applied is illustrated by Fig. 6.2(a). This phase portrait is
characterized by six equilibrium points: s1, s2 (energy minima); u1, u2 =
+∞ (energy maxima); d1, d2 (saddles). Heteroclinic trajectories connect
one saddle point to another. All trajectories, except the heteroclinic ones,
enclose one equilibrium point. The shaded regions indicate the low-
energy regions (potential wells) around the energy minima m = ex and
m = −ex. The remaining white regions are the high-energy regions
around the energy maxima u1 and u2. These shaded and white regions
will be superimposed on subsequent diagrams in order to give an idea
of the expected dynamics after the field is switched off. According to
Fig. 6.2(a), no magnetization switching is possible under zero field,
because there is no trajectory connecting the state m = ex to the shaded
region around m = −ex.
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FIGURE 6.2 Stereographic-plane representation of phase portraits for conserva-
tive LLG dynamics. The dashed line represents the unit circle. (a) ha = 0; (b)
ha = hayey (hay > 0).

The phase-portrait modifications brought about by the application
of the field along the positive y direction are shown in Fig. 6.2(b). The
equilibrium points are shifted to new positions and, more importantly,
the heteroclinic trajectories are broken into homoclinic trajectories, that
is, closed trajectories starting from a saddle and coming back to the
same saddle. The so-called homoclinic structure consisting of a pair
of homoclinic trajectories is formed for each saddle. For example, the
homoclinic trajectories Γ1 and Γ2 form the homoclinic structure associated
with d1. The key point is that a new type of magnetization trajectories
appears in the phase portrait, namely, trajectories that enclose the
homoclinic structures (e.g., curve L in Fig. 6.2(b)). It is along this type
of trajectory that magnetization dynamics may occur from one shaded
region to another and, in this way, magnetization switching may be
realized from one well to another. Indeed, if m is initially in the position
m = ex in Fig. 6.2(b), the switching is realized if the magnetic field is
switched off in the time interval during which magnetization is between
points 1 and 2 on the trajectory L. When the field is switched off,
the magnetization remains trapped in the potential well around the
reversed state m = −ex (see Fig. 6.2(a)). Subsequent relaxation due
to the dissipative nature of the magnetization dynamics will bring the
magnetization to the final equilibrium state m = −ex. It is evident from
the above discussion that switching becomes possible only when the
applied field is large enough that the homoclinic trajectory Γ1 does not
enclose the initial state m = ex. It will be shown below that the critical
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FIGURE 6.3 Stereographic-plane representation of phase portraits of dissipative
LLG dynamics for ha = 0. (a) Numerically computed basins of attraction of
stable focus s1 (white region) and stable focus s2 (shaded region); (b) qualitative
sketch of dissipative dynamics (shaded regions represent the energy wells of the
corresponding conservative dynamics (see Fig. 6.2)).

field at which Γ1 passes through the point m = ex is:

hcrit =
Dy −Dx

2
. (6.1)

A field pulse of amplitude exceeding this threshold will guarantee
switching, provided the field pulse duration is properly tuned.

If the magnetic field is switched off when the magnetization is
not between points 1 and 2 but in the high-energy regions of the
phase portrait, the result of the subsequent relaxation to equilibrium
is practically uncertain. This is due to the very convoluted and closely
entangled nature exhibited in these regions by the trajectories of the
dissipative dynamics leading to different final equilibrium states s1 or s2
(see Fig. 6.3). Indeed, it is clear that there exist two basins of attraction
in the magnetization dynamics: the basin of initial states for which the
magnetization will end up in s1 and the basin of initial states for which
the magnetization will end up in s2. The high-energy regions of the
phase portrait are very fine mixtures of these two basins of attraction,
and the smaller the damping constant α, the more intricate and finer the
entanglement of the two basins of attraction in the high-energy regions.
This fine entanglement may lead to a seemingly stochastic nature of
precessional switching if the field is switched off when magnetization
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FIGURE 6.4 Probability of switching versus duration of applied field pulse. Dots
indicate probability of complete switching (which is the case considered in this
chapter); triangles indicate probability of final intermediate state. Inset: Field pulse
Hp is along the hard axis while H ′L is a bias field applied along the easy-axis
direction. M indicates the initial free layer magnetization direction. Reprinted
with permission from S. Kaka and S.E. Russek, Applied Physics Letters, 80, 2958
(2002).
c© 2002, American Institute of Physics

is in the high-energy regions, because in that case the final equilibrium
that will be reached is strongly dependent on the exact magnetization
conditions immediately after the magnetic field is switched off. This
seemingly stochastic nature of precessional switching could explain
various experimental results presented in the literature. In Fig. 6.4, the
experimental results presented in Ref. [377] are shown. The outcome of the
experiment is characterized in this reference statistically by representing
the “probability” of switching versus the applied field pulse duration.

6.2 CRITICAL FIELDS FOR PRECESSIONAL SWITCHING

We shall next proceed to the detailed analytical treatment of precessional
switching. We shall consider the case where the field pulse is applied
along some direction in the (x, y)-plane, as shown in Fig. 6.5. We shall
assume that the pulse is of rectangular shape and we shall study the
magnetization dynamics in the time interval during which the field is
on. This time interval is usually very short, so the effect of damping can
be neglected as a first approximation. For this reason, we will use the
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FIGURE 6.5 Schematic representation of precessional switching. (a) Longitudinal
media with in-plane anisotropy. (b) Perpendicular media with easy axis
perpendicular to the film plane and uniaxial symmetry around it. In both cases,
the ex direction is along the easy axis and the applied field ha lies in the
(x, y)-plane.

conservative LLG equation to describe the magnetization dynamics:

dm
dt

= −m× heff(m). (6.2)

After the field has been switched off, the relaxation dynamics is governed
by damping and, therefore, dissipation has to be taken into account. This
case has been treated in detail in the previous chapter.

Since the applied field is in the film plane (haz = 0), the analysis
of magnetization dynamics can be carried out by using the unit-
disk representation introduced in Chapter 4. We recall that in this
representation, magnetization trajectories are projected on the (mx,my)-
plane and these projections are ellipsoidal curves (arcs) described by the
equation:

(mx − ax)2 + k2 (my − ay)2 = p2, (6.3)

where ax, ay , k2, and p2 are defined by the following formulas:

ax = − hax
Dz −Dx

, ay = − hay
Dz −Dy

, k2 =
Dz −Dy

Dz −Dx
, (6.4)

p2 = a2
x + k2a2

y + k2
g , k2

g =
Dz − 2g0
Dz −Dx

. (6.5)
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The parameter g0 represents the free energy of the system during the
precessional dynamics. We will assume that the initial magnetization state
is m = ex, that is, mx = 1, my = mz = 0. Hence, the initial energy of the
system, immediately after the field has been switched on, is:

g0 =
1
2
Dx − hax, (6.6)

which corresponds to:

k2
g = 1− 2ax, p2 = (1− ax)2 + k2a2

y. (6.7)

The unit-disk representation of the magnetization trajectories starting
from the initial state mx = 1 are described by the equation:

(mx − ax)2 + k2 (my − ay)2 = (1− ax)2 + k2a2
y. (6.8)

This equation represents a family of ellipses corresponding to different
values of hax and hay . Various examples of possible elliptic trajectories
on the (mx,my)-plane are shown in Fig. 6.6(a)–(d). In these figures, the
shaded regions correspond to the low-energy shaded regions of Fig. 6.2.
On the contrary, the two white high-energy regions present in Fig. 6.2 are
projected onto a single region in Fig. 6.6(a)–(d), namely, the white central
region confined by the ellipse Γ described by the equation:

m2
x + k2m2

y = k2. (6.9)

This ellipse is the unit-disk representation of the heteroclinic trajectories
existing for zero applied field (see Fig. 6.2(a)).

In the unit-disk representation, every elliptic trajectory in the
(mx,my)-plane corresponds to a closed trajectory on the unit sphere,
symmetric with respect to the (mx,my)-plane. As a consequence of this
symmetry, the precessional dynamics on the unit sphere is orthogonally
projected onto a back-and-forth motion along the corresponding elliptic
trajectory in the (mx,my)-plane. By examining the geometrical properties
of these (mx,my) trajectories for different values of hax and hay , we shall
determine the region in the (hax,hay) control plane in which precessional
switching is possible, in the sense that the corresponding trajectory
connects the initial state mx = 1 with the low-energy region around
the reversed state mx = −1. A necessary condition for this is that the
trajectory must intersect the ellipse Γ. The four different ways in which
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FIGURE 6.6 Unit-disk representation of trajectories starting from initial state
mx = 1 for different values of the applied field. The two intersections of the
ellipse passing through mx = 1 with the ellipse Γ (see Eq. (6.9)) are indicated
with squares. (a) Both intersections occur for mx > 0; (c) both intersections occur
for mx < 0; (b), (d) the intersections occur for opposite signs of mx.

this intersection may occur are shown in Fig. 6.6(a)–(d). It is apparent
that only Fig. 6.6(b) corresponds to precessional switching. The switching
trajectory shown in this figure is characterized by the following two
properties.

• Property A: the trajectory intersects the ellipse Γ at two points with
opposite signs of mx.

• Property B: the initial state mx = 1 and the two points of intersection
with Γ belong to the same physical trajectory (Fig. 6.6(b)). This is not
the case in Fig. 6.6(d), where mx = 1 and the intersection points belong
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to disjoint physical trajectories (0-1 and 2-3-4-5) even though these
trajectories are parts of the same ellipse described by Eq. (6.8).

Property A can be expressed in algebraic form by using Eqs (6.8) and
(6.9). By combining these equations, one finds:

axmx + k2aymy = ax −
k′2

2
, (6.10)

where:

k′2 = 1− k2 =
Dy −Dx

Dz −Dx
. (6.11)

By inserting Eq. (6.10) into Eq. (6.9), one obtains the following quadratic
equation for mx: (

a2
x + k2a2

y

)
m2
x − 2ax

(
ax − k′2/2

)
mx

+
[(
ax − k′2/2

)2 − k4a2
y

]
= 0. (6.12)

The roots of Eq. (6.12) are certainly real and have opposite signs if:[(
ax − k′2/2

)2 − k4a2
y

]
< 0. (6.13)

This inequality expresses Property A. By using Eqs (6.4) and (6.11), one
finds: ∣∣∣∣hax +

hAN

2

∣∣∣∣ ≤ |hay| , (6.14)

where:

hAN = Dy −Dx (6.15)

is the in-plane anisotropy field. The inequality expressed by Eq. (6.14) is
represented by the shaded region in Fig. 6.7(a).

Next, we shall discuss Property B. For each point (hax,hay) inside the
shaded region in Fig. 6.7(a) there are two sets of trajectories: the one shown
in Fig. 6.6(b) or that shown in Fig. 6.6(d). The latter is not compatible with
precessional switching, since the magnetization remains trapped inside
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FIGURE 6.7 Regions in the (hax,hay) control plane related to the conditions for
precessional switching. The curves labeled by Asw and Aps correspond to the
Stoner-Wohlfarth model and to Eq. (6.21), respectively. (a) Comparison between
Property A (shaded region defined by Eq. (6.14)) and Property B (Eqs (6.21)); (b)
resulting (hax,hay) region (shaded region) where precessional switching can be
achieved.

FIGURE 6.8 Unit-disk representation of precessional switching trajectories.

the mx > 0 hemisphere, between points 0 and 1. The boundary between
these two sets is represented by the critical trajectory 0-2-3 shown in
Fig. 6.8. This trajectory is tangent to the unit circle:

m2
x + m2

y = 1, (6.16)
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at some point with mx > 0. By imposing the condition of tangency on the
curves described by Eqs (6.8) and (6.16), one derives the equation:

hAN mxmy + haxmy − haymx = 0, (6.17)

where hAN is given by Eq. (6.15). Since the tangency point lies on the unit
circle, its coordinates can be expressed in the parametric form:

mx = cosφ0, my = sinφ0, (6.18)

where −π/2 ≤ φ0 ≤ π/2 as a consequence of the fact that mx ≥ 0. By
substituting Eq. (6.18) into Eq. (6.17) as well as by taking into account that
the tangency point lies on a trajectory whose energy is given by Eq. (6.6),
one arrives at the set of equations:

hay cosφ0 − hax sinφ0 = hAN sinφ0 cosφ0, (6.19)

hay sinφ0 − hax (1− cosφ0) =
hAN

2
sin2 φ0. (6.20)

These are coupled equations with respect to hax and hay , whose solution
is given by the formulas:

hax = −hAN cosφ0 cos2
φ0

2
, hay = hAN sinφ0 sin2 φ0

2
. (6.21)

These formulas coincide with the formulas derived in a different context
and by using a different line of reasoning in Ref. [541]. By varying the
parameter φ0 in the interval (−π/2, π/2), one obtains the curve denoted
by Aps in Fig. 6.7. One can verify that Property B is satisfied in the
regions above Aps for hay > 0 and below Aps for hay < 0. Therefore, the
field region where precessional switching can be achieved is the shaded
region in Fig. 6.7(b). It can be shown that the minimum field amplitude
for precessional switching is equal to 0.385 hAN and it is achieved when
the applied field orientation is such that hay/hax = −

√
2. Indeed, from

formulas (6.21) we obtain:

hay
hax

= − tanφ0 tan2 φ0

2
, (6.22)

h2
ax + h2

ay = h2
AN

[
cos3 φ0 +

1
4

(1− cosφ0)2
]
. (6.23)
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Differentiation of Eq. (6.23) leads to the following extremum condition:

3 cos2 φ0 +
1
2

cosφ0 −
1
2

= 0, (6.24)

from which we find:

cosφ0 =
1
3
. (6.25)

By substituting Eq. (6.25) into Eqs (6.22) and (6.23), we obtain:

hay
hax

= −
√

2, (6.26)

hcrit =
2

3
√

3
hAN ' 0.385 hAN . (6.27)

A remarkable property of the precessional switching region shown in
Fig. 6.7(b) is that it is independent of Dz . Therefore, identical predictions
for switching are obtained for problems with any value of Dz , provided
that the anisotropy field hAN = Dy − Dx is the same. In particular,
this means that the results obtained above are valid not only for the
longitudinal media shown in Fig. 6.5(a), but also for perpendicular media
(Fig. 6.5(b)), where the thin-film easy axis ex is perpendicular to the film
plane and Dz ' Dy � 1. The precessional switching of perpendicular
media may be very appealing from the technological point of view,
because this type of switching can be accomplished without the use of
“probe” heads, but rather by using the same heads as in longitudinal
recording. This also means that recording media without soft magnetic
underlayers could be utilized.

6.3 FIELD-PULSE DURATION FOR PRECESSIONAL SWITCHING

When the applied field is above the critical field corresponding to the
boundary of the shaded regions shown in Fig. 6.7(b), switching can
be accomplished under the condition that the field pulse duration is
appropriately chosen. According to Fig. 6.6(b), switching is achieved only
if the applied field is switched off in the time interval corresponding to the
magnetization motion from point 2 to point 3 and back. Let us assume that
the applied field is switched on at t = 0 and let us denote by (tin , tfin) the
time interval in which the field should be switched off. It has been shown
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in Chapter 4 that the equation describing the precessional dynamics can
be transformed into the form:

du√
1− (ax − p cosu)2 − (ay + (p/k) sinu)2

= k (Dz −Dx) dt, (6.28)

where ax, ay , p, and k have been previously defined (see Eqs (4.7)–(4.10)).
By integrating this equation, we derive:

tin =
1

k (Dz −Dx)

×
∫ u2

u0

du√
1− (ax − p cosu)2 − (ay + (p/k) sinu)2

, (6.29)

tfin = tin +
2

k (Dz −Dx)

×
∫ u3

u2

du√
1− (ax − p cosu)2 − (ay + (p/k) sinu)2

, (6.30)

where u0, u2, and u3 correspond to points 0, 2, and 3 in Fig. 6.6(b),
respectively. These values of u are obtained by calculating mx

corresponding to points 2 and 3 from Eq. (6.12) and then substituting
the result in Eq. (4.11) from Chapter 4. As discussed in that chapter, the
integrals in Eqs (6.29) and (6.30) can be reduced to elliptic integrals. In
general, these derivations can be quite involved. For this reason, direct
numerical evaluation of these integrals can be preferable.

In the case of perpendicular media (see Fig. 6.5(b)), the calculation of
the field pulse duration becomes simpler. Indeed, the fact thatDz−Dy = 0
implies that the ellipse Γ in Figure 6.6(b) is reduced to the line mx = 0. This
means that the low-energy region surrounding the reversed state mx = −1
coincides with the entire hemisphere mx ≤ 0. On the other hand, in the
limit ofDz−Dy → 0, the LLG equation for mx (see Eq. (6.2)) can be written
as follows:

dmx

dt
= haymz. (6.31)

By using the formula for the system free energy and the condition
m2
x + m2

y + m2
z = 1, one can express m2

z as a fourth-order polynomial
in mx. Hence, the bounds for the time interval (tin , tfin) in which the
applied field must be switched off are given by the following integrals
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with respect to mx:

tin =
∫ 1

0

dmx

|haymz(mx)|
, (6.32)

tfin = tin − 2
∫ mx3

0

dmx

|haymz(mx)|
, (6.33)

where mx3 is the value of mx corresponding to point 3 in Fig. 6.7(b).
Next, we consider the particular case where the field is applied along

the y direction. Under these conditions, all the details of the magnetization
dynamics driven by the field pulse are known from the exact analytical
solution obtained in Chapter 4. The time dynamics of the magnetization
components is given by Eqs (4.76)–(4.78) from that chapter, provided
that the value g0 = Dx/2 (see Eq. (6.6)) is used in all energy-dependent
parameters. As a result of symmetry, the trajectory originating from mx =
1 runs through the reversed state mx = −1. The state mx = −1 is reached
after the time interval:

Tps =
2K(kI)

ΩI
, (6.34)

where K(kI) represents the complete elliptic integral of the first kind,
while kI and ΩI are defined by Eqs (4.73) and (4.74) from Chapter 4,
respectively. The expressions for these quantities can be simplified in our
case where g0 = Dx/2 and p2 = 1 + k2a2

y . The simplified expressions are:

k2
I =

k′2

k2

(ν − 1)(ν + 1 + 2k2/k′2)
4ν

, ΩI = |hay|
√
ν,

ν2 = 1 +
1

k2a2
y

.
(6.35)

A field pulse of duration Tps brings the magnetization exactly to the
final reversed state mx = −1. In this sense, Tps represents the “ideal
switching time” for the case of y-directed field. Figure 6.9 shows the
field dependence of the inverse switching time 1/Tps computed by using
Eq. (6.34) for different anisotropy fields. The switching time becomes
increasingly longer when the field approaches the critical value hAN /2.
For fields much larger than the critical field, the dependence of 1/Tps
on hay becomes approximately linear. It is worth recalling that Tps is a
dimensionless quantity, expressed in units of (γMs)−1. As an example,
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FIGURE 6.9 Inverse switching time 1/Tps versus ratio 2hay/hAN , calculated by
using Eqs (6.34) and (6.35) for a thin-film element with Dy = 0, Dz = 1. “ ”:
hAN = 0.05; “◦”: hAN = 0.1; “∗”: hAN = 0.15. Tps is measured in units of (γMs)−1.

Tps ≈ 10 represents a physical switching time on the order of 100 ps in a
material for which γMs ≈ 1011 s−1.

Formulas (6.35) can be simplified for perpendicular media. In fact,
when Dz − Dy → 0, one has that k2 → 0, k′2 → 1, k2a2

y → ∞, ν → 1,
and k4a2

y → h2
ay/h2

AN . As a result, we obtain:

k2
I =

(hAN /2)2

h2
ay

, ΩI = |hay|. (6.36)

Figure 6.10 presents the field dependence of 1/Tps for perpendicular
media, computed by using Eqs (6.34) and (6.36). In this case, the linear
dependence of 1/Tps on hay is particularly evident. This can be explained
by observing that, according to Eq. (6.36), k2

I � 1 when hay � hAN , so
K(kI) ' π/2 and Eq. (6.34) is reduced to:

1
Tps
' |hay|

π
. (6.37)

In our discussion, energy dissipation has been completely neglected
in the analytical treatment of precessional switching. It is therefore
instructive to illustrate through an example the accuracy of this
approximation. Figure 6.11 presents the comparison between the
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FIGURE 6.10 Inverse switching time 1/Tps versus ratio 2hay/hAN , calculated
by using Eqs (6.34) and (6.36) for perpendicular media with Dy = Dz . “ ”:
hAN = 0.125; “◦”: hAN = 0.25; “∗”: hAN = 0.5. Tps is measured in units of
(γMs)−1.

FIGURE 6.11 Plots of mx versus t during precessional switching induced by a
rectangular field pulse of duration Tps for various applied fields hay . Continuous
line: analytical solution of conservative dynamics; dots: numerical integration of
LLG equation forα = 0.01. Parameter values:Dx = −0.1,Dy = 0,Dz = 1. Critical
switching field is hay = hAN /2 = 0.05. Time is measured in units of (γMs)−1.

switching dynamics of mx predicted analytically under the assumption
α = 0 and computed by numerical integration of LLG equation for
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α = 0.01. In this example, the applied field values are fairly close
to the critical field hAN /2 = 0.05. This has been done deliberately,
because under this condition the analytical treatment is expected to be
less accurate. It is apparent from the figure that when the field is switched
off, the analytical solution for the purely precessional dynamics is at the
reversed state mx = −1, as expected by construction. In contrast, the
solution for the dissipative dynamics exhibits extra oscillations which are
particularly evident for hay = 0.052, i.e., when the field is quite close to the
critical value. However, a slight increase in the applied field is sufficient
to suppress these oscillations. For hay = 0.06, the nonconservative
and conservative dynamics are very close and no substantial error is
introduced by neglecting damping.

In conclusion of this section, we shall give a brief comparative analysis
of precessional and damping switching of perpendicular media. It was
previously emphasized that in the case of precessional switching the field
pulse duration must be carefully tuned, that is, complete switching is
achieved only if the field is switched off in a certain time-window. No
such timing is required for damping switching, because any field pulse
of duration exceeding the minimum time Tds will lead to magnetization
switching. In this sense, precessional switching is more difficult to realize.
On the other hand, it has clear advantages in comparison with damping
switching. Namely, the critical field is lower and the switching time is
appreciably shorter, as it can be inferred from Fig. 6.10 and Fig. 5.3 from
Chapter 5. It is instructive to compare switching times for precessional
and damping switching for the same value of the ratio rc between applied
fields and corresponding critical fields. The ratio Tps/Tds can be expressed
in the form:

Tps
Tds

=
α

1 + α2
F (rc) , (6.38)

where the function F (rc) is obtained from Eqs (6.34), (6.36) and (5.18) from
Chapter 5, with the tacit understanding that Tds ' τ . The graph of the
function F (rc) is shown in Fig. 6.12 for different values of the angle θ0
involved in damping switching. It is clear from this figure and Eq. (6.38)
that precessional switching is (for α � 1) approximately 1/α times faster
than damping switching. For applied fields close to their respective critical
fields (i.e., rc close to 1), this difference is even more pronounced.
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FIGURE 6.12 Comparison between precessional and damping-switching times.
Plot of the function F (rc) = Tps/Tds versus the ratio rc between applied field and
corresponding critical field. The function is plotted for different values of the initial
angle θ0 characterizing damping switching. Continuous line: θ0 = 1◦; dashed line:
θ0 = 0.3◦; dash-dotted line: θ0 = 0.1◦.

6.4 SWITCHING UNDER NONRECTANGULAR FIELD PULSES
(INVERSE-PROBLEM APPROACH)

One of the central problems in the research on precessional switching is
the design of magnetic field pulses that will guarantee the magnetization
reversal. In the literature, this problem has been mostly addressed
experimentally or numerically by using a trial-and-error approach. In the
previous section, the design of magnetic field pulses has been discussed
only for the case of rectangular pulses, which is a clear limitation. In this
section, the “inverse-problem” approach is developed that leads to explicit
expressions for nonrectangular magnetic field pulses that guarantee the
precessional switching. The inverse nature of the approach is reflected
in the fact that, instead of deriving the magnetization dynamics for an
assigned magnetic field time variation, this magnetic field time-variation
is determined on the basis of the desired switching dynamics.

We shall develop the inverse-problem approach for the case of a thin
film with in-plane anisotropy along the x axis (see Fig. 6.5(a)). The analysis
can be extended to more general cases by following a similar line of
reasoning. If the film thickness is much smaller than its lateral dimensions,
then it can be assumed that Dx < 0, Dy = 0, Dz = 1, and the anisotropy
field is hAN = −Dx. We will consider the case where the field is applied
along the y axis. Under these circumstances, the effective field can be
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written in the form:

heff = −Dxmxex + hay(t)ey −mzez. (6.39)

As in previous sections, it will be assumed that the switching dynamics
is so fast that dissipative effects can be neglected and the switching
process can be studied by using the conservative LLG equation (6.2). Our
purpose is to find such a field pulse hay(t) that will guarantee the desired
precessional switching of the magnetization from its initial equilibrium
state m = −ex to the final reversed state m = ex. This implies that
the desired monotonic dynamics of mx(t) between the equilibrium points
mx = −1 and mx = 1 can be chosen and then the dynamic equation (6.2)
must be used to find the appropriate hay(t). This can be accomplished
as follows. Equation (6.2) is first written for the cartesian components of
magnetization and the integral of motion |m|2 = 1 is then used instead of
the equation for dmz/dt. This leads to the following coupled equations:

dmx

dt
= (my + hay)mz, (6.40)

dmy

dt
= −(1−Dx)mxmz, (6.41)

m2
x + m2

y + m2
z = 1. (6.42)

From Eqs (6.41) and (6.42) we derive:

dmy

dt
= −(1−Dx)mx(t)

√
1−m2

x(t)−m2
y(t), (6.43)

where the positive sign of the square root (i.e., of mz) is chosen. As soon as
the desired dynamics of mx(t) which leads to the precessional switching of
magnetization is chosen, Eq. (6.43) can be treated as a differential equation
with respect to my(t). By solving this equation with zero initial condition,
my(t) can be found. Then, from Eq. (6.40) we can recover the pulsed
magnetic field:

hay(t) =
1√

1−m2
x(t)−m2

y(t)

dmx

dt
−my(t). (6.44)

This pulse will guarantee the desired precessional switching. The
described approach is straightforward because it is always easy to
choose such a function mx(t) that guarantees the precessional switching.
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However, this approach requires numerical integration of Eq. (6.43) and
does not lead to the explicit analytical expressions for hay(t). It turns out
that there exists an alternative approach that exploits the fact that the
applied field appears only in Eq. (6.40). This approach is purely algebraic
in nature and can be preferable as far as explicit expressions for hay(t)
are concerned. The essence of this approach can be explained as follows.
The dynamics of my(t) which leads to the precessional switching must
be first chosen. Then, by using Eqs (6.41) and (6.42), mx(t) and mz(t) are
computed. Afterwards, the pulsed magnetic field hay(t) is found from
Eq. (6.40). The main difficulty with this approach is the choice of the
appropriate my(t) that guarantees the precessional switching. Next, it is
discussed how this difficulty can be circumvented.

By assuming that my(t) is known, Eqs (6.41) and (6.42) can be treated
as algebraic equations with respect to mx(t) and mz(t). By eliminating
mz(t) from Eqs (6.41) and (6.42), we arrive at the following equation for
mx(t):

m4
x − (1−m2

y)m2
x +

1
(1−Dx)2

(
dmy

dt

)2

= 0. (6.45)

Equations (6.41) and (6.42) are symmetric with respect to mx(t) and mz(t).
This implies that Eq. (6.45) is valid for mz(t) as well. Therefore, we find:

m2
x,z =

1
2

1−m2
y ±

√(
1−m2

y

)2 − 4
(1−Dx)2

(
dmy

dt

)2
 . (6.46)

Thus, there are “positive” and “negative” solutions (branches) of Eq. (6.45)
that correspond to the ± signs in Eq. (6.46), respectively. It is apparent
that different branches in Eq. (6.46) should be identified with mx(t) and
mz(t). At the beginning of precessional switching, this identification is
performed on the basis of the initial conditions:

mx(−T/2) = −1, mz(−T/2) = 0, (6.47)

where it is assumed that the precessional switching is accomplished
during the time interval [−T/2, T/2]. From Eqs (6.41) and (6.47) it follows
that:

dmy

dt
(−T/2) = 0. (6.48)
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It is clear from Eqs (6.47) and (6.48) that at the beginning of the
precessional switching mx(t) must be identified with the positive branch
of Eq. (6.46), while the negative branch corresponds to mz(t). Now, we
shall discuss the conditions on my(t) that guarantee the precessional
switching. To this end, we consider the discriminant:

∆(t) =
[
1−m2

y(t)
]2 − 4

(1−Dx)2

(
dmy

dt

)2

. (6.49)

Equations (6.46) and (6.49) show that those my(t) for which ∆(t) < 0
at some instant of time are not physically realizable. It is also apparent
that those my(t) for which ∆(t) is strictly positive do not correspond
to the precessional switching. Indeed, if ∆(t) > 0 then the positive
and negative branches in Eq. (6.46) are separated. Since mx(t) is a
continuous function of t and it is identified with the positive branch of Eq.
(6.46) at the beginning of magnetization dynamics, it must be identified
with this branch at all instants of time. Then, according to Eq. (6.46),
m2
x(t) is strictly positive and cannot reach zero and, consequently, no

precessional switching may occur. Next, we state the following criterion
for precessional switching.

• If my(t) is such that ∆(t) ≥ 0 and the equation ∆(t) = 0 has an odd
number of solutions before the negative branch of Eq. (6.46) reaches
zero, the precessional switching will occur.

We shall provide the demonstration for the simplest case of
“symmetric” switching where hay(t) and my(t) are even functions of time
in [−T/2, T/2], and the equation ∆(t) = 0 has one solution t0 in [−T/2, 0]
(see Fig. 6.13). According to Eqs (6.46) and (6.49), at time t0 the positive
and negative branches are not continuously differentiable. Indeed, by
differentiating Eq. (6.46) and taking into account Eq. (6.49), we derive:

mx,z(t)
dmx,z

dt
(t) =

1
4
p′(t)± 1

8
∆′(t)√

∆(t)
, (6.50)

where p(t) = 1 − m2
y(t). By using Taylor expansions for ∆(t) and ∆′(t)

around t0, we find:

∆(t) ' ∆(t0) + ∆′(t0)(t− t0) +
∆′′(t0)

2
(t− t0)2, (6.51)

∆′(t) ' ∆′(t0) + ∆′′(t0)(t− t0). (6.52)
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FIGURE 6.13 Positive and negative branches of Eq. (6.46). Two cases are
represented which correspond to two different choices of my(t). In the first
case ∆(t) > 0 (symbols “+” and “ ” for the positive and negative branches,
respectively); in the second case ∆(t) ≥ 0 and zero is attained at t = t0 (symbols
“∗” and “◦” for the positive and negative branches, respectively).

Since ∆(t) is nonnegative and reaches zero at t = t0, this means that:

∆(t0) = 0, ∆′(t0) = 0, (6.53)

and:

∆(t) ' ∆′′(t0)
2

(t− t0)2, (6.54)

∆′(t) ' ∆′′(t0)(t− t0). (6.55)

From Eqs (6.54) and (6.55), we conclude that:

lim
t→t−

0

∆′(t)√
∆(t)

= −
√

2∆′′(t0), (6.56)

while:

lim
t→t+0

∆′(t)√
∆(t)

=
√

2∆′′(t0). (6.57)
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From formulas (6.50), (6.56) and (6.57), we obtain:

mx,z(t0)
dmx,z

dt
(t−0 ) =

1
4
p′(t0)±

(
−1

4

√
∆′′(t0)

2

)
, (6.58)

mx,z(t0)
dmx,z

dt
(t+0 ) =

1
4
p′(t0)±

(
+

1
4

√
∆′′(t0)

2

)
, (6.59)

where dmx,z/dt(t−0 ) and dmx,z/dt(t+0 ) are the limits from “below” and
“above” t0, respectively.

Equations (6.58) and (6.59) show that positive and negative branches
of Eq. (6.46) are not continuously differentiable at t = t0 (see Fig. 6.13), and
consequently these branches cannot be identified with mx(t) and mz(t)
on the entire time interval [−T/2, 0]. It is also clear from Eqs (6.58) and
(6.59) that the negative branch for t > t0 is a continuously differentiable
extension of the positive branch for t < t0 and vice versa (Fig. 6.13). Thus,
mx(t) can be identified with the positive branch for −T/2 ≤ t ≤ t0 and
with the negative branch for t0 < t < 0. Since my(t) is a continuously
differentiable even function, dmy/dt(0) = 0. Hence, according to Eq.
(6.46), the negative branch as well as mx(t) reach zero at t = 0. For the time
interval [0, T/2], mx(t) is the odd function extension of mx(t) in the time
interval [−T/2, 0], and this is tantamount to the precessional switching. In
the previous reasoning, it was tacitly assumed that ∆′′(t) 6= 0. However,
the reasoning can be easily modified for the case ∆′′(t) = 0, because the
first nonzero derivative of ∆(t) at t = t0 is of even order. The latter is the
consequence of the fact that ∆(t) is nonnegative and assumes its minimum
zero value at t = t0.

Thus, we have found the conditions on my(t) in terms of ∆(t) that
result in the precessional switching. From Eqs (6.40) and (6.46), the applied
magnetic field corresponding to this switching is given by:

hay(t) = −Dx + 1
2

my

± 1−Dx

2
√

∆(t)

[
(1−m2

y)my +
2

(1−Dx)2
d2my

dt2

]
, (6.60)

where ∆(t) is given by Eq. (6.49), the sign “+” must be taken in the
intervals −T/2 < t < −|t0| and |t0| < t < T/2, while the sign
“−” must be taken in the interval −|t0| < t < +|t0|. We observe that
this inverse-problem approach generates exact analytical solutions to the



150 CHAPTER 6 Magnetization Switching

Landau–Lifshitz equation for various magnetic field pulses; this fact is of
interest in its own right.

Next, we present a technique that helps to choose my(t) in such a way
that the conditions for precessional switching are satisfied. To this end,
consider the set of functions:

my(t) = bf(t), (6.61)

depending on the parameter b ∈ [0, 1]. It is assumed that f(t) is even on
[−T/2, T/2], and f(0) = 1. From the initial conditions (6.47), it follows
that f(−T/2) = 0. It turns out that there exists only one value of b such
that ∆(t) ≥ 0 on [−T/2, 0] and one zero is attained in this interval. The
proof proceeds as follows. By using Eq. (6.49), we find that the inequality
∆(t) ≥ 0 is equivalent to:

1−m2
y(t) ≥ 2

1−Dx

∣∣∣∣dmy(t)
dt

∣∣∣∣ , (6.62)

which can then be written as follows:

m2
y(t) +

2
1−Dx

∣∣∣∣dmy(t)
dt

∣∣∣∣− 1 ≤ 0. (6.63)

According to Eqs (6.49) and (6.61), the previous assertion is equivalent to
the existence of a unique solution for the following equation:

F (b) = max
t∈[−T/2,0]

{
b2f2(t) +

2b
1−Dx

|f ′(t)| − 1
}

= 0. (6.64)

The function F (b) is a continuous and monotonically increasing function
of b and, due to the definition of f(t), we have:

F (b) > b2 +
2b

1−Dx
|f ′(0)| − 1. (6.65)

This implies that:

lim
b→0

F (b) = −1, lim
b→1

F (b) ≥ 0. (6.66)
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FIGURE 6.14 Plots of magnetization and applied field computed by the inverse
approach. (a) Chosen time variation of my(t) (dashed line) and corresponding
time variations of mx(t) (solid line) and mz(t)(dotted line), computed by using
Eq. (6.46). (b) Applied field pulse computed by means of Eq. (6.60). The function
my(t) has the form specified in Eq. (6.68), with δ = 3, T = 58.03, and b =
1.239,2179 · 10−1. The value of b was obtained by finding the zero of Eq. (6.64)
by bisection method. Anisotropy field is hAN = 0.008 (Dx = −0.008). Time is
measured in units of (γMs)−1.

Thus, there is only one solution for Eq. (6.64) and, consequently, there is
only one b that satisfies our assertion. This b can be found by solving the
one-dimensional nonlinear equation (6.64).

It is instructive to give an example of pulse design by using the
inverse-problem approach. Consider a magnetic thin film with hAN =
0.008. The function f(t) is chosen as follows:

f(t) =
1
2δ

(1 + cos(2πt/T ))δ. (6.67)

It is apparent that f(t) is even and f(0) = 1, as well as f(−T/2) = 0 and
f ′(−T/2) = 0 for δ > 1. According to Eq. (6.61), we have:

my(t) =
b

2δ
(1 + cos(2πt/T ))δ. (6.68)

Here δ and T are parameters that can be used to control the pulse
shape. In the present example, they have been chosen as follows: δ = 3 and
T = 58.03, which corresponds to a pulse duration of 300 ps in a permalloy-
type material with µ0Ms = 1.1 T. The parameter b is then determined by
solving Eq. (6.64). Figure 6.14(a) shows the time dynamics of the three
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FIGURE 6.15 Comparison between analytically and numerically computed
precessional switching under nonrectangular field pulse. The analytical
conservative solutions (solid, dashed and dotted lines) are the same as in
Fig. 6.14(a). The numerical solutions (symbols) were computed by using the field
pulse shape shown in Fig. 6.14(b) and α = 0.01. All the other parameters are the
same as in Fig. 6.14.

components of m computed by the inverse approach. The corresponding
time variation of the applied field hay(t) computed by using Eq. (6.60)
is shown in Fig. 6.14(b). In order to check the accuracy of the inverse-
problem approach, we have computed the numerical solutions to the
LLG equation for the found field hay(t) and α = 0.01. Figure 6.15
presents the comparison between the analytically computed conservative
dynamics and the numerically computed dissipative dynamics. These
results confirm that dissipative effects can be neglected for the design of
the magnetic field pulses leading to precessional switching.



CHAPTER 7

Magnetization Dynamics
under Time-Harmonic

Excitation

7.1 LLG DYNAMICS IN THE PRESENCE OF ROTATIONAL
INVARIANCE

This chapter deals with the analytical study of magnetization dynamics
driven by time-harmonic magnetic fields. Traditionally, this study has
been concerned with ferromagnetic resonance problems, when the main
part of magnetization is pinned by a strong dc field while only a
small transverse component of magnetization executes resonance motions
caused by ac magnetic fields. These small magnetization motions are
studied by linearizing the LLG equation. For this reason, the literature on
analytical studies of magnetization dynamics is mostly concerned with
the linearized LLG equation. In contrast, the main focus of this chapter is
to find analytical solutions to the LLG equation for large magnetization
motions. This is accomplished by exploiting the rotational symmetry of
certain classes of magnetization dynamics problems.

To start the discussion, consider a spheroidal particle with spatially
uniform magnetization m(t). The symmetry axis of the particle will be
assumed to coincide with the z axis. As discussed in Chapter 3, the
magnetostatic (demagnetizing) field hM is spatially uniform inside the
spheroidal particle when the magnetization is spatially uniform. This field
can be expressed as follows:

hM = −Nzmz −N⊥m⊥, (7.1)

where mz and m⊥ are the magnetization components along the z axis and
in the plane perpendicular to it, respectively. The demagnetizing factors
Nz and N⊥ satisfy the relation:

Nz + 2N⊥ = 1. (7.2)

153
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We shall further assume that all particle properties are invariant with
respect to rotations around the z axis. This means that the damping
parameter α is a state function which is invariant with respect to rotations
around the z axis, whereas crystal anisotropy is uniaxial, with the
anisotropy axis along the z direction. We shall measure crystal anisotropy
by the dimensionless parameter κ = 2K1/µ0M2

s, where K1 is the physical
anisotropy constant. Therefore, the anisotropy field is equal to (compare
with Eq. (3.8)):

hAN = κmzez. (7.3)

Finally, we assume that the external magnetic field consists of two distinct
components: the dc magnetic field hazez directed along the symmetry axis
and the circularly polarized radio-frequency magnetic field ha⊥(t) in the
plane perpendicular to the symmetry axis, that is:

ha(t) = ha⊥(t) + hazez, (7.4)

where:

ha⊥(t) = ha⊥ (ex cosωt+ ey sinωt) , (7.5)

and (ex, ey) are mutually orthogonal unit vectors in the ⊥-plane. Under
these conditions, the effective field can be written as follows:

heff = ha⊥ + (haz + κeffmz) ez −N⊥m, (7.6)

where:

κeff = κ+N⊥ −Nz. (7.7)

The free energy gL (m; ha) corresponding to the effective field (7.6) is:

gL (m; ha) =
1
2
(
Nzm2

z +N⊥m2
⊥
)
− 1

2
κm2

z − ha ·m. (7.8)

As before, the energy gL (m; ha) is expressed in units of µ0M2
sV , where V

is the volume of the particle.
The magnetization dynamics will be studied by using the LLG

equation (3.9):
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dm
dt
− αm× dm

dt
= −m× heff, (7.9)

where heff is given by Eq. (7.6). The magnetic system under study is
characterized by the parameters (α, κeff), while the excitation conditions
are described by the control parameters (ω,haz,ha⊥).

The dynamics on the unit sphere described by Eq. (7.9) is not
autonomous, because heff explicitly depends on time through the external
field ha⊥(t). However, the complications due to the nonautonomous
nature of the dynamics can be circumvented by taking advantage of
the rotational symmetry of the problem. This becomes evident when
one considers the form of Eq. (7.9) in the rotating frame of reference in
which the external field is stationary. In the frame which is rotated at the
angular frequency ω around the ez axis, the magnetization derivative is
transformed as follows:[

dm
dt

]
lab.frame

=
[

dm
dt

]
rot.frame

− ωm× ez. (7.10)

Therefore, in this rotating frame Eq. (7.9) takes the form:

dm
dt
− αm× dm

dt
= −m× (heff − ωez + αωm× ez) . (7.11)

The field heff is still given by Eq. (7.6); however ha⊥ is now time-
independent because it moves in synchronism with the rotating frame.
On the other hand, no new time dependence appears as a result of the
transformation to the rotating frame, as all the parameters of the problem
are invariant with respect to rotations around the symmetry axis. Thus, no
explicit time dependence is present anymore in the right-hand side of Eq.
(7.11). In other words, the transformation to the rotating frame results in
the fact that the magnetization dynamics in this frame is autonomous.

Next, we shall discuss important topological aspects of magnetization
dynamics in the rotating frame, described by Eq. (7.11). This equation
corresponds to an autonomous dynamical system evolving on the surface
of the unit sphere |m|2 = 1. The autonomous character of the dynamics
permits one to study its properties in geometric terms, through the phase
portrait [741,358,529,319] of the equation (see Fig. 7.1 for an example).
The notions of phase portrait, saddle, focus, node, etc. are extensively
discussed in Chapter 3. In that Chapter, it has also been discussed which
general aspects of the magnetization dynamics immediately follow from
the constraints that the state space (unit sphere) imposes on the phase
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FIGURE 7.1 Examples of phase portraits of LLG dynamics in the rotating frame
of reference. Each phase portrait is represented in terms of joint stereographic
projections onto the unit disk of the two hemispheres corresponding to mz > 0
and mz < 0. The point of contact of the two disks corresponds to m⊥a = 1,
i.e., magnetization fully aligned along the rf field ha⊥. The following notation is
adopted. s: stable node; u: unstable node; d: saddle; a: stable limit cycle; r: unstable
limit cycle. System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5. The
upper phase portrait corresponds to haz = −0.2,ha⊥ = 0.08; this phase portrait
is of (sr|aud|u) type according to the classification discussed in Section 7.4. The
lower phase portrait corresponds to haz = 0.8,ha⊥ = 0.08; this phase portrait is
of (s|ud|au) type according to the classification discussed in the same section. The
simplified graphical representation of phase portraits is given on the right.

portrait. These constraints apply also to the rotating-frame dynamics of
interest here.

• Existence of fixed points
Any phase portrait on the sphere must necessarily contain a nonzero
number of fixed points for which dm/dt = 0 [529]. These fixed points
occur in the rotating frame of reference. In the laboratory frame, each
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of these fixed points corresponds to a magnetization mode in which
the magnetization precesses about the symmetry axis z in synchronism
with the external field. In other words, these fixed points correspond to
periodic time-harmonic solutions of the LLG equation in the laboratory
frame. These rotating modes will be termed P-modes. Therefore,
one reaches the remarkable conclusion that a certain number of P-
modes must exist for any value of the control parameters (ω,haz,ha⊥).
Interestingly, in the case of a P-mode the system response to a time-
harmonic excitation (see Eq. (7.5)) is itself time-harmonic, with no
generation of higher-order harmonics, despite the inherent strongly
nonlinear character of the magnetization dynamics.

• Number of fixed points
The number of P-modes can be predicted by using Poincaré index
theorem [529]. This theorem asserts that the number of nodes or foci
minus the number of saddles of any autonomous dynamics on the
sphere must be equal to two. Therefore, the number of P-modes is at
least two and it is even under all circumstances. Following this result,
one can classify LLG phase portraits for rotationally invariant systems
according to the number and nature of their fixed points as follows:
– phase portraits with 2 fixed points: 2 nodes or foci;
– phase portraits with 4 fixed points: 3 nodes or foci + 1 saddle;
– and so on.
The nature of a fixed point (node, focus, or saddle) can be determined
through the analysis of its stability, as discussed in subsequent sections.

• Non-existence of chaos
Chaos is precluded, because the phase space is two-dimensional
[741]. The onset of chaotic phenomena is not compatible with
the simultaneous existence of rotational symmetry and uniform
magnetization. Only when one or both of these requirements are
relaxed, chaotic phenomena may appear [740,250].

7.2 PERIODIC MAGNETIZATION MODES

The study of periodic solutions to the magnetization dynamics (P-modes)
can be conveniently carried out in the rotating frame by introducing the
spherical-angle state variables (θ, φ), representing the tilt angle of m with
respect to ez (0 ≤ θ ≤ π) and the lag angle of m⊥ with respect to ha⊥
(−π ≤ φ ≤ π), respectively. In other words, we express the magnetization
as follows:

m = m⊥aea +m⊥beb + mzez
= ea sin θ cosφ− eb sin θ sinφ+ ez cos θ, (7.12)



158 CHAPTER 7 Magnetization Dynamics under Time-Harmonic Excitation

where (ea, eb, ez) is a right-handed cartesian set of unit vectors for
the rotating frame, with ea directed along ha⊥. The minus sign in the
expression form⊥b reflects the fact that φ represents the angle by which the
rotating component of magnetization lags behind the rotating magnetic
field. After substitution of Eqs (7.12) and (7.6) into Eq. (7.11) one finds:

dθ
dt
− α sin θ

dφ
dt

= ha⊥ sinφ− αω sin θ, (7.13)

α
dθ
dt

+ sin θ
dφ
dt

= ha⊥ cosφ cos θ − (haz − ω + κeff cos θ) sin θ. (7.14)

By setting dθ/dt = dφ/dt = 0 one obtains the equations for the fixed
(critical) points of the dynamics in the rotating frame:

ha⊥ sinφ0 − αω sin θ0 = 0, (7.15)
ha⊥ cosφ0 cos θ0 − (haz − ω + κeff cos θ0) sin θ0 = 0. (7.16)

It is convenient to rewrite these equations in the form:

ν0 =
haz − ω
cos θ0

+ κeff, (7.17)

ν2
0 =

h2
a⊥

sin2 θ0
− α2ω2, (7.18)

where:

ν0 = αω cotφ0. (7.19)

The angle φ0 is always in one-to-one correspondence with ν0 because
0 ≤ φ0 ≤ π. In fact, according to Eq. (7.15), sinφ0 ≥ 0 for all P-modes,
because ha⊥, α, ω, and sin θ0 are all positive by definition. In other words,
in the case of a P-mode the magnetization always lags behind the field.
The plane (cos θ0, ν0) is the natural plane for the representation of P-
modes. A generic P-mode will be located in the region −1 ≤ cos θ0 ≤ 1,
−∞ < ν0 <∞, i.e., 0 ≤ θ0 ≤ π, 0 ≤ φ0 ≤ π.

By solving Eqs (7.17) and (7.18), one obtains the values of (cos θ0, ν0)
for the P-modes existing under given excitation conditions

(
ω, ha‖,ha⊥

)
.

Conversely, Eqs (7.17) and (7.18) can be written in the form:

haz = (ν0 − κeff) cos θ0 + ω, (7.20)
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ha⊥ =
√

(1− cos2 θ0) (ν2
0 + α2ω2), (7.21)

whereby one can compute the field conditions that will produce a P-mode
with desired values of (cos θ0, ν0). For a particular P-mode solution of
Eqs (7.17) and (7.18), the corresponding magnetization components in the
rotating frame can be expressed in terms of cos θ0 only, as follows:

m⊥a =
(

haz − ω
cos θ0

+ κeff

)
sin2 θ0

ha⊥
, (7.22)

m⊥b = −αω sin2 θ0
ha⊥

, (7.23)

mz = cos θ0. (7.24)

In the derivation of Eqs (7.22)–(7.24), Eq. (7.12) has been used and the φ0

variable has been eliminated by making use of Eqs (7.15) and (7.16). In the
sequel, the notation m0 will be used for P-modes.

Since the P-mode is a fixed point of the dynamics in the rotating frame,
we derive from Eq. (7.11) that m0 satisfies the relation:

m0 ×
(
h(0)

eff − ωez + αωm0 × ez
)

= 0, (7.25)

where h(0)
eff is the effective field corresponding to m0. Equation (7.25)

implies that:

h(0)
eff − ωez + αωm0 × ez = λ0m0, (7.26)

where λ0 is a constant depending on (cos θ0, ν0). By expressing m0

through Eqs (7.22)–(7.24), we derive:

λ0 = ν0 −N⊥. (7.27)

This equation will be useful in the discussion of P-mode stability.
In the laboratory frame, the P-mode represents a spatially uniform

time-harmonic solution. We have that (compare with Eq. (7.5)):

m0(t) = ex sin θ0 cos(ωt− φ0) + ey sin θ0 sin(ωt− φ0) + ez cos θ0. (7.28)
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The P-mode dynamics in the laboratory frame is described by the
equation:

dm0

dt
= −ωm0 ×m0ez, (7.29)

i.e., m0(t) is a unit vector which uniformly rotates around the z axis at the
angular frequency ω.

Up to this point, it has not been assumed in our discussion that the
damping parameter α is a constant. However, if α is constant, then Eqs
(7.17) and (7.18) can be reduced to a fourth-order polynomial equation
with respect to mz = cos θ0. In fact, by eliminating ν0 from Eqs (7.17) and
(7.18) one arrives at the equation:

h2
a⊥

sin2 θ0
−
(

haz − ω
cos θ0

+ κeff

)2

= α2ω2. (7.30)

This equation can be transformed as follows:

(1 + Ω2) cos4 θ0 + 2bz cos3 θ0
+ [b2⊥ + b2z − (1 + Ω2)] cos2 θ0 − 2bz cos θ0 − b2z = 0, (7.31)

where:

Ω =
αω

κeff
, bz =

haz − ω
κeff

, b⊥ =
ha⊥
κeff

. (7.32)

Equation (7.31) may have up to four real roots. However, by invoking the
Poincaré index theorem, one concludes that only two possibilities exist
under constant α:

• Equation (7.31) has two real solutions: the phase portrait contains two
P-modes;

• Equation (7.31) has four real solutions: the phase portrait contains four
P-modes.

The dynamics under constant α leads to a specific mapping between
the P-mode plane (cos θ0, ν0) and the field control plane (haz,ha⊥). The
starting point is the fact that, for given system parameters (α, κeff), given
frequency ω, and variable cos θ0, Eq. (7.30) defines a one-parameter family
of hyperbolic lines in the (haz,ha⊥) plane. These lines identify the field
conditions that will produce a P-mode with the desired value of cos θ0
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FIGURE 7.2 Hyperbolic lines in (haz,ha⊥)-plane (Eq. (7.30)) identifying field
conditions that will produce P-modes with the desired value of cos θ0. System
parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5. Alternate continuous
and broken lines are used to facilitate the visualization.

(see Fig. 7.2). It is apparent from Fig. 7.2 that, for a given point in the
field plane, two or four hyperbolic lines will pass through that point. In
other words, there will be two or four P-modes associated with given field
conditions, in agreement with the Poincaré index theorem. According to
Eq. (7.30), the vertex of each hyperbolic line is located at:

haz = ω − κeff cos θ0, (7.33)
ha⊥ = αω sin θ0. (7.34)

This is the point where the desired value of cos θ0 is realized by using
the rotating field of minimum amplitude. According to Eq. (7.17), this
condition corresponds to ν0 = 0, i.e., φ0 = π/2. The parameter ν0 increases
along the hyperbolic line when one moves to the right or to the left
according to whether cos θ0 is positive or negative, respectively.

Next, we shall discuss the question whether a given P-mode may
or may not be physically realizable. Indeed, only the modes that are
dynamically stable will survive for long times and will be experimentally
observable. Dynamical stability can be studied by perturbing the P-mode
solution and by analyzing the ensuing time-behavior of the perturbation.
To be completely general, this analysis should be carried out for arbitrary
space and time-dependent perturbations compatible with the boundary
conditions of the problem. In the present section, however, this analysis
will be limited only to spatially uniform perturbations. Physically, this
means that we consider magnetic particles so small that exchange
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forces rule out the appearance of spatial nonuniformities however small.
Stability with respect to generic spatially nonuniform perturbations will
be treated in Chapter 8.

Under the assumption of spatial uniformity, a given P-mode will be
dynamically stable if the corresponding fixed point of the magnetization
dynamics in the rotating frame is stable. Stability is studied by standard
methods [358,428], by linearizing Eq. (7.11) around the P-mode fixed
point. Let us denote the P-mode magnetization (which is constant in
the rotating frame) by m0 and let us consider a perturbed mode:
m(t) = m0 + δm(t), where |δm(t)| � 1. The perturbation must
preserve the magnetization amplitude |m|2 = 1. Therefore, δm(t) must
be perpendicular to m0 at all times:

δm(t) ·m0 = 0. (7.35)

A convenient basis for the representation of δm in the plane perpendicular
to m0 is given by the unit vectors:

e1 =
(ez ×m0)×m0

|(ez ×m0)×m0|
, (7.36)

e2 =
ez ×m0

|ez ×m0|
. (7.37)

Let us express δm as δm(t) = δm1(t)e1 + δm2(t)e2. After substituting
m0 + δm(t) into Eq. (7.11), linearizing the latter equation with respect to
δm and using Eqs (7.17) and (7.18) for m0, one arrives at the equation:

d
dt

(
δm1

δm2

)
= A0

(
δm1

δm2

)
, (7.38)

where:

A0 =
1

1 + α2

(
1 −α
α 1

)(
−αω cos θ0 −ν0

ν0 − κeff sin2 θ0 −αω cos θ0

)
, (7.39)

and the pair (cos θ0, ν0) identifies the particular P-mode being considered.
Stability is controlled by the eigenvalues of the matrix A0, which can be
expressed in terms of its determinant and its trace. The determinant of A0

is given by the expression:

detA0 =
1

1 + α2

(
ν2
0 − κeff sin2 θ0ν0 + α2ω2 cos2 θ0

)
, (7.40)
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and its trace by the expression:

tr A0 = − 2α
1 + α2

(
ν0 −

κeff sin2 θ0
2

+ ω cos θ0

)
. (7.41)

The characteristic frequency ω2
0 = detA0 − (tr A0)2 /4 is then equal to:

ω2
0 =

1
(1 + α2)2

[(
ν0 −

κeff sin2 θ0
2

− α2ω cos θ0

)2

−
(
1 + α2

) κ2
eff sin4 θ0

4

]
. (7.42)

Now, P-mode stability can be classified as follows [358]:

• det A0 < 0. Saddle-type fixed point.
• det A0 > 0 and ω2

0 < 0. Node-type fixed point:
– tr A0 < 0: stable node;
– tr A0 > 0: unstable node.

• det A0 > 0 and ω2
0 > 0. Focus-type fixed point:

– tr A0 < 0: stable focus;
– tr A0 > 0: unstable focus.

The difference between a node and a focus is not relevant to the rest of
our analysis: we will use the term node in a generic sense, to denote either
of them. The symbols (s), (u), and (d) will be used to denote stable nodes,
unstable nodes, and saddles, respectively. A given P-mode represents a
physically realizable solution only when it is of (s) type, that is, when
det A0 > 0 and tr A0 < 0.

Stability results can be presented in a transparent form on the
(cos θ0, ν0) P-mode plane. Stability is controlled by the equations det A0 =
0 and tr A0 = 0 when det A0 > 0. The expressions for det A0 and tr A0 are
given by Eqs (7.40) and (7.41), respectively. These equations can be solved
in order to obtain ν0 as a function of cos θ0. The results are as follows:

• det A0 = 0:

ν0 =
κeff sin2 θ0

2
±

√
κ2

eff sin4 θ0

4
− α2ω2 cos2 θ0. (7.43)
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The above two values are real in the interval:

cos2 θ0 ≤

(√
1 +

α2ω2

κ2
eff
−

√
α2ω2

κ2
eff

)2

. (7.44)

• tr A0 = 0 when det A0 ≥ 0:

ν0 =
κeff sin2 θ0

2
− ω cos θ0. (7.45)

By inserting Eq. (7.45) into Eq. (7.40) one finds that det A0 ≥ 0 when:

cos2 θ0 ≥

(√
1 +

(1 + α2)ω2

κ2
eff

−

√
(1 + α2)ω2

κ2
eff

)2

. (7.46)

Figure 7.3 shows the lines det A0 = 0 and tr A0 = 0 when det A0 ≥ 0
computed by using Eqs (7.43) and (7.45) for a thin film with negligible
crystal anisotropy. These lines divide the P-mode plane into three regions
associated with stable nodes (S), unstable nodes (U), and saddles (D).
Physically realizable P-modes are only those located in region S.

These results are more difficult to represent on the field control plane
(haz,ha⊥). This is because there are two or four P-modes associated with
any given point on that plane. For this reason, the functions det A0 and
tr A0 will take the form of two-folded or four-folded sheets (Riemann
surfaces) when represented on the control plane (see Figs 7.4 and 7.5).
According to the Poincaré index theorem, when four P-modes are present
one of them is necessarily a saddle for which det A0 < 0. Therefore, the
control plane region admitting four P-modes coincides with the region
where det A0 < 0 for one of the P-modes. By substituting Eq. (7.43)
into Eqs (7.20) and (7.21), one obtains a parametric representation of the
boundary (det A0 = 0) between the two and four P-mode regions, with
cos θ0 as the independent variable (see Fig. 7.6 and compare with Fig. 7.2).
Similarly, one can determine the line (tr A0 = 0,det A0 > 0) (broken line
in Fig. 7.6) by substituting Eq. (7.45) into Eqs (7.20) and (7.21). The region
where det A0 < 0 can be construed as the dynamic generalization of the
Stoner–Wohlfarth astroid region [639,79]. Indeed, it can be verified that
this region coincides with the usual astroid region in the limit ω → 0.

Equations (7.17) and (7.18) are invariant under the following
transformation: cos θ0 → − cos θ0, ν0 → −ν0, κeff → −κeff. Given a
P-mode solution of the original equations, this transformation gives a
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FIGURE 7.3 Classification of P-modes on the (cos θ0, ν0)-plane. Continuous lines
represent solutions of equations det A0 = 0 and tr A0 = 0 when det A0 > 0.
P-modes inside region D are saddle points of the dynamics in the rotating frame,
while those outside D are stable nodes (region S) or unstable nodes (region U).
Broken lines represent solutions of Eq. (7.17) for haz = 0.8 and of Eq. (7.18) for
ha⊥ = 0.08. Solid points are intersection points representing the four P-modes
associated with haz = 0.8, ha⊥ = 0.08 (see bottom phase portrait in Fig. 7.1).
System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5.

FIGURE 7.4 Example of det A0 surface defined by Eqs (7.40), (7.20), and (7.21) on
(haz,ha⊥)-plane. System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5.
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FIGURE 7.5 Example of tr A0 surface defined by Eqs (7.41), (7.20), and (7.21) on
(haz,ha⊥)-plane. System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5.

FIGURE 7.6 Representation on (haz,ha⊥) control plane of lines where detA0 = 0
and tr A0 = 0 when det A0 > 0. System parameters: α = 0.1, κeff = −1.
Field frequency: ω = 0.5. Small empty circles represent location of the two phase
portraits shown in Fig. 7.1.

corresponding P-mode solution for the case where the effective anisotropy
takes the opposite value. According to Eqs (7.40) and (7.41), tr A0 →
−tr A0 and det A0 → det A0 as a result of the above transformation. This
means that, when the sign of anisotropy is reversed, stable P-modes are
transformed into unstable ones and vice versa while the det A0 = 0 and
tr A0 = 0 lines remain unaffected. These rules permit one to extend the
results of the analysis to magnetic particles with effective anisotropy of
opposite sign. Furthermore, Eq. (7.40) indicates that det A0 > 0 whenever
ν0 and κeff have opposite signs. Therefore, the saddle point can exist only
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FIGURE 7.7 Representation on the unit sphere of the bottom phase portrait from
Fig. 7.1 and corresponding quasi-periodic motion in the laboratory frame (Q-mode
generated by stable limit cycle a). System parameters: α = 0.1, κeff = −1. Field
frequency: ω = 0.5. Field amplitude: haz = 0.8, ha⊥ = 0.08.

provided ν0 and κeff have identical sign. This means that for the saddle
points we have 0 ≤ φ0 < π/2 when κeff > 0 and π/2 < φ0 ≤ π when
κeff < 0.

It is worth pointing out that the mentioned connection between
fixed-point stability and anisotropy sign reflects a more general property
of LLG dynamics (see Eqs (7.13) and (7.14)), namely the fact that the
reversing of the sign of the effective anisotropy is essentially equivalent
to the reversing of the direction of time. Indeed, Eqs (7.13) and (7.14) are
invariant under the transformation: θ → π − θ, φ → π − φ, κeff → −κeff,
t→ −t, from which the P-mode symmetries just discussed can be derived
as a particular case.

7.3 QUASI-PERIODIC MAGNETIZATION MODES

In order to be physically realizable, a P-mode must be a stable node of
the magnetization dynamics in the rotating frame. When no P-mode is
stable, there will exist (at least) one attracting limit cycle of the above
dynamics (Poincaré–Bendixson theorem) [529]. A limit cycle represents
a periodic magnetization motion along a closed path on the unit sphere.
This conclusion holds in the rotating reference frame. In the laboratory
frame, the periodic motion along the limit cycle has to be combined with
the rotation of the reference frame and this results in a quasi-periodic
magnetization mode (Q-mode) (see Fig. 7.7). The quasi-periodicity arises
because the external-field and the limit-cycle periods are usually not
commensurable.
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The following argument proves that Q-modes are necessarily present
under appropriate conditions. Let us consider the case of small rotating
field amplitudes, ha⊥ → 0, for which sin θ0 → 0 and cos θ0 → ±1. By using
Eqs (7.17)–(7.18), one can write Eqs (7.40) and (7.41) in the approximate
form:

det A0 '
1

1 + α2

(
ν2
0 + α2ω2

)
, (7.47)

tr A0 ' −
2α

1 + α2
(κeff ± haz) . (7.48)

Only two P-modes are possible, because det A0 > 0. Furthermore, the
sign of tr A0 is opposite to that of κeff for both modes in the interval
|haz| < |κeff|. Therefore, in this interval both P-modes are unstable for any
system with negative effective anisotropy and a Q-mode will necessarily
appear.

This formal result has an intuitive physical interpretation. Let us
assume that κeff < 0 and that initially only the constant positive field
haz < |κeff| is applied, i.e., ha⊥ = 0. In this case, no time-dependent
driving field is present. In the laboratory frame there exists a continuous
set of static equilibria characterized by fixed cos θ and arbitrary φ. In fact,
by expressing the energy of the system (Eq. (7.8)) in terms of θ and φ one
finds:

gL (θ, φ; haz,ha⊥) =
N⊥
2
− κeff

2
cos2 θ − haz cos θ − ha⊥ sin θ cosφ.

(7.49)

When κeff < 0 and ha⊥ = 0, the energy is independent of φ and assumes
its minimum value for cos θ = haz/ |κeff|. In the rotating frame, this
continuous set of states results in a limit cycle of period 2π/ω. When
the small rotating field ha⊥ is applied, the set of equivalent static states
is changed into a quasi-periodic motion. In fact, the rotating field is not
strong enough to force the magnetization into synchronous rotation. The
magnetization follows the field only for a small part of each rotation
period and then periodically falls off synchronism. The result is a Q-mode
characterized by a slow average m precession around the symmetry axis,
accompanied by a nutation of frequency ω. Only when ha⊥ exceeds a
certain threshold, m gets locked to the field and the Q-mode is destroyed
in favor of a stable P-mode.

In general, one expects that both stable (i.e., attracting, denoted by
(a)) and unstable (i.e., repelling, denoted by (r)) limit cycles may be
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present in the dynamics in the rotating frame. The problem of theoretically
predicting the number and the location of limit cycles for a given
dynamical system is of extraordinary mathematical difficulty. However,
the fact that the damping parameter α is small permits one to investigate
the problem by the Poincaré–Melnikov method [529,304] discussed in
Chapter 5. The starting point is the fact that Eq. (7.11) is an example of
generalized magnetization dynamics, of the type discussed in Chapter 3,
Section 3.2 and Chapter 5, Section 5.5. As a matter of fact, to apply the
Poincaré–Melnikov method it is better to pass to the LL form of the
dynamics. By assuming Eq. (3.12) rather than Eq. (3.9) as the starting
point and then using Eq. (7.10) to express dm/dt in the rotating frame,
one arrives at the rotating-frame equation:

dm
dt

= m× ∂g̃L
∂m

+ αm×
(
m× ∂gL

∂m

)
, (7.50)

where:

g̃L (m; ha) = gL (m; ha) + ωmz. (7.51)

In Chapter 3 we discussed cases of generalized magnetization dynamics
for which additional contributions to the relaxational part of the dynamics
appeared as the consequence of additional driving actions on the system.
However, the situation described by Eq. (7.50) is different, because here
the generalized form of the dynamics appears as a consequence of
the non-inertial character of the reference frame transformation. This
difference is reflected in the fact that the precessional part of the dynamics
rather than the relaxational one is affected by the transformation. The
function g̃L plays the role of effective energy in the rotating frame: it
represents the quantity that is conserved during the magnetization motion
when damping can be neglected. Thus, under this approximation the
magnetization trajectories in the rotating frame coincide with the closed
trajectories C(g̃0) corresponding to the constant energy g̃L = g̃0. From Eqs
(7.8) and (7.51) one finds that g̃L (m; ha) can be expressed as:

g̃L (m; ha) =
1
2
N⊥ −

1
2
κeffm2

z − (haz − ω)mz − ha⊥m⊥a. (7.52)

Therefore, the line C (g̃0) is described by the equation:

κeffm2
z + 2 (haz − ω) mz + 2ha⊥m⊥a = N⊥ − 2g̃0. (7.53)
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Whenα is small but cannot be neglected, the rate at which the effective
energy g̃L changes during the magnetization motion is described by the
power function P(m, ζ) introduced in Section 5.5. Since in the case of Eq.
(7.50) the role of the second potential Φ is played by gL itself, then the
power function (5.111) is equal to:

P(m, ζ) = − (m× heff) ·
dm
dt

. (7.54)

Note that this function would be zero if the magnetization trajectory
coincided with constant gL level curves, but this is not the case even under
negligible damping, because g̃L rather than gL is conserved in that limit.

Following the general analysis presented in Section 5.5, we know that
limit cycles are related to the zeros of the Melnikov function (5.147), i.e.:

M (g̃0, ζ) = −
∮
C(g̃0)

(m× heff) · dm. (7.55)

The equation M (g̃0, ζ) = 0 represents, in the limit of small damping,
the necessary and sufficient condition for the existence of a limit cycle
coinciding with the trajectory C(g̃0) of the undamped dynamics in the
rotating frame. The limit cycle is stable or unstable depending on whether
∂M/∂g̃0 is respectively positive or negative at the energy g̃0 where
M(g̃0, ζ) = 0.

The Melnikov function M (g̃0, ζ) can be studied by analytical or
numerical methods under quite general conditions because heff (Eq. (7.6))
and g̃L (Eq. (7.51)) are all known functions of m. As discussed in Chapter 5
and shown by Eq. (7.55), there is no need to know the precise time
parametrization mc(t; g̃0) for the undamped magnetization dynamics in
order to calculate the Melnikov function: it is sufficient to know the
geometrical shape of the unperturbed trajectories, i.e., the constant-g̃L
lines given by Eq. (7.53). Figure 7.8 illustrates the example of application of
this method to the thin film with negligible crystal anisotropy considered
in Fig. 7.1. The Melnikov function is calculated from Eqs (7.6), (7.51)
and (7.55) for all energies in the interval g̃d ≤ g̃0 ≤ g̃u, where g̃d and
g̃u represent the energies of the critical points d and u in the mz > 0
hemisphere in Fig. 7.8. One finds that: M(g̃d) < 0; M(g̃u) = 0, in
agreement with the fact that the Melnikov function is zero by definition for
every energy extremum; ∂M/∂g̃0|g̃0=g̃u

< 0, which means that the energy
maximum is going to be an unstable focus of the dissipative dynamics.
The above facts imply that there must exist at least one additional M(g̃0)
zero inside the interval g̃d < g̃0 < g̃u. In fact, one finds just one
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FIGURE 7.8 Phase portrait for nondissipative dynamics. Trajectories coincide
with the lines of constant effective energy g̃L (m; ha) = g̃0 (see Eqs (7.8) and (7.51)).
The following notation is used. s: g̃L minimum; u: g̃L maxima; d: g̃L saddle. System
parameters: α = 0, κeff = −1. Field frequency: ω = 0.5. Field amplitude: haz = 0.8,
ha⊥ = 0.08. Trajectory labeled by a is a stable limit cycle present in the dissipative
dynamics in the limit of small damping α, as predicted by the Poincaré–Melnikov
method (compare with bottom phase portrait in Fig. 7.1).

additional zero. The corresponding trajectory is labeled by a in Fig. 7.8.
This trajectory will be a stable limit cycle of the dissipative dynamics for
sufficiently small α. The comparison with Fig. 7.1 shows that this limit
cycle is indeed present in the dynamics even when α is as large as 0.1.

7.4 BIFURCATION DIAGRAMS

The autonomous nature of LLG dynamics in the rotating frame permits
one to describe this dynamics in geometric terms by using its phase
portrait [741,358,529,319]. An example was shown in Fig. 7.1. The basic
qualitative aspects of the dynamics are determined by the number of
stable (s), unstable (u), and saddle (d) fixed points (P-modes), as well as
by the number of stable (a) and unstable (r) limit cycles (Q-modes). In
this section, we discuss the conditions under which qualitatively different
phase portraits are to be expected.

It has been demonstrated that when the damping parameter α is
constant, the phase portraits of the magnetization dynamics belong to
one of two classes, depending on whether they contain two or four fixed
points. The simplest representatives of these two classes are shown in
Figs 7.9 and 7.10.

• Two P-modes: (s|u) portrait (Fig. 7.9)
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FIGURE 7.9 Example of (s|u) phase portrait. System parameters: α = 0.1, κeff =
−1. Field frequency: ω = 0.5. Field amplitude: haz = 1.3, ha⊥ = 0.1. s: stable node;
u: unstable node. Simplified graphical representation of phase portrait is given on
the right.

FIGURE 7.10 Examples of (s|ud|s) and (u|sd|u) phase portraits. System
parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5. Top: haz = 1.1,
ha⊥ = 0.1. Bottom: haz = 0.6, ha⊥ = 0.3. s: stable node; u: unstable node; d:
saddle. Simplified graphical representation of phase portraits is given on the right.



7.4 Bifurcation Diagrams 173

The two fixed points are both nodes (foci) of the dynamics. One of
them is stable, (s), while the other is unstable, (u). All magnetization
trajectories proceed from u to s. For this class of phase portraits, we
shall adopt the notation: (s|u).

• Four P-modes: (u|sd|u) or (s|ud|s) portraits (Fig. 7.10)
In this case, as predicted by Poincaré index theorem, there are three
nodes and one saddle. The presence of the saddle governs the structure
of the phase portrait. The separatrix trajectories originating from
the saddle must be connected to one of the remaining fixed points.
Since there are three fixed points and four separatrix lines, one of
the nonsaddle fixed points will be connected to the saddle by two
separatrix lines. Two situations are possible: (i) the doubly connected
fixed point is stable and the remaining two fixed points are unstable;
(ii) the doubly connected fixed point is unstable and the remaining two
fixed points are stable. These two phase portraits will be denoted as
(u|sd|u) and (s|ud|s), respectively. The symbol next to d denotes the
fixed point doubly connected to the saddle.

The simplified graphical representation on the right of Figs 7.9 and
7.10 reflects the essential features of the respective phase portrait.

Starting from the two fundamental types of phase portrait shown
in Figs 7.9 and 7.10, more complicated phase portraits containing one
or more limit cycles can be conceived. In fact, a stable (unstable) fixed
point surrounded by an unstable (stable) limit cycle is equivalent to an
unstable (stable) fixed point as far as the connectivity to the rest of the
phase portrait is concerned. Formally one can use substitution rules of
the form s → ua or u → sr in the phase-portrait notation previously
introduced, in order to construct phase portraits of increasing complexity.
These rules can be translated into corresponding modifications in the
simplified graphical representations introduced in Figs 7.9 and 7.10. For
example, given an (s|u) phase portrait, one arrives at new phase portraits
of type (ua|u) and (s|rs). Similarly, starting from (u|sd|u) phase portraits,
one obtains phase portraits of type (sr|sd|u), (u|uad|u), (sr|uad|u), etc.
The simplified graphical representations in Fig. 7.1 illustrate this idea in
the case of phase portraits with one or two limit cycles. We shall see that
the stable limit cycle in a (ua|u) phase portrait plays a role similar to that
of the sd pair in a (u|sd|u) phase portrait. For this reason, the symmetric
notation, (u|a|u) or (s|r|s) instead of (ua|u) or (sr|s), will also be used
whenever it will be appropriate.

In principle, by using the substitution rules just outlined one can
generate phase portraits containing an arbitrary number of limit cycles.
However, one does not know if all of these phase portraits can be
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admissible phase portraits of the physical LLG dynamics. In fact,
determining which phase portraits are admissible and which are not is a
problem of remarkable difficulty, for which no general solution is known
(see Chapter 5). The direct inspection of the individual phase portraits
generated by specific excitation conditions may be often necessary in
order to obtain quantitative information about the number of limit cycles
actually present in the dynamics.

For a given phase portrait, a slight change in the control parameters
will usually lead to slight modifications of the phase portrait, without
altering its structure. When this is the case, the phase portrait is said
to be structurally stable. Bifurcation phenomena are structural changes
in the topology of the phase portrait occurring at some critical value
of the control parameters [358,428,304]. One can have local bifurcations,
related to changes in the number and/or the nature of fixed points, or
global bifurcations, where changes occur in the connectivity of trajectories,
even if the number and the nature of the fixed points does not change.
Important cases of bifurcations are discussed below.

• Saddle–node bifurcation
This bifurcation occurs when a saddle–node pair is created or
annihilated and the system passes from two to four fixed points or vice
versa. The bifurcation condition is expressed by the equation detA0 = 0
(see Eq. (7.43)).

• Andronov–Hopf bifurcation
This bifurcation takes place when a nonsaddle fixed point is
changed from stable to unstable or vice versa with the simultaneous
creation or destruction of a limit cycle around the fixed point. The
bifurcation condition is (tr A0 = 0,det A0 > 0) (see Eq. (7.45)). At a
Hopf bifurcation point, the eigenvalues of the stability matrix A0

are purely imaginary, i.e., they are of the form ±iωH , where ωH =
(det A0)1/2. The parameter ωH represents the angular frequency of the
periodic motion along the limit cycle that is created or destroyed by the
bifurcation. By calculating the value of detA0 when trA0 = 0 by means
of Eqs (7.40) and (7.41) one finds:

ωH =

√
ω2 cos2 θ0 −

κ2
eff sin4 θ0

4 (1 + α2)
. (7.56)

• Homoclinic-saddle-connection bifurcation
This bifurcation occurs when a homoclinic saddle connection is
formed and the connection between the saddle and the other fixed
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FIGURE 7.11 Simplified graphical representation of homoclinic-saddle-connection
bifurcation.

points is changed (see Fig. 7.11 for an example). A limit cycle is
created or destroyed when the saddle connection is formed. The
bifurcation condition can be expressed in terms of the Melnikov
function associated with the energy region bounded by the saddle
connection:

M (g̃sc, ζ) = 0, (7.57)

where g̃sc is the energy of the undamped saddle-connection trajectory.
In fact, this energy must be a zero of the Melnikov function if a limit
cycle is to be created or annihilated as a result of the saddle-connection
bifurcation.

• Semi-stable-limit-cycle bifurcation
In this bifurcation a pair of limit cycles with opposite stability is
created or annihilated. Also in this case the bifurcation condition can
be expressed in terms of the Melnikov function, namely:

M (g̃0, ζ) = 0,
∂M (g̃0, ζ)

∂g̃0
= 0. (7.58)

The above conditions guarantee that a pair of zeros of the Melnikov
function (i.e., a pair of limit cycles) will be simultaneously created or
annihilated.

The classification of LLG phase portraits and bifurcations presented
above is the starting point for the study of the phase diagram of
magnetization dynamics in the (haz,ha⊥) control plane under constant
ω. The diagram can be progressively developed starting from the stability
properties of P-modes for large and low values of magnetic fields, where
particularly simple results are valid.
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Let us first consider the case of large field amplitudes. By eliminating
cos θ0 from Eqs (7.17) and (7.18) one obtains:

h2
a⊥

ν2
0 + α2ω2

+
(
haz − ω
ν0 − κeff

)2

= 1. (7.59)

This equation shows that h2
a⊥ + (haz − ω)2 ' ν2

0 for very large ν2
0 .

Therefore, the limit ν2
0 →∞ represents the limit of large field amplitudes.

By letting ν2
0 → ∞ in Eq. (7.40) and taking into account that α � 1, one

finds that detA0 ' ν2
0/ (1 + α)2. Only two P-modes can be present at large

fields, because det A0 > 0. In addition, when the applied field is large
it dominates the effective field, which means that the Melnikov function
(Eq. (7.55)) can be calculated under the approximation: m×heff 'm×ha
and dm/dt ' −m × ha. This shows that M (g̃0) > 0, so no limit cycles
can be present. Therefore, at high fields the phase portrait is always of
(s|u) type. On the other hand, at low rotating field amplitudes one can
take advantage of the analysis presented in the previous section to infer
the existence of Q-modes. That analysis indicates that the typical phase
portrait at low rotating fields will be either of (s|r|s) or (u|a|u) type.

The complete phase diagram for a given system can be constructed by
using these limit cases as a starting point and by incorporating the changes
in the phase portrait that occur when bifurcation lines are crossed. The
plane (haz,ha⊥) is divided into regions associated with different phase
portraits by the lines det A0 = 0 and tr A0 = 0 when det A0 > 0. These
are the lines along which saddle–node and Hopf bifurcations take place.
Additional partitions of the control plane arise because of the presence of
homoclinic-saddle-connection or semi-stable-limit-cycle bifurcation lines.
These bifurcations can be studied by analyzing the zeros of the Melnikov
function (7.55). Some hint to the location of these global bifurcation
lines comes from the fact that Hopf, homoclinic-saddle-connection, and
semi-stable limit-cycle bifurcations are the only mechanisms creating
or destroying limit cycles. Therefore, any region in the control plane
associated with a phase portrait containing limit cycles must necessarily
be confined by one of these bifurcation lines.

The various phase diagrams associated with different values of
the system parameters (α, κeff) and the field frequency ω result in a
large number of interesting situations, which cannot be all discussed
here. In general, when |κeff| � ω the situation approaches that of the
Stoner–Wohlfarth model [639,79] and the results known for that model
become approximately valid. Conversely, a rich variety of new situations
is encountered when one departs from that limit. We shall restrict our
discussion to a few cases of particular physical interest.
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FIGURE 7.12 Phase diagram in (haz,ha⊥) control plane for a thin-film disk with
negligible crystal anisotropy. Bifurcation lines: saddle–node (continuous); Hopf
(dashed); homoclinic-saddle-connection (asterisks); semi-stable limit cycles (black
circles). Inset: magnified view of framed region. Small empty circles indicate the
locations corresponding to the phase portraits shown in Figs 7.1, 7.9 and 7.10.
System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5.

Figure 7.12 shows the complete phase diagram for a soft thin-film disk
characterized by κ = 0 and Nz = 1, i.e., κeff = −1. A remarkably rich
structure is revealed. Phase portraits with zero, one, or two limit cycles
are present, separated by bifurcation lines of the four types previously
discussed. As an example of the information that can be obtained from
this diagram, let us analyze the behavior of the thin-film disk when the
field haz is kept at the constant value haz = 0.6 and the radio-frequency
field amplitude ha⊥ is gradually increased. When ha⊥ = 0 (i.e., there
is no rotating field), the situation is static. According to Eqs (7.15) and
(7.16) there exist two fixed points for the magnetization corresponding
to sin θ0 = 0, i.e., θ0 = 0 and θ0 = π. It can be verified that both these
fixed points are unstable. However, when ha⊥ = 0, Eqs (7.13)–(7.14) admit
another solution: cos θ = −heff/κeff,dφ/dt = ω. This solution represents
a limit cycle (Q-mode) traversed at the angular frequency ωQ = ω.
Accordingly, the phase portrait is of (u|a|u) type. In the laboratory frame,
this limit cycle results in a continuous set of marginally stable equilibrium
states characterized by the same value of θ and arbitrary angle φ (see
previous section). According to Eq. (7.49), the energy is minimum with
respect to θ for all these states. When ha⊥ is increased, the value of
cos θ0 associated with the two unstable fixed points is reduced: the limit
cycle, initially centered about the symmetry axis, becomes increasingly
distorted, and the associated angular frequency ωQ is progressively
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reduced. In the laboratory frame, the limit cycle gives rise to a Q-mode,
i.e., to a quasi-periodic motion where the magnetization precesses about
the symmetry axis at the angular frequency ω − ωQ with superimposed
nutations at the frequency ω. It looks as if the magnetization follows the
rotating field periodically falling off synchronism. When ha⊥ becomes
large enough, the critical value is reached (∼0.15 for the case shown
in Fig. 7.12) for which the limit cycle is destroyed by the homoclinic-
saddle-connection bifurcation. The system jumps from the Q-mode to a
stable P-mode: the magnetization gets locked to the field and is driven
in synchronism with the field at the frequency ω. It is instructive to
note that hysteresis will appear in the response under increasing or
decreasing rotating field amplitude. In fact, under increasing field there
is a jump from the Q-mode to the P-mode through the homoclinic-saddle-
connection bifurcation, whereas under decreasing field there is a jump
from the P-mode to the Q-mode through the saddle–node bifurcation
which occurs at a definitely lower value of ha⊥, of the order of 0.05.

The phase diagram for a system with κeff = 1, i.e., a bistable particle
with the easy magnetization axis along ez and total effective anisotropy
equal to 1, can be immediately obtained from that shown in Fig. 7.12 by
changing everywhere s into u fixed points and vice versa, as well as a
into r limit cycles and vice versa. This rule is derived from the previously
discussed fact that changing the sign of the effective anisotropy constant
is basically equivalent to reversing the direction of time. Interestingly,
(s|rsd|s) phase portraits become possible under positive anisotropy for
those field values for which (u|aud|u) portraits are predicted under
negative anisotropy (see Fig. 7.12). This means that phase portraits with
three stable P-modes are made possible by the driving action of the radio-
frequency field despite the bistable character of the free energy.

Completely different results are obtained when one considers a sphere
with negligible crystal anisotropy, i.e., κ = 0, Nz = 1/3, κeff = 0.
In this case, the det A0 ≤ 0 region is reduced to the single point
(cos θ0 = 0, ν0 = 0), i.e., (haz = ω,ha⊥ = αω). Therefore, two P-modes
only will exist for any arbitrary choice of the control parameters. On the
other hand, the line tr A0 = 0 is reduced to ν0 + ω cos θ0 = 0, which, after
substitution into Eqs (7.20) and (7.21), yields:

[
haz −

ω
(
1 + α2

)
2

]2

+ h2
a⊥ =

ω2
(
1 + α2

)2
4

. (7.60)

This equation represents a circular arc joining the origin with the point
(haz = ω,ha⊥ = αω), the center of the circle lying on the haz axis (see
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FIGURE 7.13 Phase diagram in (haz,ha⊥) control plane for a sphere with
negligible crystal anisotropy. Continuous line: highly nongeneric bifurcation line
(see Eq. (7.60)) connecting origin with point (ω, αω). System parameters: α = 0.1,
κeff = 0. Field frequency: ω = 0.5.

Fig. 7.13). This line identifies a highly nongeneric bifurcation condition.
The phase portrait is of (s|u) type in the entire control plane. Whenever
the bifurcation line is crossed the stability of the two P-modes is
simultaneously reversed. The entire phase portrait takes the form of
concentric, closed trajectories surrounding the fixed points. Accordingly,
switching from the unstable to the stable P-mode will occur through
lengthy transients hardly distinguishable from a quasi-periodic response.

7.5 NONLINEAR FERROMAGNETIC RESONANCE, FOLDOVER,
AND SWITCHING PHENOMENA

The field region close to the right-hand corner of the region det A0 < 0 in
Fig. 7.12 is where ferromagnetic resonance phenomena occur [740,306]. In
typical ferromagnetic resonance experiments, the large dc field haz > 0 is
initially applied with ha⊥ = 0. In this case, the ensuing P-mode coincides
with the magnetization saturation state along the positive ez axis. Then
the rf field of amplitude ha⊥ and angular frequency ω is switched on. The
resonance experiment is carried out by slowly decreasing the field haz
while keeping ha⊥ and ω constant. Resonance occurs when the Larmor
frequency associated with the effective field becomes equal to the rotating
field frequency ω. In dimensionless notation, this means that:

haz + κeff ' ω. (7.61)
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The resonance becomes manifest when one considers the power p
absorbed in the P-mode regime under fixed ha⊥ and variable haz . By using
Eqs (7.23) and (7.18) one obtains:

p ≡ ha⊥ ·
dm⊥

dt
= αω2 sin2 θ0 =

αω2h2
a⊥

ν2
0 + α2ω2

. (7.62)

When the rf field is small, the angle θ0 is small as well and one can use
Eq. (7.17) with the approximation cos θ0 ' 1 to express ν0 in terms of haz .
Under this approximation, Eq. (7.62) yields:

p =
αω2h2

a⊥

(haz + κeff − ω)2 + α2ω2
. (7.63)

We obtain the Lorentzian-shape line typical for linear resonance. The
absorbed power is maximum for haz + κeff = ω, as anticipated, and the
line width is αω.

For larger rf fields, large precessional motions occur and the
approximation cos θ0 ' 1 is no longer acceptable. To deal with this
nonlinear regime, we can use Eq. (7.30) to express haz as a function of
cos θ0 for the P-mode under consideration. As a result, one finds:

haz = ω − κeff cos θ0 ± cos θ0

√
h2
a⊥

sin2 θ0
− α2ω2. (7.64)

Equations (7.62) and (7.64) give the parametric representation for the
absorbed power p(haz) under nonlinear conditions. An example is shown
in Fig. 7.14 for the case of a thin-film disk with negligible crystal
anisotropy (κeff = −1). The initial condition, where cos θ0 ' 1 and haz
is very large and positive corresponds to choosing the branch with the
positive sign in Eq. (7.64). This is the correct branch to consider when
cos θ0 is decreased from cos θ0 = 1 down to sin2 θ0 = h2

a⊥/α
2ω2, where

the square root in Eq. (7.64) vanishes. This is where the absorbed power is
maximum. From here, the branch with the negative sign in Eq. (7.64) must
be considered for cos θ0 increasing from the minimum resonance value
back to cos θ0 = 1. As shown in Fig. 7.14, the absorbed power profile gets
increasingly distorted under increasing rf field amplitude. According to
Eq. (7.62), the state of maximum absorbed power always corresponds to
ν0 = 0. From Eqs (7.17) and (7.18) one finds that this condition is described
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FIGURE 7.14 Top: Magnified view of right-hand corner of det A0 < 0 region
shown in Fig. 7.12 for the case of a soft magnetic thin film. Horizontal dashed
lines: haz field variations for resonance experiments with rf field amplitudes
ha⊥ = 0.01, 0.02, 0.03. Curved dashed line: ν0 = 0 nonlinear resonance condition
(Eq. (7.65)). A and B: saddle–node bifurcation points where instability in system
response may occur. Bottom: Absorbed power (Eqs (7.62) and (7.64)) for ha⊥ =
0.01, 0.02, 0.03 with representation of foldover jumps taking place for the highest
rf field amplitude at points A and B. System parameters: α = 0.1, κeff = −1. Field
frequency: ω = 0.5.

by the equation:

ha⊥ =
αω

|κeff|

√
κ2

eff − (haz − ω)2. (7.65)

This is the curved dashed line shown in Fig. 7.14.
When κeff is negative and large enough, the distortion of the absorbed

power profile can become so important that the system becomes unstable
and hysteretic jumps appear in the absorbed power. This phenomenon
has been observed and is known in the literature as “foldover” [590,254].
Foldover effects are properly understood by using the bifurcation analysis
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presented in the previous section. Let us consider the representation
of P-modes in the (haz,ha⊥) field control plane. During the resonance
experiment, the P-mode under study moves from right to left along a
horizontal line in the control plane, as shown in Fig. 7.14. If this line
crosses the boundary of the det A0 < 0 region (point A in Fig. 7.14), a
saddle–node pair of additional P-modes is created. The P-mode motion
is destroyed at point B in Fig. 7.14 by a second saddle–node bifurcation
involving the saddle previously created at point A. Consequently, the
system becomes unstable and jumps to a different P-mode of definitely
smaller amplitude. If the field haz is now increased, the newly attained
P-mode evolves under the action of the field until it is destroyed by the
saddle–node bifurcation at point A in Fig. 7.14 where the system jumps
back to the original P-mode. It is clear from this analysis that the ha⊥
threshold beyond which foldover becomes possible coincides with the
ordinate of the lower right-hand tip of the curve defined by the equation
det A0 = 0. This tip has the largest haz coordinate and the smallest
ha⊥ coordinate among all points of the above curve. Consequently, the
corresponding value cos θF of cos θ0 can be found as the solution of the
equation:

dhaz
d cos θ0

=
∂haz
∂ cos θ0

+
∂haz
∂ν0

dν0
d cos θ0

= 0. (7.66)

By using Eq. (7.20) for haz and by taking into account Eq. (7.43) for
the function ν0(cos θ0) describing the curve det A0 = 0, after somewhat
lengthy but straightforward calculations, we derive from Eq. (7.66) the
following equation for x = cos2 θF :

3x2 − 2(4A− 1)x+ 3 = 0, (7.67)

where:

A = 1 +
2α2ω2

κ2
eff

. (7.68)

By solving Eq. (7.67), one finds:

cos2 θF = 1 +
8
3
α2ω2

κ2
eff
−

√(
1 +

8
3
α2ω2

κ2
eff

)2

− 1. (7.69)



7.5 Nonlinear Ferromagnetic Resonance, Foldover Switching 183

By substituting Eq. (7.69) first into Eq. (7.43) and then into Eq. (7.21) for
ha⊥, we find the exact expression for the critical field for the foldover
phenomenon. This expression is quite lengthy; however, in the typical
case when αω � 1 it can be simplified and presented in the form:

h2
a⊥ '

16 (αω)3

3
√

3|κeff|
. (7.70)

The last formula is consistent with the classical estimate of Anderson and
Suhl [22]:

h2
a⊥ ' 3.08

(αω)3

|κeff|
, (7.71)

obtained for thin-film geometries through an approximate linear analysis.
Next, we shall discuss magnetization switching under rotating

magnetic fields. This type of switching is of significant interest in the
area of microwave-assisted magnetic recording [762]. In the classical
Stoner–Wohlfarth (SW) theory [639,79], the possible magnetization states
of a uniformly magnetized spheroidal particle with uniaxial anisotropy
are determined as a function of the field acting on the particle. Let us
denote by haz and ha⊥ the field components parallel and perpendicular to
the anisotropy axis, respectively. Irreversible jumps in the magnetization
orientation occur whenever the stability of the state occupied by the
system is destroyed by the action of the field. The field conditions which
lead to this occurrence are described by the astroid equation:

h2/3
az + h2/3

a⊥ = h2/3
AN , (7.72)

where hAN is the anisotropy field. The system admits four energy
extrema inside the astroid: two energy minima, one energy maximum
and one saddle. In addition, two extrema exist outside the astroid:
one energy minimum and one energy maximum. Energy minima are
the stable equilibrium states for the system and switching occurs from
one to another at the astroid boundary. The SW model provides a
simple framework of fundamental importance for the interpretation of
magnetization reversal in fine particles and thin films.

The analysis of P-mode properties in uniformly magnetized particles
worked out in the previous sections may be construed as a dynamic
generalization of the SW model, in which the field component ha⊥ is
rotated at the frequency ω and the LLG equation is solved in order to
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calculate the magnetization dynamics driven by this field [392,453]. The
analogy becomes manifest in the rotating frame of reference in which
the field is stationary and the dynamics acquire autonomous form. P-
modes are the dynamic counterparts of the static equilibrium states
present in the SW model. In fact, similarly to the SW case, only two
types of dynamics are possible, characterized by two or four P-modes.
The boundary between the field regions where these two situations are
realized corresponds to the condition det A0 = 0. In parametric form
it is described by Eqs (7.20)–(7.21), with cos θ0 as a parameter (the only
parameter after one uses Eq. (7.43) to express ν0 as a function of cos θ0).
This boundary is the natural generalization of the astroid (7.72), and
indeed it is reduced to it in the limit of ω → 0.

Magnetization switching under rotating fields can be studied by
analyzing P-mode stability under constant ω and variable (haz,ha⊥).
Switching events are the physical counterpart of the occurrence of
bifurcations in the system dynamics. In the SW model, there is only
one possibility, i.e., switching caused by a saddle–node bifurcation at the
astroid boundary. In contrast, more complicated switching processes may
occur under the rotating field as a consequence of the various bifurcation
mechanisms, i.e., Andronov–Hopf, homoclinic saddle connection, semi-
stable limit cycle, present in LLG dynamics in addition to saddle–node
bifurcations (see the discussion in the previous sections). These additional
bifurcation mechanisms play an important role because they involve
the creation or destruction of limit cycles (Q-modes). As a consequence,
switching from P-type to Q-type response or vice versa becomes
possible.

As an example of hysteresis and switching under circularly polarized
field, let us consider a particle with κeff > 0 subject to a rotating field
of constant amplitude ha⊥ and let us analyze the response of the system
when the field haz is slowly cycled between opposite large values. The
condition of constant ha⊥ and slowly varying haz is described by a
horizontal line in the (haz,ha⊥)-plane (see Fig. 7.15). The points A, B, etc.
where this line crosses the various bifurcation lines of the problem are
potential switching points where the system may jump from one P-mode
to another or between P-type and Q-type responses. The two or four P-
modes present in the dynamics are characterized by different values of
the magnetization component mz ≡ cos θ0 as a function of haz , obtained
by solving Eq. (7.30) (see Fig. 7.16). The field history determines which mz

state is realized under given haz . For monotonically increasing field haz ,
bifurcations encountered at points A, B, etc. involve states different from
the state occupied by the system. Switching occurs only at point E, where
the system becomes unstable because of a Hopf bifurcation. Switching
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FIGURE 7.15 Control plane (haz,ha⊥) with bifurcation lines for a bistable
particle with positive effective anisotropy (compare with the system with opposite
anisotropy shown in Fig. 7.12). The horizontal continuous line describes field
variation in which ha⊥ = 0.1 and haz is swept between large opposite values.
Circles labeledA throughE are points where the field crosses bifurcation lines and
magnetization switching may occur (see Fig. 7.16). System parameters: α = 0.1,
κeff = 1. Field frequency: ω = 0.5.

FIGURE 7.16 Representation of mz ≡ cos θ0 versus haz under constant ha⊥ = 0.1
for different P-modes, calculated from Eq. (7.30). Continuous lines: stable states;
dashed lines: unstable states; dotted line: saddle state. Letters A,B,C,E refer to
bifurcation points indicated in Fig. 7.15. Arrows indicate hysteresis loop traversed
when haz is swept between large opposite values. The gray region from C to B
represents the region of quasi-periodic response (Q-mode) in which mz oscillates
between the lower and upper bounds of the region. System parameters: α = 0.1,
κeff = 1. Field frequency: ω = 0.5.

results in the sudden mz jump from negative to positive value shown
in Fig. 7.16. Note that, in contrast with what occurs in the SW model,
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the saddle–node bifurcation at the astroid boundary F plays no role in
this case. For monotonically decreasing field haz , the situation is more
complex. A first switching event occurs at point C, where the stable state
occupied by the system is destroyed by a saddle–node bifurcation. The
system jumps from P-type to Q-type response, with the appearance of
spontaneous magnetization oscillations at a frequency much lower than
ω. These oscillations persist in the entire field interval from C to B. At
point B, the Q-mode is changed into a P-mode by a Hopf bifurcation.
No magnetization jump occurs at this point. Finally, switching occurs at
point A, because of a second Hopf bifurcation in which mz jumps back
from positive to negative values. The increasing-field branch of the loop
is fully reversible up to point E, where switching occurs. This is not the
case for the decreasing-field branch. In fact, if the field is decreased down
to a value in the interval from B to A and then increased again, one
obtains a different sequence of states: the quasi-periodic motion survives
up to higher values of haz , until it is destroyed by the saddle-connection
bifurcation at point D. Finally, it is worth remarking that the upper and
lower branches of the hysteresis loop in Fig. 7.16 are no longer symmetric
as they would be under quasi-static excitation. This is because the choice
of the sense of rotation of the radio-frequency field with respect to the
orientation of the dc field haz breaks the usual hysteresis loop symmetry.

7.6 MAGNETIZATION DYNAMICS UNDER DEVIATIONS FROM
ROTATIONAL SYMMETRY

The P-mode analytical solutions obtained in the previous sections do
exist as a consequence of the autonomous character of the magnetization
dynamics in the rotating frame of reference, which in turn is the direct
consequence of the rotational invariance of the original problem. In this
section we discuss how the P-mode solutions can be extended to the
case when the system is not rotationally invariant. This is accomplished
by treating the deviations from uniaxial (rotational) symmetry as
perturbations of the symmetric problem [86]. This perturbation approach
leads to linearized equations for magnetization perturbations. The
perturbation technique is developed in the rotational frame of reference
which moves in synchronism with circularly polarized fields. This choice
of reference frame leads to a linear equation for perturbation with
constant (time-independent) coefficients, which significantly facilitates
their analytical solution. It is important to stress that in this section
the perturbation technique is applied around the analytical solution
of the LLG equation for “large motions”. This is in contrast with the
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conventional approach where the perturbation technique is used in order
to obtain “small motion” solutions of the LLG equation [306].

In order to discuss the deviations from rotational invariance, we shall
write the effective field in the form:

heff = ha(t) + hAN −Nxmxex −Nymyey −Nzmzez, (7.73)

where ex, ey , ez are cartesian unit vectors in the laboratory frame, whereas
Nx andNy describe possible deviations from the demagnetizing factorN⊥
of the spheroid. We shall express the applied field ha(t) as follows:

ha(t) = hdc
a + hrf

a (t), (7.74)

where hdc
a and hrf

a (t) represent the dc and radio-frequency fields,
respectively.

In general, deviations from rotational invariance can be caused by
perturbations of the terms hdc

a , hrf
a , hAN , Nx, Ny , present in Eqs (7.73) and

(7.74). One can express the dc magnetic field as follows:

hdc
a = hazez + ∆hdc

a⊥e⊥(ψdc), (7.75)

where as before the symbol “⊥” indicates components normal to the
ez axis, e⊥(ψdc) indicates the unit vector orthogonal to the ez axis and
forming the angle ψdc with the x axis, haz and ∆hdc

a⊥ are the components
of hdc

a along the z axis and in the (x, y)-plane, respectively. The second
term on the right-hand side of Eq. (7.75) represents the deviation of
the dc field from its axial direction. When the rf field hrf

a (t) is time
harmonic and elliptically polarized, its projection on the (x, y)-plane can
be decomposed into the sum of two time-harmonic circularly polarized
fields, rotating in opposite directions with the same angular frequency ω.
This decomposition leads to the following expression:

hrf
a (t) = ha⊥ [cos(ωt)ex + sin(ωt)ey]

+ ∆hrf
a⊥ [cos(ωt+ ψ⊥)ex − sin(ωt+ ψ⊥)ey]

+ ∆hrf
az cos(ωt+ ψz)ez, (7.76)

where ∆hrf
az is the amplitude of the z component of the rf field, while ha⊥

and ∆hrf
a⊥ are, respectively, the amplitudes of the counterclockwise and

clockwise rotating components of the rf field in the plane normal to the ez
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axis, and ψ⊥ and ψz are initial phases. If the rf field is circularly polarized
in the (x, y)-plane, then ∆hrf

a⊥ = ∆hrf
az = 0. The anisotropy field hAN is

given by:

hAN = κ(m · eAN )eAN , (7.77)

where κ is the anisotropy constant and eAN is the unit vector parallel to
the easy axis. We shall denote by θAN the angle that eAN forms with the
ez axis and by ψAN the angle between the component of eAN normal to
the ez axis and the x axis. Finally, the (x, y) demagnetizing factors can be
written as:

Nx = N⊥ + ∆N⊥, Ny = N⊥ −∆N⊥, (7.78)

where N⊥ is the spheroid demagnetizing factor and the parameter ∆N⊥
controls the breaking of the spheroidal symmetry.

Let us apply the perturbation technique to the P-mode solutions
previously discussed in this chapter, by treating ∆hdc

a⊥, ∆hrf
az , ∆hrf

a⊥,
θAN, ∆N⊥, as small perturbations. We denote by m0(t) a given P-mode
solution, as it appears in the laboratory frame. The perturbed mode can
be expressed as:

m(t) = m0(t) + δm(t) + . . . , (7.79)

where δm(t) is the perturbation of magnetization dynamics. The equation
governing the evolution of the first-order perturbation term δm(t) can be
derived by substituting Eq. (7.79) into Eq. (7.9), by using Eqs (7.73)–(7.78)
and by neglecting all second-order terms containing products of small
quantities such as ∆hdc

a⊥, ∆hrf
az , ∆hrf

a⊥, θAN, ∆N⊥ and the components of
the vector ∆m(t). This leads to the following equation:

dδm(t)
dt

− αm0(t)× dδm(t)
dt

= −δm(t)×
(
h(0)

eff (t)− αdm0(t)
dt

)
−m0(t)× δheff, (7.80)

where h(0)
eff = ha⊥(t) − N⊥m0⊥(t) + [haz + (κ−Nz)m0z] ez , ha⊥(t) is

given by Eq. (7.5), and δheff is the perturbation of the effective field. This
perturbation can be decomposed into two parts: δ′heff which depends on
δm(t) and δ′′heff which contains ∆hdc

a⊥, ∆hrf
az , ∆hrf

a⊥, θAN, δN⊥. One finds
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for the two components of δheff the following expressions:

δ′heff = −N⊥δm⊥ + (κ−Nz)δmz, (7.81)

δ′′heff = ∆hdc
a⊥e⊥(ψdc) + ∆hrf

az cos(ωt+ ψz)ez
+ ∆hrf

a⊥ [cos(ωt+ ψ⊥)ex − sin(ωt+ ψ⊥)ey]
+ ∆κm0ze⊥(ψAN) + ∆κm0⊥ cos(ωt− φ0 − ψAN)ez
−∆N⊥m0⊥ [cos(ωt− φ0)ex + sin(ωt− φ0)ey] , (7.82)

where ∆κ = κθAN and φ0 is the lag angle between the P-mode and ha⊥.
It is important to stress that m0(t) and δheff are known functions of time
and, thus, the last term in Eq. (7.80) is the driving term.

The perturbation δm(t) must be such that m0(t) · δm(t) = 0. This is a
consequence of the requirement that the magnetization magnitude must
be preserved by the perturbations. Therefore, δm(t) can be expressed in
terms of the unit vectors e1 and e2 defined by formulas (7.36) and (7.37):

δm(t) = δm1(t)e1(t) + δm2(t)e2(t). (7.83)

The vectors e1 and e2 are explicitly time-dependent in the laboratory
frame. The differential equation for δm1(t) and δm2(t) is obtained
by projecting Eq. (7.80) onto the unit vectors e1(t) and e2(t). After
straightforward calculations, one obtains the equation:

d
dt

(
δm1

δm2

)
= A0

(
δm1

δm2

)
+B0

(
δ′′heff,1(t)
δ′′heff,2(t)

)
, (7.84)

where:

B0 =
1

1 + α2

(
1 −α
α 1

)
, (7.85)

A0 is given by Eq. (7.39), whereas δ′′heff,1(t) and δ′′heff,2(t) are the
components of the field δ′′heff(t) along e1(t) and e2(t), respectively.

It is quite remarkable that, due to the introduction of the basis
vectors e1(t) and e2(t), the nonhomogeneous system of linear ordinary
differential equations with time-periodic coefficients given by Eq. (7.80)
has been reduced to the nonhomogeneous system of linear ordinary
differential equations with constant-in-time coefficients, Eq. (7.84). This
system of equations can be solved analytically. In fact, according to Eq.
(7.82) and the choice of basis e1(t) and e2(t), δ′′heff(t) is the sum of time-
harmonic terms with frequencies multiples of the frequency ω of the
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rf driving field. The periodic steady state solution of Eq. (7.84) can be
obtained by separately finding the steady state sinusoidal solutions due to
each term in δ′′heff(t) and by using the superposition principle to obtain
the complete solution. By using the phasor technique, we express each of
the sinusoidal terms contributing to the steady state in the complex form:

δm1(t) = Re
[
ã1eiωpt

]
, δm2(t) = Re

[
ã2eiωpt

]
, (7.86)

where ωp is the frequency of the perturbative term and ã1, ã2 are two
unknown complex amplitudes. By substituting Eq. (7.86) into Eq. (7.84)
one finds for the unknowns ã1, ã2:(

ã1

ã2

)
=
(
iωpI −A0

)−1
B0

(
b̃1
b̃2

)
, (7.87)

where I represents the identity matrix whereas b̃1 and b̃2 are the complex
amplitudes of the corresponding sinusoidal perturbation term. These
complex amplitudes have the following analytical forms for the various
perturbation terms.

(a) Perturbation associated with ∆hdc
a⊥ (ωp = ω):

(
b̃1
b̃2

)
= ∆hdc

a⊥

(
cos θ0

i

)
e−i(φ0+ψdc). (7.88)

(b) Perturbation associated with ∆hrf
a⊥ (ωp = 2ω):

(
b̃1
b̃2

)
= ∆hrf

a⊥

(
cos θ0

i

)
ei(ψ⊥−φ0). (7.89)

(c) Perturbation associated with ∆hrf
az (ωp = ω):

(
b̃1
b̃2

)
= ∆hrf

az

(
− sin θ0

0

)
eiψz . (7.90)

(d) Perturbation associated with ∆κ (ωp = ω):

(
b̃1
b̃2

)
= ∆κ

(
cos 2θ0
i cos θ0

)
e−i(φ0+ψAN). (7.91)
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FIGURE 7.17 Comparison of analytically computed (continuous line) and
numerically computed (dots) solution of the LLG equation for the case of linearly
polarized field. The line marked by “×” is the locus of points described by the
applied field. System parameters: κ = 0.1, N⊥ = 0.2, Nz = 0.6 (i.e., κeff = −0.3),
α = 0.01. Excitation conditions: ω = 0.8, haz = 1.1, ha⊥ = 0.1. Perturbation
parameters: ∆hdc

a⊥ = 0.05haz , ∆hrf
az = 0.05ha⊥, ∆hrf

a⊥ = ha⊥ (i.e., linearly
polarized field), θAN = 0.2, ∆N⊥ = 0.1, ψdc = π/3, ψ⊥ = π/2, ψz = ψAN = 0.

(f) Perturbation associated with ∆N⊥ (ωp = 2ω):

(
b̃1
b̃2

)
= ∆N⊥

(
− sin θ0 cos θ0
−i sin θ0

)
e−2iφ0 . (7.92)

The inverse of the matrix (iωpI − A0) is well defined unless iωp is an
eigenvalue of A0. This is possible only if the trace of A0 vanishes, which
is a non-generic situation associated with a Hopf bifurcation for the P-
mode. It is also important to observe that each harmonic perturbation
(δm1(t), δm2(t)) with angular frequency ωp produces three terms in δm(t)
with angular frequencies ωp + ω, ωp, and ωp − ω.

The accuracy of the perturbation technique can be tested by
comparing the value of magnetization m0(t)+δm(t) obtained by using the
analytical perturbation technique with those obtained by direct numerical
integration of Eqs (7.9) and (7.73). Extensive numerical testing carried
out for a wide range of values of the perturbation parameters suggests
a remarkable accuracy of the perturbation technique. Here we present
in detail the comparison results for the rather significant case of linear
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polarization of the rf field, i.e., the case when ∆hrf
a⊥ = ha⊥. This case

represents an appreciable deviation from the symmetry of the driving
field, nevertheless it can still be treated by the perturbation technique. The
results are shown in Fig. 7.17. The values of the parameters were chosen
to be fairly close to nonlinear resonance conditions. In this situation, the
angle between the magnetization and the symmetry axis is appreciable
and the usual “small motion” linearization technique cannot be applied.
The comparison of the analytically computed magnetization dynamics
with the numerically computed dynamics clearly demonstrates the high
accuracy of the perturbation technique even in this extreme case of
symmetry breaking.



CHAPTER 8

Spin-Waves and Parametric
Instabilities

8.1 LINEARIZED LLG EQUATION

The P-mode solutions to the LLG equation discussed in the previous
chapter provide important examples of dynamic states analogous to
static saturation, i.e., states of spatially uniform magnetization motion.
Spatially uniform dynamic states were originally of interest in relation to
the ferromagnetic resonance phenomenon. Initially, it was assumed that
spatially uniform radio-frequency fields would certainly induce spatially
uniform magnetization motions. Later, it became clear that, because of
the nonlinear nature of LLG dynamics, at some rf input powers spatially
uniform motions could get coupled to certain spin-wave perturbations,
forcing them to grow up to nonthermal amplitudes and to give rise to
complicated spatially nonuniform magnetization motions through the
so-called Suhl’s instabilities [645,646,740,306]. The main limitation of
those approaches is that they were carried out for excited states close
to static saturation. In this respect, the existence of P-modes, studied in
the previous chapter, suggests that the analysis of spin-wave effects can
be carried out (at least for systems with uniaxial symmetry) for fields
of arbitrary amplitude and frequency. We will show in this chapter that
this analysis leads to remarkable results. For instance, it would seem
quite natural to suggest that since spatially uniform motions are unstable
for relatively weak excitations, they will be even more so under larger
excitations. However, this is not the case. The reason is that the nature of
the spin-wave perturbations for large magnetization motions is altered by
the fact that these perturbations must remain orthogonal to the uniform
motions at all times, in order to preserve the magnetization magnitude
Ms. This physical constraint affects the parametric resonance conditions
governing instabilities and yields the remarkable result that the rf input
powers capable of inducing spin-wave instabilities are bounded from both
below and above. This means that large enough uniform motions are always

193
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stable. In addition, it turns out that the stability of large motions may
depend on the history of their excitation.

The spin-wave notion is basic to the description of the spontaneous
fluctuations of magnetization at thermal equilibrium as well as to the
understanding of the magnetization response to rf external magnetic
fields [338,646,740,306]. Spin-waves with wavelength much larger than
the atomic spacing can be described by using a classical continuous-
medium model with no reference to the details of the atomic structure.
In this description, spin-waves appear as plane-wave perturbations of the
magnetization M which are orthogonal to the large-scale magnetization
state of the ferromagnet. Spin-wave dynamics is then governed by the
LLG equation for M(r, t). This approach has been primarily used to
describe the spectrum of thermally generated spin-waves when the
large-scale magnetization state is the state of equilibrium saturation
magnetization. However, the results presented for P-modes in the
previous chapter suggest a nonequilibrium generalization of the spin-
wave picture. In this picture, a specific P-mode driven by the radio-
frequency magnetic field becomes the reference state analogous to the
saturation state for equilibrium spin-waves. Similarly to what occurs
for static magnetic saturation, one expects that P-modes will be slightly
affected by various kinds of perturbations arising from nonuniformities
of the medium, thermal agitation, and other causes. These perturbations
correspond to slight deviations of the local direction of M from that of
the P-mode motion. If some of these perturbations turn out to have an
exponentially growing amplitude, then the P-mode will be disrupted
in favor of some new magnetization configuration. Otherwise, the P-
mode will be stable and will be physically realizable and observable. By
linearizing the Landau–Lifshitz–Gilbert equation around a given P-mode,
one obtains the equations for generic out-of-equilibrium perturbations,
and in particular for spin-wave-type plane-wave perturbations. The
crucial difference with respect to the conventional analysis based on
linearization around the saturation state is that these perturbations can be
no longer considered as low-energy excitations above the thermodynamic
equilibrium state of static saturation, but rather as deviations from far-
from-equilibrium dynamic states driven by the rf external field. This
physical difference results in a basic change in the mathematical structure
of the spin-wave equations. In fact, spin-wave perturbations must be
orthogonal to the P-mode motion at all times in order to preserve the
magnetization magnitude. This requirement introduces a nontrivial time-
dependent constraint in the spin-wave equations which dominates the
problem and substantially alters the nature of spin-waves in the presence
of large P-mode motions. The main spin-wave properties (e.g., dispersion
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relation) are modified and new conclusions are reached about spin-
wave stability of far-from-equilibrium driven states. We stress that the
linearization approach just outlined is completely different from the one
usually introduced in quasi-equilibrium magnetization dynamics studies.
In fact, we are not assuming that the magnetization motion is small. On
the contrary, we are considering truly nonlinear conditions in which large
motions are realized (P-modes). It is the existence of explicit formulas for
P-modes that enables one to linearize the LLG equation around these P-
mode motions in order to obtain the equations for P-mode perturbations.

Consider a specific P-mode of magnetization m0(t), which is slightly
distorted by the perturbation δm(r, t), with |δm(r, t)| � 1. This means
that we are looking for solutions to the LLG equation in the form:
m(r, t) = m0(t) + δm(r, t). The magnetostatic field hM can be expressed
as hM (r, t) = −N⊥m0⊥(t) − Nzm0z + δhM (r, t), where m0z and m0⊥(t)
are the components of m0(t) along ez and in the plane perpendicular to
it, respectively, whereas δhM represents the magnetostatic field produced
by the perturbation δm. The field hM is the solution of magnetostatic
Maxwell equations: ∇ · hM = −∇ · m,∇ × hM = 0, with the usual
interface conditions at the body surface. By substituting m = m0+δm and
hM = −N⊥m0⊥ − Nzm0z + δhM into the LLG equation and by keeping
only first-order terms in δm, one finds:

∂δm
∂t
− αm0 ×

∂δm
∂t

= −δm×
(
h(0)

eff − α
dm0

dt

)
−m0 × δheff, (8.1)

where:

h(0)
eff = ha⊥(t) + (haz + κeffm0z) ez −N⊥m0, (8.2)

δheff = δhM + κδmzez +∇2δm, (8.3)

and κeff = κ+N⊥−Nz . The magnetization magnitude must be preserved,
i.e., |m|2 = 1. Therefore, m0 · δm = 0 at any time. It can be verified that
Eq. (8.1) predicts indeed that ∂ (m0 · δm) /∂t ≡ 0, which means that the
condition m0 · δm = 0 is preserved if it is initially fulfilled. Therefore, it
is convenient to represent δm in a basis chosen in the plane perpendicular
to m0, because δm is constrained to this plane. One such basis is provided
by the time-dependent unit vectors e1(t) and e2(t) analogous to the ones
defined in the previous chapter for spatially uniform perturbations (see
Eqs (7.36) and (7.37)):

e1(t) =
(ez ×m0(t))×m0(t)
|(ez ×m0(t))×m0(t)|

, (8.4)
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e2(t) =
ez ×m0(t)
|ez ×m0(t)|

. (8.5)

The relationship with the laboratory-frame basis vectors ex, ey , and ez is
given by the expressions:

e1(t) = ex cos θ0 cos (ωt− φ0)
+ ey cos θ0 sin (ωt− φ0)− ez sin θ0, (8.6)

e2(t) = −ex sin (ωt− φ0) + ey cos (ωt− φ0) , (8.7)

where (θ0, φ0) are the spherical angles identifying the P-mode in the
rotating-frame representation introduced in the previous chapter. Namely,
θ0 is the angle between m0(t) and ez , while φ0 is the lag angle between
m0⊥ and ha⊥. The magnetization perturbation can be represented as
δm(r, t) = δm1(r, t)e1(t) + δm2(r, t)e2(t). By using Eqs (7.26)–(7.29) from
Chapter 7 as well as Eqs (8.6) and (8.7), Eq. (8.1) can be transformed into
the following coupled differential equations written in the matrix form:

(
1 α
−α 1

)
∂

∂t

(
δm1

δm2

)
=
(
δhM2

−δhM1

)
+
(

−αω cos θ0 −ν0 +N⊥ +∇2

ν0 −N⊥ − κ sin2 θ0 −∇2 −αω cos θ0

)(
δm1

δm2

)
, (8.8)

where cos θ0 and ν0 = αω cotφ0 identify the P-mode, while δhM1 =
δhM · e1(t) and δhM2 = δhM · e2(t). According to the natural boundary
conditions ∂m/∂n = 0, the normal derivatives of δm1 and δm2 at the
surface of the ferromagnet must be equal to zero.

The introduction of the time-dependent basis vectors e1 and e2 proves
to be important because Eq. (8.8) explicitly depends on time only through
the magnetostatic field components δhM1 and δhM2. These components
can be expressed in the form:

(
δhM1

δhM2

)
= −

(
N11(t) N12(t)
N21(t) N22(t)

)(
δm1

δm2

)
, (8.9)

where:

Nhk(t)f = − 1
4π

eh(t) · ∇r

∫
Ω

f(r′)ek(t) · ∇r′

(
1

|r− r′|

)
dVr′ , (8.10)
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with k, h = 1, 2 and f representing either δm1 or δm2. The operators Nhk(t)
are periodic in time with period T = 2π/ω: Nhk(t) = Nhk(t + T ). By
substituting Eq. (8.9) into Eq. (8.8), one obtains:(

1 α
−α 1

)
∂

∂t

(
δm1

δm2

)
= −

(
N21(t) N22(t)
−N11(t) −N12(t)

)(
δm1

δm2

)
+
(

−αω cos θ0 −ν0 +N⊥ +∇2

ν0 −N⊥ − κ sin2 θ0 −∇2 −αω cos θ0

)(
δm1

δm2

)
, (8.11)

where the parametric nature of the dynamics becomes apparent.
The fact that explicit time dependencies are present only in

the magnetostatic contribution represents an important simplification.
Nevertheless, the analytical solution of Eq. (8.11) for a generic
perturbation remains out of reach. A simple solution can be only
obtained for spatially uniform perturbations, which fulfill the requirement
of zero normal derivative at the particle surface by definition. For
uniform perturbations, δhM = −N⊥δm⊥ − Nzδmzez = −N⊥δm +
(N⊥ −Nz) δmzez . Thus:(

δhM1

δhM2

)
= −

(
N⊥ − (N⊥ −Nz) sin2 θ0 0

0 N⊥

)(
δm1

δm2

)
. (8.12)

By using these formulas one finds that Eq. (8.8) is simply reduced to
Eqs (7.38)–(7.39), discussed in Chapter 7. In fact, for spatially uniform
perturbations there is no difference between introducing the local time-
dependent vector basis e1 and e2 at each point in space, as it has been
done in order to obtain Eq. (8.8), or making a global transformation to the
rotating reference frame, as it was done in the previous chapter. However,
the difference becomes essential when the two methods are applied to
the analysis of spatially nonuniform perturbations, because in that case
the global passage to the rotating frame of reference would lead to the
appearance of additional “convection terms” in the LLG equation, terms
that are usually difficult to deal with.

Although the emphasis in this chapter is mostly on spin-wave
perturbations, it is useful to provide a brief discussion of a different
approximation [90], which leads to modes that are the natural
generalization of the magnetostatic modes originally studied by Walker
[716,717,306]. By magnetostatic modes we mean the spontaneous
long-wavelength deviations from uniform magnetization occurring in
ferromagnets whose linear dimensions are large with respect to the
exchange length. Under these conditions, exchange forces play a minor
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role and can be neglected. The spectrum of magnetostatic modes is instead
dominated by magnetostatic boundary conditions at the particle surface.
In fact, these boundary conditions become dominant when the mode
wavelength is comparable with the linear dimensions of the ferromagnet.
The frequency spectrum and the space-time structure of the resulting
magnetostatic modes have been extensively studied in [716,717,262].

It is natural to expect that similar magnetostatic deviations from
P-modes might exist under nonequilibrium conditions as well. These
modes are sought as approximate solutions of Eq. (8.1) obtained for
perturbations with wavelength of the order of the linear dimensions of the
ferromagnet, when these dimensions are much larger than the exchange
length. Exchange forces can then be neglected, i.e., the Laplacian term
in Eqs (8.3) and (8.8) can be dropped. In addition, despite the fact that
the properties of P-modes crucially depend on the value of the damping
constant α even when α� 1, P-mode perturbations can be safely studied
under the approximation α ' 0, as is usually done for normal modes
in linear systems. Finally, we limit our analysis to the particular case
of a particle with spherical shape and vanishing crystal anisotropy, i.e.,
κ = 0, which, as we shall see, greatly simplifies the treatment of boundary
conditions. Consider time-harmonic perturbations of angular frequency
ωM , i.e., δm = am(r) exp(iωM t), then δhM = ah(r) exp(iωM t). Under the
stated approximations, Eq. (8.8) is reduced to the form:(

iωM ωH

−ωH iωM

)(
δm1

δm2

)
=
(
δhM2

−δhM1

)
, (8.13)

where ωH ≡ ν0 − N⊥ = (haz − ω) / cos θ0 − Nz . The formal similarity of
Eq. (8.13) to the law governing usual Walker modes is striking. However,
there is a substantial difference: the relation (8.13) holds now in the time-
dependent basis (e1(t), e2(t)) (see Eq. (8.6)–(8.7)). Therefore, it describes
an anisotropic constitutive law with time-dependent anisotropy directions
controlled by the P-mode orientation m0(t). The efficient way to solve
magnetostatic Maxwell equations for this medium with time-dependent
properties is by passing to a new reference frame, rotated with the angular
frequency ω around ez , in which both the P-mode direction m0 and the
(e1, e2) basis become stationary. We take the new rotating cartesian axes
along (ex′ (t), ey′ (t), ez), where ey′ (t) ≡ e2(t) and ex′ (t) = e2(t) × ez . We
will denote by (x′, y′, z) the cartesian coordinates along the (ex′ , ey′ , ez)
axes, respectively. In the new reference frame, the anisotropic properties
of the medium become time-independent. However, there is a price to
pay for this: the original LLG equation has to be modified in order to
introduce the appropriate convection terms associated with the change
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of reference frame. More precisely, in the rotating frame the simplified
equation previously derived from Eq. (8.8), i.e., Eq. (8.13), takes the form:(

iωM ωH

−ωH iωM

)(
δm1

δm2

)
− ω ∂

∂φ′

(
δm1

δm2

)
=
(
δhM2

−δhM1

)
, (8.14)

where φ′ is the azimuthal angle around ez measured with respect to
ex′ . The connection between φ′ and the azimuthal angle φ defined in
the laboratory frame with respect to ex is φ = φ′ + ω t − φ0. Thus,
the study of generalized magnetostatic modes is reduced to the joint
solution, in the (x′, y′, z) frame, of Eq. (8.14) and of the equation for the
magnetostatic potential defined for the perturbed magnetostatic field,
i.e., δhM = −∇ψM . The general solution of these equations is by no
means straightforward. Here, we shall discuss two particular cases that
give a useful illustration of the physical nature of far-from-equilibrium
magnetostatic modes.

Let us first consider the case of spatially uniform perturbations. Under
these conditions, δhM = −N⊥δm⊥ − Nzδmzez and ∂δm/∂φ′ = 0, so
Eq. (8.14) is reduced to an eigenvalue equation for ωM which can be
immediately solved by standard methods. As a matter of fact, this case
is part of the general analysis of the stability of P-modes with respect
to spatially uniform perturbations discussed in the previous chapter.
From the physical viewpoint, uniform P-mode perturbations are similar
to the Kittel modes observed around static saturation [306]. The main
difference is that the perturbation motion is now a uniform precession
of angular frequency ωM around the P-mode direction m0(t), which in
turn is rotated at the frequency ω around ez by the action of the rotating
driving field. Therefore, these generalized Kittel modes will eventually
result in quasi-periodic motions of frequency ω ± ωM . These modes will be
excited whenever the rotating field ha⊥(t) deviates from perfect circular
polarization in such a way that it contains the mentioned additional
frequencies.

As a second example, we shall discuss one particular family of
Walker-type nonuniform solutions. The structure of Eq. (8.14) suggests
looking for solutions in the form:

δmk = ak(r, θ) exp (−ipφ′) exp (iωM t) , k = 1, 2, (8.15)

where (r, θ, φ′) are the spherical coordinates associated with (x′, y′, z)
and p is an integer. It is not immediately clear why solutions with this
symmetry should exist. Nevertheless, it will be verified below that this



200 CHAPTER 8 Spin-Waves and Parametric Instabilities

is indeed the case. By substituting formula (8.15) into Eq. (8.14) and by
inverting the ensuing matrix relation one finds:(

δm1

δm2

)
=
(

χH iχ′M
−iχ′M χH

)(
δhM1

δhM2

)
, (8.16)

where:

χH =
ωH

ω2
H − ω′2M

, χ′M =
ω′M

ω2
H − ω′2M

, (8.17)

and ω′M = ωM + pω. Equation (8.16) describes a vector relation in the
(e1, e2,m0) basis. It is written in two-dimensional form thanks to the
fact that the m0 component of δm is zero. Let us transform Eq. (8.16) to
the (ex′ , ey′ , ez) basis by making use of the known relationship between
the bases (e1, e2,m0) and (ex′ , ey′ , ez). To first order in θ0, which is a
good approximation whenever the P-mode motion is not very large, one
obtains:δmx′

δmy′

δmz

 =

 χH iχ′M −χH sin θ0

−iχ′M χH iχ′M sin θ0

−χH sin θ0 −iχ′M sin θ0 0

δhMx′

δhMy′

δhMz

 . (8.18)

Equation (8.18) provides the desired anisotropic constitutive relation
between perturbations, which can be used in magnetostatic Maxwell
equations to obtain the equation obeyed by the magnetostatic potential
ψM . After straightforward calculations, one finds that the potential
satisfies the equation:

(1 + χH )
(
∂2ψM

∂x′2
+
∂2ψM

∂y′2

)
+
∂2ψM

∂z2
− 2χH sin θ0

∂2ψM

∂x′∂z
= 0 (8.19)

inside the particle and Laplace equation outside. Equation (8.19) is similar
to the equation for ordinary Walker modes [716,717], except for the
additional last term. Furthermore, the interface conditions at the particle
surface are the same as for ordinary Walker modes, despite the fact that we
are solving the problem in the rotating frame (ex′ , ey′ , ez). This is due to
the spherical shape of the particle. One can verify that a family of solutions
to the problem is given by the Walker-type potentials:

ψM = Ap (x′ − iy′)p+1
, p = 1, 2, . . . . (8.20)
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In Walker’s notation [716], these would be modes (m,m, 0), with m ≡
p+ 1. For this family of solutions, one finds:

hMx′ = −(p+ 1)Ap (x′ − iy′)p ,
hMy′ = i(p+ 1)Ap (x′ − iy′)p , (8.21)

hMz = 0.

By substituting these expressions into Eq. (8.18), one obtains the
corresponding components of δm and eventually (δm1, δm2), by passing
to the basis (e1, e2,m0). All magnetization components are proportional
to (x′ − iy′)p = (r sin θ)p exp (−ipφ′), in agreement with Eq. (8.15). This
confirms that we have obtained admissible solutions to the problem.

The eigenfrequencies associated with the modes described by Eq.
(8.21) are obtained by observing that ω′M = ωM + pω is the quantity
playing the role of the Walker eigenfrequency in Eqs (8.16) and (8.17).
Therefore, Walker’s results for (m,m, 0) modes [716] directly apply to ω′M ,
i.e., ω′M − ωH = (p+ 1) / [2 (p+ 1) + 1]. This is equivalent to:

ωM =
haz − ω
cos θ0

−Nz − pω +
p+ 1

2(p+ 1) + 1
. (8.22)

It is interesting to see if these generalized magnetostatic modes are
indeed reduced to the corresponding ordinary Walker modes in the limit
of vanishing P-mode motion, i.e., cos θ0 → 1. In this limit, the P-mode
is reduced to the saturation state. We see from Eq. (8.15) that the mode
time dependence in the laboratory frame is of the form exp [i (ωM + pω) t],
because φ′ = φ−ωt+φ0. According to Eq. (8.22), this is the correct Walker-
mode frequency apart from a shift by the amount −ω. This shift is due to
the fact that the δm1,2 components are time-dependent in the laboratory
frame. In the limit of vanishing P-mode motion, the basis (e1, e2,m0) is
reduced to a basis which is rotated at the angular frequency ω around
the ez axis. Therefore, when the perturbation is expressed in terms of its
time-independent components δmx,y an additional ωt term appears in the
phase of the perturbation which cancels out the previously mentioned
shift. One can verify that also the space dependence is reduced to that
of ordinary Walker modes.

This close connection between ordinary and generalized Walker
modes can be visualized as follows. When the P-mode motion becomes
increasingly large, the spatial pattern of (m,m, 0) Walker modes is little
affected. However, the plane in which the mode lives is no longer
the (ex, ey) plane but the time-dependent (e1, e2) plane, whose normal
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m0 executes a precession of angular frequency ω around ez under the
driving action of the rotating field. As a consequence, at each point
inside the particle there appears a mode component along ez , oscillating
as exp (iω′M t). Similarly to ordinary Walker modes, these generalized
modes will be excited whenever the rotating field deviates from spatial
uniformity and contains components with the same spatial symmetry as
the generalized Walker modes.

8.2 SPIN-WAVE PERTURBATIONS

Spin-wave solutions of Eq. (8.8) are obtained by using approximations
different from the ones assumed in the previous section for magnetostatic
modes. The main difference is that while exchange terms are neglected
for magnetostatic modes, they are fully taken into account for spin-
waves. However, it is very difficult to deal with boundary conditions
in a rigorous way when both exchange and magnetostatic effects are
taken into account. Spin-waves are plane-wave perturbations which can
only be approximate solutions, because they do not satisfy the boundary
condition for the magnetization on the boundary of the ferromagnet and
they do not account for the magnetostatic fields due to the magnetic
charges produced by the perturbation on the particle boundary. However,
these magnetostatic fields are concentrated in a thin boundary layer,
whose thickness is of the order of the plane-wave wavelength. Therefore,
these fields are customarily neglected and spin-waves are treated with
no consideration of boundary conditions whenever the perturbation
wavelength is much smaller than the typical linear dimensions of the
particle [646]. We shall adopt this approximation in the rest of this section.
The role of boundary conditions will be revisited in the last section of the
present chapter, where spin-wave instabilities in ultra-thin films will be
discussed.

Let us consider a plane-wave perturbation with wave-vector q,
expressed in complex form as follows:

δmq (r, t) = cq(t) exp(iq · r), (8.23)

where the amplitude cq lies in the plane (e1, e2) defined by Eqs (8.4) and
(8.5):

cq(t) = cq1(t)e1(t) + cq2(t)e2(t). (8.24)

The magnetostatic field associated with this plane-wave perturbation
is straightforwardly calculated if boundary conditions are neglected.
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One finds:

δhM (r, t) = − q
q2

q · cq(t) exp(iq · r). (8.25)

We are interested in the components of δhM along e1 and e2: δhM1 =
δhM · e1(t) and δhM2 = δhM · e2(t). They can be expressed as follows:(

δhM1

δhM2

)
= − 1

q2

(
q2
1 q1q2

q1q2 q2
2

)(
δm1

δm2

)
, (8.26)

where δm1 = cq1 exp (iq · r), δm2 = cq2 exp (iq · r), and:

q1(t) = q · e1(t) = −q (sin θ0 cos θq − cos θ0 sin θq cosωt) , (8.27)
q2(t) = q · e2(t) = −q sin θq sinωt. (8.28)

In these equations, θ0 is the polar angle identifying the P-mode, while
θq is the angle between q and ez . Constant terms as well as terms
with angular frequency ω and 2ω appear when q2

1 , q2
2 , and q1q2 are

computed from Eqs (8.27) and (8.28) and inserted into Eq. (8.26). In
particular, the constant terms, which appear only in q2

1 and q2
2 , act as

effective demagnetizing factors for the spin-wave perturbation, similarly
to Eq. (8.12) for spatially uniform perturbations. On the other hand, the
time-harmonic contributions give rise to parametric effects and related
instabilities that will be analyzed in detail in the sequel.

The equation for the amplitudes (cq1, cq2) is derived by substituting
Eq. (8.26) into Eq. (8.8), by taking into account that δm1 = cq1(t) exp (iq · r)
and δm2 = cq2(t) exp (iq · r), and by using formulas (8.26)–(8.28). As a
result, one obtains:

d
dt

(
cq1
cq2

)
= Aq

(
cq1
cq2

)
+ [R1(t) +R2(t)]

(
cq1
cq2

)
, (8.29)

where:

Aq =
1

1 + α2

(
1 −α
α 1

)(
−αω cos θ0 −νq

νq − κq sin2 θ0 −αω cos θ0

)
, (8.30)

R1(t) = − sin 2θq
2 (1 + α2)

(
1 −α
α 1

)(
sin θ0 sinωt 0

sin 2θ0 cosωt − sin θ0 sinωt

)
, (8.31)

R2(t) =
sin2 θq

2 (1 + α2)

(
1 −α
α 1

)(
cos θ0 sin 2ωt cos 2ωt

cos2 θ0 cos 2ωt − cos θ0 sin 2ωt

)
, (8.32)
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νq = ν0 −N⊥ + q2 +
1
2

sin2 θq, (8.33)

κq = κ− 1 +
3
2

sin2 θq. (8.34)

The matrix Aq is formally identical to the matrix A0 derived for spatially
uniform perturbations in the previous chapter, with νq and κq in the place
of ν0 and κeff, respectively.

Equations (8.29)–(8.34) represent the basic set of equations for
generalized spin-waves under far-from-equilibrium conditions. The
analysis of these equations presents nontrivial difficulties caused by
the use of the time-dependent vector basis (e1, e2) to preserve the
magnetization magnitude. The (e1, e2) basis identifies a moving plane
which is always orthogonal to the P-mode magnetization. When studied
in this plane, magnetization perturbations are described by Eq. (8.8), in
which time is explicitly present only through the magnetostatic part,
namely hM1 and hM2, as shown by Eqs (8.26)–(8.28). This explicit time
dependence is the origin of distinctive aspects of P-mode perturbations.
In particular, this explicit time dependence results in the appearance of
the time-dependent matrices R1(t) and R2(t) in Eq. (8.29), which act
multiplicatively on the spin-wave amplitudes and give rise to parametric
resonance phenomena.

In this connection, it is worthwhile mentioning the simplest case of
parametric resonance in the parametric harmonic oscillator [33] described
by the equation:

d2x

dt2
+ α

dx
dt

+ ω2
0 (1 + ε cosωt)x = 0, (8.35)

with α � 1, ε � 1. In terms of the variables x and ẋ = dx/dt, Eq. (8.35)
can be written as the set of coupled equations:

d
dt

(
x
ẋ

)
=
(

0 1
−ω2

0 −α

)(
x
ẋ

)
+ ε

(
0 0

−ω2
0 cosωt 0

)(
x
ẋ

)
. (8.36)

These equations have been widely studied in the literature [33,431],
because they clearly reveal that the time-dependent matrix in Eq. (8.36)
may render the equilibrium state (x = ẋ = 0) unstable, despite the fact
that this state is stable in the absence of the parametric part. The lowest
possible values of ε leading to instability are obtained when the intrinsic
frequency ω0 and the frequency ω of the parametric perturbation satisfy
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the resonance condition:

ω0 = nω/2, n = 1, 2, . . . . (8.37)

The instability threshold is controlled by damping and increases with the
resonance order n as ε ∼ (αω)1/n [431]. The structure of Eq. (8.29) is similar
to that of Eq. (8.36). Thus, parametric effects are expected to play a crucial
role in the stability of generalized, out-of-equilibrium spin-waves.

The main difficulty with Eq. (8.29) is the fact that the parametric
matrices R1(t) and R2(t) contain elements which are not small and
cannot be treated by perturbative techniques except for very special cases.
Nevertheless, some general results concerning the behavior of the spin-
wave amplitude can be obtained by using Floquet’s theory for linear
differential equations with periodic coefficients [529], of which Eq. (8.29)
is an example.

Let us consider the equation obeyed by the principal matrix solution
Φq(t) of Eq. (8.29):

dΦq
dt

= AqΦq + [R1(t) +R2(t)] Φq, (8.38)

with the initial condition Φq(0) = I , where I represents the 2× 2 identity
matrix. In Floquet’s theory [529], one proves that the solution of Eq. (8.38)
can always be represented in the form:

Φq(t) = Πq(t) exp (Ωqt) , (8.39)

where Πq(t) is periodic with period 2π/ω, Πq(0) = I , and Ωq is a constant
matrix. Unfortunately, the proof of formula (8.39) is not constructive. This
means that in general it is not known how to compute Πq(t) and Ωq for
a given equation. Nevertheless, the very structure of Eq. (8.39) has some
direct implications for the properties of spin-wave perturbations. First, the
matrix Πq(t) provides the transformation to the basis in which Eq. (8.29)
has constant coefficients. Indeed, by using Eq. (8.39) in Eq. (8.38) one finds
that Πq(t) satisfies the equation:

dΠq

dt
+ ΠqΩq = AqΠq + [R1(t) +R2(t)] Πq. (8.40)
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Let us introduce the new amplitudes (zq1, zq2) defined by the formula:(
cq1
cq2

)
= Πq(t)

(
zq1
zq2

)
. (8.41)

By substituting this expression into Eq. (8.29) and by taking account of Eq.
(8.40), one finds:

d
dt

(
zq1
zq2

)
= Ωq

(
zq1
zq2

)
, (8.42)

where Ωq is the time-independent matrix from Eq. (8.39). In terms of the
discriminant:

ω2
q = det Ωq −

(tr Ωq)
2

4
, (8.43)

the eigenvalues of Ωq can be written as follows: λ±q = tr Ωq/2 ± |ωq|
if ω2

q < 0, or λ±q = tr Ωq/2 ± iωq if ω2
q > 0. Propagating waves occur

when ω2
q > 0. By calculating the two associated eigenmodes through Eq.

(8.42) and by inserting them into Eqs (8.41), (8.23), and (8.24), one obtains
modulated plane-wave solutions in the time-dependent basis (e1, e2).
These solutions can be written in the form:(

δm±q1(r, t)

δm±q2(r, t)

)
= exp (−ηqt) Πq(t)

(
z±1

z±2

)
exp [i (q · r± ωqt)] , (8.44)

where ηq = −tr Ωq/2, while (z±1 , z
±
2 ) are the Ωq eigenmodes in the

(zq1, zq2) representation. The complete space-time behavior δm±q (r, t)
of the spin-wave perturbation in the laboratory frame is obtained by
recalling that:

δm±q (r, t) = δm±q1 (r, t) e1(t) + δm±q2 (r, t) e2(t), (8.45)

and by substituting in this expression formula (8.44) for δm±q1,2 (r, t) and
formulas (8.6)–(8.7) for e1,2(t).

Equations (8.42) and (8.44) show that, once the periodic matrix Πq(t) is
known, the spin-wave analysis is reduced to the investigation of a simple
dynamic equation with constant coefficients, i.e., Eq. (8.42). This equation
has an intrinsic physical significance, because the function ω2

q (q) defined
by Eq. (8.43) can be construed as the generalized dispersion relation for
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spin-wave excitations of the given P-mode. Unfortunately, no general
method is known for the explicit analytical calculation of the matrix Ωq , on
which ω2

q (q) depends. In this sense, the statement that Eq. (8.43) provides
the intrinsic spin-wave dispersion relation remains a purely theoretical
one.

Nevertheless, helpful results can be obtained by the following
approximate method. Suppose that the parametric part of Eq. (8.29) is
sufficiently small. Then one can identify Ωq with the matrix Aq in Eq.
(8.29). This approximation permits one to obtain immediate information
about the spin-wave spectrum, and subsequently study deviations from
this behavior by treating the time-dependent part of Eq. (8.29) as a
perturbation. Even when the parametric part in Eq. (8.29) is not small,
one can often use heuristic or symmetry considerations to pass from the
(cq1, cq2) representation to some other representation where parametric
effects are significantly reduced. More precisely, let us consider the
transformation, similar to Eq. (8.41):

(
cq1
cq2

)
= Sq(t)

(
c′q1

c′q2

)
, (8.46)

where Sq(t) is some invertible periodic matrix, with period 2π/ω. By
substituting Eq. (8.46) into Eq. (8.29) one obtains:

d
dt

(
c′q1

c′q2

)

= S−1
q (t)

[
Aq +R1(t) +R2(t)− dSq

dt
S−1
q (t)

]
Sq(t)

(
c′q1

c′q2

)
. (8.47)

This transformed equation is still of the type:

d
dt

(
c′q1

c′q2

)
= A′q

(
c′q1

c′q2

)
+R′(t)

(
c′q1

c′q2

)
, (8.48)

where A′q has constant coefficients while R′(t) is periodic with period
2π/ω. If Sq(t) is appropriately chosen in such a way that R′(t) is suffi-
ciently small, then one can approximate Ωq by the matrix A′q and Πq(t)
by Sq(t), leaving to subsequent steps the study of the effect of the time-
dependent part by perturbation methods. This leads to the following ap-
proximate expression for the spin-wave amplitudes, similar to Eq. (8.44):
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(
δm±q1(r, t)

δm±q2(r, t)

)
' exp

(
−η′qt

)
Sq(t)

(
c′±1
c′±2

)
exp

[
i
(
q · r± ω′qt

)]
, (8.49)

where:

ω′2q = det A′q −
(
tr A′q

)2
4

, (8.50)

η′q = −tr A′q/2, and (c′±1 , c′±2 ) are the A′q eigenmodes in the (c′q1, c
′
q2) repre-

sentation.
There are two cases of physical interest where these approximate

methods prove particularly useful:

• Spin-waves with wave-vector nearly aligned along the symmetry axis:
θq � 1
Equations (8.31) and (8.32) show that in this limit the matricesR1(t) and
R2(t) are of the order of θq and θ2

q , respectively, and can thus be treated
as perturbations. The spin-wave amplitude is obtained by neglecting
the time-dependent part of Eq. (8.29), i.e., by assuming that Ωq = Aq
and Πq(t) = I in Floquet analysis. The spin-wave amplitude can be
calculated from Eqs (8.41) and (8.42) by standard methods. By also
neglecting damping, one finds that Eq. (8.44) is reduced to:

δm±q (r, t) = Cq

[
√
νq e1(t)∓ i

√
νq − κq sin2 θ0 e2(t)

]
× exp [i (q · r± ωqt)] . (8.51)

In Eq. (8.51), Cq is a constant whereas ωq is to be calculated from Eq.
(8.43) by assuming Ωq = Aq . Thus, one obtains:

ω2
q =

1
(1 + α2)2

[(
νq −

κq sin2 θ0

2
− α2ω cos θ0

)2

−
(
1 + α2

) κ2
q sin4 θ0

4

]
. (8.52)

In the first-order approximation with respect to the damping constant
α, Eq. (8.52) is reduced to the simpler form:

ω2
q ' νq

(
νq − κq sin2 θ0

)
, (8.53)
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where νq and κq are given by Eqs (8.33) and (8.34), respectively.
Equation (8.52) plays the role of generalized dispersion relation for
nonequilibrium spin-waves with wave-vector nearly aligned along the
symmetry axis of the problem. This relation is valid for arbitrarily large
P-mode motions. In addition, it explicitly depends on the P-mode angle
θ0, which means that different dispersion relations will coexist under
given excitation conditions (ω,haz,ha⊥), because different P-modes
may be realized in general for those conditions. Finally, it must be
stressed that although Eq. (8.51) has the typical structure of elliptically
polarized spin-waves, its physical interpretation is definitely more
complex than for traditional spin-waves. As previously discussed,
the behavior described by Eq. (8.51) holds in the time-dependent
basis (e1, e2). When observed in the laboratory frame, the spin-wave
oscillations will appear to be quasi-periodic, due to the combination of
the spin-wave frequency ωq with the driving field frequency ω. This
effect can be quantified by expressing e1(t) and e2(t) in the laboratory-
frame basis (ex, ey, ez) through Eqs (8.6)–(8.7) (see Eq. (8.45)).

• Spin-waves under small P-mode motions: θ0 � 1
In general, the parametric part of Eq. (8.29) is not small in this limit.

However, one can attempt an appropriate transformation of the type
described by Eq. (8.46) in order to make the parametric part of Eq.
(8.29) as small as possible. This transformation creates a direct bridge
between the present theory and conventional spin-wave studies close
to equilibrium. Consider the transformation (8.46) and assume that the
matrix Sq(t) is equal to:

Sq(t) =
1

1− sin2 θ0 cos2 ωt

(
cos θ0 cosωt sinωt
− sinωt cos θ0 cosωt

)
. (8.54)

By using this expression in Eq. (8.47), one obtains the equation:

d
dt

(
c′q1

c′q2

)
= A′q

(
c′q1

c′q2

)
+R′(t)

(
c′q1

c′q2

)
+O

(
sin2 θ0

)
, (8.55)

where:

A′q =
1

1 + α2

(
1 −α
α 1

)
×
(

0 −νq − ω + sin2 θq/2
νq + ω + sin2 θq/2 0

)
, (8.56)
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R′(t) =
sin θ0 sin θq cos θq

1 + α2

(
1 −α
α 1

)(
sinωt 0
−2 cosωt − sinωt

)
. (8.57)

In this representation, the parametric part is indeed of the order of
θ0. Therefore, by taking Ωq ' A′q , Πq(t) ' Sq(t) and by additionally
neglecting damping, one obtains:

δm±q (r, t) ' Cq exp
[
i
(
q · r± ω′qt

)]
×
[√

νq + ω − sin2 θq/2 ex ∓ i
√
νq + ω + sin2 θq/2 ey

]
,

(8.58)

where ω′q is given by Eq. (8.50) and use has been made of Eqs (8.6) and
(8.7). To the first order in α, one finds from Eq. (8.50) that:

ω′2q '
(
νq + ω + sin2 θq/2

) (
νq + ω − sin2 θq/2

)
. (8.59)

By using Eq. (8.33) and the expression Eq. (7.17) for ν0 from the
previous chapter under the approximation cos θ0 ' 1, Eq. (8.59) can
be expressed in the form:

ω′2q '
(
haz −Nz + κ+ q2

) (
haz −Nz + κ+ q2 + sin2 θq

)
. (8.60)

Equations (8.58) and (8.60) coincide with the classical relations
describing spin-waves around static magnetic saturation [646,306]. In
fact, when the P-mode motion is small, the plane (e1, e2) approaches
the⊥-plane and the vectors (e1, e2) are rotated at the angular frequency
ω in this plane. At the same time, the transformation S−1

q (t) is reduced
to a rotation in the same plane at the angular frequency −ω, because
cos θ0 ' 1. Therefore, the transformed spin-wave amplitudes (c′q1, c

′
q2)

appearing in Eq. (8.46) are reduced to the spin-wave amplitudes in the
laboratory frame.

8.3 STABILITY ANALYSIS

Spin-wave perturbations with initial nonzero amplitude, generated by
thermal fluctuations or other causes, will evolve in time in accordance
with Eqs (8.29)–(8.34). When the solution of these equations results in
an exponentially growing spin-wave amplitude, the phenomenon occurs
where the energy injected into the system by the action of the rotating
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external field is continuously transferred to the spin-wave perturbations
resulting in their growth to large, nonthermal amplitudes. This means that
the P-mode around which the spin-wave perturbation analysis is being
carried out is no longer a stable observable large-scale magnetization
motion and that magnetization motions with strong spatial nonuniformity
occur instead. There are two mechanisms leading to P-mode instability:
(i) one of the eigenvalues of the matrix Aq in Eq. (8.29) has a positive real
part; (ii) parametric instability is caused by the oscillating termsR1(t) and
R2(t) in Eq. (8.29). In fact, these two mechanisms are not independent, but
rather coupled, which leads to an extremely rich and complex spin-wave
behavior.

In this respect, a particularly instructive example is represented by
the case of spin-waves with wave-vector q parallel to symmetry axis ez ,
i.e., θq = 0 [87]. In this case, R1(t) and R2(t) in Eq. (8.29) are identically
zero. Hence, for any P-mode, the corresponding spin-wave behavior is
entirely governed by the constant-coefficient matrix Aq (Eq. (8.30)), which
coincides with the matrix Ωq of Floquet’s analysis. It can be inferred (see
the section on stability analysis in the previous chapter) that P-mode
instability occurs when tr Aq > 0 or when det Aq < 0, where:

tr Aq = − 2α
1 + α2

(
νq −

κq sin2 θ0

2
+ ω cos θ0

)
, (8.61)

det Aq =
1

1 + α2

(
ν2
q − κq sin2 θ0νq + α2ω2 cos2 θ0

)
, (8.62)

with νq = ν0−N⊥+q2 and κq = κ−1 (see Eqs (8.33) and (8.34) for θq = 0).
The comparison of Eqs (8.61), (8.62) and (8.52) with the corresponding
equations for the stability of spatially uniform perturbations from the
previous chapter reveals that there is a complete analogy between the
stability analysis for spin-waves with θq = 0 and the one for uniform
perturbations. Instabilities due to spin-waves with θq = 0 are governed
by the effective anisotropy κq = κ − 1, identical to the one controlling
uniform perturbations in a thin film. In this sense, a generic spheroidal
particle behaves like a thin film as far as spin-waves with θq = 0
are concerned. In fact, this result, reached through heuristic arguments,
represented one of the starting points for the development of nonlinear
ferromagnetic resonance theories [22]. We shall see in the sequel that
instabilities due to spin-waves with θq = 0 represent the natural extension
to large motions of the second-order Suhl’s instability observed in
ferromagnetic resonance.

The case of spin-waves with θq = 0 is quite special, because oscillating
parametric terms are completely absent. In general, for spin-waves with
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wave-vector not aligned along the symmetry axis of the problem, spin-
wave stability is controlled not only by the eigenvalues of the Aq matrix,
but also by the possible onset of parametric resonance effects. General
conclusions about the importance of parametric effects can be reached
through the analysis of the properties of the so-called one-period map
[529,319] associated with Eq. (8.29). Consider Eq. (8.38) again. Due to the
periodicity of the coefficients involved, it is easy to conclude that if Φq(t) is
a solution of Eq. (8.38), then the function Φq(t+ 2π/ω) is also be a solution
of the same equation, and thus is linearly related to the original solution.
In matrix form, one can write:

Φq(t+ 2π/ω) = Φq(t)Mq. (8.63)

The matrix Mq generates the so-called one-period map associated with
Eq. (8.38). By using Eq. (8.39) in this relation and by taking into account
the periodicity of Πq(t) one immediately concludes that:

Mq = exp
(

2π
ω

Ωq

)
. (8.64)

As a consequence of Eq. (8.63), the principal solution over subsequent
periods can be expressed as: Φq(t + 2nπ/ω) = Φq(t)(Mq)n, n = 1, 2, . . ..
This result shows that the P-mode under consideration will be unstable
with respect to certain spin-wave perturbations when at least one of
Mq eigenvalues exceeds 1 in magnitude. These eigenvalues are called
characteristic multipliers of the equation and will be denoted by µ±.

Some immediate conclusion concerning the stability of spin-waves
can be obtained from the one-period map via the Liouville theorem [319].
This theorem, when applied to Eq. (8.38), leads to the equation:

det Mq = exp

[∫ 2π/ω

0

tr [Aq +R1(t) +R2(t)] dt

]

= exp
(

2π
ω

tr Aq

)
. (8.65)

The second equality is the consequence of the fact that Aq is constant
whereas R1 and R2 have zero average over one period. Since det Mq =
|µ+| |µ−|, the P-mode will be certainly unstable if detMq > 1. By using this
fact and Eq. (8.65), one concludes that tr Aq > 0 is a sufficient condition
for instability. The Liouville theorem does not provide any information
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FIGURE 8.1 Gray region: P-modes unstable with respect to spin-wave
perturbations with q2 = 0.01 and sin θq = 0.3, determined by numerical
integration of Eq. (8.38). Dashed lines: ωq = 0 (i.e., νq = 0 and νq = κq sin2 θ0,
see Eq. (8.53)), ωq = ±ω/2 (Eq. (8.79)), ωq = ±ω (Eq. (8.80)). Numbers 1 through 4:
parametric resonance order n. System parameters: N⊥ = 0, κ = 0, α = 0.01. Field
frequency: ω = 0.8.

on stability when det Mq < 1, i.e., tr Aq < 0. Detailed numerical and
analytical investigation is needed to explore stability in this region.

One can determine the stability of P-modes with respect to any
particular spin-wave perturbation by numerical integration of Eq. (8.38).
In fact, according to the definition of one-period map, if Φq(0) = I then
Φq(2π/ω) = Mq . Therefore, numerical integration of the equation over
one period combined with inspection of the eigenvalues of the resulting
matrix solution directly yields the desired stability information. Figure 8.1
shows an example of this numerical study, represented in the P-mode
plane (cos θ0, ν0). The gray region identifies all the P-modes that are
unstable with respect to spin-wave perturbations with q2 = 0.01 and
sin θq = 0.3. All P-modes for which tr Aq > 0 are unstable, as previously
discussed. Conversely, the region tr Aq < 0 is characterized by a pattern
typical of parametric resonance [33,431], with instability concentrated
along so-called Arnold tongues.

The essential features of the remarkably rich structure shown in
Fig. 8.1 can be explained through a perturbative approach. To start the
discussion, consider a solution to Eq. (8.38) in the form:

Φq(t) = exp (Aqt)Bq(t), (8.66)
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with the initial condition Bq(0) = I . The matrix Bq(t) obeys the Volterra
integral equation:

Bq(t) = I +
∫ t

0

R (t′)Bq (t′) dt′, (8.67)

where:

R(t) = exp (−Aqt) [R1(t) +R2(t)] exp (Aqt) . (8.68)

Equation (8.67) can be solved by iterations. Taking into account that
Mq = Φq(2π/ω) = exp(2πAq/ω)Bq(2π/ω), one arrives at the following
one-period map series expansion:

Mq = exp
(

2π
ω
Aq

)
×

[
I +

∫ 2π/ω

0

R (t′) dt′ +
∫ 2π/ω

0

dt′
∫ t′

0

R (t′)R (t′′) dt′′ + . . .

]
.

(8.69)

Let us discuss this result at various orders of approximation.

• Zero-order solution for the one-period map
Equation (8.69) gives for the zero-order solution M (0)

q :

M (0)
q = exp

(
2π
ω
Aq

)
. (8.70)

The corresponding characteristic multipliers are then equal to:

µ
(0)
± =

(
cos

2πωq
ω
± i sin

2πωq
ω

)
exp

(π
ω

tr Aq
)
, (8.71)

where tr Aq is given by Eq. (8.61), while ωq is given by Eq. (8.52)
or Eq. (8.53). Equation (8.71) shows that in the region tr Aq <
0 no instability can occur if ω2

q > 0, because the characteristic
multipliers are then complex conjugate with squared magnitude equal
to exp (2π tr Aq/ω) < 1. Conversely, when ω2

q < 0 the characteristic
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multipliers are real:

µ
(0)
± = exp

[π
ω

(tr Aq ± 2|ωq|)
]
. (8.72)

Therefore, one of the multipliers will exceed 1 in magnitude and
instability will occur if ω2

q < −(tr Aq)2/4, i.e., det Aq < 0. This result is
identical to the one previously discussed for spin-waves with θq = 0.
In fact, only the constant-coefficient matrix Aq is involved in the zero-
order approximation for the one-period map. Since tr Aq is of the order
of α and α � 1, the boundary of the instability region is very close
to ω2

q = 0. According to Eq. (8.53), the condition ω2
q = 0 is satisfied

to the first order in α when νq = 0 or νq = κq sin2 θ0. These two lines
correspond to the two dashed lines indicated by the 0 label in Fig. 8.1.

• First-order solution for the one-period map
For the first-order solution M (1)

q , Eq. (8.69) gives:

M (1)
q = exp

(
2π
ω
Aq

)[
I +

∫ 2π/ω

0

R (t′) dt′
]
. (8.73)

After lengthy calculations of the matrix elements of M (1)
q , one arrives

at the following expression for the characteristic multipliers:

µ
(1)
± =

(
cos

2πωq
ω
± i
√

1− Z2
q sin

2πωq
ω

)
exp

(π
ω

tr Aq
)
, (8.74)

where:

Zq = Zq1 − Zq2, (8.75)

Zq1 =
sin 2θq

4 (1 + α2)3/2

×
sin θ0

[
ω
(
1 + α2

)
− 2

(
νq − α2ω cos θ0

)
cos θ0

]
(ω/2)2 − ω2

q

, (8.76)

Zq2 =
sin2 θq

4 (1 + α2)3/2

×
2ω
(
1 + α2

)
cos θ0 −

(
νq − α2ω cos θ0

) (
1 + cos2 θ0

)
+ κq sin2 θ0

ω2 − ω2
q

.

(8.77)
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The similarity between Eqs (8.71) and (8.74) is striking. For all P-modes
for which Z2

q < 1, instability appears only when ω2
q < 0 and the

characteristic multipliers take the real values:

µ
(1)
± = µ

(0)
± ∓

(
1−

√
1− Z2

q

) µ(0)
+ − µ

(0)
−

2
, (8.78)

where µ(0)
± is the zero-order contribution given by Eq. (8.72). Instability

occurs in the region of the (cos θ0, ν0) plane where one of these
multipliers exceeds 1 in magnitude. This region represents the first-
order correction to the zero-order instability region det Aq < 0.
However, if Z2

q > 1 for some P-mode, the corresponding characteristic
multipliers become real for ω2

q > 0, and an additional instability
mechanism is possible. This is indeed the case around ωq = ±ω/2
and ωq = ±ω, where respectively Zq1 and Zq2 tend to infinity.
These instability conditions are described by corresponding lines in the
(cos θ0, ν0)-plane, obtained by solving the equations ω2

q − ω2/4 = 0 and
ω2
q − ω2 = 0. From Eq. (8.53) one finds that to the first order in α the

condition ωq = ±ω/2 corresponds to:

νq =
κq sin2 θ0

2
±

√
κ2
q sin4 θ0

4
+ (ω/2)2. (8.79)

These are the two dashed lines labeled by ±ω/2 in Fig. 8.1. Similarly,
the condition ωq = ±ω leads to:

νq =
κq sin2 θ0

2
±

√
κ2
q sin4 θ0

4
+ ω2 (8.80)

(dashed lines labeled by±ω in Fig. 8.1). Comparison with the numerical
results in Fig. 8.1 shows that indeed Eqs (8.79) and (8.80) correctly
identify the regions where P-mode instability occurs despite the fact
that tr Aq < 0.

At the beginning of the previous section, we anticipated the fact
that the instabilities we are discussing are parametric in nature and are
caused by periodic oscillations in the magnetostatic field. The parametric
nature of the phenomenon is best appreciated by considering Eqs (8.55)–
(8.57), valid in the limit of small P-mode motions. Comparison with
Eq. (8.36) shows that spin-wave dynamics exhibits the typical structure
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of parametric resonance problems. The frequency ω′q defined by Eq.
(8.59) plays the role of characteristic oscillator frequency, while ω is
the frequency of the parametric part. Therefore, one can immediately
conclude that spin-wave instabilities are expected around ω′q = nω/2, n =
1, 2, . . . . This sequence corresponds to the instability sequence ωq =
−ω/2, 0, ω/2, ω previously derived (ωq = −ω is not a real instability,
as shown by Fig. 8.1). This correspondence becomes evident when one
considers small P-mode motions. In fact, in this limit the vector bases
associated with Eqs (8.29) and (8.55) differ by a rotation at the angular
frequency ω around ez (see the discussion at the end of the previous
section), which implies that ω′q ' ωq + ω. In this sense, one can say that
the instabilities labeled by ωq = −ω/2, 0, ω/2, ω represent the extension to
large P-mode motions of the small-motion parametric-resonance sequence
ω′q = nω/2 for n = 1, 2, 3, 4. This is the meaning of the labels 1, 2, 3, 4 in
Fig. 8.1. In principle, also instabilities characterized by n = 5, 6, . . . are
possible. However, they are expected to be much weaker, because they
come from higher-order terms of the series expansion (8.69).

8.4 SPIN-WAVE INSTABILITIES AND INSTABILITY DIAGRAMS

The main result of the LLG analysis discussed in the previous chapter
is that, given the excitation conditions (ω,haz,ha⊥), there exist two or four
spatially uniform dynamical modes (P-modes), depending on the system
parameters (α, κeff). The two central questions of physical interest are:
(i) which of these P-modes will be experimentally observable; (ii) given
an observable P-mode, under what conditions the mode will become
unstable when we slowly change the amplitude and/or the frequency
of the external field. Based on the discussion presented in the previous
sections, we can say that the complete answer to these questions should
come from the analysis of the full spectrum of solutions of Eq. (8.8) for
the P-mode of interest. Such complete spectrum is generally not known.
However, two types of solutions are expected to play a particularly
important role: spatially uniform perturbations, discussed in the previous
chapter, and spin-wave perturbations, considered in the previous section.
In this section we analyze the scenario obtained when one assumes that
instabilities with respect to these two types of perturbations dominate the
problem. In particular, we shall discuss the behavior of the system close
to ferromagnetic resonance conditions (see the previous chapter), where
the resonant behavior of the system at low rf power is gradually distorted
when the power is increased, until a number of instabilities, in particular
foldover phenomena or Suhl’s instabilities appear.
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FIGURE 8.2 P-mode stability diagram for a thin-film disk with negligible crystal
anisotropy. U: P-modes unstable with respect to uniform perturbations. S12 and
S34: P-modes unstable because of spin-wave parametric resonance of order n =
1, 2 and n = 3, 4, respectively. Points A through E are indicated for the sake of
comparison with Fig. 8.3. Detailed structure of S12 for cos θ0 ' 1, not visible in the
figure, results in regions I and II in Fig. 8.3. System parameters: N⊥ = 0, κ = 0,
α = 0.01. Field frequency: ω = 0.8.

By “instability diagram” we mean a diagram in the P-mode plane
(cos θ0, ν0) indicating which P-modes are stable and which are unstable
under certain conditions. An example is given by Fig. 8.2. Several regions
are shown in this figure, each of which corresponds to P-modes that are
unstable because of different mechanisms. Let us discuss in more detail
how an instability diagram of this type can be constructed.

Region U in the diagram corresponds to P-modes that are unstable
with respect to spatially uniform perturbations. P-mode stability with
respect to spatially uniform perturbations was discussed in Chapter 7.
The main result of that analysis is represented by Fig. 7.3. The U and D
regions in that figure are respectively associated with unstable-node and
saddle P-modes. The union of those two regions is the region labeled by
U in Fig. 8.2.

The next step is to discuss if some of the P-modes outside this region
may be unstable because of spin-wave instabilities. These instability
regions are determined by carrying out the analysis discussed in the
previous section and illustrated by Fig. 8.1. This analysis must be carried
out for all admissible spin-wave modes with 0 ≤ sin2 θq ≤ 1 and q2 > 0.
Then, the total resulting instability regions are obtained by taking the
union of all the individual instability regions obtained for single values
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FIGURE 8.3 Regions S12 and S34 of Fig. 8.2, as they appear in (haz , ha⊥) plane.
Bottom: magnified view of ferromagnetic resonance region. R: Riemann cut. CD:
foldover segment. I: first-order Suhl’s instability. II: second-order Suhl’s instability.
System parameters: N⊥ = 0, κ = 0, α = 0.01. Field frequency: ω = 0.8.

of sin2 θq and q2. Remarkably, the only place where q2 appears in the
entire analysis is Eq. (8.33). Therefore, given the instability diagram for a
particular value of sin2 θq and q2 ' 0, all the diagrams for the same value
of sin2 θq and larger values of q2 are immediately obtained by shifting
the initial diagram downward in the (cos θ0, ν0) plane by the amount
q2. Figure 8.2 shows the constructed diagram for a thin-film disk with
negligible crystal anisotropy, obtained by repeating this analysis for all
values of sin2 θq in the interval 0 ≤ sin2 θq ≤ 1. P-modes in regions S12

and S34 are made unstable by spin-wave parametric resonance of order
n = 1, 2 and n = 3, 4, respectively (compare with Fig. 8.1).

Figure 8.3 was obtained by transforming Fig. 8.2 from the plane
(cos θ0, ν0) to the field control plane (haz,ha⊥), which is of interest in
experiments. Regions S12 and S34 fill out only a limited part of the
field control plane. This occurs because the system is stable for large
positive ν0 (see Fig. 8.2) as a result of the absence of high-order parametric
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instabilities. In thin films, for which N⊥ = 0, an approximate ν0 upper
bound for spin-wave instabilities can be obtained from Eqs (8.33) and
(8.53) by neglecting terms proportional to α2. Equation (8.33) yields the
inequality ν0 < νq . At the same time, by applying Eq. (8.53) to the
instabilities characterized by ω2

q = ω2 and by assuming that κq < 0
for these instabilities one finds that νq ≤ ωq = ω. By combining the
two inequalities one concludes that instabilities are limited to the region
ν0 < ω. By using this result in the equations that connect (cos θ0, ν0)
with (haz,ha⊥), one concludes that the system can be unstable only
if h2

a⊥ < ω2 sin2 θ0 and (haz − ω) / cos θ0 + κeff < ω. Whenever the
excitation conditions are outside this range, the system will be stable.
It is worth stressing that according to these inequalities, stability can
be achieved by applying a sufficiently large rf field. Thus, a sufficiently
strong driving action of the field will make the system stable, contrary to
what might seem to be suggested by the onset of spin-wave instabilities
under increasing rf power.

The transformation from Fig. 8.2 to Fig. 8.3 is not one to one, because
there are 2 or 4 P-modes associated with each point in the (haz,ha⊥)-
plane. Therefore, P-mode properties in the (haz,ha⊥) plane are defined
on a Riemann surface with two or four folded sheets. An example is the
behavior of the trace and the determinant of the P-mode stability matrix
shown in Figs 7.4 and 7.5 in the previous chapter. This folded structure
has remarkable physical consequences. As an example let us consider the
following “thought” experiment. Let us initially apply the large dc field
haz > 0 with no rf power (i.e., ha⊥ = 0). The system will be in a P-
mode which coincides with the saturation state along the field direction.
At this point let us switch on the rf power and follow the behavior of the P-
mode when haz is slowly decreased down to the value hfinal smaller than
the resonance field ω − κeff . By using the construction shown in Fig. 7.3
from the previous chapter to determine the location of the P-mode and by
comparing Fig. 8.2 with Fig. 8.3 one finds that the P-mode will hit region
S34 but not region S12 if the P-mode remains above the line R shown in
Fig. 8.3. This line acts as a Riemann cut in the control plane. Region S12

lies on a different sheet of the Riemann surface. This region can be reached
by following a different field history, that is, by decreasing the dc field
down to haz = hfinal before switching on the rf power. In this way the
line R is approached from below and one has access to the region where
first-order (I) and second-order (II) Suhl’s instabilities may be observed, as
discussed below. Therefore, we come to the important conclusion that at
large rf power the dynamical behavior of the system, and in particular the
excitation of spin-wave instabilities, becomes dependent on the magnetic
field history.
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Finally, we comment on the foldover effect discussed in the previous
chapter. Figure 8.3 shows that foldover can be partly masked by spin-
wave instabilities. In fact, foldover is the first instability mechanism
encountered by the system under decreasing haz only in the interval
CD indicated in the figure. For larger rf field amplitudes, the system
encounters the boundary of the S34 spin-wave instability region before
reaching the astroid boundary. Under these conditions, the spin-wave
instability will set in before foldover can be produced.

Figure 8.3 shows that the instability region S12 is present down to
rather small values of ha⊥. Thus, one expects that this type of instability
should be detected in experiments at relatively low radio-frequency
powers. This is in fact the case. What is observed in this case is universally
known as Suhl’s instabilities [645,646,527,740,306]. We have discussed the
fact that the lower boundary of the S12 region is associated with spin-
wave modes for which ω2

q ' ω2/4 or ω2
q ' 0. These two possibilities

lead to so-called first-order and second-order Suhl’s instabilities. We shall
discuss the first-order instability by considering the associated behavior of
the one-period-map characteristic multipliers introduced in the previous
section. Then, the second-order instability will be discussed by a different
approach.

It is possible to derive explicit expressions for the location of the ω2
q =

ω2/4 instability boundary by analyzing the behavior of the characteristic
multipliers close to parametric resonance. However, in principle spin-
wave perturbations with arbitrary values of θq may be involved in
the instability. For the modes with large values of θq the perturbative
approach followed in previous sections would not be accurate, because
the parametric terms involved in the spin-wave dynamics are then
not small. However, since we are looking for instabilities occurring at
relatively low radio-frequency powers, we can take advantage of the fact
that the P-mode motions excited by such rf fields will not be very large.
This means that the parametric terms will be small in the “primed” basis
introduced by Eqs (8.46)–(8.57). The correct strategy is therefore to study
the one-period-map properties in the “primed” basis. Once the change
of basis has been carried out, there is no basic difference in the analysis.
Through calculations similar to those discussed in the previous section,
one arrives at the following first-order expression for the characteristic
multipliers (compare with Eq. (8.74)):

µ
′(1)
± =

(
cos

2πω′q
ω
± i
√

1− Z ′2q1 sin
2πω′q
ω

)
exp

(π
ω

tr A′q
)
. (8.81)
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The trace tr A′q calculated from Eqs (8.56) and (8.33) is equal to:

tr A′q = − 2α
1 + α2

(
hq +

sin2 θq
2

)
, (8.82)

where:

hq = ν0 + ω −N⊥ + q2. (8.83)

The frequency ω′q is given (to the first order in α) by Eq. (8.59), which in
terms of hq becomes:

ω′2q = hq
(
hq + sin2 θq

)
. (8.84)

Finally, the term Z ′q1 is similar to Eq. (8.76):

Z ′q1 =
sin 2θq

4 (1 + α2)3/2

sin θ0

[
ω
(
1 + α2

)
+ 2hq

]
(ω/2)2 − ω′2q

. (8.85)

When ω′q is close to ω/2, the multipliers µ′(1)
± in Eq. (8.81) are both real,

because Z ′q1 � 1, and close to −1. The threshold for instability is reached
when one of the multipliers becomes equal to−1. This yields the equation:

− cos
2πω′q
ω

+
√
Z ′2q1 − 1 sin

2πω′q
ω

= exp
(
−π
ω

tr A′q
)
. (8.86)

The lowest instability threshold occurs when ω′q is precisely equal to ω/2
and Z ′q1 diverges. By taking the limit ω′q → ω/2 in Eq. (8.86) and by further
approximating both Z ′q1 and the exponential term to the first order in α,
one obtains the threshold condition:

sin θ0 =
αω

sin θq cos θq
hq + sin2 θq/2
hq + ω/2

. (8.87)

Equation (8.87) describes the instability caused by spin-waves with
given θq . The modes producing instability at the lowest radio-frequency
power will be those for which the right-hand side of Eq. (8.87) is
minimum. In the minimization, one must take into account that θq and hq
are not independent, because ω′2q = hq(hq+sin2 θq) = ω2/4 (see Eq. (8.84)).
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By using this equation to express sin θq and cos θq as a function of hq , one
transforms Eq. (8.87) into:

sin θ0 =
αω
(
h2
q + ω2/4

)
2 (hq + ω/2)

√(
ω2/4− h2

q

) (
h2
q + hq − ω2/4

) . (8.88)

The interval in which Eq. (8.88) is applicable is
(√

1 + ω2 − 1
)
/2 < hq <

ω/2, corresponding to 1 > sin θq > 0. Let us denote by hI the value of
hq for which the right-hand side of Eq. (8.88) is minimum. The quantity hI
depends on ω only. For the case shown in Fig. 8.3, where ω = 0.8, one finds
hI ' 0.274. By inserting this value into the equation hI(hI +sin2 θq) = ω2/4
(see Eq. (8.84)) one finds that sin2 θq ' 0.31, that is, θq ' 34 degrees, for the
spin-waves producing instability. Let us denote by sin θI the value of sin θ0

corresponding to hq = hI. By inserting hI ' 0.274 into Eq. (8.88) one finds:
sin θI ' 1.376αω. This condition can be realized by a variety of different
experimental arrangements. In fact, by using Eq. (8.83) and Eq. (7.17) from
Chapter 7 under the approximation cos θ0 ' 1 (valid to the first order in
α), one finds:

hq = haz + q2 + κ−Nz. (8.89)

Therefore, the minimization procedure determines the sum haz + q2 =
hI − κ+Nz , which means that spin-waves with different values of q2 will
be responsible for the instability when the field haz is varied. By inserting
sin θI into Eqs (7.17)–(7.18) and by keeping only first-order terms in α,
one obtains the following expression for the instability threshold in the
(haz,ha⊥) plane:

ha⊥ = − sin θI (haz − ω + κeff) , (8.90)

valid in the interval haz ≤ hI − κ + Nz . This prediction corresponds to
the straight-line part of the line labeled by I in Fig. 8.4. The instability
threshold deviates from this straight-line behavior when the field reaches
the value haz = hI − κ + Nz . This is the field at which the spin-waves
involved in the instability are those with q2 = 0. For larger fields, the
threshold is given by the expression:

ha⊥ = − sin θ′I (haz − ω + κeff) , (8.91)

where sin θ′I is obtained by taking hq = haz + κ − Nz instead of hq = hI
in Eq. (8.88). Equation (8.91) is valid in the interval hI − κ + Nz < haz <
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FIGURE 8.4 Suhl’s instability thresholds in the (haz , ha⊥)-plane. Dashed line
I: threshold for first-order Suhl’s instability calculated analytically through Eqs
(8.88), (8.90), and (8.91), as discussed in the text. Dashed line II: threshold for
second-order Suhl’s instability calculated analytically through Eqs (8.95), (8.98),
and (8.99), as discussed in the text. Parameters: α = 0.01, κeff = −1, ω = 0.8.
Continuous line is dynamical astroid boundary where saddle–node bifurcation
occurs. Compare with Fig. 8.3.

ω/2−κ+Nz . The threshold diverges when haz approaches the limit value
ω/2− κ+Nz (see Fig. 8.4).

Next, we shall discuss the second-order Suhl’s instability, which is
due to spin-waves for which ω2

q ' 0 and θq ' 0. This means that
the parametric terms in Eq. (8.29) are small and one can apply the
perturbative analysis presented in previous sections, which does not
require moving to a different vector basis, as done for the analysis of
the first-order instability. When ω2

q ' 0, one is far from the parametric
resonance conditions where Zq1 or Zq2 gives an important contribution to
Eq. (8.74). Therefore, instability is basically governed by the zeroth-order
characteristic multipliers given by Eq. (8.71). Under this approximation,
the instability condition where one of the multipliers becomes equal to 1
in magnitude is det Aq = 0, where det Aq is given by Eq. (8.62). By solving
this equation with respect to sin θ0, one finds:

sin2 θ0 =
ν2
q + α2ω2

κqνq + α2ω2
, (8.92)

where κq is given by Eq. (8.34). By minimizing this threshold with respect
to νq under fixed θq , one finds that the minimum threshold is achieved for:
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νq = κq

(
α2ω2

κ2
q

+
αω

|κq|

√
1 +

α2ω2

κ2
q

)
. (8.93)

By inserting this result into Eq. (8.92), one finds that (to the first order in
α) the minimum threshold corresponds to:

sin2 θ0 =
2αω
|κq|

. (8.94)

Equation (8.94) gives the instability threshold due to spin-waves with
given θq , under the assumption that θq is small for all the spin-waves of
interest. The value of θq for the spin-waves that dominate the instability
is obtained by minimizing the right-hand side of Eq. (8.94) with respect
to θq in the neighborhood of θq = 0. Equation (8.34) shows that |κq| is
maximum for θq = 0 whenever κ < 1. Therefore, the minimum threshold
occurs precisely for θq = 0. This means that the correct expression for the
threshold is obtained by taking θq = 0 in Eq. (8.92). This yields:

sin2 θ0 =
(hq − ω)2 + α2ω2

(κ− 1)(hq − ω) + α2ω2
, (8.95)

where hq is given by Eq. (8.83). As a function of hq , the right-hand side of
Eq. (8.95) is minimum when hq = hII, where:

hII = ω − α2ω2

1− κ
− αω

√
1 +

α2ω2

(1− κ)2
. (8.96)

Let us denote by sin θII the value of sin θ0 corresponding to hq = hII. By
inserting Eq. (8.96) into Eq. (8.95) and by keeping only first-order terms in
α, one finds that:

sin θII =

√
2αω
1− κ

. (8.97)

Similarly to the first-order instability, this condition can be realized by a
variety of different experimental arrangements. In fact, according to Eq.
(8.89) the minimization determines the sum haz + q2 = hII−κ+Nz , which
means that spin-waves with different values of q2 will be responsible
for the instability when the field haz is varied. By inserting sin θII in Eqs
(7.17)–(7.18) and by keeping only first-order terms in α, one obtains the
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following expression for the instability threshold in the (haz,ha⊥)-plane:

ha⊥ = sin θII

√(
haz − ω
cos θII

+ κeff

)2

+ α2ω2, (8.98)

valid in the interval haz ≤ hII − κ + Nz . This prediction is shown in
Fig. 8.4. The instability threshold deviates from this behavior when the
field reaches the value haz = hII − κ + Nz . This is the field at which the
spin-waves involved in the instability are those with q2 = 0. For larger
fields, the threshold is given by the expression:

ha⊥ = sin θ′II

√(
haz − ω
cos θ′II

+ κeff

)2

+ α2ω2, (8.99)

where θ′II is obtained by taking hq = haz+κ−Nz instead of hq = hII in Eq.
(8.95). Equation (8.99) is valid in the interval hII−κ+Nz < haz < ω−κ+Nz .
The threshold diverges when haz approaches the limit value ω − κ + Nz
(see Fig. 8.4).

This analysis assumes that the second-order Suhl’s instability is the
only possible instability route for the P-mode under consideration. In
practice, if other instability mechanisms are present, they need to be
included in the analysis. For example, in Fig. 8.4 the large-haz part of
the second-order instability is actually not observable (compare with
Fig. 8.3) because the P-mode is annihilated by the saddle–node bifurcation
occurring at the astroid boundary before the spin-wave mechanism has
the possibility of becoming active.

8.5 SPIN-WAVE PERTURBATIONS FOR ULTRA-THIN FILMS

The spin-wave analysis discussed in the previous sections cannot be
immediately applied to the case of ultra-thin films because the basic
simplifying hypothesis that boundary effects can be neglected is grossly
inaccurate. In fact, one has to take into account the following two
important effects when evaluating the effective field for ultra-thin
ferromagnets: first, the contribution to the magnetostatic field due to the
surface magnetic charges induced on the film surface; second, the effect of
the finiteness of the film volume.

In this section, we discuss how the P-mode stability analysis is
modified when one passes from an extended spheroidal particle to an
ultra-thin disk whose thickness d is comparable with the exchange length.
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In this case, it is appropriate to assume that the magnetization vector
does not change appreciably across the film thickness. If the z axis is
perpendicular to the film plane, then it can be assumed that the generic
P-mode perturbation depends on x and y only, i.e., δm(r, t) = δm(x, y, t).
We shall also assume that the origin of the cartesian reference frame is
in the middle plane of the film so that the disk is within the region
−d/2 ≤ z ≤ d/2.

As was discussed at the beginning of this chapter, it is convenient
to study the stability of P-modes by expressing the linearized equation
for the perturbation in the vector basis e1(t) and e2(t), normal to the
magnetization of the P-mode. This leads to the following equations:

(
1 α
−α 1

)
∂

∂t

(
δm1

δm2

)
=
(

0 1
−1 0

)(
δhM1

δhM2

)
+
(

−αω cos θ0 −ν0 +N⊥ +∇2
⊥

ν0 −N⊥ − κ sin2 θ0 −∇2
⊥ −αω cos θ0

)(
δm1

δm2

)
,

(8.100)

where, as before, δm1 = δm · e1(t) and δm2 = δm · e2(t), while:

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, (8.101)

the coordinates x and y being expressed in units of the exchange length
lEX . By integrating both sides of Eq. (8.100) with respect to z in the interval
[−d/2, d/2] and then dividing by d, one obtains the following equations:

(
1 α
−α 1

)
∂

∂t

(
δm1

δm2

)
=
(

0 1
−1 0

)(
〈δhM1〉
〈δhM2〉

)
+
(

−αω cos θ0 −ν0 +N⊥ +∇2
⊥

ν0 −N⊥ − κ sin2 θ0 −∇2
⊥ −αω cos θ0

)(
δm1

δm2

)
, (8.102)

where:

〈
δhM 1,2

〉
=

1
d

∫ d/2

−d/2
δhM 1,2(x, y, z) dz. (8.103)

The important difference with respect to the treatment discussed in
previous sections is the fact that the magnetostatic field components in
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Eq. (8.102) are now averaged over the film thickness. We shall now derive
analytical expressions for these components.

Consider as before a plane-wave perturbation:

δm(x, y, t) = cq(t) exp(iq · r), (8.104)

where the wave-vector q is now constrained to the (x, y)-plane:

q · ez = 0. (8.105)

where ez is the unit vector along the z axis, which is the symmetry axis of
the problem. We shall further assume that the wave-vector q is directed
along ex: q = qex. This assumption does not limit the generality of the
analysis and later it will be removed.

The magnetization perturbation δm results in two contributions to the
magnetostatic field:

δhM = δhσM + δhρM . (8.106)

The component δhσM is due to the magnetic charges at the film surface
created by the normal component of magnetization, while δhρM is due
to the volume charges created by magnetization nonuniformities inside
the film volume. Only the latter was considered in the spin-wave analysis
discussed in previous sections. In this section, the effect of surface charges
will be taken into account for charges appearing at the top and bottom film
surface, but not for those present on the lateral boundary of the disk. In
this sense, the analysis is for a film of infinite extension in the (x, y)-plane.

To start the derivation of the expression for δhσM , consider a plane-
wave of surface magnetic charges on the plane z = 0:

σ(x) = σ0 exp(iqx). (8.107)

The magnetostatic field created by these charges in free space is given by
the following expression:

h±M (x, z) =
σ0

2
exp(iqx− q|z|) (−iex ± ez) , (8.108)

where the ± sign refers to positive and negative z, respectively.
The perturbation cq(t) exp(iq · r) produces two surface charge

distributions at the upper and lower film surface: σ(x) = cqz exp (iqx) at
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z = d/2 and σ(x) = −cqz exp (iqx) at z = −d/2, where cqz(t) = ez · cq(t).
By using the superposition principle and Eq. (8.108), one arrives at the
following expression for the magnetostatic field generated by surface
magnetic charges in the region −d/2 ≤ z ≤ d/2, i.e., inside the film:

δhσM (x, z, t) = −cqz(t) exp (iqx− qd/2) (iex sinh qz + ez cosh qz) .
(8.109)

Now, we consider the magnetic field δhρM due to volume charges. The
problem can be formulated in terms of a scalar magnetic potential:

δhρM = −∇ψin for |z| ≤ d/2, (8.110)
δhρM = −∇ψout for |z| ≥ d/2. (8.111)

In terms of ψ, we have the following boundary value problem:

∇2ψin = −ρM for |z| ≤ d/2, (8.112)
∇2ψout = 0 for |z| ≥ d/2, (8.113)
ψin = ψout for z = ±d/2, (8.114)
∂ψin

∂n
=
∂ψout

∂n
for z = ±d/2, (8.115)

where n denotes the direction of the normal to the film surface, which
coincides with ez at z = d/2 and −ez at z = −d/2, while ρM is the volume
charge distribution inside the film. One has:

ρM = −∇ · [cq exp(iqx)] = −iqcqx exp(iqx), (8.116)

where cqx = cq · ex.
The stated problem can be solved in two steps. First, we find

a particular solution ψ̃ which satisfies Eqs (8.112)–(8.114) but has a
discontinuity of the normal derivative at z = ±d/2. Then we add to ψ̃
a continuous solution of the Laplace equation in the whole space which
has a discontinuity of the normal derivative at z = ±d/2 which exactly
cancels out the discontinuity of ψ̃. The particular solution ψ̃ can be written
as follows:

ψ̃in = − i
q
cqx exp(iqx) for |z| ≤ d/2, (8.117)

ψ̃out = − i
q
cqx exp(iqx) exp [−q(|z| − d/2)] for |z| ≥ d/2. (8.118)
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This solution has a discontinuity of normal derivative:

∂ψ̃in

∂n
− ∂ψ̃out

∂n
= −icqx exp(iqx) = σ̃, (8.119)

both at z = d/2 and z = −d/2. Thus, to find a solution which fulfills
Eqs (8.112)–(8.115), we have to add to ψ̃ a harmonic potential generated
by a surface charge opposite to that appearing in Eq. (8.119), i.e., −σ̃ =
icqx exp(iqx), distributed over the planes z = ±d/2. By using again
formula (8.108) and the superposition principle, we end up with the
following expression of the “correction field” inside the film:

δhσ̃M = cqx exp (iqx− qd/2) (ex cosh qz − iez sinh qz) . (8.120)

The total magnetostatic field due to volume charges is:

δhρM = −∇ψ̃in + δhσ̃M . (8.121)

By using Eqs (8.120) and (8.117), one obtains:

δhρM (x, z, t) = cqx(t) exp(iqx)

× [(exp(−qd/2) cosh qz − 1) ex − i exp(−qd/2) sinh qz ez] .

(8.122)

Equations (8.106), (8.109), and (8.122) provide the desired expressions
for the magnetostatic field δhM caused in the film by the plane-wave
perturbation. As previously discussed, we are interested in the average
over the film thickness. One obtains:

〈δhM 〉 = − exp(iqx) [excqx(1− sq) + ezcqzsq] , (8.123)

where:

sq =
1− exp(−qd)

qd
(8.124)

plays the role of “shape” function for ultra-thin films. In the more general
case when q is directed in an arbitrary direction in the (x, y)-plane,
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formula Eq. (8.123) can be expressed as:

〈δhM 〉 = −
[

q
q2

q · cq(t)(1− sq) + ez(ez · cq(t))sq
]

× exp(iq · r). (8.125)

This expression should be compared with Eq. (8.25), valid for bulk
systems. The latter is recovered from Eq. (8.125) in the limit d→∞, where
sq → 0.

By projecting the averaged magnetostatic field 〈δhM 〉 (Eq. (8.125))
along the unit vectors e1(t) and e2(t), one obtains the components 〈δhM1〉
and 〈δhM2〉 to be inserted into Eq. (8.102). By making this substitution and
by carrying out algebraic transformations similar to the ones previously
discussed for spin-waves in bulk systems, one arrives at the following
equations for the spin-wave amplitude in ultra-thin films:

d
dt

(
cq1
cq2

)
= Aq

(
cq1
cq2

)
+R2(t)

(
cq1
cq2

)
, (8.126)

where:

Aq =
1

1 + α2

(
1 −α
α 1

)(
−αω cos θ0 −νq

νq − κq sin2 θ0 −αω cos θ0

)
, (8.127)

R2(t) =
1− sq

2 (1 + α2)

(
1 −α
α 1

)(
cos θ0 sin 2ωt cos 2ωt

cos2 θ0 cos 2ωt − cos θ0 sin 2ωt

)
. (8.128)

νq = ν0 −N⊥ + q2 +
1
2

(1− sq) , (8.129)

κq = κ− 1 +
3
2

(1− sq) . (8.130)

These expressions are structurally very similar to Eqs (8.29)–(8.34),
derived for bulk systems. The main difference is that the parametric term
proportional to R1(t) is absent from Eq. (8.126), in agreement with the
fact that the angle θq between the wave-vector q and the symmetry axis
is now θq = π/2, i.e., sin 2θq = 0. On the other hand, the expressions
(8.32)–(8.34) for R2(t), νq , and κq become identical to Eqs (8.128)–(8.130)
under the substitution sin2 θq → 1 − sq . Due to these similarities, the
mathematical techniques developed in the previous sections can be used
for the study of spin-wave instabilities in ultra-thin films as well. In
particular, perturbation techniques can prove effective since sq → 1 for
d → 0 and therefore the parameter (1− sq) as well as the matrix R2(t) in
Eq. (8.126) are all small quantities.



CHAPTER 9

Spin-Transfer-Driven
Magnetization Dynamics

9.1 SPIN-TRANSFER MODIFICATION OF THE LLG EQUATION

Electrons exert a torque of quantum-mechanical origin when they flow
across a ferromagnetic element. This torque is known as spin-transfer
pseudo-torque. There is also the magnetic torque that any electric current
traversing a ferromagnetic element generates because of the Oersted field
produced by the current. When the current density is sufficiently large (of
the order of 107−108A cm−2) and the ferromagnetic element is sufficiently
small (lateral dimensions of the order of 100 nanometers), the spin transfer
torque exceeds the Oersted-field torque and the wealth of spin-transfer-
driven effects appears in the magnetization dynamics of the ferromagnetic
element. The theoretical basis for the interpretation of these effects was
laid down in the 1990’s by the work of Berger and Slonczewski [68,622].

Spin-transfer effects are most often investigated in three-layer
structures consisting of two ferromagnetic layers separated by a
nonmagnetic metallic spacer (see Fig. 9.1). The observation and the
interpretation of spin-transfer effects is greatly simplified when the
magnetization in one of the magnetic layers is more or less independent
of external actions due to large volume, large anisotropy, or pinning by
additional underlayers. Then that layer, commonly known as the “fixed”
or the “pinned” layer, simply acts as the reference polarizer for the
electron spins. The second layer, termed the “free” layer, is the one where
various dynamic phenomena occur. The trilayer structure is traversed
by an electric current flowing in the direction normal to the plane of
the layers. This configuration is called “current-perpendicular-to-plane”
(CPP) geometry.

The spin-transfer interaction between the electric current and the
magnetization can give rise to two main effects [651,758,635,444,59,101]:
current-induced magnetization switching; coherent magnetization oscilla-
tions or spin-wave emission at microwave frequencies. These effects have
potential applications in magnetic storage technology and spintronics, for

233
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FIGURE 9.1 Schematic representation of the active region of a spin-torque device
in the current-perpendicular-to-plane (CPP) configuration. The device consists of
a three-layer ferromagnetic conductor-normal conductor-ferromagnetic conductor
structure. The thicker layer (“fixed” layer) has a fixed magnetization along the
direction ep. The dynamic phenomena of interest occur in the thinner layer (“free”
layer). Je is the spin-polarised current density.

novel types of current-controlled magnetic random access memory ele-
ments or current-controlled microwave oscillators that can be integrated
with semiconductor electronics.

Various experimental arrangements have been developed to observe
spin transfer effects. Point-contact setups were initially proposed, where
a sharp tip is brought into electric contact with a layered structure
consisting of a large number of alternating normal metal/ferromagnet
sublayers [679–681]. The point-contact method has then evolved into
the preparation of nanocontact areas on top of three-layer structures
[500,558,378,462]. Finally, nanopatterning has been used to prepare so-
called “nanopillar” devices [14,387,501,398,419], in which the device
cross-section can be made non-circular in order to introduce in-plane
shape anisotropy that leads to a better control of the orientation of
the magnetization in the fixed layer and to more stable single-domain
magnetization configurations in the free layer.

Current-induced switching of the magnetization has been observed
in point-contact configurations [500] and later in nanopillar devices
[14,501,297,15,691,418]. More challenging has been the search for
current-induced excitation of magnetization oscillations at microwave
frequencies. First results obtained for multilayers [680,681] were
interpreted in terms of coherent magnon generation. Later studies
on patterned nanocontacts [558] gave evidence of excitations whose
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frequency could be a decreasing or increasing function of current,
depending on field orientation. Similar results were obtained for
nanopillar devices [398,399]. Direct monitoring of these excitations in
time [419] permitted one to conclude that the excitations are associated
with large-amplitude coherent precession of the magnetization in which
spatial uniformity is by and large preserved in time. Great interest has
been generated by the discovery that spin-transfer-driven magnetization
oscillations in closely located nanocontacts may exhibit phase-locking
effects, mediated by spin-waves or oscillating fields of magnetostatic
origin [378,462,618], with consequent enhancement of the total generated
microwave power. The phenomenology becomes even richer when ac
currents and fields are applied in addition to dc currents and fields.
Alternating currents can induce frequency modulation of the spin-
transfer-driven magnetization oscillations [546] as well as resonance
effects [688,579].

The magnetic volumes involved in spin-torque experiments are rather
small, which means that thermal fluctuations can easily induce transitions
from one dynamical regime to another. Such transitions and the associated
random-telegraph signals have been experimentally observed [501,691,
418,246]. These effects can be described theoretically by adding (in
analogy to what Brown proposed for the study of thermal switching
in single-domain particles [135]) a random torque to the equation for
the magnetization dynamics [445,448,24,711,103,598]. This leads to a
Langevin-type stochastic differential equation for the magnetization and
to a related Fokker–Planck equation for the magnetization probability
distribution. On this basis, one can develop a thermal-activation-type
approach, where the effective potential barrier controlling the transition
between different dynamical regimes contains a nonequilibrium current-
dependent part which cannot be expressed merely in terms of the system
free energy [448,711,598]. These aspects will be discussed in more detail in
Chapter 10.

The effect of spin transfer on magnetization dynamics can be
studied (quite independently of the details of the microscopic mechanism
responsible for it) by adding an appropriate spin-transfer term to the
Landau–Lifshitz–Gilbert (LLG) equation for the free-layer magnetization.
The first essential step, before proceeding to the detailed micromagnetic
simulation of magnetization dynamics in complex spin-transfer devices,
is to study the ideal case where the magnetization in the free layer is
assumed to be spatially uniform [59,94,101].

In order to introduce a model equation for magnetization dynamics
in the presence of spin-polarized currents, Slonczewski [622] considered
a five-layer structure consisting of the trilayer structure shown in Fig. 9.1
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with two additional paramagnetic conductors as contacts. The magnetic
state of the ferromagnetic layers is described by the vectors S1 and S2,
representing the global spin orientation per unit area in the fixed and free
layers, respectively. The relation of these two vectors with the total angular
momenta L1 and L2 in the two layers is: L1 = ~S1As, L2 = ~S2As, where
~ is the Planck constant andAs is the cross-sectional area of the multilayer
structure. By applying a semiclassical approach to the analysis of spin
transfer between the two ferromagnetic layers, Slonczewski derived the
following generalized LLG equation:

dS2

dt
= s2 ×

(
γHAN (ex · S2)ex − α

dS2

dt
− GJe
|e|

s1 × s2

)
, (9.1)

where s1 and s2 are the unit vectors respectively along S1 and S2,
γ = 2.2 · 105 mA−1s−1 is the absolute value of the gyromagnetic ratio,
HAN is the anisotropy field magnitude, ex identifies the direction of in-
plane anisotropy in the free layer, α is the Gilbert damping constant, e is
the electron charge, and Je is the electric current density, taken as positive
when the electrons flow from the free into the fixed layer. The quantity G
is given by the expression:

G =
[
−4 + (1 + P )3

(3 + s1 · s2)
4P 3/2

]−1

, (9.2)

where P is the spin-polarizing factor of the incident current (see Ref. [622]
for details). Typical values in ferromagnetic metals are P ' 0.3÷ 0.4.

Equation (9.1) refers to a free layer subject to anisotropy effects. The
equation can be generalized to the case where the generic effective field
Heff acts on the system by observing that the anisotropy field involved
in Eq. (9.1) is HAN = −HAN (ex · s2)ex. The minus sign is due to the
fact that the spin direction s2 is opposite to that of the magnetization.
Thus, the correct way to generalize Eq. (9.1) is to replace −HAN (ex · s2)ex
with Heff = Ha + HAN + HM . This permits one to account for external
fields and demagnetizing effects, the latter being particularly important
for thin films. Next, Eq. (9.1) can be expressed in terms of the average
magnetization M in the free layer by using the relation between S2 and
M. The total magnetic moment of the free layer is equal to −γ~S2As/µ0,
whereas its volume is equal to Asd, where d is the free-layer thickness.
Therefore: M = −γ~S2/µ0d. Finally, s2 ≡ −m = −M/Ms, where m is
the unit vector along M and Ms is the saturation magnetization. By using
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these relations in Eq. (9.1), one arrives at the equation:

dm
dt

= −γMsm×
(
heff −

α

γMs

dm
dt
− JeG

Jp
ep ×m

)
, (9.3)

where heff = Heff/Ms, ep ≡ −s1 identifies the magnetization direction in
the fixed layer, and the current-density parameter Jp is equal to:

Jp = µ0M2
s

|e|d
}
. (9.4)

As an example, Jp ' 1.1 · 109 A cm−2 for a 3 nm thick layer of cobalt, for
which Ms ' 1.4 · 106 A m−1.

Similarly to what was done in previous chapters, it is natural to
express time in units of (γMs)−1, i.e., t → γMst. In colbalt, where Ms '
1.4 · 106 A m−1, one finds that γMs ' 3.1 · 1011 s−1, i.e., (γMs)−1 ' 3.2 ps.
In terms of this normalized time, Eq. (9.3) takes the dimensionless form:

dm
dt
− αm× dm

dt
= −m× heff + β

m× (m× ep)
1 + cpm · ep

, (9.5)

where Eq. (9.2) has been used to express the spin-torque effect in terms of
the parameters:

β = bp
Je
Jp
, (9.6)

bp =
4P 3/2

3 (1 + P )3 − 16P 3/2
, (9.7)

cp =
(1 + P )3

3 (1 + P )3 − 16P 3/2
. (9.8)

One finds that 1/3 ≤ cp < 1 and 0 ≤ bp < 0.5 when P is increased
from 0 to 1. As an example, cp ' 0.55 and bp ' 0.17 for the typical
value P = 0.3. One concludes from these estimates that in thin Co layers,
where Jp ≈ 109 A cm−2, at most β ≈ 10−3–10−2 for the largest current
densities Je ≈ 107–108 A cm−2 reported in experiments. In subsequent
extensions of the theory, where spin-diffusion effects are taken into
account [624], the parameters bp and cp are controlled by two parameters
instead of P only. In the case of a symmetric three-layer structure with
identical ferromagnetic layers, cp is directly related to the deviation of
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the magnetoresistance of the device from a pure (1 + cos θ) law and may
attain positive as well as negative values in the interval −1 < cp < 1.

The effective field heff in Eq. (9.5) is the sum of the applied,
demagnetizing, and anisotropy fields. We shall assume that the free
layer can be approximately described as a flat ellipsoid, and that crystal
anisotropy is uniaxial in character, with the anisotropy axis parallel to one
of the principal axes of the ellipsoid. Identical assumptions were made
in Chapters 3–5 for the general study of spatially uniform magnetization
dynamics. Accordingly, the effective field heff and the normalized free
energy gL of the free layer can be expressed as (see Eqs (3.15) and (3.16)):

heff = ha −D ·m
= ha −Dxmxex −Dymyey −Dzmzez, (9.9)

gL (m; ha) =
1
2
(
Dxm2

x +Dym2
y +Dzm2

z

)
− ha ·m, (9.10)

where D is the diagonal anisotropy tensor and ha is the applied field.
Equation (9.5) describes the magnetization dynamics in the free layer

under the assumption that this magnetization is spatially uniform. Given
the submicrometer lateral dimensions of typical spin-transfer devices,
this is a natural and useful starting point. However, nonuniformities
might become important under certain conditions, for example in point-
contact geometries where the spin-transfer-active region is a small part
of a laterally unbounded medium. In such cases, one has to resort to
the study of the complete space-dependent form of Eq. (9.5) [623,56,
351]. Appropriate numerical methods have been developed in order to
carry out computer simulations of switching processes, magnetization
oscillations, and thermal effects in nonuniformly magnetized devices [493,
444,76,77].

In the following sections, two cases of particular physical interest will
be considered: (i) the applied field and the spin-polarization are both
parallel to the free-layer easy axis, identified with the x axis: ha = haxex,
ep ≡ ex, Dx < Dy < Dz ; (ii) the entire problem exhibits uniaxial
symmetry around the z axis: ha = hazez , ep ≡ ez , Dx = Dy = D⊥.
Indeed, these are the situations most often encountered in spin-transfer
experiments. The physical reasons for the appearance of stationary and
self-oscillation states as well as the associated phase diagrams will be
discussed in the next sections for case (i), leaving to a final separate section
the analysis of the consequences of symmetry for uniaxial systems.
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9.2 STATIONARY STATES

The equation (9.5) governing the dynamics of the free-layer magnetic
moment corresponds to a nonlinear dynamical system with state vector
m(t), driven far from equilibrium by the action of the spin-polarized
electron flow. We discussed in Chapter 3 that the natural tool for the study
of this dynamics is nonlinear dynamical system theory on the unit sphere
[529,428,358]. The dynamical-system perspective reveals certain physical
aspects of the problem which are general and robust because they are
topological in nature. In fact, when the external field ha and the electric
current, i.e., β, are constant in time, Eq. (9.5) describes an autonomous
(i.e., time-invariant) system on the unit sphere. This immediately leads to
certain conclusions concerning the admissible dynamical response to the
field and current (see Section 3.2):

• chaos is precluded;
• the only possible steady states of magnetization dynamics are:

– stationary states associated with static solutions (fixed points) of Eq.
(9.5);

– self-oscillations associated with periodic solutions (limit cycles) of Eq.
(9.5).

The existence and stability of the stationary modes associated with
the fixed points of the modified LLG equation (9.5) can be analyzed in
sufficient detail [101,59]. When the external field and the spin-polarization
vector are directed along the easy axis of the free layer (x axis), the
fixed-point magnetization m0 is the solution of the equation obtained by
imposing dm/dt = 0 in Eq. (9.5). Let us write this equation in the form:

dm
dt
− αm× dm

dt
= −m×Heff, (9.11)

where:

Heff = heff − β
m× ep

1 + cpm · ep
. (9.12)

Then, the equation for the fixed-point magnetization m0 is:

Heff ×m0 = 0. (9.13)
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One can express Eq. (9.13) in the form (compare with Eq. (3.65)):

heff (m0)− β m0 × ep
1 + cpm0 · ep

= λm0, (9.14)

where λ is an unknown parameter to be determined. By using Eq. (9.9)
and by taking into account that ha = haxex, ep ≡ ex, Eq. (9.14) is reduced
to the set of equations:

(λ+Dx)m0x = hax, (9.15)
(λ+Dy)m0y + βxm0z = 0, (9.16)
βxm0y − (λ+Dz)m0z = 0, (9.17)

where:

βx =
β

1 + cpm0x
. (9.18)

Equations (9.15)–(9.17) consist of an equation for m0x and a set of two
coupled equations for (m0y,m0z). Therefore we can classify the fixed
points as follows:

• Fixed points with m0y = m0z = 0
There are two such fixed points:

m0x = ±1, m0y = m0z = 0. (9.19)

These two fixed points are always present and never destroyed
whatever the field and current conditions. The corresponding values
of λ and βx are:

λ = λ± = −Dx ± hax, βx = β± =
β

1± cp
. (9.20)

• Fixed points with m0y 6= 0, m0z 6= 0
This solution is possible only if the determinant of Eqs (9.16)–(9.17) is
equal to zero:

(λ+Dy) (λ+Dz) + β2
x = 0. (9.21)
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This gives two solutions for λ:

λ = λ′± = −Dz +Dy

2
±

√
(Dz −Dy)2

4
− β2

x. (9.22)

Note that −Dz ≤ λ′± ≤ −Dy < −Dx. The fixed points are obtained by
inserting λ′± into Eq. (9.15):(

λ′± +Dx

)
m0x = hax. (9.23)

This is an equation for m0x, in which λ′± depends on m0x through βx.
By rearranging terms, squaring, and taking into account that λ′±+Dx <
0, one obtains:(

hax
m0x

+Dz −Dx

)(
hax
m0x

+Dy −Dx

)
+ β2

x = 0. (9.24)

To the first order in β, this equation can be solved by taking β2
x = 0.

This is an acceptable approximation whenever β2
x � (Dz −Dy)2 /4 −

D2
x. This requirement is usually satisfied in spin-transfer experiments,

where β � 1 (current limit), Dz ≈ 1 (thin-film geometry), and cp ≈ 0.5
(level of spin polarization). Equation (9.24) gives two solutions form0x.
Each of these solutions gives two fixed points with opposite values of
m0y and m0z , obtained by imposing m2

0y +m2
0z = 1−m2

0x and by using
Eq. (9.16) or Eq. (9.17). The result is the following two pairs of fixed
points:
– Fixed points which coincide with gL maxima when β = 0.

m0x = − hax
Dz −Dx

, (9.25)

λ = λ′−, βx = β′− =
β

1− cphax/ (Dz −Dx)
, (9.26)

m0y = ∓β′−

√
1−m2

0x(
λ′− +Dy

)2 + β′2−
, (9.27)

m0z = ±
(
λ′− +Dy

)√ 1−m2
0x(

λ′− +Dy

)2 + β′2−
. (9.28)

These fixed points exist only in the field interval |hax| ≤ (Dz −Dx).
This condition is found by imposing m2

0x ≤ 1 in Eq. (9.25).
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– Fixed points which coincide with gL saddles when β = 0.

m0x = − hax
Dy −Dx

, (9.29)

λ = λ′+, βx = β′+ =
β

1− cphax/ (Dy −Dx)
, (9.30)

m0y = ±
(
λ′+ +Dz

)√ 1−m2
0x(

λ′+ +Dz

)2 + β′2+
, (9.31)

m0z = ±β′+

√
1−m2

0x(
λ′+ +Dz

)2 + β′2+
. (9.32)

These fixed points exist only in the field interval |hax| ≤ (Dy −Dx).

In conclusion, the number of fixed points is as follows:

• 6 fixed points for |hax| < Dy −Dx;
• 4 fixed points for Dy −Dx < |hax| < Dz −Dx;
• 2 fixed points for |hax| > Dz −Dx.

This result coincides with the one previously found for the
magnetization dynamics in the absence of spin transfer (see Section 3.4).
Thus, to the first order in β the spin-polarized current has no influence on
the number of fixed points. However, the current does affect fixed-point
stability, as will be discussed in subsequent sections in connection with
dynamic stability diagrams.

9.3 SELF-OSCILLATIONS

Periodic solutions of Eq. (9.5) represent limit cycles, i.e., self-oscillations
of the magnetization. The study of these self-oscillations can be carried
out by the Poincaré–Melnikov method discussed in Section 5.5. Indeed,
as previously mentioned, both the damping constant α and the parameter
β measuring the intensity of the spin transfer effect are small quantities
of the order of 10−2 or less, which are precisely the conditions under
which the Poincaré–Melnikov method can be applied. The first step in
this direction is to bring Eq. (9.5) to the form (5.108). By writing Eq. (9.5)
in the form (9.11), then transforming this equation to LL form, and finally
keeping only first-order terms in α and β, we obtain:

dm
dt

= −m× heff + αm×
(
m× ∂Φ

∂m

)
, (9.33)
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where:

Φ = gL +
β

α

ln(1 + cpm · ep)
cp

. (9.34)

By comparing this equation with the definition (5.109) for Φ, we see that
the potential Ψ describing spin-transfer effects is:

Ψ = β
ln(1 + cpm · ep)

cp
. (9.35)

The energy balance equation for Eq. (9.33) was derived in Section 3.2
(Eq. (3.62)). In terms of Ψ, we have:

dgL
dt

= −α |m× heff|2 −
(
m× ∂Ψ

∂m

)
· dm

dt
+
∂gL
∂t

. (9.36)

In the case where the applied field and the injected current are constant
in time, neither gL nor Ψ are explicitly dependent on time and Eq. (9.36)
can be expressed in terms of a power function as in Eq. (5.110):

dgL
dt

= −αP(m, β/α), (9.37)

where β/α plays the role of control parameter for the spin-transfer effect.
By using Eqs (9.35)–(9.36) and also the fact that to the first order in α one
can change |m × heff|2 into |dm/dt|2, we can write the power function in
a form that will prove particularly useful for subsequent developments:

P(m, β/α) =
∣∣∣∣dm

dt

∣∣∣∣2 +
β

α

m× ep
1 + cpm · ep

· dm
dt

. (9.38)

Equations (9.37) and (9.38) show that when the spin-polarized current
is injected into the free layer (i.e., β 6= 0), situations where the energy
transferred to the system via spin-transfer counterbalances the energy
dissipation via intrinsic damping become possible. When this occurs, the
system reaches a periodic steady-state regime resulting in steady-state
self-oscillations. As discussed in Chapter 5, predictions about these self-
oscillations are obtained from the Melnikov function (5.146), i.e.:

M (g0, β/α) =
∫ T (g0)

0

P(mc(t; g0), β/α)dt, (9.39)
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where P(m, β/α) is given by Eq. (9.38), while mc(t; g0) represents
the solution with energy g0 of the unperturbed precessional dynamics
corresponding to α = β = 0. As discussed in Chapter 5, the importance of
the Melnikov function is in the following fundamental property:

• In the limit α � 1, β � 1, β/α ∼ 1, there exist as many limit cycles
in the spin-transfer-driven dynamics as there are energy zeros glc of
the Melnikov function: M(glc, β/α) = 0. Then, in the limit α → 0 the
limit cycle trajectory corresponding to glc coincides with the trajectory
mc(t; glc) of the precessional dynamics. In addition, the limit cycle is
stable if ∂M/∂g0|g0=glc

> 0 and unstable if ∂M/∂g0|g0=glc
< 0.

Each of the stable limit cycles thus predicted represents steady-
state self-oscillations of the magnetization, which in principle should be
experimentally observable under appropriate conditions.

These results make clear that detailed knowledge of the unperturbed
precessional dynamics is necessary in order to make predictions about
self-oscillations. Accurate information about this dynamics has been
obtained in Chapter 4. In particular, explicit analytical expressions for
the magnetization trajectories when the external field is directed along
the easy axis of the free layer have been derived in Section 4.4. The
corresponding phase portrait is divided by heteroclinic or homoclinic
trajectories into several central energy regions (see Figs 4.5 and 4.10),
and the solutions mc(t; g0) have different properties depending on the
region to which they belong. As discussed in Chapter 5, a different
Melnikov function is associated with each of these energy regions, and
a careful study of the properties of all these Melnikov function branches is
necessary in order to get a comprehensive grasp of the conditions for the
appearance of self-oscillations.

We shall now compute these Melnikov function branches in detail. We
start from the following expression obtained by substituting Eq. (9.38) into
Eq. (9.39):

M (g0, β/α) =
∫ T (g0)

0

[∣∣∣∣dm
dt

∣∣∣∣2 +
β

α

m× ep
1 + cpm · ep

· dm
dt

]
mc(t;g0)

dt,

(9.40)

where the subscript indicates that the integrand must be evaluated
along the precessional trajectory mc(t; g0). The Melnikov function can
be computed by reducing it to integrals with respect to the variable w



9.3 Self-Oscillations 245

introduced in Eqs (4.79) and (4.80). Let us first compute the term |dm/dt|2
in Eq. (9.40). By using the identity |dm/dt|2 = |dm/dw|2|dw/dt|2, we
derive from Eq. (4.80):

∣∣∣∣dm
dw

∣∣∣∣2 =
p2

k2

[
1

1− w2
+

k′2r2

(w − w−) (w − w+)

]
, (9.41)

where r = (w+ − w−)/2. The term dw/dt can be obtained from Eq. (4.82)
from Chapter 4:

dw
dt

= ±k′p (Dz −Dx)
√

(1− w2) (w − w−) (w − w+). (9.42)

Therefore:

∣∣∣∣dm
dt

∣∣∣∣2 dt =
k′p3

k2
(Dz −Dx)

[√
(w − w−) (w − w+)

1− w2

+ k′2r2

√
1− w2

(w − w−) (w − w+)

]
dw. (9.43)

For the spin-transfer term, we have:

m× ep
1 + cpm · ep

· dm
dt

=
1

1 + cpmx

(
mz

dmy

dw
−my

dmz

dw

)
dw
dt
. (9.44)

By using Eqs (4.80) and (9.42), we find:

m× ep
1 + cpm · ep

· dm
dt

dt = − k′p2

k2 (1 + cpax)

[
w

wd+ 1

√
(w − w−) (w − w+)

1− w2

+
w − b
wd+ 1

√
1− w2

(w − w−) (w − w+)

]
dw,

(9.45)

where b = (w+ +w−)/2, d = cp p/(1+cp ax), and signs have been adjusted
by taking into account that mzdmy/dt ∝ −w and my dmz/dt ∝ w − b.
By using Eqs (9.43) and (9.45) in Eq. (9.40) one arrives at the following
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Melnikov function expression:

M (g0, β/α)

=
nwk

′p2

k2

[
p (Dz −Dx)

(
I1 + k′2r2I2

)
− β

α

1
1 + cpax

(J1 + J2)
]
,

(9.46)

where nw is the number of times that w sweeps its interval of variation
during one period of the conservative motion, while I1, I2, J1, and J2

represent the following elliptic-type integrals:

I1 =
∫ w2

w1

√
(w − w−) (w − w+)

1− w2
dw, (9.47)

I2 =
∫ w2

w1

√
1− w2

(w − w−) (w − w+)
dw, (9.48)

J1 =
∫ w2

w1

w

wd+ 1

√
(w − w−) (w − w+)

1− w2
dw, (9.49)

J2 =
∫ w2

w1

w − b
wd+ 1

√
1− w2

(w − w−) (w − w+)
dw. (9.50)

The limits of integration w1 and w2 depend on the energy of the system
and the value of the external field. The limits of integration and the values
of nw associated with the various central regions of the phase portrait are
specified as follows:

• Region L− : w1 = −1, w2 = w−, nw = 4.
• Region L+ : w1 = w+, w2 = 1, nw = 4.
• Region H : w1 = −1, w2 = 1, nw = 2.

There will be one Melnikov function for each of these regions, provided
the region exists under the field conditions of interest.

9.4 PHASE PORTRAITS AND BIFURCATIONS

Based on the discussion presented in the previous sections, we shall now
determine the stable stationary states as well as the steady-state self-
oscillations present in a spin-transfer device subject to the external field
hax along the free-layer easy axis and the spin-polarized current density
Je. The parameter β/α will be used to represent the current density.
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For each point in the (hax, β/α) control plane, we shall determine the
corresponding phase portrait for the magnetization dynamics and follow
the evolution of this portrait as the field or the current is varied. When a
small change in the control parameters induces correspondingly small,
continuous modifications in the phase portrait, the portrait is said to
be structurally stable. However, there exist bifurcation conditions where
the control-parameter change leads to qualitative changes in the phase
portrait, namely changes in the number and stability of fixed points and
limit cycles. These bifurcation conditions result in bifurcation lines in the
(hax, β/α)-plane. The knowledge of the location and nature of these lines
is essential for the interpretation of spin-transfer experiments. The final
result of this study will be the theoretical stability diagram shown in
Figs 9.3 and 9.4.

It has been previously mentioned that an essential role in the analysis
of spin-transfer-driven magnetization dynamics is played by the fact that
α and β are small quantities, of the order of 10−2 or less. This fact implies
that the phase portraits of the dynamics can be viewed as perturbations
of the corresponding conservative phase portraits obtained for the same
value of the field and α = β = 0. Therefore, one expects that the
classification of conservative phase portraits discussed in Chapter 4 can
be instrumental in the description of spin-transfer effects as well. In order
to demonstrate how this can be accomplished, let us first recall that all
the essential information about a generic conservative portrait can be
coded by listing the number of saddles, central regions, and fixed points
present in this portrait. The phase portraits of interest here are those that
correspond to the field aligned along the easy axis of the free layer, i.e.,
the x axis. These portraits have been extensively analyzed in Chapter 4.
According to Figs 4.5 and 4.10, there are three distinct phase portraits for
this field direction:

• Phase portrait
{
d2(u)2(s−)(s+)

}
This is the portrait existing for |ax| ≤ k′2, i.e., |hax| ≤ Dy −Dx, namely,
when both regions L− and L+ are present. The symbol d2 represents
the two saddles connected by heteroclinic trajectories; (u)2 represents
regionH , made up of two symmetric regions containing the two energy
maxima u; (s−) represents region L− containing the energy minimum
at mx = −1, indicated as s−; (s+) represents region L+ containing the
energy minimum at mx = 1, indicated as s+.

• Phase portraits
{
d−(u)2, (s+)

}
for hax > 0;

{
d+(u)2, (s−)

}
for hax < 0

These are the phase portraits existing for k′2 ≤ |ax| ≤ 1, i.e., Dy −Dx ≤
|hax| ≤ Dz −Dx. One of the low-energy regions, e.g., region L− under
positive field, has disappeared. The symbol d− (d+) expresses the fact
that the fixed point mx = −1 (mx = 1) is now a saddle.
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• Phase portrait {(u−s+)}
This phase portrait is realized for |ax| ≥ 1, i.e., |hax| ≥ Dz −Dx. Region
H has also disappeared and only two energy extrema at mx = ±1 are
present.

One can create a direct correspondence between these conservative
phase portraits and the spin-torque portraits for the same field value and
α 6= 0, β 6= 0, by using the following facts:

• The fact that α 6= 0, β 6= 0 has no effect on the number of fixed
points, because the equations for the fixed points of the dynamics do
not contain α and the number of fixed points is independent of β to
the first order in β. In addition, the states mx = ±1 are always fixed
points for any field and current conditions, so the “±” subscripts used
in the coding of conservative portraits retain the same meaning for
spin-transfer phase portraits as well.

• The fact that α 6= 0, β 6= 0 has a negligible effect on the partition of the
phase portraits into energy regions. The effect of α and β is to break
the heteroclinic or homoclinic connections present in the conservative
dynamics. However, since α and β are small quantities, the ensuing
distortions in the phase portrait structure are small as well and do
not substantially alter the pattern of energy regions characterizing the
conservative dynamics.

Therefore, given a certain zero-current portrait, for instance{
d−(u)2, (s+)

}
, a string with identical structure, i.e.,

{
d−(. . .)2, (. . .)

}
,

will represent the portraits under nonzero spin-polarized current and
the same field. The dot placeholders express the fact that, although the
spin-polarized current has no effect on the number of fixed points and
energy regions, it may affect the stability of the fixed points and lead
to the appearance of one or more limit cycles inside some of the energy
regions. Thus, the portrait

{
d−(u)2, (s+)

}
may be transformed by the

spin-polarized current into a portrait of the type
{
d−(u)2, (ars+)

}
, or{

d−(u)2, (au+)
}

, or
{
d−(au)2, (rs+)

}
, and so on, where, as before, we

have used the symbols a and r to denote stable (i.e., attractive) and
unstable (i.e., repulsive) limit cycles, respectively. These possibilities are
illustrated in Fig. 9.2 by using the unit-disk representation.

The notations just introduced are purely formal, in the sense that
they give no indications which of the admissible possibilities will be
actually realized in a spin-transfer experiment. Some preliminary heuristic
considerations may be helpful before addressing this problem in detailed
analytical terms. We already know that when no current is injected (β = 0)
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FIGURE 9.2 Unit-disk representation of phase portraits for spin-torque-driven
magnetization dynamics, with examples of limit cycles present in one or more
energy regions as a result of the injection of the spin-polarized current. (a) P/O+-
type portrait; (b) O+-type portrait; (c) P/O2-type portrait. The string notation and
the bold symbols are defined in the text.

the presence of intrinsic damping (α 6= 0) forces the energy to decrease for
any magnetization motion. The closed orbits of the conservative dynamics
are transformed into closely spiraling trajectories approaching one of the
energy minima at mx = 1 or mx = −1. These are the only observable
magnetization modes under zero current; no self-oscillations are possible.
However, the situation is significantly altered when the spin-polarized
current is injected (β 6= 0). Indeed, consider a magnetization motion
close to mx = 1. Due to the smallness of α and β, the motion over time
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intervals of the order of one precession period is nearly coincident with
one of the constant-energy orbits of the conservative dynamics. Along
this orbit m × ep is approximately opposite to dm/dt. By using this fact
in Eqs (9.37) and (9.38), one concludes that dgL/dt ' (Kβ − α)|dm/dt|2,
where K is some positive constant. Thus, dgL/dt > 0 when β/α & 1/K,
which means that the magnetization will start to move along a trajectory
of increasing energy, i.e., away from the energy minimum at mx = 1. The
conclusion of this analysis is that the state mx = 1 can be made unstable by
a sufficiently strong positive current. This instability mechanism is known
as a Hopf bifurcation. Hopf bifurcations have the remarkable property
that they are always accompanied by the appearance or disappearance of
a limit cycle, i.e., of persistent self-oscillations. Thus, magnetization self-
oscillations must appear in the free layer if the spin-polarized current is
made sufficiently large.

This discussion is suggestive of the astonishingly rich dynamical
structure that emerges once the problem is studied by rigorous analytical
tools, namely, by investigating the various bifurcation mechanisms [741,
358,428,529] expected in the free-layer magnetization dynamics.

The classification of spin-transfer phase portraits previously intro-
duced is based on the knowledge of the number of fixed points present
in the dynamics for any value of the field. According to the analysis car-
ried out in Section 9.2, this number changes from 6 to 4 or vice versa for
|hax| = Dy − Dx, and from 4 to 2 or vice versa for |hax| = Dz − Dx.
The corresponding bifurcations are symmetric saddle–node bifurcations
known as pitchfork bifurcations. It has been shown in Section 9.2 that to
the first-order in β this conclusion is valid with no modification under
the presence of nonzero spin-polarized current. This means that pitchfork
bifurcations will be described by vertical lines in the (hax, β/α) control
plane, located at hax = ± (Dy −Dx) and hax = ± (Dz −Dx).

A more complex analysis is needed to study the modifications
in the stability of nonsaddle fixed points caused by Hopf bifurcation
mechanisms. When β = 0, gL minima are stable foci and gL maxima
are unstable foci of the magnetization dynamics. However, as suggested
by the previous discussion, this situation can be substantially altered
by the spin-polarized current injection, with the appearance of Hopf
bifurcations where a focus changes from stable to unstable or vice versa
with the simultaneous creation or annihilation of a limit cycle [358]. Hopf
bifurcations can be studied by linearizing the LLG equation, Eq. (9.5),
around the fixed point of interest and by determining the conditions under
which the trace of the stability matrix controlling the dynamics of the
linear perturbation is equal to zero. To this end, let us consider one of the
fixed-point solutions m0 of Eq. (9.14), and let us introduce the perturbed
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magnetization m(t) = m0 + δm(t). The perturbation must be such that
m0 · δm = 0, because the magnetization magnitude must be preserved.
By inserting m(t) in Eq. (9.5), one obtains the following linearized LLG
equation for δm:

dδm
dt
− αm0 ×

dδm
dt

= m0 ×
[
λδm +D · δm

+βx

(
δm× ex − cp

m0 × ex
1 + cpm0x

δm · ex
)]

,

(9.51)

where λ and βx are defined by Eqs (9.14) and (9.18), respectively. The
stability analysis is conveniently carried out by introducing the vector
basis (e1, e2,m0), where m0 is the fixed point under consideration
whereas (e1, e2) identify the plane perpendicular to m0 (see Eqs (7.36)
and (7.37)). Indeed, the perturbation δm lies in the plane (e1, e2) by
construction:

δm = δm1e1 + δm2e2. (9.52)

Accordingly, Eq. (9.51) can be reduced to a two-dimensional equation in
this plane:

d
dt

(
δm1

δm2

)
= A0

(
δm1

δm2

)
, (9.53)

where the matrix A0 controls the stability of the fixed point. In particular,
the equation tr A0 = 0 will describe Hopf bifurcations provided that the
fixed point considered is not a saddle. After some algebra, one finds:

tr A0 = − 2α
1 + α2

[
λ+

Dp

2

− β

α

1
1 + cpm0x

(
m0x +

cp
2

1−m2
0x

1 + cpm0x

)]
, (9.54)

where:

Dp = Dx

(
1−m2

0x

)
+Dy

(
1−m2

0y

)
+Dz

(
1−m2

0z

)
. (9.55)
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This reasoning permits one to determine the location of Hopf
bifurcations on the (hax, β/α)-plane, for all the nonsaddle fixed-point
solutions:

• Fixed points m0x = ±1, m0y = m0z = 0
For these fixed points, λ = −Dx±hax andDp = Dz+Dy . By using these
relations in Eqs (9.54) and (9.55), one obtains the following bifurcation
conditions:
– m0x = 1

For this fixed point the Hopf bifurcation occurs for hax ≤
− (Dz −Dx) or hax ≥ − (Dy −Dx). The fixed point is a saddle of the
dynamics when − (Dz −Dx) ≤ hax ≤ − (Dy −Dx). The bifurcation
condition is:

β

α
= (1 + cp)

[
hax +

(
Dz +Dy

2
−Dx

)]
. (9.56)

– m0x = −1
For this fixed point the Hopf bifurcation occurs for hax ≤ Dy − Dx

or hax ≥ Dz −Dx. The fixed point is a saddle of the dynamics when
Dy −Dx ≤ hax ≤ Dz −Dx. The bifurcation condition is:

β

α
= (1− cp)

[
hax −

(
Dz +Dy

2
−Dx

)]
. (9.57)

Equations (9.56) and (9.57) represent straight lines in the field-current
plane. Their slope is different because the spin-torque effect has
different intensity when the magnetization in the free layer is either
parallel or anti-parallel to that of the fixed layer.

• Fixed points which coincide with gL maxima when β = 0
For these fixed points, to the first order in β: m0x = −hax/ (Dz −Dx),
m0y = 0, λ = −Dz ,Dp = Dx+Dy+(Dz −Dx)m2

0x. The corresponding
bifurcation line is:

β

α
= −

[
(Dz −Dy) + (Dz −Dx)

(
1−m2

0x

)]
(1 + cpm0x)2

2m0x + cp (1 +m2
0x)

, (9.58)

m0x = − hax
Dz −Dx

.

This line actually represents two bifurcations simultaneously involving
the two fixed points present in the two symmetric regions of which
region H is made (see Fig. 4.10).
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The last class of bifurcation mechanisms of interest is that of saddle-
connection and semi-stable-limit-cycle global bifurcations. Both of them
can be studied by using the Melnikov-function method discussed in
Section 5.5.

In the saddle-connection bifurcation, a limit cycle is created or
destroyed at the boundary of one of the energy regions present in the
phase portrait of the magnetization dynamics. The bifurcation condition
is that the Melnikov function must be equal to zero for the value of
energy, g0 = gc, corresponding to the homoclinic or heteroclinic trajectory
representing the boundary of the region of interest:

M (gc, β/α) = 0. (9.59)

The energy gc is known for each energy region of the phase portrait (see
Section 4.4). For example, in the case of the

{
d2(u)2(s−)(s+)

}
portrait,

region L+ covers the p2 interval k2
(
1− a2

x/k
′2) ≤ p2 ≤ (1 + |ax|)2 (Eq.

(4.84)). According to Eq. (4.9), the minimum value of p2 corresponds to
the maximum value of energy in the region, i.e., to the energy gc of the
heteroclinic trajectory at the boundary of the region. Thus, one finds:

gc =
Dy

2
+

1
2

h2
ax

Dy −Dx
. (9.60)

Similar calculations can be carried out for any other region. By using Eq.
(9.46), the solution of Eq. (9.59) can be written in the form:

β

α
= p (Dz −Dx) (1 + cpax)

I1 + k′2r2I2
J1 + J2

, (9.61)

where g0 = gc must be used in all the energy-dependent parameters
present in the right-hand side of the equation. Equation (9.61) may not
have solutions for all the energy regions considered. A careful study of
this equation must be carried out separately for each energy region.

Finally, semi-stable-limit-cycle bifurcations are characterized by the
fact that a pair of limit cycles of opposite stability is created or annihilated
inside one of the energy regions of the phase portrait. The corresponding
bifurcation condition is that both the Melnikov function and its derivative
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FIGURE 9.3 Dynamic stability diagram in the (hax, β/α) control plane. Symbols
are defined and discussed in the text. The central part of the diagram around hax =
0 is shown in more detail in Fig. 9.4. System parameters: Dx = −0.034, Dy =
0, Dz = 0.68, P = 0.3.

with respect to the energy must be zero:

M (g0, β/α) = 0,
∂

∂g0
M (g0, β/α) = 0.

(9.62)

This set of coupled equations must be solved with respect to g0 and β/α
for a given field. The investigation of these equations must be carried out
separately for each energy region. It may (and actually does) occur that
these equations admit no solutions for one or more of the energy regions.
This means that no semi-stable-limit-cycle bifurcation will occur in those
regions.

9.5 STABILITY DIAGRAMS

By using the results obtained for fixed points and bifurcations, the the-
oretical dynamic stability diagram for spin-torque-driven magnetization
dynamics can be now constructed in the (hax, β/α) control plane. This
diagram provides complete information about the phase portraits exist-
ing under given field and current conditions as well as about the bifur-
cation lines where qualitative changes occur in the dynamic behavior of
the free-layer magnetization. We shall discuss in some detail the example
shown in Figs 9.3 and 9.4, which was generated for the following param-
eter values: Dx = −0.034, Dy = 0, Dz = 0.68, P = 0.3. This choice was
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FIGURE 9.4 Magnified view of the central part of the stability diagram shown
in Fig. 9.3. Symbols are defined and discussed in the text. System parameters:
Dx = −0.034, Dy = 0, Dz = 0.68, P = 0.3.

inspired by the experimental work reported in Ref. [398]. A great number
of different dynamic regimes are predicted, which differ in the number of
stable stationary states and stable limit cycles available to the system. The
bold symbols in Figs 9.3 and 9.4 identify the regions of occurrence of these
dynamic regimes. Namely, the following notations are adopted:

• A and P indicate the control-plane regions where the states mx = −1
and mx = 1 are stable, respectively;

• O+ and O− indicate the control-plane regions where a stable limit cycle
exists in regionL+ and regionL− of the phase portrait, respectively (see
Fig. 4.10);

• O2 indicates the control-plane regions where two symmetric stable
limit cycles are present in the two symmetric parts of region H of the
phase portrait (see Fig. 4.10);

• S2 indicates the control-plane regions where two symmetric stable
stationary states are present in region H of the phase portrait.

The slash notation (e.g., in P/O+) indicates the coexistence of more
than one stable state in the phase portrait.

Two features of the diagram deserve special attention. First, the spin-
polarized current is accounted for in the diagram only through the ratio
β/α. This is the consequence of the fact that the parameters α and β
always appear in that combination in the theoretical treatment of fixed
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points and self-oscillations. According to Eqs (9.4) and (9.6), the current
density corresponding to some critical condition (β/α)crit resulting from
the stability diagram is:

Je =
αµ0M2

s|e|d
}bp

(
β

α

)
crit
. (9.63)

This equation has an important physical implication. Namely, it reveals
how the various physical parameters of the problem, such as free-
layer thickness, saturation magnetization, and damping constant, jointly
determine the conditions leading to specific dynamic regimes.

The dynamic regimes are separated from one another by bifurcation
lines of different nature. Local bifurcations are represented in Figs 9.3
and 9.4 by continuous lines, global bifurcations by broken lines. The
specification of these lines is as follows:

• Vertical lines: pitchfork bifurcations
These are the lines where the number of fixed points changes by 2.

• Lines h and h2: Hopf bifurcations
The lines labeled by h are computed by using Eqs (9.56) and (9.57).
These are the lines where one of the fixed points mx = 1 or mx = −1
reverses its stability through the creation or annihilation of a limit cycle.
The lines labeled by h2 are obtained from Eq. (9.58). These are the
lines where the two fixed points in the two symmetric parts of region
H of the phase portrait simultaneously reverse their stability with the
creation or annihilation of two symmetric out-of-plane limit cycles.

• Lines c: saddle-connection bifurcations
These are the lines where a saddle connection appears at the boundary
of one of the central regions of the phase portrait. They were
obtained by solving Eq. (9.59) with respect to β/α under a given
field. The saddle-connection bifurcation always entails the creation or
annihilation of a limit cycle coincident with the homoclinic trajectory
that appears at the bifurcation point.

• Line s: semi-stable-limit-cycle bifurcation
This line represents the condition where a pair of limit cycles with
opposite stability and finite size is created or annihilated inside region
L+ of the phase portrait. This line was obtained by solving Eqs (9.62)
with respect to g0 and β/α under a given field. It turns out that for the
specific values of the parameters chosen for Fig. 9.3, region L+ is the
only central region where this type of bifurcation occurs.

The notation used in Figs 9.3 and 9.4 is in direct correspondence
with experiments, because only stable stationary states and stable limit
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cycles (self-oscillations) can be experimentally observed. However, to
comprehend the bifurcation mechanisms transforming one dynamic
regime into another, the complete structure of the phase portrait must be
considered. The number and nature of the stable states is not sufficient
to determine this structure in all aspects. Complete information about
the phase portrait is conveyed by using the more advanced notation
previously discussed. The correspondence between stable states and
phase portrait structures is listed below. Bold symbols are used in the
phase portrait strings to identify the stable states present in each phase
portrait.

• P-type portraits:
–
{
d2(u)2(s+)(u−)

}
for |hax| ≤ Dy −Dx;

–
{
d−(u)2, (s+)

}
for Dy −Dx ≤ hax ≤ Dz −Dx;

– {(s+u−)} for |hax| ≥ Dz −Dx.
• A-type portraits:

–
{
d2(u)2(u+)(s−)

}
for |hax| ≤ Dy −Dx;

–
{
d+(u)2, (s−)

}
for − (Dz −Dx) ≤ hax ≤ − (Dy −Dx);

– {(u+s−)} for |hax| ≥ Dz −Dx.
• P/A-type portraits:

–
{
d2(u)2(s+)(s−)

}
for |hax| ≤ Dy −Dx;

– {(s+rs−)} for hax ≥ Dz −Dx.
• O+ portrait:

{
d−(u)2, (au+)

}
.

• P/O+ portrait:
{
d−(u)2, (ars+)

}
.

• A/O+ portrait:
{
d2(u)2(au+)(s−)

}
.

• O−-type portraits:
–
{
d+(u)2, (au−)

}
for − (Dz −Dx) ≤ hax ≤ − (Dy −Dx);

– {(u+au−)} for hax ≤ − (Dz −Dx).
• P/O− portrait:

{
d2(u)2(s+)(au−)

}
.

• O2-type portraits:
–
{
d−(au)2, (u+)

}
for hax ≥ Dy −Dx;

–
{
d+(au)2, (u−)

}
for hax ≤ − (Dy −Dx).

• P/O2-type portraits:
–
{
d2(au)2(s+)(u−)

}
for |hax| ≤ Dy −Dx;

–
{
d−(au)2, (rs+)

}
for hax ≥ Dy −Dx.

• A/O2 portrait:
{
d2(au)2(u+)(s−)

}
.

• S2-type portraits:
–
{
d−(s)2, (u+)

}
for hax ≥ Dy −Dx;

–
{
d+(s)2, (u−)

}
for hax ≤ − (Dy −Dx).

• P/S2 portrait:
{
d−(s)2, (rs+)

}
.
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FIGURE 9.5 Top. Simplified view of dynamical stability diagram of Fig. 9.3.
System parameters: Dx = −0.034, Dy = 0, Dz = 0.68, P = 0.3, d = 3 nm,
µ0Ms = 1.76 T (these parameters refer to sample 2 of Ref. [398]; in that case,
β/α = 1 for a current of 5.6 mA). Vertical bar: current interval considered in
Fig. 9.6. Bottom. Unit-disk representation of current-induced dynamical regimes.
Black dots: stable state at mx = 1; empty dots: unstable states; bold lines: stable
limit cycle; bold dashed lines: unstable limit cycle.

A great variety of different physical situations may be encountered,
depending on the field and current conditions under which a spin-torque
experiment is carried out. We illustrate this richness by considering in
some detail a specific condition, namely, the case where the external field
is kept fixed at a constant value ∼0.1 and the spin-polarized current is
increased from zero up to large positive values (see Fig. 9.5). Under zero
current, the system magnetization points along the positive x axis, because
mx = 1 is the only stable state available to the system (P regime). When
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the positive current is injected, the critical condition is reached (line s)
where a pair of stable and unstable limit cycles appears inside region
L+ of the phase portrait. However, the appearance of a stable limit cycle
does not result in any self-oscillation, because the magnetization remains
in the state mx = 1, which is still stable (P/O+ regime, Fig. 9.2(a)). The
two limit cycles move apart from each other when the current is further
increased. At the critical current where line h is crossed, the unstable
limit cycle is reduced to the point mx = 1, where it gives rise to a Hopf
bifurcation which makes the state mx = 1 unstable. The jump from the
state mx = 1 to the previously formed stable limit cycle (O+ regime,
Fig. 9.2(b)) occurs. Self-oscillations of finite amplitude suddenly appear
in the system response. When the current is further increased, this stable
limit cycle moves toward and eventually reaches the boundary of region
L+ (line c). Here the limit cycle splits into two symmetric limit cycles
which simultaneously appear in the two symmetric parts of region H
of the phase portrait (O2 regime). A spontaneous symmetry breaking
occurs in the magnetization response, with the appearance of out-of-plane
self-oscillations characterized by a nonzero average value of mz . When
the current is decreased starting from large values, the system response
reversibly reproduces previous self-oscillations until it enters the P/O+

regime. Here the response is hysteretic, with the self-oscillations persisting
down to lower currents when the current is decreased. In other words,
for the current interval in between line s and line h, the system is in the
stationary state mx = 1 under increasing current and in the self-oscillation
steady state under decreasing current. Under larger fields, e.g., hax = 0.3,
the order in which lines h and c are encountered under increasing current
is reversed. This means that the symmetry breaking related to the creation
of two limit cycles in region H occurs when the state mx = 1 is still stable
(P/O2 regime, Fig. 9.2(c)). In this case, self-oscillations appear only when
the system reaches the O2 regime and are immediately out-of-plane in
nature.

The presented method leads not only to the determination of the
bifurcation lines where qualitative changes occur in the system response,
but also to detailed predictions for the time-dependent magnetization
m(t) associated with self-oscillations. This is obtained by analytically
solving the equation dm/dt = −m × heff and by using in the
resulting solution mc (t; g0) the values of g0 obtained by solving the
equation M (g0, β/α) = 0 [92]. Figure 9.6 shows an example of the
predicted magnetization response under varying positive current. For
small currents the system is in the mx = 1 state and the system
response is time-independent. The frequency f plotted in Fig. 9.6 for
this state is the frequency of small-amplitude Kittel-type oscillations. At
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FIGURE 9.6 Magnetization response under varying current and hax = 0.08
for system parameters used in Fig. 9.3. Vertical dashed lines: bifurcation points.
Arrows indicate hysteretic response. Top. Gray regions: range of variation of
mx and mz during self-oscillations; dashed line: time average 〈mx〉. Bottom.
Continuous line: self-oscillation frequency f in units of γMs; dashed line: variance
σ2

x =
〈
m2

x

〉
− 〈mx〉2 for self-oscillations.

the Hopf bifurcation point where the state mx = 1 becomes unstable
the system jumps to the stable limit cycle. This results in the sudden
appearance of large-amplitude self-oscillations. Figure 9.6 shows that the
self-oscillation frequency is a decreasing function of the current up to the
saddle-connection bifurcation point. Here, as previously mentioned, the
stable limit cycle splits into two symmetric out-of-plane limit cycles. A
spontaneous symmetry breaking occurs in the magnetization response,
with the appearance of out-of-plane self-oscillations (see plot of mz in
Fig. 9.6). From this point on, the self-oscillation frequency becomes an
increasing function of the current. When the current is decreased starting
from large values, the system response reversibly reproduces previous
self-oscillations until it enters the P/O regime, where stable stationary
states and stable self-oscillation states coexist. Here the response is
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hysteretic, with the self-oscillations persisting down to lower currents. The
P/O regime is where thermally induced transitions between coexisting
states and the related appearance of random-telegraph signals are
expected. These phenomena will be discussed in detail in Chapter 10.

9.6 SYSTEMS WITH UNIAXIAL SYMMETRY

The results discussed in the previous sections are valid when the free-
layer easy axis and the fixed-layer magnetization are parallel and lie
in the film plane [398,94,598]. In this section we shall consider the case
when the entire problem exhibits uniaxial symmetry around the z axis
perpendicular to the free-layer plane. It turns out that the complete
analytical treatment of this problem can be developed and certain physical
aspects of the magnetization dynamics are revealed with particular clarity.
On the other hand, systems with this type of symmetry are of strong
interest in view of potential data-storage applications [465].

Uniaxial symmetry is realized when: the anisotropy coefficients
appearing in Eq. (9.10) are such thatDx = Dy = D⊥; the spin-polarization
vector ep in Eq. (9.5) is directed along the z axis; and the external field is
applied along the z axis as well. Under these conditions, both the system
energy gL (Eq. (9.10)) and the potential Φ (Eq. (9.34)) become functions
of mz only. It is convenient to discuss the problem in terms of spherical
coordinates (θ, φ). Then, after dropping inessential additive constants, one
obtains the following expression for gL and Φ:

gL = −κeff

2
cos2 θ − haz cos θ, (9.64)

Φ = −κeff

2
cos2 θ − haz cos θ +

β

α

ln(1 + cp cos θ)
cp

. (9.65)

Here, haz is the z component of the external field, which can be positive
or negative, whereas:

κeff = D⊥ −Dz (9.66)

plays the role of effective anisotropy constant. By using Eqs (9.64) and
(9.65) in Eq. (9.33), one obtains the following equations of motion for θ
and φ:

dθ
dt

= −α∂Φ
∂θ

, (9.67)
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FIGURE 9.7 Potential Φ as a function of θ for different injected currents.
Parameters: κeff = −1, cp = 0.5, haz = 1.1. Bold symbols and corresponding
pictures of the magnetization sphere indicate the stable states at the different
current values: magnetization parallel to the applied field (P); magnetization
precessing around the field axis (O); magnetization anti-parallel to the applied
field (A).

dφ
dt

=
1

sin θ
∂gL
∂θ

. (9.68)

Equation (9.67) shows that the polar angle θ follows a viscous-type
relaxation dynamics in the effective potential Φ. This potential accounts
for the effects of the applied magnetic field and the injected spin-polarized
current. In particular, steady-state regimes will coincide with the minima
of this potential. Figure 9.7 shows an example of the possible responses
predicted under these conditions. The figure refers to a soft thin film
with κeff = −1 (i.e., easy-plane shape anisotropy), subject to the external
field haz = 1.1. Under no current (β/α = 0), the potential Φ has a
minimum at θ = 0, which is in agreement with the fact that the state
with magnetization parallel to the field is stable whenever haz > |κeff|.
The existence of such a stable state is indicated by the symbol P on the
figure. However, the stability of this state can be detroyed by the injected
current. The figure shows that when β/α = 0.75 the previous state of
magnetization is no longer stable, since the potential minimum has moved
from θ = 0 to θ = θ0 ' 0.4π. This corresponds to the appearance of stable
steady precession of the magnetization (indicated by O on the figure)
with constant amplitude θ0 and a precessional frequency controlled by
Eq. (9.68). When the injected current is further increased (β/α = 1.5), the
situation is reached where the state with magnetization antiparallel to the
field (state A) is stable. Therefore, a state which would be unstable under
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the sole presence of the field is made stable by the injection of the spin-
polarized current.

These effects can be quantitatively studied by computing the force
∂Φ/∂θ. Indeed, Eq. (9.65) yields:

∂Φ
∂θ

= sin θ
(
κeff cos θ + haz −

β

α

1
1 + cp cos θ

)
. (9.69)

This equation shows that the two states for which sin θ = 0, i.e., θ = 0 and
θ = π, are always equilibrium points for the potential. On the other hand,
the expression inside brackets is equal to zero in the case of limit-cycle
dynamics, in which the magnetization precesses around the symmetry
axis at some constant polar angle θ0. This angle is a solution to the
equation:

β

α
= (haz + κeff cos θ0) (1 + cp cos θ0) . (9.70)

The stability of these critical points and limit cycles is controlled by
the curvature of the effective potential Φ. Physically observable regimes
will be those corresponding to potential minima, i.e., points for which
∂2Φ/∂θ2 > 0.

As illustrated by Fig. 9.7, when the external field or the injected
current is slowly varied in time, the stability of one or the other of the fixed
points at θ = 0 and θ = π may be reversed (from stable to unstable or vice
versa) via a Hopf bifurcation entailing the creation or the annihilation of
a limit cycle. The conditions under which this will occur around θ = 0 are
obtained by setting cos θ = 1 in Eq. (9.70). One finds:

β

α
= (1 + cp)(haz + κeff). (9.71)

Analogously, the condition for the Hopf bifurcation around θ = π is:

β

α
= (1− cp)(haz − κeff). (9.72)

Equations (9.71) and (9.72) represent straight lines in the field-current
control plane (haz, β/α). These two lines identify the regions where limit
cycles exist. On this basis, one can construct the complete dynamical phase
diagram for spin-transfer-driven magnetization dynamics in systems with
uniaxial symmetry [59]. Figure 9.8 shows two examples of this phase
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FIGURE 9.8 Phase diagram for spin-transfer-driven magnetization dynamics in
a uniaxial system with κeff = −1. Top: cp = 0. Bottom: cp = 0.5. Continuous
lines: Hopf bifurcation. Dashed line: semi-stable-limit-cycle bifurcation. Symbols
are defined and discussed in the text.

diagram for cp = 0 and cp 6= 0. As for previous diagrams, the symbols P
and A indicate the regions where the states θ = 0 and θ = π are stable,
respectively, while the symbol O indicates the regions where a stable
limit cycle exists. The slash notation (e.g., P/O) indicates that different
stable regimes coexist. The continuous lines represent Hopf bifurcation
lines, where the stability of one of the fixed points at θ = 0 or θ = π
is reversed. The dashed line instead represents a semi-stable-limit-cycle
bifurcation line, where a pair of stable and unstable limit cycles is created
or annihilated (compare with line s in Fig. 9.3).

A stable limit cycle will result in steady-state magnetization
oscillations. From Eq. (9.68) one obtains the following formula for the
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frequency f0 of these oscillations:

f0 =
1

2π
1

sin θ0
∂gL
∂θ

∣∣∣∣
θ0

=
1

2π
(haz + κeff cos θ0) , (9.73)

where the energy gL has been expressed by using Eq. (9.64). Remarkably,
this frequency coincides with the Kittel frequency of free precession of a
system subject to no damping and no current injection, i.e., α = β = 0,
provided its trajectory coincides with the trajectory of the limit cycle.
Thus, spin transfer has no direct influence on the free precession of the
system, but rather promotes one of the possible precession trajectories to
the status of stable limit cycle of the dissipative dynamics.

In Chapter 7, the presence of uniaxial symmetry made it possible
to perform a comprehensive study of magnetization dynamics driven
by circularly polarized radio-frequency (rf) fields. Interestingly, the
same approach can be extended to spin-transfer devices, when a spin-
polarized current and an rf magnetic field are simultaneously applied.
Indeed, in uniaxial systems the dynamics under nonzero injected current
and nonzero rf field is identical in its mathematical structure to the
magnetization dynamics under zero current, provided the amplitude
of the dc external magnetic field and the frequency of the rf field
are properly renormalized. This equivalence has interesting physical
consequences: first, nonlinear ferromagnetic resonance effects can be
generated by arbitrarily low rf fields, provided the spin-polarized current
is properly tuned; second, phase-locking may occur between current-
induced magnetization precession and rf field oscillations.

To show how these conclusions can be reached, we start from Eq.
(9.5) and we make the same assumptions as before regarding the uniaxial
symmetry of the problem, namely, Dx = Dy = D⊥ and ep ≡ ez . In
addition, for the sake of simplicity we limit our analysis to the particular
case when cp = 0, i.e.:

dm
dt
− αm× dm

dt
= −m× (heff − βm× ez) . (9.74)

Neglecting inessential terms proportional to m, the effective field
appearing in Eq. (9.74) is expressed as:

heff = ha⊥(t) + (haz + κeffmz) ez, (9.75)

where κeff is given by Eq. (9.66), while the rf component ha⊥(t) of angular
frequency ω is circularly polarized in the (x, y)-plane perpendicular to the
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symmetry axis of the problem:

ha⊥(t) = ha⊥ (ex cosωt+ ey sinωt) . (9.76)

As previously mentioned, the dynamics (9.74) is identical in structure
to the dynamics when no spin-polarized current is present, i.e., β = 0. This
is revealed by expressing the dynamics in the rotating frame in which the
rf field is stationary, as was done in Chapter 7. In this reference frame,
an additional term contributes to the time derivative of magnetization, as
shown by Eq. (7.10), and therefore Eq. (9.74) takes the form:

dm
dt
− αm× dm

dt
= −m×

(
h′eff − ω′ez + αω′m× ez

)
, (9.77)

where:

h′eff = ha⊥ea +
(
h′az + κeffmz

)
ez, (9.78)

and:

h′az = haz − β/α, ω′ = ω − β/α. (9.79)

Equation (9.77) is identical to the equation (7.11) for the dynamics
driven by the rf field only, once the dc magnetic field and the angular
frequency of the rf field are redefined as expressed by Eq. (9.79). Therefore,
the results obtained in Chapter 7 are immediately applicable to the study
of the interplay between spin-transfer effects and rf field. In particular,
one finds that the dynamics (9.77) can only result in either periodic modes
(P-modes) in which the magnetization precesses around the symmetry
axis in synchronism with the rf field, or quasi-periodic modes (Q-modes),
in which a second frequency is superimposed to the frequency of the
rf field.

The methods discussed in Chapter 7 can be used equally well to
construct the complete stability diagram for the dynamics (9.77). The
main difference is that in Chapter 7 the rf field frequency ω was a given
constant, which resulted in diagrams in the (haz,ha⊥) control plane (see,
for instance, Fig. 7.12). This is not the case for the problem of interest
here, in which three control parameters (h′az,ha⊥, ω′) exist. A convenient
way to proceed is to fix the value of ha⊥, then to construct the stability
diagram in the h′az, ω′ plane by the methods discussed in Chapter 7,
and finally to map this diagram to the (haz, β/α) plane by using the
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FIGURE 9.9 Stability diagram in the (haz, β/α) control plane (consult text for
description of symbols). System parameters: α = 0.02, κeff = −1, ω = 1,
ha⊥ = 0.003. Horizontal bars: field interval considered in Fig. 9.10 for β/α = 0
(A1), β/α = 0.28 (A2), and β/α = 0.65 (A3). Vertical bar B: current interval
considered in Fig. 9.11.

transformations (9.79). In Fig. 9.9 we show the result of this analysis for
a system with α = 0.02 and κeff = −1, when ω = 1 and ha⊥ = 0.003.
The various dynamic regimes are separated in the diagram by bifurcation
lines similar to those discussed in Chapter 7. More precisely, the lines
labeled by (d) represent saddle–node bifurcations, when a saddle-node
pair of P-modes is either created or annihilated. The lines labeled by
(h) represent Hopf bifurcations, when one of the P-modes changes from
stable to unstable or vice versa with the simultaneous appearance or
disappearance of a Q-mode. Finally, the lines labeled by (c) represent
saddle-connection bifurcations, when a Q-mode of finite amplitude is
created or destroyed. Bold symbols identify the regimes where stable
P-modes and Q-modes are present. The slash notation, i.e., P/P or
P/Q, indicates the coexistence of different P-modes and Q-modes. The
stability diagram when no rf field is present, i.e., ha⊥ = 0, is shown
in the top part of Fig. 9.8 (cp = 0). Comparison between Figs 9.8 and
9.9 reveals that when the rf field is switched on, the parallel (P) and
antiparallel (A) states are changed into P-modes, while the self-oscillation
(O) states are changed into Q-modes. In addition, several nontrivial effects
emerge as a consequence of the intereference between the action of the rf
field and the spin-polarized current. Namely, additional saddle–node and
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FIGURE 9.10 Magnetization response as a function of the dc field for ha⊥ =
0.003 and current β/α = 0, 0.28, 0.65 (A1, A2, A3 intervals in Fig. 9.9). System
parameters are those of Fig. 9.9. Continuous lines: stable P-modes; dashed line:
unstable P-mode. Arrows indicate foldover jumps occurring under the largest
current.

saddle-connection bifurcation lines as well as the breaking and distortion
of Hopf bifurcation lines appear around β/α ' ω.

Among the various effects predicted by this stability analysis, two
of them are of particular physical interest: current-controlled nonlinear
ferromagnetic resonance and phase-locking between current-induced
magnetization oscillations and rf field.

Let us consider the case where the dc field haz is varied under given
current β/α and rf field ha⊥. This means that in the diagram shown
in Fig. 9.9, we are moving along a horizontal line. The dependence of
m⊥ = (m2

x + m2
y)1/2 on haz when haz is decreased from large initial

values along the intervals A1, A2, and A3 in Fig. 9.9 (β/α = 0, 0.28, 0.65,
respectively) is shown in Fig. 9.10. As discussed in Section 7.5, resonance
occurs for h′az+κeff = ω′, i.e., haz = ω−κeff. Thus resonance conditions are
not modified by the spin-polarized current. However, the current strongly
affects the degree of distortion of the magnetization response and, in
particular, leads to the onset of foldover instabilities of the type discussed
in Section 7.5 even at low rf fields. Foldover occurs in the P/P regime
in Fig. 9.9, where two stable P-modes coexist. The threshold conditions
for the appearance of foldover are expressed by Eqs (7.69), (7.43), and
(7.21), once ω′ = ω − β/α is used in the place of ω. Whenever α|ω′| � 1,
the threshold rf field can be computed with good accuracy from the
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FIGURE 9.11 Magnetization response as a function of current for haz = 1.2
(B interval in Fig. 9.9). System parameters are those of Fig. 9.9 (consult text
for description of symbols). Vertical dashed lines indicate bifurcation points.
Shaded region represents mz variation in the Q-mode. Arrows indicate hysteretic
response.

approximate expression (7.70), which yields:

h2
a⊥ '

16
3
√

3
α3|ω − β/α|3

|κeff|
. (9.80)

This equation clearly reveals that the presence of current makes it possible
to have foldover for values of ha⊥ definitely lower than those expected
when β/α = 0. For a given rf field amplitude ha⊥, on the other hand,
Eq. (9.80) permits one to estimate the threshold current beyond which
foldover will appear. For example, for the system parameters considered
in Fig. 9.9, foldover appears for currents larger than β/α ' 0.28 (interval
A2 in Fig. 9.9).

The magnetization response in the Q regime in Fig. 9.9 contains
basically two frequencies: the frequency of the rf external field and
the frequency of the current-induced magnetization precession. Under
appropriate conditions, phase-locking may occur between these two
frequencies. When the dc field is kept constant and the current is increased
from zero in the diagram shown in Fig. 9.9, phase-locking occurs when
the current crosses the saddle-connection bifurcation line (c line). At
the bifurcation line, the Q-mode response becomes unstable and the
system jumps to a stable P-mode in which the magnetization precesses in
synchronism with the rf field. Figure 9.11 illustrates this mechanism when
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the current is varied in the B interval shown in Fig. 9.9 (haz = 1.2). In the
Q-mode, the superposition of the mentioned two frequencies results in
periodic oscillations of the mz magnetization component within a certain
interval. The dependence of the amplitude of this interval on current is
shown by the shashed region in Fig. 9.11. When the system jumps from the
Q-mode to the P-mode and phase-locking takes place, mz attains a single
definite value. Phase-locking persists until the saddle–node bifurcation
line is reached (line d in Fig. 9.11). Here, the P-mode becomes unstable and
the system jumps back to the Q-mode response. The arrows in Fig. 9.11
make clear that, in the P/Q coexistence regime, hysteresis occurs in the
magnetization response under increasing or decreasing current.



CHAPTER 10

Stochastic Magnetization
Dynamics

10.1 STOCHASTIC LANDAU–LIFSHITZ AND
LANDAU–LIFSHITZ–GILBERT EQUATIONS

The dimensions of magnetized devices used in magnetic storage technolo-
gies and spintronics are usually rather small (in the submicrometer spatial
scale). In these situations, thermal fluctuations play an important role in
magnetization dynamics and may induce transitions from one state to an-
other. For this reason, the focus of our discussion in the present chapter is
on the study of magnetization dynamics in the presence of thermal fluc-
tuations and noise.

The effects of thermal fluctuations on magnetization dynamics are
usually studied by introducing appropriate stochastic terms in the
Landau–Lifshitz (LL) or Landau–Lifshitz–Gilbert (LLG) equation [134].
These stochastic terms account for the random fluctuations induced by
the interaction of the ferromagnet with the thermal bath. The resulting
randomly-perturbed magnetization dynamics is a stochastic process
whose properties will be analyzed in detail in this chapter.

To start the discussion, we consider a sufficiently small ferromagnetic
object with spatially uniform magnetization. The magnitude of the
magnetization vector is constant, but its direction fluctuates because
of thermal perturbations. The stochastic term that is usually added to
the LL or LLG equation has the form of a random magnetic torque
−νm×hN (t), where hN (t) is a vector whose components are independent
gaussian white-noise processes, and ν is a parameter which measures
the intensity of thermal perturbations. The assumption that the thermal
noise is gaussian is usually motivated by the central limit theorem. This is
because the random fluctuations are the result of a very large number of
statistically independent (or weakly correlated) random events, and the
sum of their effects tends to have a gaussian (normal) distribution. In
addition, the choice of the gaussian distribution leads to results which are
consistent with statistical mechanics. On the other hand, the assumption

271



272 CHAPTER 10 Stochastic Magnetization Dynamics

that the noise has negligible correlation time (“white” noise) reflects the
fact that the random perturbations are expected to have a correlation time
much shorter than any time constant of magnetization dynamics.

The gaussian white-noise process occupies a special place in the
theory of stochastic processes, because this process has the simplest
statistical properties. More complex noise processes can be readily
obtained by appropriate transformations of gaussian white-noise. On the
other hand, the white-noise process is highly irregular in time and this
leads to mathematical difficulties in the interpretation of the solutions of
differential equations containing the white-noise process. For this reason,
the differential equations containing white-noise terms need careful
discussion.

As mentioned above, the stochastic magnetization dynamics is
usually described by the stochastic LL equation of the form:

dm
dt

= −m× (heff + νhN (t))− αm× (m× heff) . (10.1)

This equation was considered in the seminal work of Kubo [425]. In this
equation the noise term only appears as a perturbation of the precessional
term.

An alternative stochastic equation can be obtained from the LL
equation when the noise field hN (t) is viewed as a random component
of the effective field and, consequently, an additional stochastic term is
added as follows:

dm
dt

= −m× (heff + νhN (t))− αm× [m× (heff + νhN (t))] . (10.2)

The last equation, up to appropriate rescaling of time, is the stochastic
differential equation (SDE) that one derives by adding a stochastic term to
the effective field in the LLG equation.

Later in this chapter, it will be shown that the stochastic dynamics
generated by Eqs (10.1) and (10.2) are in fact equivalent, up to the
renormalization of the parameter ν. The appropriate value of this
parameter can be determined by considering fluctuation-dissipation
relations as it will be discussed in detail in the next section.

The noise field hN (t) is introduced in Eqs (10.1) and (10.2) through the
cross-product m×(. . .), which leads to random torques that are orthogonal
to m. This form of the random terms is used to guarantee the preservation
of the magnetization magnitude in stochastic magnetization dynamics.
This property is natural because it is expected that at sufficiently
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small spatial scales the exchange interaction strongly penalizes spatially
nonuniform states. Thus, thermal fluctuations can only perturb the local
direction of magnetization but not its magnitude. However, the property
of preservation of magnetization magnitude in randomly perturbed
dynamics can be formally derived from Eq. (10.1) or Eq. (10.2), only after
an appropriate mathematical meaning is attributed to the solutions of
these stochastic differential equations.

We start the discussion of this point with the detailed definition of
the random field hN (t). The gaussian white-noise process can be formally
defined as the derivative of the isotropic vector Wiener process (or vector
Brownian motion) W(t) [277]:

hN (t) =
dW(t)

dt
, (10.3)

where the cartesian components Wk(t) of W(t) are statistically
independent scalar Wiener processes. The scalar Wiener process W (t) is
defined by the following properties:

1. W (t) satisfies the following initial condition:

W (0) = 0. (10.4)

2. W (t) −W (s), with t > s ≥ 0, is a gaussian random variable with zero
mean and variance t− s:

〈[W (t1)−W (s1)]2〉 = t− s. (10.5)

3. W (t) has uncorrelated increments:

〈[W (t1)−W (s1)] [W (t2)−W (s2)]〉 = 0 (10.6)

when 0 ≤ s2 < t2 ≤ s1 < t1.

The brackets 〈·〉 in Eqs (10.5) and (10.6) denote statistical averages.
The last condition means that [W (t1)−W (s1)] and [W (t2)−W (s2)] are
uncorrelated stochastic variables when 0 ≤ s2 < t2 ≤ s1 < t1, which,
along with the second condition (i.e., the fact that these variables are
gaussian), implies that they are statistically independent. For this reason,
one can also express the third condition by saying that the Wiener process
has independent increments. Another important property of the Wiener
process is that it has continuous trajectories which are not differentiable at
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any instant of time (actually, these trajectories satisfy with probability one
a Holder condition with any exponent α < 0.5, but not with α ≥ 0.5). To
illustrate this, we note that Eq. (10.5) implies that:

lim
t→s

〈[
W (t)−W (s)

t− s

]2
〉

= lim
t→s

1
(t− s)2

〈[W (t)−W (s)]2〉 = +∞.

(10.7)

This means that the ratio (W (t)−W (s))/(t−s), in the limit t→ s, does not
tend to a finite value, not even in the mean square sense. This fact implies
the nondifferentiability of W (t). Indeed, while for differentiable functions
of time the differential is first order in dt, in the case of the Wiener process
one has:

〈(dW )2〉 = dt. (10.8)

In the case of the isotropic vector Wiener process W, the following result
is valid:

〈dWhdWk〉 = δkhdt. (10.9)

The nondifferentiability of the Wiener process paths results in high
irregularity in time of the scalar white-noise process hN (t) = dW/dt.
Nevertheless, at least formally, the properties of hN (t) can be derived
from properties (10.4)–(10.6) of W (t). In this respect, one can start with
the integral relation between hN (t) and W (t):

W (t) =
∫ t

0

hN (τ)dτ, (10.10)

and, after appropriate standard manipulations, demonstrate that:

〈hN (t)〉 = 0, 〈hN (t1)hN (t2)〉 = δ(t1 − t2), (10.11)

where δ(·) is Dirac’s delta function. In the case of the isotropic vectorial
white noise hN (t), one has:

〈hN (t)〉 = 0, 〈hN,k(t1)hN,h(t2)〉 = δkhδ(t1 − t2), (10.12)

where k and h denote cartesian components and δkh is the Kronecker
delta symbol. It is apparent from the above definition that the white noise
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process is stationary, which means that its properties are invariant with
respect to changes of the time origin.

As mentioned before, the irregular behavior in time of the white-
noise process leads to difficulties in the mathematical interpretation of
Eqs (10.1) and (10.2). This issue belongs to the branch of mathematics
known as stochastic differential calculus. It is beyond the scope of this
book to discuss this matter in detail. Only a heuristic introduction to
the main points of this calculus will be given, with emphasis on their
physical consequences. We shall limit the discussion to Eq. (10.1), but all
considerations are also valid for Eq. (10.2).

The first step to deal with the nondifferentiability of W(t) is to rewrite
the differential equation (10.1) as an integral equation:

m(t)−m(t0) =
∫ t

t0

v(m(τ))dτ +
∫ t

t0

σ(m(τ)) · dW(τ), (10.13)

where the vector field:

v(m) = −m× heff − αm× (m× heff) , (10.14)

represents the deterministic drift in the right-hand side of Eq. (10.1), while
σ(m) is the 3 × 3 matrix such that σ(m) · dW = −νm × dW. In terms of
cartesian components, one finds:

σ(m) = −ν

 0 −mz my

mz 0 −mx

−my mx 0

 . (10.15)

The integral equation (10.13) does not contain the derivative of W(t).
However, the integrals on the right-hand side must be properly defined.
The first of the two integrals in Eq. (10.13) does not introduce any difficulty
and can be interpreted as a usual deterministic integral. The difficulties
arise in the interpretation of the second integral, which is usually referred
to as a stochastic integral. By using a standard procedure, this integral
may be defined by using a set of points t0 < t1 < · · · < tn−1 < tn = t in
the interval [t0, t], and forming an appropriate integral sum:

∫ t

t0

σ (m(τ)) · dW(τ) = lim
n→∞

n−1∑
r=1

σ (m(τr)) · [W(tr+1)−W(tr)], (10.16)



276 CHAPTER 10 Stochastic Magnetization Dynamics

where:

tr ≤ τr < tr+1. (10.17)

The difficulty is in the fact that, due to the highly irregular time behavior
of W(t), the limit on the right-hand side of Eq. (10.16) depends on
the positions of τr in the intervals (tr, tr+1). This difficulty can be
circumvented by making special definitions of the integral sums, in which
the arbitrariness related to the positions of τr is removed. In this respect,
there are two classical definitions of the integral. The first one is due to Itô
[277] and corresponds to the choice τr = tr in Eq. (10.16):

∫ t

t0

σ (m(τ)) · dW(τ) = lim
n→∞

n−1∑
r=1

σ (m(tr)) · [W(tr+1)−W(tr)].

(10.18)

The second choice is based on the mid-point rule:

∫ t

t0

σ (m(τ)) · dW(τ)

= lim
n→∞

n−1∑
r=1

1
2

[σ(m(tr+1)) + σ(m(tr))] · [W(tr+1)−W(tr)],

(10.19)

and is associated with the name of Stratonovich. Since these two different
choices lead to different definitions of the stochastic integral and stochastic
differential calculus, it is customary in stochastic analysis to speak of Itô
or Stratonovich calculus [277,425].

The main advantage of the Itô calculus is that the random quantity
σ(m(tr)) (which may depend on the value that the process W(t) has
taken for t ≤ tr) is uncorrelated with the Wiener process increment
[W(tr+1) − W(tr)]. This is a consequence of the fact that W(t) has
independent increments. The absence of correlation between σ(m(tr))
and [W(tr+1) −W(tr)] is instrumental in simplifying the derivation of
main formulas. However, Itô calculus has also a major disadvantage: the
rules of Itô calculus are different from the rules of ordinary calculus.
The Stratonovich calculus, on the other hand, requires more involved
derivations, since in each term of the integral sum in Eq. (10.19) the
stochastic quantities [σ(m(tr+1)) + σ(m(tr))] and [W(tr+1) −W(tr)] are
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in fact correlated. The main advantage of Stratonovich calculus is that
its rules coincide with the rules of ordinary calculus. This fact is the
main reason why Stratonovich calculus is usually preferred in the physics
literature [277].

The difficulty in evaluating stochastic integrals is related to the
fact that the matrix σ(m) depends on m, which is a stochastic process
correlated with W(t). In this situation, one speaks of multiplicative noise.
In the case when the matrix σ does not depend on m, one speaks of
additive noise. In this case, no difficulty arises and the limit of the
integral sum in Eq. (10.16) does not depend on the choice of τr. This also
implies that for additive noise the values of Itô and Stratonovich integrals
coincide.

The important conclusion of the above discussion is the following:
a stochastic differential equation like Eq. (10.13) is not completely
defined until one specifies which type of stochastic calculus (e.g. Itô or
Stratonovich) is used. For this reason, it is natural to examine whether
different interpretations of Eq. (10.13) may lead to different stochastic
dynamics for which the magnetization magnitude may or may not be
preserved.

In the discussion of this issue, we first introduce the following
notation for Eq. (10.13):

dm = v(m)dt+ σ(m) · dW, (10.20)

or in terms of cartesian components:

dmk = vk(m)dt+
∑
h

σkh(m)dWh. (10.21)

The equation is formally written in terms of differentials of stochastic
quantities but it has to be understood in the integral sense as Eq. (10.13).

Next, we interpret Eq. (10.20) in Stratonovich sense and we want to
find out what type of Itô SDE produces a stochastic process equivalent
to the one associated with the Stratonovich SDE (10.20). We illustrate
this equivalence by using heuristic arguments based on the following
discretized version of the Stratonovich SDE (10.21):

∆mk = vk(m(tr))∆t+
1
2

∑
h

[σkh(m(tr+1)) + σkh(m(tr))] ∆Wh,

(10.22)
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where:

∆Wh = Wh(tr+1)−Wh(tr), ∆mk = mk(tr+1)−mk(tr),
∆t = tr+1 − tr.

(10.23)

By using Taylor expansion in the second term in the right-hand side of
(10.22), we derive that:

1
2

∑
h

[σkh(m(tr+1)) + σkh(m(tr))] ∆Wh

≈
∑
h

σkh(m(tr))∆Wh +
1
2

∑
h,l

[
∂σkh
∂ml

]
tr

∆ml∆Wh. (10.24)

In Eq. (10.24) we have neglected terms which are infinitesimal with
respect to ∆t of order larger than one. The first term on the right-hand
side of Eq. (10.24) is just the term corresponding to the Itô interpretation of
σ(m)·dW. The difference between the Itô and Stratonovich interpretations
is related to the second term in this equation. We want to extract from
this term all expressions which are of order not larger than ∆t. To this
end, we substitute Eq. (10.22) into Eq. (10.24) and by using the fact that
〈∆Wk∆Wh〉 ≈ δkh∆t for small ∆t (see Eq. (10.9)), we arrive at the
following equation:

1
2

∑
h

[σkh(m(tr+1)) + σkh(m(tr))] ∆Wh

≈
∑
h

σkh(m(tr))∆Wh +
1
2

∑
h,l

[
σlh

∂σkh
∂ml

]
tr

∆t. (10.25)

Now by substituting Eq. (10.25) back into Eq. (10.22), and by passing to
the limit ∆t→ 0, we arrive at the following Itô SDE:

dmk = ṽk(m)dt+
∑
h

σkh(m)dWh, (10.26)

where:

ṽk(m) = vk(m) +
1
2

∑
h,l

σlh(m)
∂

∂ml
σkh(m). (10.27)
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Thus, for an Itô equation to be equivalent to a Stratonovich equation, their
drift terms must be related by Eq. (10.27). By using Eq. (10.15) one finds
that:

1
2

∑
h,l

σlh(m)
∂

∂ml
σkh(m) = −ν2mk. (10.28)

By substituting Eqs (10.14) and (10.15) back into Eq. (10.20), we conclude
that the stochastic LL equation:

dm = − [m× heff + αm× (m× heff)] dt− νm× dW(t), (10.29)

interpreted in the Stratonovich sense, is equivalent to the stochastic
differential equation:

dm = − [m× heff + αm× (m× heff)] dt− ν2mdt
− νm× dW(t), (10.30)

interpreted in the Itô sense.
Having established this equivalence, the discussion of the conser-

vation of the magnetization magnitude is in order. Since in the case of
Stratonovich calculus the ordinary rules of calculus apply, one has that
d|m|2/dt = 2m · dm/dt = 0 because, as is clear from Eq. (10.29), dm can
be written as dm = m × (. . .). In the case of Itô calculus, the reasoning is
different. The differential of a generic scalar function f(m(t)) of a stochas-
tic process m(t) governed by the SDE (10.20) is given by the following
expression known as the Itô lemma [277]:

df(m) =
∂f(m)
∂m

· dm +
∑
h,l

1
2
σlh

∂2f

∂mk∂ml
σkhdt, (10.31)

or in matrix form:

df =
∂f(m)
∂m

· dm +
1
2

tr
(
σ · σT ·

[
∂2f

∂mk∂mh

])
dt, (10.32)

where T denotes matrix transposition, and tr(·) is the trace of the matrix.
The additional term on the right-hand side, which is not present in
ordinary calculus, can be justified on the basis of the following heuristic
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considerations. By using the Taylor expansion of f(m):

f(m + ∆m)− f(m) ≈ ∂f(m)
∂m

·∆m +
1
2

∑
k,l

∂2f

∂mk∂ml
∆mk∆ml,

(10.33)

then substituting into it the expression ∆m = v(m)∆t + σ(m) · ∆W,
and taking into account that 〈∆Wk∆Wh〉 ≈ δkh∆t, one obtains from the
second term in the right-hand side of Eq. (10.33) a term which is of first
order in ∆t. This term leads to the second term appearing in formula
(10.31).

In the case of the LL equation, σkh(m) is defined by Eq. (10.15), and:

[σ(m) · σT (m)]kh = ν2(Iδkh|m|2 −mkmh), (10.34)

where I is the identity matrix. Thus, the Itô lemma and the LL equation
yield:

df =
∂f(m)
∂(m)

· dm +
ν2

2
|m|2tr

(
∂2f

∂mk∂mh

)
dt

− ν2

2
tr

(∑
r

[
mkmr

∂2f

∂mr∂mh

])
dt. (10.35)

Next, let us apply the Itô lemma to the scalar function:

f(m) =
1
2
|m|2. (10.36)

By using Eq. (10.35), one obtains that:

1
2

d|m|2 = m · dm + ν2|m|2dt. (10.37)

Then, by substituting in this equation the expression (10.30) for dm, one
finds:

m · dm + ν2|m|2dt = m · [m× (· · ·)] dt− ν2m ·mdt+ ν2|m|2dt = 0.
(10.38)
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This result confirms that the Itô LL equation (10.30) also preserves
the magnetization magnitude. This is expected, given the equiva-
lence between the Itô LL equation (10.30) and the Stratonovich LL
equation (10.29).

Finally, it is worthwhile mentioning that, if we interpret Eq. (10.29) in
the sense of Itô and we apply again the Itô lemma, then we obtain that:

1
2

d|m|2 = ν2|m|2dt, (10.39)

which means that the magnitude of m is not preserved. This fact clearly
indicates that the interpretation of Eq. (10.29) in the sense of Itô leads to
stochastic magnetization dynamics which is not the dynamics on the unit
sphere associated with the same equation when it is interpreted in the
Stratonovich sense.

The analysis presented above is limited to the stochastic Landau–
Lifshitz equation expressed by formulas (10.1), (10.2), and (10.29).
However, thermal fluctuations may be also present in the generalized
magnetization dynamics discussed in Chapter 3. For example, they are
important in magnetization dynamics driven by spin-polarized currents.
The general strategy that can be followed is the same: given the
deterministic equation dm/dt = v(m) (see Eq. (3.32)), add to it the
random precessional torque −νm × hN (t). This leads to the stochastic
differential equation of the standard form:

dm = v(m)dt+ σ(m) · dW, (10.40)

where σ(m) is given by Eq. (10.15). As discussed in Chapter 3, the
deterministic drift v(m) can be always expressed in the form:

v(m) =
[
m× ∂gL

∂m
+ αm×

(
m× ∂Φ

∂m

)]
, (10.41)

where the potential Φ coincides with the free energy gL when thermal
relaxation is the only important relaxation mechanism. It is shown in
Chapter 9 that, when magnetization dynamics is driven by spin transfer,
one has:

Φ = gL +
β

α

ln(1 + cpm · ep)
cp

, (10.42)
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where the quantities β, cp, and ep characterize the spin-transfer
mechanism.

The two-potential form (10.41) for v(m) is the most general form in
which one can express a vector field on the unit sphere. For this reason,
in the sequel, we shall often assume this form for v(m), as it includes
as special cases all types of magnetization dynamics on the unit sphere.
By following the same line of reasoning as we have used in the analysis
of Eqs (10.1), (10.2) and (10.29), we can conclude that, when Eq. (10.40)
is interpreted in the sense of Stratonovich, the magnetization dynamics
preserves the magnetization magnitude.

In conclusion of this section, we briefly discuss how the presence of
fluctuations affects the analysis carried out in Chapter 7 for a uniformly
magnetized uniaxial particle subject to a circularly polarized applied
magnetic field. This applied field is rotated around the z axis at the
angular velocity ω. It was shown in Chapter 7 that in the analysis of this
physical problem it is instrumental to study the dynamics in the rotating
reference frame in which the rotating field is stationary. If we start from
a stochastic LL equation of the type (10.1) and we pass to the reference
frame rotated at the angular velocity ω around the z axis, the stochastic
LL equation can be transformed as follows:

dm
dt

= −m× (heff − ωez)− αm× (m× heff)− νm× h′N (t), (10.43)

where ez is the unit vector along the z axis, while:

h′N (t) = R(t) · hN (t), (10.44)

where R(t) is the orthogonal matrix representing a rotation through the
angle −ωt around the z axis. After this change of reference frame, the
effective field in Eq. (10.43) does not depend explicitly on time anymore.
It is important to examine the properties of the stochastic process h′N (t).
Since h′N (t) is a linear transformation of hN (t), h′N (t) is a gaussian process.
It is easy to check that h′N (t) has zero statistical average:

〈h′N (t)〉 = R(t) · 〈hN (t)〉 = 0. (10.45)

In addition:



10.2 Fokker–Planck Equation for Stochastic Magnetization Dynamics 283

〈h′N,k(t1)h′N,h(t2)〉 =
∑
r,s

Rkr(t1)Rhs(t2)〈hN,r(t1)hN,s(t1)〉

=
∑
r,s

Rkr(t1)Rhs(t2)δrsδ(t1 − t2)

=
∑
r

Rkr(t1)Rhr(t1)δ(t1 − t2) = δkhδ(t1 − t2),

(10.46)

where the sampling property of the Dirac delta function has been used, as
well as the fact that R(t) is an orthogonal matrix:∑

r,s

Rkr(t)Rhs(t) = δkh. (10.47)

We have thus proved that h′N (t) is a white-noise process with the same
amplitude as hN (t). As a consequence, Eq. (10.43) can be written as a
stochastic differential equation of the form:

dm = [−m× (heff − ωez)− αm× (m× heff)] dt− νm× dW.

(10.48)

It is worthwhile recalling that also in this case, the deterministic drift can
be written in terms of two potentials:

v(m) = m× ∂g̃L
∂m

+ αm×
(
m× ∂gL

∂m

)
, (10.49)

where g̃L = gL + ωez . In this sense, the general stochastic LL equation
(10.40) with v(m) expressed in terms of two potentials includes as a
particular case also the stochastic dynamics in rotating reference frames.
More importantly, the nonstationary process describing magnetization
dynamics in the laboratory frame is transformed into the stationary
process defined by Eq. (10.48) in the rotating frame.

10.2 FOKKER–PLANCK EQUATION FOR STOCHASTIC
MAGNETIZATION DYNAMICS

The analysis of stochastic dynamics based on stochastic differential
equations (e.g., Eq. (10.20)) leads to a description of the stochastic process
in terms of its realizations (paths). There is an alternative and equivalent
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approach to the study of stochastic processes, which is based on the
analysis of probability distributions and densities associated with the
stochastic dynamics. This is the topic discussed in this section.

In general, a stochastic process m(t) can be fully described by the joint
probability densities:

w(m1, t1; m2, t2; . . . ; mn, tn) (10.50)

of observing the values m1,m2, . . . ,mn, at the time instants t1 ≤ · · · ≤ tn.
The evolution of the stochastic process can be also characterized by the
conditional probability densities:

w(mn, tn|m1, t1; m2, t2; . . . ; mn−1, tn−1)

=
w(m1, t1; m2, t2; . . . ; mn, tn)

w(m1, t1; m2, t2; . . . ; mn−1, tn−1)
(10.51)

of observing the value mn at the time instant tn under the condition
that the process m(t) has taken values m1,m2, . . . ,mn−1 at previous
time instants t1 ≤ · · · ≤ tn−1. Strictly speaking, the complete statistical
description of a stochastic process requires the knowledge of the joint
distributions (10.50) for all n. In most applications, however, one deals
with processes which do not require this complete characterization. In
fact, processes generated by stochastic differential equations driven by
white noise belong to the important class of Markov processes. Markov
processes are characterized by the following property for the conditional
probability densities:

w(mn, tn|m1, t1; . . . ; mn−1, tn−1) = w(mn, tn|mn−1, tn−1), (10.52)

for the ordered time instants t1 ≤ · · · ≤ tn. This equation means that the
probability density of observing the value mn at the instant tn, given the
fact that we have observed values m1, . . . ,mn−1 at the previous instants
t1 ≤ t2 ≤ · · · ≤ tn−1, depends only on the value mn−1 at the time instant
tn−1 just preceding tn. By applying iteratively Eq. (10.52), one can prove
that:

w(m1, t1; . . . ; mn, tn)
= w(mn, tn|mn−1, tn−1) · · ·w(m2, t2|m1, t1)w(m1, t1), (10.53)

which demonstrates that the full statistical characterization of a Markov
process is given by only two functions, namely, the transition probability
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density:

w(m, t|m0, t0), (10.54)

and the initial probability density:

w(m0, t0). (10.55)

Markov processes are the random counterpart of deterministic
dynamical systems. A trajectory of a deterministic dynamical system is
determined by the initial condition at the initial time instant t0 and by
the evolution rule which defines the state of the system at any subsequent
time instant t. The evolution rule is normally specified implicitly through
a differential equation. In the case of Markov processes, the evolution is
determined by the initial condition, given by the initial probability density
(10.55), and by the evolution rule associated with the transition probability
density (10.54). In the case of stochastic processes, the evolution rule is
usually specified by a partial differential equation whose unknown is the
transition probability density (10.54). We shall next discuss this equation.

In the case of a stochastic process with continuous realizations
generated by the solution of a stochastic differential equation, it can be
shown [277] that the transition probability density satisfies the following
diffusion equation:

∂w

∂t
= −

∑
k

∂

∂mk
[ak(m, t)w] +

1
2

∑
k,h

∂

∂mk∂mh
[bkh(m, t)w]. (10.56)

This equation can be seen as a continuity equation for the conditional
probability density:

∂w

∂t
= −

∑
k

∂

∂mk
Jk = −∇ · J, (10.57)

where J is the probability current density, Jk are its cartesian components,
∇· is the divergence operator, and:

Jk = −ak(m, t)w +
1
2

∑
h

∂

∂mh
[bkh(m, t)w]. (10.58)

This equation is usually referred to as the forward Kolmogorov
equation or Fokker–Planck equation (the first designation is more
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common in the mathematical literature). The coefficients ak(m, t) and
bkh(m, t) are related to the stochastic dynamics in the manner discussed
below. Suppose that the value m at time instant t is given and consider the
stochastic quantity:

∆m = m(t+ ∆t)−m, (10.59)

which is the stochastic displacement of m during the time interval ∆t. It
can be shown [277] that the coefficients of the Fokker–Planck equation are
related to the stochastic quantity ∆m as follows:

ak(m, t) = lim
∆t→0

〈∆mk〉
∆t

, (10.60)

bkh(m, t) = lim
∆t→0

〈∆mk∆mh〉
∆t

. (10.61)

These two formulas give an explicit procedure to compute the coefficients
of the Fokker–Planck equation from the information about the local
stochastic dynamics of m(t). In the case of our interest, the stochastic
dynamics of m(t) is governed by a stochastic differential equation which
provides explicit expressions for the stochastic displacements ∆m (see Eq.
(10.59)). Indeed, if the Itô differential equation (10.26) is used, then:

∆mk ≈ ṽk(m, t)∆t+
∑
h

σkh(m, t)∆Wh, (10.62)

where:

∆Wh = [Wh(t+ ∆t)−Wh(t)] . (10.63)

Since m is here assumed to be a given quantity, one finds:

〈σkh(m, t)∆Wh〉 = σkh(m, t)〈∆Wh〉 = 0. (10.64)

By substituting Eq. (10.64) into Eq. (10.62) and into Eq. (10.60), one obtains:

ak(m, t) = ṽk(m, t). (10.65)
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In order to compute bkh(m, t), we consider the following covariance
matrix:

〈∆mk∆mh〉 ≈
∑
r,s

σkr(m, t)σhs(m, t)〈∆Wr∆Ws〉+ ṽk(m, t)ṽh(m, t)∆t2

+ ṽk(m, t)
∑
r

σhr(m, t)〈∆Wr〉∆t

+ ṽh(m, t)
∑
s

σks(m, t)〈∆Ws〉∆t. (10.66)

By using the Wiener process properties:

〈∆Wk〉 = 0, 〈∆Wr∆Ws〉 = δrs∆t, (10.67)

and substituting Eq. (10.66) into Eq. (10.61), the following formula is
obtained:

bkh(m, t) =
∑
r

σkr(m, t)σhr(m, t), (10.68)

In matrix form, this formula can be written as:

b(m, t) = σ(m, t) · σT (m, t), (10.69)

where the superscript T denotes the transposed matrix.
The use of the Itô differential equation has led to a simple

correspondence between SDE (10.26) and the associated diffusion
equation (10.56). The deterministic drift term in the SDE (10.26)
corresponds to the drift term in the Fokker–Planck equation (10.56), while
the stochastic term in the SDE corresponds to the diffusion term in the
Fokker–Planck equation. If one tries to derive the coefficients in Eq. (10.56)
by using Eqs (10.60), (10.61), and the Stratonovich SDE (10.21), one has to
take into account that:

∆mk ≈ vk(m, t)∆t+
∑
h

σkh(m + ∆m/2, t)∆Wh. (10.70)

In this case, the second term also contributes to the coefficient ak(m, t)
since it contains terms of the first order in ∆t. As expected, after
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appropriate manipulations one obtains:

ak(m, t) = vk(m, t) +
1
2

∑
h,l

σlh(m, t)
∂

∂ml
σkh(m, t). (10.71)

For the coefficients bkh(m, t) the same formula (10.68) is obtained in the
Stratonovich case as in the Itô case. It is apparent from Eqs (10.27),
(10.65) and (10.71) that the final Fokker–Planck is the same for the Itô
and Stratonovich SDE. In fact, while a stochastic process generated by
a given SDE is fully defined only after the type of stochastic calculus
is specified, the diffusion equation for the transition probability density
is in one-to-one correspondence with the statistical properties of the
stochastic process. Therefore, no ambiguity must arise when one describes
a stochastic process by the associated Fokker–Planck equation.

As a result of the above discussion, we conclude that the
Fokker–Planck equation can be written in terms of the vector v(m, t) and
the matrix σ(m, t) appearing in the SDE (10.21), as follows:

∂w

∂t
= −

∑
k

∂

∂mk


vk(m, t) +

1
2

∑
h,l

σlh(m, t)
∂

∂ml
σkh(m, t)

w


+
1
2

∑
k,h

∂2

∂mk∂mh

[(∑
l

σkl(m, t)σhl(m, t)

)
w

]
. (10.72)

By rearranging the last two terms on the right-hand side, the equation can
be written in the following equivalent form:

∂w

∂t
= −

∑
k

∂

∂mk
[vk(m, t)w]

+
1
2

∑
k

∂

∂mk

{∑
r

σkr(m, t)
∑
h

∂

∂mh
[σhr(m, t)w]

}
. (10.73)

This is a continuity equation of the form:

∂w

∂t
= −∇ · J, (10.74)
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where the cartesian components of the probability current J are expressed
as:

Jk = vk(m, t)w − 1
2

∑
r

σkr(m, t)
∑
h

∂

∂mh
[σhr(m, t)w] . (10.75)

By using the expression (10.15) for the matrix σ(m, t), after appropriate
algebraic manipulations one finds that:

∑
h

∂

∂mh
[σhk(m, t)w] = ν

[
m× ∂w

∂m

]
k

. (10.76)

By substituting this last expression into Eq. (10.75), and using the two-
potential form (10.41) of v, one obtains the following expression for the
probability current:

J =
[
m× ∂gL

∂m
+ αm×

(
m× ∂Φ

∂m

)]
w

+
ν2

2
m×

(
m× ∂w

∂m

)
. (10.77)

Equation (10.77) shows that J is always orthogonal to m:

J ·m = 0, (10.78)

which is the consequence of the fact that stochastic magnetization
dynamics preserves the magnetization magnitude. This implies that, if the
probability distribution w is initially different from zero only on the unit
sphere Σ, its subsequent evolution for t > t0 will take place only on Σ.
For this reason, it is legitimate to recast the formulation of the diffusion
process as a process taking place on Σ. We regard the vector m as a vector
determining a point on Σ. When m ∈ Σ, we can define the gradient
operator on Σ as follows (see also Section 3.3):

∇Σf = −m×
(
m× ∂f

∂m

)
, (10.79)

where f is a generic function of m. The operator (10.79) is the surface
gradient operator associated with changes of m along the unit sphere.
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Equations (10.74) and (10.77) can thus be written as:

∂w

∂t
= −divΣJ, (10.80)

J = [m×∇ΣgL − α∇ΣΦ]w − ν2

2
∇Σw, (10.81)

where divΣ represents the divergence operator on the unit sphere. This
is the equation that fully describes the stochastic dynamics of m on Σ in
terms of the transition probability density w.

It is important at this point to discuss how this Fokker–Planck
equation is affected by the specific way in which noise is added to the
deterministic magnetization dynamics. We shall examine this issue by
considering the following generalized stochastic LL equation:

dm =
[
m× ∂gL

∂m
+ αm×

(
m× ∂Φ

∂m

)]
dt

− ν1m× dW − ν2m× (m× dW) , (10.82)

in which two stochastic terms are present. The stochastic terms have
been added in such a way that the stochastic dynamics preserves the
magnetization magnitude, provided that the equation is interpreted in
the Stratonovich sense. In repeating the same line of reasoning that was
followed in the derivation of the Fokker–Planck equation, it must be taken
into account that the matrix σ(m) multiplying dW in Eq. (10.82) is now
given by:

σ(m) = −ν1Λ(m)− ν2Λ2(m), (10.83)

where Λ(m) represents the vector product operation, i.e., Λ(v)·w = v×w.
In cartesian components:

Λ(m) =

 0 −mz my

mz 0 −mx

−my mx 0

 . (10.84)

Under these conditions, it can be shown that the matrix b(m) = σ(m) ·
σT (m) appearing in the Fokker–Planck equation has the form:

b(m) =
(
−ν1Λ(m)− ν2Λ2(m)

)
·
(
ν1Λ(m)− ν2Λ2(m)

)
= −(ν2

1 + ν2
2)Λ2(m), (10.85)
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where we have used the following properties of Λ(m):

ΛT (m) = −Λ(m), Λ2(m) =
[
Λ2(m)

]T
,

Λ4(m) = −Λ2(m).
(10.86)

Equation (10.85) shows that all different choices for the intensity of the
noise terms in Eq. (10.82) are physically equivalent up to a renormalization
of the parameters ν1 and ν2.

Next, we discuss the issue of the equilibrium (stationary) probability
associated with the Fokker–Planck Eqs (10.80) and (10.81). When
excitation conditions (applied fields, injected currents, etc.) are constant
in time, the conditional probability density reaches asymptotically a
stationary distribution:

lim
t→∞

w(m, t|m0, t0) = weq(m). (10.87)

The probability density weq(m) is the unique solution of the following
stationary problem:

ν2

2
∆Σw

eq − divΣ [(m×∇ΣgL − α∇ΣΦ)weq] = 0, (10.88)

where ∆Σ is the Laplacian on the unit sphere. Equation (10.88) has to be
solved under the normalization condition:

{

Σ
weq(m)dS = 1. (10.89)

The solution of this problem can be obtained in closed form in the special
case when:

Φ(m) = F (gL(m)), (10.90)

where F (g) is some scalar function. Under the condition (10.90), Eq.
(10.88) can be written as:

divΣ

[
ν2

2
∇Σw

eq − αweqF ′(gL)∇ΣgL

]
− [m×∇ΣgL] · ∇Σw

eq = 0.

(10.91)
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Now, we look for weq(m) in the form:

weq(m) = W0(gL(m)), (10.92)

whereW0(g) is an unknown scalar function. By using the last formula and
the fact that:

[m×∇ΣgL] · ∇Σw
eq = W ′0(gL) [m×∇ΣgL] · ∇ΣgL = 0, (10.93)

Eq. (10.91) is reduced to:

divΣ

[
W0(gL)

d
dgL

(
ν2

2
logW0 − αF (gL)

)
∇ΣgL

]
= 0. (10.94)

This equation is satisfied for:

W0(gL) =
1
Z

exp (−µF (gL)) , (10.95)

where Z is a normalization constant and:

µ =
2α
ν2
. (10.96)

The stationary distribution can thus be expressed as:

weq(m) =
1
Z

exp (−µF (gL(m))) . (10.97)

From the normalization condition (10.89), one obtains:

Z =
{

Σ
exp (−µF (gL(m))) dS. (10.98)

It is worth remarking that the existence of the closed-form expression
(10.97) for the stationary distribution crucially depends on the validity of
the condition (10.90). When this is not the case, closed-form solutions are
very difficult to obtain.

An important special case where the condition (10.90) holds is when
we deal with the classical Landau–Lifshitz stochastic equation (10.29),
namely, when the deterministic drift is:
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v(m) = −m× heff − αm× (m× heff)

= m× ∂gL
∂m

+ αm× (m× ∂gL
∂m

). (10.99)

In this case, Φ = gL and F (g) = g. Thus, we have the following stationary
probability density for the stochastic magnetization dynamics:

weq(m) =
1
Z

exp (−µgL(m)) , (10.100)

with:

Z =
{

Σ
exp (−µgL(m)) dS. (10.101)

From the physical point of view, the stochastic Landau–Lifshitz
equation describes the magnetization dynamics in a small ferromagnetic
particle driven by fluctuations caused by the contact with the thermal
bath. The stationary distribution corresponds to the thermal equilibrium
of the magnetic particle with the thermal bath. Under these conditions, it
is known from statistical mechanics that the probability density has the
form of the Boltzmann distribution:

weq(m) =
1
Z

exp
(
−GL(m)

kBT

)
, (10.102)

where GL(m) is the free energy of the magnetic particle, while kB is
Boltzmann constant. By comparing Eqs (10.100) and (10.102), one arrives
at the following value for the constant µ:

µ =
µ0M2

sV

kBT
(10.103)

where V is the volume of the particle, µ0 is the vacuum permeability,
and Ms is the saturation magnetization. The dimensional constant µ0M2

sV
takes into account that the free energy in physical units is given by
GL(m) = µ0M2

sV gL(m). The condition (10.103) on the constant µ leads to
the following formula for the constant ν which controls the noise intensity:

ν2 =
2αkBT
µ0M2

sV
. (10.104)
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This relation is often referred to as the “fluctuation-dissipation” relation
and it is very important in order to estimate the amplitude of fluctuations.

Strictly speaking, the fluctuation-dissipation relation is only valid for
the stochastic Landau–Lifshitz dynamics in the vicinity of equilibrium.
However, in the following we assume that the fluctuation-dissipation
relation (10.104) remains valid even when the system is forced out
of equilibrium by the presence of additional interactions such as
the application of time-varying magnetic fields or the injection of
electric currents. The justification of this assumption would require
a more detailed discussion of the fluctuation-dissipation theorem for
out-of-equilibrium processes, which goes beyond the scope of this
book. Nevertheless, Eq. (10.104) is a reasonable starting point for the
quantitative estimate of the intensity of thermal fluctuations.

We shall now discuss the evolution of the stochastic process m(t)
when the initial condition is different from the stationary distribution
we have derived above. To study the dynamics we have to study the
evolution equation:

∂w

∂t
= LFPw (10.105)

for the Fokker–Planck operator:

LFPw =
ν2

2
∆Σw − divΣ [(m×∇ΣgL − α∇ΣΦ)w] , (10.106)

with initial condition:

lim
t→t0

w(m, t|m0, t0) = δΣ(m−m0), (10.107)

where δΣ(m−m0) is the Dirac delta function on the sphere, defined as:

{

Σ
f(m)δΣ(m−m0)dS = f(m0) (10.108)

for all continuous functions f(m).
The solution to this problem can be found by using the classical

procedure based on the eigenfunctions of the operator LFP and its adjoint
L†FP . To define the adjoint operator, we first define the usual scalar product
of two functions f(m) and g(m):

(f, g) =
{

Σ
f∗(m)g(m)dS, (10.109)
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where the symbol ∗ denotes complex conjugate operation. The formal
adjoint L†FP of the operator LFP is the operator such that:

(f, LFPg) = (L†FPf, g), (10.110)

where f and g are two sufficiently regular functions of m. By using Eq.
(10.106), and appropriate integration by parts, one can show that the
adjoint operator has the following form:

L†FPw =
ν2

2
∆Σw + [m×∇ΣgL − α∇ΣΦ] · ∇Σw. (10.111)

The solution to Eq. (10.105) can be constructed by using the eigenfunctions
of the operators LFP and L†FP . In the case when the spectrum of these two
operators is discrete, one has:

LFPϕr = λrϕr, r = 1, 2, . . . (10.112)

and

L†FPψr = λ∗rψr, (10.113)

where ϕr and ψr are the right and left eigenfunctions of LFP , respectively.
One can readily prove that (ψs, ϕr) = 0 when r 6= s. This property is
normally referred to as biorthogonality of the two sets of eigenfunctions
ϕr and ψs. In addition, by appropriate scaling of these functions, it is
possible to satisfy the normalization condition:

(ψs, φr) = δrs, (10.114)

where δrs is the Kronecker delta symbol. Finally we assume (and this can
be proved under quite general regularity conditions) that the system of
biorthogonal eigenfunctions ϕr and ψs is complete. This can be expressed
mathematically by the following completeness condition:

∑
r

ϕr(m)ψ∗r (m0) = δΣ(m−m0), for all m,m0 ∈ Σ. (10.115)

Once we have generated and computed a system of biorthogonal
eigenfunctions, the general solution of the Fokker–Planck equation
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(10.105) can be written as:

w(m, t|m0, t0) =
∑
r

ϕr(m)ψ∗r (m0) exp [λr(t− t0)] . (10.116)

This can be seen by substituting Eq. (10.116) into Eq. (10.105) and then
using Eq. (10.112). In addition, due to the completeness condition (10.115),
one can verify that the function in Eq. (10.116) satisfies the correct initial
condition (10.107) for the conditional probability density.

It is worthwhile remarking that the first eigenvalue of LFP is λ0 = 0
as a consequence of the fact that the equation LFPw

eq = 0 admits a
nonzero solution. The uniqueness of the problem LFPw

eq = 0, as we have
discussed above, is enforced by imposing the normalization condition
(10.89). It is interesting to note that the left eigenfunction ψ0 associated
with λ0 = 0 is a constant. Then, if we set ψ0 = 1, in order to satisfy the
normalization condition (ψ0, ϕ0) = 1, we have to choose:

ϕ0(m) = weq(m). (10.117)

An additional property of the spectrum of LFP , which is due to the
diffusive nature of this operator, is that the eigenvalues λr have negative
real part:

Re{λr} ≤ 0. (10.118)

As a consequence of this property one finds that:

lim
t→∞

w(m, t|m0, t0) = lim
t→∞

∑
r

ϕr(m)ψ∗r (m0) exp [λr(t− t0)]

= ϕ0(m) = weq(m), (10.119)

which is consistent with the fact thatweq(m) is the equilibrium probability
density.

An additional property of the eigenfunctions can be derived from the
orthogonality condition (ψ0, ϕr) = 0 for r ≥ 1, and the fact that ψ0 = 1.
In fact one finds that all ϕr(m) with r ≥ 1 have zero average over the unit
sphere:

{

Σ
ϕr(m)dS = 0 for all r ≥ 1. (10.120)
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This property is very important since w has to satisfy the condition:

{

Σ
w(m, t|m0, t0)dS = 1 for all t ≥ 0, (10.121)

where the surface integration is with respect to m. This condition is readily
verified by using Eqs (10.116) and (10.120), together with the fact that
λ0 = 0 and ψ0(m0) = 1.

Finally, we briefly discuss the fact that the conditional probability
must always satisfy the condition:

w(m, t) =
{

Σ
w(m, t|m0, t0)weq(m0)dS0 = weq(m), (10.122)

where the integration is now with respect to m0. The meaning of this
equation is that if the dynamics starts from the stationary distribution
then, at all subsequent instants of time, the probability distribution
must coincide with the stationary distribution. This property can be
formally established by using the biorthogonality condition (10.114) and
Eq. (10.117), together with the fact that λ0 = 0 and ψ0(m0) = 1.

In conclusion of this section, we discuss how the Fokker–Planck
equation (10.80)–(10.81) can be represented in different coordinate
systems. We start by expressing the Fokker–Planck equation in terms
of spherical coordinates (θ, φ), i.e., mx = sin θ cosφ, my = sin θ sinφ,
mz = cos θ. In this case, Eq. (10.80) can be written as:

∂w

∂t
= − 1

sin θ
∂

∂θ
(sin θJθ)−

1
sin θ

∂Jφ
∂φ

, (10.123)

where the components of the probability current along the unit vectors eθ
and eφ are:

Jθ = − w

sin θ
∂gL
∂φ
− αw∂Φ

∂θ
− ν2

2
∂w

∂θ
, (10.124)

Jφ = w
∂gL
∂θ
− αw

sin θ
∂Φ
∂φ
− ν2

2
1

sin θ
∂w

∂φ
. (10.125)

In the above equations, the function w is w(θ, φ, t|θ0, φ0, t0), i.e., the
conditional probability density w(m, t|m0, t) after both m and m0 have
been expressed in terms of spherical coordinates. This implies that the
probability of being inside a certain surface element dS of the unit
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sphere is:

w(m, t|m0, t)dS = w(θ, φ, t|θ0, φ0, t0) sin θdθdφ. (10.126)

From this equation it is evident that the conditional probability density
associated with the variables (θ, φ) is:

p(θ, φ, t|θ0, φ0, t0) = w(θ, φ, t|θ0, φ0, t0) sin θ. (10.127)

In terms of p, Eqs (10.123)–(10.125) can be transformed as follows:

∂p

∂t
= −

(
∂Jθ
∂θ

+
∂Jφ
∂φ

)
, (10.128)

where:

Jθ =
[
− 1

sin θ
∂gL
∂φ
− α∂Φ

∂θ
+
ν2

2
cot θ

]
p− ν2

2
∂p

∂θ
, (10.129)

Jφ =
[

1
sin θ

∂gL
∂θ
− α

sin2 θ

∂Φ
∂φ

]
p− ν2

2
1

sin θ
∂

∂φ

( p

sin θ

)
. (10.130)

This form of the Fokker–Planck equation is instrumental in the
derivation of the stochastic differential equation for m(t) on Σ. By
using the correspondence between the Fokker–Planck equation and the
Stratonovich stochastic differential equation, from Eqs (10.128), (10.129),
and (10.130), one obtains the following Stratonovich equations:

dθ =
[
− 1

sin θ
∂gL
∂φ
− α∂Φ

∂θ
+
ν2

2
cot θ

]
dt+ ν dWθ, (10.131)

dφ =
[

1
sin θ

∂gL
∂θ
− α

sin2 θ

∂Φ
∂φ

]
dt+

ν

sin θ
dWφ, (10.132)

where Wθ(t) and Wφ(t) are two independent scalar Wiener processes.
Equation (10.131) contains the noise-induced drift term (ν2/2) cot θ, the
presence of which is not easy to derive when one assumes the stochastic
differential equation for m as the starting point. Such noise-induced
drift terms are the consequence of the representation of the sphere by
curvilinear coordinates. The presence of these terms can be understood at
the level of the stochastic differential equation, without passing through
the Fokker–Planck equation, by considering the theory of stochastic
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differential equations on manifolds [264]. This topic goes beyond the
scope of this book and it is not discussed any further.

It is also useful to express the Fokker–Planck equation in terms
of cylindrical coordinates (mz, φ), i.e., mx =

√
1−m2

z cosφ, my =√
1−m2

z sinφ. This set of coordinates will be used later in this chapter
in the study of uniaxial systems. In order to derive the Fokker–Planck
equation in terms of (mz, φ) coordinates, we start from Eqs (10.123)–
(10.125), and by using the fact that dmz = d(cos θ) = − sin θdθ, through
appropriate algebraic manipulations, we arrive at the following equation:

∂w

∂t
= − ∂Jz

∂mz
− ∂Jφ

∂φ
, (10.133)

where:

Jz =
[
∂gL
∂φ
− α

[
1−m2

z

] ∂Φ
∂mz

− ν2mz

]
w

− ν2

2

√
1−m2

z

∂

∂mz

(√
1−m2

zw
)
, (10.134)

Jφ =
[
− ∂gL
∂mz

− α

[1−m2
z]
∂Φ
∂φ

]
w

− ν2

2
1√

1−m2
z

∂

∂φ

(
1√

1−m2
z

w

)
. (10.135)

Here w indicates the probability density in terms of (mz, φ). We note that,
since:

w(m, t|m0, t)dS = w(mz, φ, t|mz0, φ0, t0) sin θdθdφ
= −w(mz, φ, t|mz0, φ0, t0)dmzdφ, (10.136)

no metric factor is needed to obtain the probability density. In other terms,
w(mz, φ, t|mz0, φ0, t0) is just the functionw(m, t|m0, t) when m and m0 are
expressed in terms of (mz, φ) coordinates.

Equations (10.133)–(10.135) have the appropriate form to derive the
corresponding stochastic differential equations for (mz, φ) coordinates, by
taking advantage of the equivalence between the Fokker–Planck equation
and the Stratonovich stochastic differential equation. This leads to the
following set of Stratonovich equations:

dmz =
[
∂gL
∂φ
− α

[
1−m2

z

] ∂Φ
∂mz

− ν2mz

]
dt+ ν

√
1−m2

z dWz, (10.137)
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dφ =
[
− ∂gL
∂mz

− α

[1−m2
z]
∂Φ
∂φ

]
dt+

ν√
1−m2

z

dWφ. (10.138)

We note that also in this case, Eq. (10.137) contains a noise-induced drift
term −ν2mz .

10.3 ANALYSIS OF MAGNETIZATION DYNAMICS BY USING
STOCHASTIC PROCESSES ON GRAPHS

In Chapter 5, it was discussed that two distinct time scales are typically
present in magnetization dynamics: the fast time scale of precessional
dynamics and the slow time scale of relaxation dynamics. The existence
of two time scales was used to develop the averaging technique for
the treatment of the slow-time-scale dynamics. These two time scales
also exist in the stochastic magnetization dynamics induced by thermal
fluctuations. In the general stochastic differential equation for the
magnetization dynamics:

dm =
[
m× ∂gL

∂m
+ αm×

(
m× ∂Φ

∂m

)]
dt− νm× dW, (10.139)

the existence of two time scales is related to the fact that the last two terms
in this equation are usually small in comparison with the first term which
describes the fast-time-scale precessional dynamics. For example, in the
case of stochastic magnetization dynamics in spin-transfer-driven devices,
described by the equation:

dm =
[
−m× heff − αm× (m× heff) + β

m× (m× ep)
1 + cpm · ep

]
dt

− νm× dW, (10.140)

the two distinct time scales occur because α ∼ β � 1 (see Chapter 9) and
ν2 ∼ α (see Eq. (10.104)).

In this section, we investigate how the presence of two distinct time
scales can be used in the analysis of stochastic magnetization dynamics.
The standard randomly perturbed magnetization dynamic equations, like
Eq. (10.140), are written in terms of magnetization components which vary
on the fast time scale. For this reason, the slow time scale of magnetization
dynamics is concealed and obscured in these formulations. The slow-
time-scale magnetization dynamics can be explicitly revealed by using the
magnetic free energy as a state variable and by transforming the randomly
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perturbed Landau–Lifshitz equation into a stochastic differential equation
for the energy.

Some specific difficulties appear in the analysis of generalized
Landau–Lifshitz dynamics described by Eq. (10.139), because this
magnetization dynamics may exhibit both stable equilibria and stable
limit cycles. The time scale of thermal transitions between stable
equilibria is controlled by the energy barrier ∆E separating these
equilibria. In particular, in the limit of large (with respect to kBT )
energy barriers, the time scale of thermal relaxation is given by the
Arrhenius formula τ = τ0 exp(∆E/kBT ), where the characteristic
time constant τ0 is typically of the order of 10−10–10−11s [8,275].
When self-oscillations (limit cycles) are present in addition to stationary
equilibria, thermal fluctuations may induce switching between these
qualitatively different steady states. The main problem is then to
define the concept of effective potential barrier between a limit cycle
and a stationary equilibrium, or between two limit cycles. It will
be shown below that by taking advantage of the presence of two
distinct time scales in the dynamics, it is indeed possible to give
a precise definition of such effective potential barriers and derive
analytical formulas for the description of thermally induced transitions
between a limit cycle and an equilibrium state or between two
limit cycles.

In order to develop the two-time-scale analysis, it is first necessary
to introduce a convenient representation of conservative precessional
magnetization dynamics, and then use this representation to compute the
effect of damping, spin transfer, and thermal fluctuations by perturbation
methods. A detailed analysis of precessional magnetization dynamics
has been presented in Chapter 4. The precessional magnetization
trajectories form a family of non-intersecting curves on the unit sphere
Σ characterized by constant values of free energy. These curves are
generated by the equation gL(m) = g when g varies in an appropriate
interval (see Figs 4.1, 4.7 and 4.9 for some examples). These trajectories
define the phase portrait of the conservative dynamics. This phase portrait
is completely characterized by the critical points, i.e., points where
∇ΣgL = 0 (∇Σ is the gradient operator on Σ). These critical points can
be maxima, minima and saddles. The trajectories passing through saddles
are called separatrices because they create a natural partition of the phase
portrait into different central energy regions.

As discussed in Chapter 4, a natural way to describe the topological
properties of the phase portrait of conservative dynamics is to specify the
appropriate graph G (see Fig. 4.2). In this graph, each edge Ik represents
a central region and each node corresponds to a saddle equilibrium and
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the associated separatrices. The graph nodes will be labeled by using the
same notation, d1, d2, . . ., as used for saddles. We shall also introduce
the following incidence function I(dh) = {k1, k2, . . .}, which for each
node dh gives the labels (k1, k2, . . .) of the edges connected to dh. The
edges are associated with the energy intervals g−k < g < g+

k (which
will be also denoted as Ik) related to the kth central region. With the
help of this graph, one can establish an unambiguous correspondence
between magnetization trajectories and the values of the free energy: each
magnetization trajectory is associated with one value of energy g and one
value k (with g ∈ Ik), which identifies the central region to which the
trajectory belongs. We shall use the notation Ck(g) to indicate the closed
trajectory on the unit sphere inside the kth central region (kth edge of the
graph) for which gL(m) = g.

Next, we proceed to the study of the effect of perturbations on
the precessional magnetization dynamics. Our starting point is the
stochastic differential equation (10.139) for magnetization dynamics, and
the corresponding Fokker–Planck equation (10.80) for the conditional
probability density w(m, t|m0, t0):

∂w

∂t
= −divΣ J. (10.141)

The probability current density is given by Eq. (10.81), which we shall
write in the form:

J = (m×∇ΣgL − α∇ΣΦ)w − α

µ
∇Σw, (10.142)

where µ = 2α/ν2. This form has the advantage that α appears explicitly
in the second term of the probability current density (10.142). This will be
instrumental in subsequent perturbation analysis based on the smallness
of α. Equation (10.142) clearly shows that for small α the diffusion term
and the nonconservative drift term can be regarded as perturbations of
the precessional drift term. Additional small parameters that may be
present in Φ are assumed to have the same order of smallness of α. In the
specific case of injected spin-polarized currents, the ratio β/α is assumed
to be finite. The values of the constants ν and µ are obtained through the
fluctuation-dissipation theorem and they are:

ν2 =
2αkBT
µ0M2

sV
, µ =

µ0M2
sV

kBT
, (10.143)
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as discussed in Section 10.2.
To simplify the notations, we shall omit the dependence of

w(m, t|m0, t0) on the backward coordinates (m0, t0) and we will
simply write w(m, t) to indicate the unknown probability density in
the Fokker–Planck equation (10.141)– (10.142). In fact, the backward
coordinates appear as parameters and their presence is related to the
initial condition imposed on the solution of Eqs (10.141)–(10.142).

To study Eqs (10.141)–(10.142) in the limit of small fluctuations and
small nonconservative effects (α � 1, ν ∼

√
α), it is convenient to use

a coordinate system on the unit sphere in which the energy is one of the
coordinate variables. In this coordinate system, the unit vectors:

eg =
∇ΣgL
|∇ΣgL|

, eψ = m× eg, (10.144)

are orthogonal and tangential to constant-energy trajectories Ck(g),
respectively. The differential displacements (dmg,dmψ) along eg and eψ ,
associated with infinitesimal changes (dg,dψ) of the coordinates, are
respectively given by:

dmg = eg · dm = lgdg, dmψ = eψ · dm = lψdψ, (10.145)

where lg and lψ are appropriate metric factors. In particular, from Eq.
(10.144) one finds that:

lg = 1/|∇ΣgL|. (10.146)

The coordinate system introduced above has the advantage that the
two coordinates ψ and g are the fast and slow variables of the problem,
respectively. Our goal is now to eliminate the fast variable and derive an
approximated diffusion equation for the slow variable g.

The procedure to eliminate the fast variable ψ from the Fokker–Planck
equations (10.141)–(10.142) can be devised as follows. We start by
integrating both sides of (10.141) over the region of the unit sphere
between the two curves Ck(g + ∆g) and Ck(g). Then, by applying the
divergence theorem, dividing both sides by ∆g and taking the limit ∆g →
0, we obtain:

∂

∂t
ρk(g, t) = − ∂

∂g
Jk(g), (10.147)
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where ρk(g, t) is defined as:

ρk(g, t) =
∮
Ck(g)

w(m, t)
|∇ΣgL|

dmψ. (10.148)

The quantity:

Jk(g) =
∮
Ck(g)

J · eg dmψ (10.149)

is the total probability current through the line Ck(g) in the direction of
increasing energy. By using Eq. (10.142) and the fact that (m×∇ΣgL)·eg =
0, the probability current Jk(g) can be rewritten as:

Jk(g) = −α
∮
Ck(g)

[
(∇ΣΦ)w +

1
µ
∇Σw

]
· eg dl. (10.150)

The above Eqs (10.147), (10.149) and (10.150) are exact, and no ap-
proximations have been introduced yet. However, Jk(g) is not a linear
operator on ρk(g) and thus Eq. (10.147) is not an evolution equation for
ρk(g). This difficulty can be circumvented by utilizing the fact that the
actual magnetization dynamics can be regarded as a perturbation of the
precessional dynamics. This implies that many precessional oscillations
occur before the energy is appreciably affected by nonconservative ef-
fects and thermal fluctuations. In this situation, it is natural to consider
the following approximation: on the slow time scale the density distribu-
tion w(m, t) is almost uniform along each curve gL(m) = g. Accordingly,
on the slow time scale the distribution function depends on m through
gL(m):

w(m, t) ≈ wk(gL(m), t), (10.151)

where the subscript k is used to indicate the central region to
which m belongs. If we substitute Eq. (10.151) into Eq. (10.148), we
obtain:

ρk(g, t) = wk(g, t)Tk(g), (10.152)
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where:

Tk(g) =
∮
Ck(g)

dmψ

|∇ΣgL|
(10.153)

is the period of the precessional trajectory Ck(g). In addition, from Eqs
(10.150) and (10.151) we find that:

Jk(g) = −αwk(g, t)
∮
Ck(g)

eg · ∇ΣΦ dmψ

− α

µ

∂wk
∂g

∮
Ck(g)

|∇ΣgL| dmψ. (10.154)

The two functions of energy which appear in the right-hand side
of Eq. (10.154) are Melnikov functions of the type introduced in
Section 5.5:

M0
k (g) =

∮
Ck(g)

|∇ΣgL| dmψ, (10.155)

Mk(g, ζ) =
∮
Ck(g)

eg · ∇ΣΦ dmψ, (10.156)

where the parameter ζ generically represents the control parameters that
may be present in the potential Φ. We shall assume that Φ ≡ gL when
ζ = 0, which implies that Mk(g, ζ = 0) = M0

k (g). Melnikov functions have
been extensively used in our previous analysis of deterministic magne-
tization dynamics (see Chapters 5 and 9). The function M0

k (g) is always
positive, while Mk(g, ζ) can be either positive or negative. Indeed, its ze-
ros indicate the presence of limit cycles in the deterministic dynamics in
the limit of small α. These functions can be put in the following line inte-
gral form:

M0
k (g) =

∮
Ck(g)

(
m× ∂gL

∂m

)
· dm, (10.157)

Mk(g, ζ) =
∮
Ck(g)

(
m× ∂Φ

∂m

)
· dm, (10.158)

which clearly shows that they depend only on the geometry of
precessional trajectories and on the potentials gL and Φ. By using
the Melnikov functions (10.155) and (10.156), the probability current
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density in Eq. (10.154) can be rewritten in the following form:

Jk(g) = −αMk(g, ζ)wk −
α

µ
M0
k (g)

∂wk
∂g

, (10.159)

which, by using Eq. (10.152), can be expressed in terms of ρk(g) as:

Jk(g) = −α
[
Mk(g, ζ)
Tk(g)

ρk(g, t) +
1
µ
M0
k (g)

∂

∂g

(
ρk(g, t)
Tk(g)

)]
. (10.160)

By substituting the last equation in Eq. (10.147), we end up with the fol-
lowing diffusion equation for ρk(g, t):

∂

∂t
ρk(g, t) = α

∂

∂g

[
Mk(g, ζ)
Tk(g)

ρk(g, t) +
1
µ
M0
k (g)

∂

∂g

(
ρk(g, t)
Tk(g)

)]
, (10.161)

which can be also expressed in terms of wk(g):

Tk(g)
∂

∂t
wk(g, t) = α

∂

∂g

[
Mk(g, ζ)wk(g, t) +

1
µ
M0
k (g)

∂wk
∂g

]
. (10.162)

The diffusion equations (10.161) and (10.162) are naturally defined on
the graph G and they have to be complemented by appropriate initial,
boundary, and normalization conditions. The normalization condition for
ρk(g, t) is obtained by using Eq. (10.185) in Eq. (10.182). This leads to the
condition: ∑

k

∫
Ik

ρk(g, t) dg = 1, (10.163)

where Ik are the edges of the energy graph G. The normalization condition
for wk(g, t) can be derived from Eq. (10.163) by using Eq. (10.152). One
obtains: ∑

k

∫
Ik

Tk(g)wk(g, t) dg = 1. (10.164)

In addition to the normalization conditions (10.163) and (10.164),
boundary conditions at the graph nodes are required for the probability
distribution and the probability current, in order to solve (10.161) or
(10.162) [265]. It is apparent that wk(g, t) must be continuous on the entire
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graph, while the sum of all the incoming probability currents must be zero
at each node of the graph. This means that, at the graph nodes:

wki(gdh
) = wkj (gdh

), ∀ ki, kj ∈ I(dh) h = 1, 2, . . . , (10.165)

where gdh
is the energy of the saddle point dh and (as previously defined)

I(dh) is the set of labeled edges touching the node dh. The continuity of
probability current (Kirchhoff’s law for probability current) at the graph
nodes is expressed as: ∑

k∈I(dh)

Jk(gdh
) = 0, (10.166)

where Jk(gdh
) is the current coming from the edge k to the node dh.

So far, the separation of time scales for the stochastic magnetization
dynamics has been accomplished at the level of Fokker–Planck equation,
and this has led to the diffusion equation (10.161) for the probability
density ρk(g, t). The same scale separation can be considered at the level of
the stochastic differential equation associated with the diffusion equation
(10.161). To this end, we transform Eq. (10.161) to the following standard
form:

∂

∂t
ρk(g, t) =

∂

∂g

[
α

(
Mk(g, ζ)
Tk(g)

− 1
µTk(g)

∂M0
k (g)
∂g

)
ρk(g, t)

+
α

µ

∂2

∂g2

(
M0
k (g)

Tk(g)
ρk(g, t)

)]
. (10.167)

By using the correspondence between Fokker–Planck and stochastic
differential equations, one can infer from Eq. (10.167) that on each edge
Ik of the graph G the magnetic free energy g(t) satisfies the following Itô
stochastic differential equation:

dg = −
(
α
Mk(g, ζ)
Tk(g)

− ν2

2Tk(g)
∂M0

k (g)
∂g

)
dt+ ν

√
M0
k (g)

Tk(g)
dW, (10.168)

where W is the scalar Wiener process. Equation (10.168) defines a
Markovian process on the entire graph G, provided the appropriate
boundary conditions are imposed on g at each node of G. These conditions
are stated in the most general form in [265]. The stochastic differential
equation (10.168) reveals the existence of the additional thermally
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generated drift term (ν2/2Tk(g))∂M0
k (g)/∂g, which is concealed in the

conventional structure of the stochastic differential equation (10.139)
with respect to m(t). This thermal drift term counteracts the traditional
damping-based drift term and this results in measurable effects.

To demonstrate this, let us consider the stochastic dynamics (10.168)
near equilibria, under the assumption of small thermal noise. Equation
(10.168) can then be linearized around the given stable equilibrium point
g = gs. The first-order expansion of the various terms in the right-hand
side of Eq. (10.168) can be expressed in a convenient form by using the
following formula:

∂M0
k (g)
∂g

=
∮
Ck(g)

∆ΣgL
|∇ΣgL|

dl, (10.169)

where ∆Σ is the Laplacian over the unit sphere Σ. The last formula is of
interest in its own right. The derivation of this formula can be carried out
by using the divergence theorem and it is based on arguments which are
similar to ones used in the derivation of Eq. (10.147). One can check that
near stable equilibria ∆Σg ≈ c0k > 0. Then, by using formula (10.169) and
assuming that Mk(g, ζ) depends linearly on ζ, as for example is the case
for spin-transfer phenomena, we arrive at the following formulas for the
linearized quantities:

Mk(g, ζ) ≈ [c0k + ζc1k]Tk(gs)(g − gs),
1

Tk(g)
∂M0

k (g)
∂g

≈ c0k + d0
k(g − gs),

(10.170)

where:

d0
k =

{
d
dg

[(1/Tk(g))(∂M0
k (g)/∂g)]

}∣∣∣∣
g=gs

. (10.171)

By using formulas (10.170), the stochastic differential equation (10.168) can
be transformed as follows:

dg
dt

+ α[c0k + ζc1k + (ν2/2)d0
k](g − gs) =

ν2c0k
2

+ ν
√
c0k(g − gs)

dWt

dt
.

(10.172)
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From Eq. (10.172), we derive the following differential equation for the
expected energy value g(t):

dg
dt

+ αck(g − gs) =
ν2c0k

2
, (10.173)

where ck = [c0k + ζc1k + (ν2/2)d0
k]. The solution of the last equation can be

written in the form:

g(t) = gs +
ν2

2α
c0k
ck

+A exp [−αckt] . (10.174)

Formula (10.174) reveals that the thermally generated energy drift results
in the shift geq of the expected energy value near equilibria:

geq =
[ν2/(2α)]

1 + ζc1k/c
0
k + [ν2/(2α)](d0

k/c
0
k)

=
kBT
µ0M2

sV

1 + ζc1k/c
0
k + kBT

µ0M2
sV

(d0
k/c

0
k)
, (10.175)

where V is the volume of the magnetic particle. The last equality
follows from the fluctuation-dissipation theorem and the normalization
of magnetization and effective field. In the absence of nonconservative
driving actions (ζ = 0) and for sufficiently small fluctuations, Eq. (10.175)
yields geq = kBT/µ0M2

sV as expected from the equipartition theorem.
In the final part of this section, we discuss how the key assumption

(10.151), which has been instrumental in the elimination of fast variables,
can be justified in rigorous terms through the perturbation analysis
explicitly based on the smallness of α. This leads to a derivation of Eqs
(10.161)–(10.162) by using the reasoning which can be traced back to
Kramers’ treatment of fluctuations in nonlinear oscillators [416] in the
limit of small damping and noise.

This analysis starts by rewriting the Fokker–Planck equation (10.141)
and (10.142) in terms of the coordinates (g, ψ) and of the index k labeling
the appropriate central energy region:

∂ρk
∂t

= − ∂

∂g
(lψJk,g)−

∂

∂ψ
(lgJk,ψ) , (10.176)
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where lg and lψ are the metric factors introduced in Eq. (10.145), while:

ρk(g, ψ, t) = wk(g, ψ, t)lglψ (10.177)

is the probability density function of (g, ψ). In these equations, wk(g, ψ, t)
is the function w(m, t) expressed in terms of the coordinates (g, ψ),
whereas:

Jk,g = J · eg = −α
(
wk
lg

∂Φ
∂g

+
1
µlg

∂wk
∂g

)
(10.178)

and:

Jk,ψ = J · eψ =
wk
lg
− α

(
wk
lψ

∂Φ
∂ψ

+
1
µlψ

∂wk
∂ψ

)
(10.179)

are the probability currents along eg and eψ , respectively. In terms of these
coordinates, the Melnikov functions (10.155) and (10.156) can be written
as:

M0
k (g) =

∮
Ck(g)

1
lg

dmψ =
∮
Ck(g)

|∇Σg|dmψ, (10.180)

Mk(g, ζ) =
∮
Ck(g)

1
lg

∂Φ
∂g

dmψ. (10.181)

The probability density ρk(g, ψ, t) satisfies the usual normalization
conditions on the unit sphere:

∑
k

∫
Ik

dg
∫ 2π

0

ρk(g, ψ, t) dψ = 1. (10.182)

Similarly, wk(g, ψ, t) has to satisfy the following normalization condition:

∑
k

∫
Ik

dg
∫ 2π

0

wk(g, ψ, t)lglψ dψ = 1. (10.183)

The starting point for the perturbation analysis is to write the
probability density ρk(g, ψ, t) as:

ρk(g, ψ, t) = ρk(ψ, t|g)ρk(g, t), (10.184)
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where ρk(ψ, t|g) is the conditional probability density and:

ρk(g, t) =
∫ 2π

0

ρk(ψ, g, t)dψ. (10.185)

By taking into account Eqs (10.145), (10.146), and (10.177), the last
formula can be written in the form:

ρk(g, t) =
∫ 2π

0

ρk(ψ, g, t)dψ =
∮
Ck(g)

w(m, t)
|∇ΣgL|

dmψ. (10.186)

In the limit of small α, the energy remains practically constant for a
large number of periods of oscillation and appreciable time variations of
ρk(g, t) are expected to occur only on a time scale of the order of 1/α.
This suggests that Jk,g is proportional to α. In fact, by integrating Eq.
(10.176) with respect to ψ in the interval [0, 2π] and taking into account the
periodicity of all quantities with respect to ψ, one obtains that ∂ρk(g, t)/∂t
is first-order in α. On the other hand, the conditional distribution ρk(ψ, t|g)
has a fast time variation regardless of the smallness of α, i.e., ∂ρk(ψ, t|g)/∂t
is zeroth order with respect to α. The averaging method is based on
the fact that the conditional probability distribution ρk(ψ, t|g) reaches
equilibrium on the short time scale well before any appreciable change
in ρk(g, t) occurs [640]. Thus, on the long time scale we have:

ρk(g, ψ, t) = ρeqk (ψ|g)ρk(g, t) +O(α), (10.187)

where ρeqk (ψ|g) is the equilibrium distribution of ρk(ψ, t|g). This
equilibrium conditional probability can be found by differentiating Eq.
(10.184) with respect to time, then substituting it in Eq. (10.176), and
retaining only the zeroth-order terms with respect to α. In this way, we
obtain the equation:

∂

∂t
ρk(ψ, t|g) =

∂

∂ψ

(
ρk(ψ, t|g)
lglψ

)
. (10.188)

The stationary solution ρeqk (ψ|g) satisfies the equation:

∂

∂ψ

(
ρeqk (ψ|g)
lglψ

)
= 0, (10.189)
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whose solution is:

ρeqk (ψ|g) = fk(g)lglψ, (10.190)

where fk(g) is a function of energy to be determined through the
normalization condition: ∫ 2π

0

ρeqk (ψ|g)dψ = 1. (10.191)

By using Eqs (10.145), (10.146), (10.190), and (10.191), one finds that
ck(g) = 1/Tk(g), which yields:

ρeqk (ψ|g) =
lglψ
Tk(g)

. (10.192)

This equation has interesting physical implications. By multiplying both
sides of the equation by the differential increment dψ, we obtain:

ρeqk (ψ|g)dψ =
lglψdψ
Tk(g)

=
lgdmψ

Tk(g)
=

1
Tk(g)

dmψ

|∇ΣgL|
. (10.193)

The ratio dmψ/|∇ΣgL| is equal to the time spent by the precessional
trajectory along the arc of length dmψ around the point ψ. Thus,
Eq. (10.193) has the following “time” interpretation: the probability of
being around a certain point ψ of the precessional trajectory Ck(g) is
proportional to the fraction of time that the precessing magnetization
spends around ψ. In other terms, the equilibrium conditional probability
density on the trajectory Ck(g) is inversely proportional to the velocity of
precessional motion along Ck(g).

Equations (10.177), (10.187) and (10.192) imply that wk(g, ψ, t) is
given by:

wk(g, ψ, t) =
ρk(g, t)
Tk(g)

+O(α), (10.194)

where O(α) denotes terms which are first or higher order in α. Thus,
up to first-order terms in α, wk(g, ψ, t) is in fact independent of ψ. This
conclusion justifies the approximation expressed by Eq. (10.151). The
functionwk(g, t) in that expression can be interpreted as the dominant part
of the expansion of wk(g, ψ, t) in terms of α. In other words, for small α,
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the dependence of wk(g, ψ, t) on ψ is a higher-order effect. The averaging
approximation amounts to neglecting this effect.

10.4 STATIONARY DISTRIBUTIONS AND THERMAL
TRANSITIONS

A fundamental role in stochastic magnetization dynamics is played by the
stationary distribution asymptotically approached at large times:

weqk (g) = lim
t→∞

wk(g, t). (10.195)

To determine weqk (g), we rewrite the probability current density (10.159) in
the following form:

Jk(g) = −α
µ
M0
k (g)

(
µ
∂Vk(g)
∂g

wk(g, t) +
∂

∂g
wk(g, t)

)
, (10.196)

where we have introduced the effective potential Vk(g) defined as:

∂Vk(g)
∂g

=
Mk(g, ζ)
M0
k (g)

. (10.197)

By integrating this expression along the edge Ik of the graph, we arrive at
the following expression:

Vk(g) =
∫ g

g−k

Mk(u, ζ)
M0
k (u)

du+ ck, (10.198)

where g−k is the lower energy bound on Ik and ck is some integrating
constant. By multiplying both sides of Eq. (10.196) by the integrating factor
exp(µVk(g)) we obtain:

Jk(g) = −α
µ
M0
k (g) exp (−µVk(g))

∂

∂g
[exp (µVk(g))wk(g)] . (10.199)

The stationary distribution function can be derived from the condition
Jk(g) = 0, which yields:

weqk (g) = Ak exp (−µVk(g)) , (10.200)
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as immediately apparent from Eq. (10.199). It follows from this expression
that Eq. (10.166) is satisfied, since all the currents Jk(g) are identically zero.
The constant Ak should be chosen in order to fulfill the normalization
condition (10.164) and the continuity conditions (10.165) at the graph
nodes. The constants ck in Eq. (10.198) can be used for this purpose. First,
we note that, with no lack of generality, weqk (g) can be represented in the
form:

weqk (g) = A0 exp (−µVk(g)) , (10.201)

where A0 is the same for all Ik in G. The condition (10.165) can be satisfied
if we choose the constants ck in the expression for Vk in such a way that:

Vki(gdh
) = Vkj (gdh

), ∀ki, kj ∈ I(dh) h = 1, 2, . . . . (10.202)

It remains to determine the value of A0. This constant can be found from
the normalization condition (10.164), which leads to the following result:

1
A0

= Z(µ) =
∑
k

∫
Ik

exp (−µVk(g))Tk(g) dg, (10.203)

where Z(µ) is a sort of partition function. Thus, the stationary distribution
function can be written in the following form:

weqk (g) =
1

Z(µ)
exp (−µVk(g)) . (10.204)

The expression (10.204) for weqk (g) is formally coincident with the
canonical Boltzmann distribution, with Z(µ) and Vk(g) playing the role
of partition function and potential energy, respectively. The functions
Z(µ) and Vk(g) depend on the Melnikov function Mk(g, ζ), which is
related to the potential Φ (see Eq. (10.158)). When thermal relaxation is
the only important mechanism, then Φ(m) = gL(m) and the Melnikov
function Mk(g, ζ) is reduced to M0

k (g) (see Eq. (10.157)). In this case,
one finds from formulas (10.198) and (10.202) that Vk(g) = g for all
edges of the graphs, which implies that Z(µ) and wk(g) take indeed their
usual meaning of partition function and canonical distribution function,
respectively. However, under the presence of additional nonconservative
driving actions, Φ(m) 6= gL(m), Vk(g) 6= g, and the distribution weqk (g)
cannot be interpreted as an equilibrium distribution anymore. In those
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cases, it rather represents the steady-state out-of-equilibrium distribution
induced by the driving actions accounted for by the potential Φ(m).

In general, the stationary distribution for the randomly perturbed
magnetization dynamics driven by two potentials gL and Φ can be
determined in closed form only in very special cases. Equation (10.204)
shows that by using the technique of stochastic processes on graphs, one
can obtain closed form (albeit approximate) solutions under more general
conditions.

It is beneficial to gain some insight into the qualitative properties
of the potential function Vk(g) and the related properties of the
stationary distribution (10.204). The function Vk(g) plays the role of
effective potential governing the stochastic dynamics. This fact is better
appreciated by comparing it with the potential Uk(g) introduced in the
analysis of deterministic dynamics (see Eq. (5.150)) in the framework of
the averaging technique. We recall that the slow deterministic dynamics
of energy can be described by the equation:

dg
dt

= −α∂Uk
∂g

, (10.205)

where the effective potential Uk(g) is defined, up to a constant, as:

Uk(g) =
∫ g

g−k

Mk(u, ζ)
Tk(u)

du. (10.206)

By comparing Eq. (10.206) with Eq. (10.197), we find that the potentials Vk
and Uk are connected by the following relation:

∂Vk(g)
∂g

=
Tk(g)
M0
k (g)

∂Uk(g)
∂g

. (10.207)

Since both M0
k and Tk are positive-definite, Vk and Uk exhibit the

same maxima and minima. Therefore, according to Eq. (10.204), the
stationary distribution function weqk is peaked around the stable states of
the deterministic dynamics, which can be either fixed points (stationary
states) or limit cycles (self-oscillation states).

To be more specific, let us consider the case of spin-polarized current
injection. In this case (see Chapter 9 for the definition of the various
parameters):

Φ(m) = gL(m) +
β

α

ln(1 + cpm · ep)
cp

. (10.208)
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By substituting Eq. (10.208) into Eq. (10.158), we get the following
expression for the Melnikov function:

Mk(g, β/α) = M0
k (g) +

β

α
M1
k (g), (10.209)

where:

M1
k (g) =

∮
Ck(g)

m× (m× ep)
1 + cpm · ep

· egdmψ. (10.210)

This implies that the effective potential can be written as:

Vk(g) = g +
β

α

∫ g

g−k

M1
k (u)

M0
k (u)

du+ ck − g−k , (10.211)

where again ck can be chosen to make Vk(g) continuous on the entire
graph G.

As discussed in Chapter 9, the Melnikov functions M0
k (g) and

Mk(g, β/α) can be computed analytically by using the analytical solutions
of the conservative magnetization dynamics (see Chapter 4). Then,
through Eq. (10.211), one can compute the effective potential governing
the probability distribution weqk (g) of the problem. We present here an
example of such computations for the case shown in Fig. 10.1. The
applied field is along the easy axis of the particle (x axis) and its
value is such that the phase portrait of the conservative dynamics is
partitioned into three central regions, with two energy maxima and one
energy minimum. The two central regions corresponding to the energy
maxima are symmetric and, therefore, correspond to the same range of
energy values. The associated graph has three edges, with one node. In
Fig. 10.2, the computed Melnikov functions for each edge, the effective
potential and the stationary distribution are represented. As expected, the
distribution weq is peaked around the minima of the effective potential
and depressed around the maxima.

Figure 10.3(a)–(d) illustrates how the effective potential and the
stationary distribution are affected by changes of the injected spin-
polarized current (i.e., of the parameter β/α). Under increasing spin-
polarized current, one peak of the distribution is decreased while another
is increased. At intermediate current values, weq is characterized by two
peaks (see Fig. 10.3(b)). Multiple peaks in the stationary distribution
indicate the presence of multiple stable steady states. For example, in
the case of Fig. 10.2, there is a stable fixed point at the energy gs and
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FIGURE 10.1 (a) Phase portrait of the conservative magnetization dynamics on
the unit sphere for ha = haxex. black dot: energy minimum; white dot: energy
maximum; cross: energy saddle; bold lines: separatrices. System parameters:Dx =
−0.034, Dy = 0, Dz = 0.68, hax = 0.2. (b) Corresponding graph. s1: minimum;
d1: saddle; u1, u2: maxima; I1, I2, I3: central energy regions.

a stable limit cycle at the energy ga. These two stable steady states are
separated by an unstable limit cycle at g = gr. This is a very interesting
situation, where the possibility of thermally induced transitions between a
stable limit cycle and a stable fixed point appears. The question is whether
these transitions are governed by some properly defined potential barrier
separating these two stable steady states. We shall show in the sequel
that this potential barrier can indeed be defined in terms of the effective
potential Vk(g) in the following way:

∆Vk = Vk(gmax)− Vk(gmin), (10.212)

where gmax and gmin respectively denote the energy values corresponding
to the maximum and minimum of V (g) for the transition of interest. This
is what one would naturally expect from the fact that stable and unstable
states of the deterministic dynamics respectively correspond to minima
and maxima of Vk(g). On the other hand, it is worth stressing that the
potential barrier is defined for the energy dynamics, which means that
it has no inherent connection with barriers that may be present in the
free energy gL as a function of m. An example is the case presented in
Fig. 10.2(b), where an unstable limit cycle exists between a stable limit
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FIGURE 10.2 (a) Melnikov functions corresponding to the central energy regions
Ik shown in Fig. 10.1. (b) Effective potential V (g) and equilibrium probability
distributionweq . gs: energy minimum; gr : energy of unstable limit cycle; ga: energy
of stable limit cycle; gd: energy saddle; gu: energy maximum. System parameters:
Dx = −0.034, Dy = 0, Dz = 0.68, α = 0.014, P = 0.3, V = 5 · 10−25 m3,
µ0Ms = 1.76 T, T = 300 K, ha = 0.2ex, β/α = 0.675.

cycle and a stable equilibrium in the energy region I1. As a result, the
potential barrier for the exit from the basin of attraction around the stable
equilibrium is given by V1(gr) − V1(gs), whereas the potential barrier
for the exit from the basin of attraction around the stable limit cycle is
V1(gr) − V1(ga), where gs, ga, and gr denote the energy values of the
stable equilibrium, the stable limit cycle, and the unstable limit cycle,
respectively. The dependence of the potential barriers Vk(gr) − Vk(gs)
and Vk(gr) − Vk(ga) on the injected spin-polarized current is far from
straightforward, since the limit-cycle energies ga and gr are zeros of
Mk(g, β/α): Mk(ga, β/α) = 0 and Mk(gr, β/α) = 0. When the transition
from a stable fixed point to a stable state in another energy region is of
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FIGURE 10.3 Modifications of stationary distribution weq (bold lines) and
effective potential Vk(g) (thin lines) under increasing spin-polarized current and
fixed external field. Energy intervals corresponding to Ik(k = 1, 2, 3) are indicated.
System parameters: Dx = −0.034, Dy = 0, Dz = 0.68, α = 0.014, P = 0.3,
V = 5 · 10−25 m3, µ0Ms = 1.76 T, T = 300 K, ha = 0.08ex. gd: energy saddle. (a)
β/α = 0.5; (b) β/α = 0.66; (c) β/α = 0.8; (d) β/α = 1.5.

interest, the potential barrier is Vk(gd) − Vk(gs), where gd is the energy
value of the saddle, which is current independent. In this case, by taking
into account that β/α is proportional to the spin-polarized current density
Je, one finds from Eq. (10.211) that the potential barrier can be written in
the form:

V1(gd)− V1(gs) = (gd − gs) (1− Je/Jc) , (10.213)

where Jc is a constant with the dimensions of electric current density.
This linear dependence of the potential barrier on injected spin-polarized
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current is in agreement with the results of experiments concerning spin-
polarized current-induced switching in nanopillar devices [691,23].

The notion of potential barrier in the energy dynamics emerges in
a neat way when one investigates the transient solutions to Eq. (10.162)
(or equivalently Eq. (10.161)) in the limit of low temperatures where
µ∆Vk � 1. In this limit, one can follow the approach introduced by Brown
[135] to calculate the expression for the transition rate from one basin
of attraction to another [598]. To illustrate this method, we consider the
situation shown in Fig. 10.2, where two steady states exist in the central
region I1 of the graph G. The low-temperature limit implies that:

µ(V1(gr)− V1(ga))� 1, µ(V1(gr)− V1(gs))� 1. (10.214)

This is a case of strong interest in applications, where devices are

designed to be relatively stable against thermal fluctuations. Under these
conditions, equilibrium will be reached within each potential well much
faster than equilibrium between different potential wells. It is then
legitimate to assume that the distributions about the minima of Vk(g) are
of the form:

w1(g, t) = w1(gs, t) exp [−µ[V1(g)− V1(gs)]] , g ∈ [gs, g′r], (10.215)

w1(g, t) = w1(ga, t) exp [−µ[V1(g)− V1(ga)]] , g ∈ [g′′r , gd], (10.216)

where the potential wells around gs and ga cover the energy ranges [gs, g′r]
and [g′′r , gd], respectively. According to the assumption (10.214), w1(g, t) is
practically vanishing outside these two energy intervals.

With the above simplifications, the study of the energy dynamics is
reduced to the determination of the relative portions na(t) and ns(t) of
the distribution near ga and gs, respectively. These portions are defined
as:

ns(t) =
∫ g′r

gs

w1(g, t)T1(g) dg,

na(t) =
∫ gd

g′′r

w1(g, t)T1(g) dg.
(10.217)

The problem can be dealt with by using Kramers’ treatment of particle
escape from a potential barrier [322]. By using the approximations (10.215)
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and (10.216) in Eq. (10.217), we obtain the relations:

ns(t) = Zsw1(gs, t) exp [µV1(gs)] ,
na(t) = Zaw1(ga, t) exp [µV1(ga)] ,

(10.218)

where:

Zs =
∫ g′r

gs

exp [−µV1(g)]T (g) dg,

Za =
∫ gd

g′′r

exp [−µV1(g)]T (g) dg.
(10.219)

The letter Z is used in these equations to stress the fact that the integrals
represent portions of the partition function Z(µ) (see Eq. (10.203)). In the
energy interval [g′r, g

′′
r ], w1(g, t) is very small. Nevertheless, there must be

a net flow of probability through this region from the overpopulated to the
underpopulated well. Following Kramers, we assume that the probability
current in this region is constant:

J1(g, t) = J1(gr, t), ∀g ∈ [g′r, g
′′
r ], (10.220)

and, consequently, divergence-free:

∂

∂g
J1(g, t) = 0, ∀g ∈ [g′r, g

′′
r ]. (10.221)

In addition, we assume that there is negligbile probability current in the
direction of the high-energy regions I2 and I3, which implies:

J1(gd, t) = 0. (10.222)

The above assumptions imply that, during relaxation toward equilibrium,
there will be no appreciable change in the probability density wk(g, t)
in the regions [g′r, g

′′
r ] and [gd, gu], where wk(g, t) is vanishingly small.

Therefore, na(t) + ns(t) = 1 and the increase in na(t) results in the
corresponding decrease in ns(t) (or vice versa) and the exchange of
probability density occurs through the constant probability current flow
in the region [g′r, g

′′
r ].

The rate equations for ns(t) and na(t) are obtained by integrating the
Fokker–Planck equation (10.162) for the energy in the intervals [gs, g′r] and
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[g′′r , gd], and by using Eqs (10.217), (10.220) and (10.222). By also taking
into account that J1(gs, t) = 0 because M0

1 (gs) = 0), we end up with the
following equations:

d
dt
ns(t) = −J1(gr, t),

d
dt
na(t) = J1(gr, t). (10.223)

The quantity J1(gr, t) can be expressed in terms of na(t) and ns(t). To this
end, we rewrite Eq. (10.199) in the form:

µ

α

J1(gr, t)
M0

1 (g)
exp [µV1(g)] = − ∂

∂g
[w1(g, t) exp [µV1(g)]] ,

∀g ∈ [g′r, g
′′
r ], (10.224)

and then integrate this equation between [g′r, g
′′
r ]. We obtain:

w1(g′r, t) exp [µV1(g′r)]− w1(g′′r , t) exp [µV1(g′′r )] =
µ

α
J1(gr, t)Sr,

(10.225)

where:

Sr =
∫ g′′r

g′r

exp [µV1(g)]
M0

1 (g)
dg. (10.226)

Now, by using Eqs (10.215), (10.216) and (10.218), we obtain:

w1(g′r, t) exp [µV1(g′r)] = w1(gs, t) exp [µV1(gs)] =
ns(t)
Zs

, (10.227)

w1(g′′r , t) exp [µV1(g′′r )] = w1(ga, t) exp [µV1(ga)] =
na(t)
Za

. (10.228)

Then, by substituting Eqs (10.227)–(10.228) into Eq. (10.225), and by using
formulas (10.223) and (10.96), we end up with the following form of the
rate equation:

d
dt
ns(t) = − d

dt
na(t) =

ν2

2

(
na(t)
Za

− ns(t)
Zs

)
1
Sr
. (10.229)
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The last equation can be transformed into the canonical form:

d
dt
ns(t) = − d

dt
na(t) =

1
τas

na(t)− 1
τsa

ns(t), (10.230)

where:

1
τas

=
1

SrZa

ν2

2
,

1
τsa

=
1

SrZs

ν2

2
. (10.231)

These expressions represent the transition rates from the limit cycle to the
fixed point and from the fixed point to the limit cycle, respectively.

The quantities Za, Zs and Sr appearing in the transition rates (10.231)
can be approximately computed by using the approximations inherent
in the above derivation. Let us start with Zs (see Eq. (10.219)). Since the
exponential function is strongly attenuated for values of g away from gs,
we can make the following approximation:

Zs ≈
∫ +∞

gs

exp [−µV1(g)]T (g) dg

≈ T (gs)
∫ +∞

gs

exp [−µ[V1(gs) + V ′1(gs)(g − gs)]] dg

≈ T (gs) exp [−µV1(gs)]
∫ +∞

gs

exp [−µV ′1(gs)(g − gs)] dg

=
T (gs) exp [−µV1(gs)]

µV ′1(gs)
, (10.232)

where V ′1(g) is the derivative of V1(g). By using the same line of reasoning
and taking into account that V ′1(ga) = 0, we obtain:

Za ≈ T (ga)
∫ +∞

−∞
exp

[
−µ[V1(ga) +

1
2
V ′′1 (ga)(g − ga)2]

]
dg

= T (ga) exp [−µV1(ga)]

√
2π

µV ′′1 (ga)
, (10.233)
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where V ′′1 (g) is the second derivative of V1(g). Finally, by using Eq.
(10.226), we find:

Sr ≈
1

M0
1 (gr)

∫ +∞

−∞
exp

[
µ[V1(gr)−

1
2
|V ′′1 (gr)|(g − gr)2]

]
dg

=
exp [µV1(gr)]
M0

1 (gr)

√
2π

µ|V ′′1 (gr)|
. (10.234)

By using the last three equations in formulas (10.231), we arrive at:

1
τas

=
1

SrZa

ν2

2

=
αM0

1 (gr)
2πT1(ga)

√
V ′′1 (ga)|V ′′1 (gr)| exp [−µ[V1(gr)− V1(ga)]] ,

(10.235)
1
τsa

=
1

SrZs

ν2

2

= αM0
1 (gr)

V ′1(gs)
T1(gs)

√
µ|V ′′1 (gr)|

2π
exp [−µ[V1(gr)− V1(gs)]] .

(10.236)

The previous expressions for the transition rates can be written in the
classical Arrhenius form:

1
τsa

= csa exp [−µ[V1(gr)− V1(gs)]] ,

1
τas

= cas exp [−µ[V1(gr)− V1(ga)]] ,
(10.237)

where the coefficients csa and cas can be ascertained from Eqs (10.235) and
(10.236). It is worth observing that the various quantities related to V1(g)
in Eqs (10.235) and (10.236) can be expressed in terms of the Melnikov
functions:

V ′1(g) =
M1(g, β/α)
M0

1 (g)
, V ′′1 (g) =

∂

∂g

[
M1(g, β/α)
M0

1 (g)

]
. (10.238)
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Since both M1(g, β/α) and M0
1 (g) are zero at g = gs, the value V ′1(gs) has

to be understood as a limit:

V ′1(gs) = lim
g→gs

M1(g, β/α)
M0

1 (g)
. (10.239)

The rate equations previously derived are valid when the temperature
is sufficiently small. When this condition is not satisfied, the energy
diffusion equation (10.162) must be solved by more general methods. We
outline here a possible approach based on eigenfunction expansions. To
this end, it is convenient to use the form (10.199) of the probability current
density. This leads to the following form of the Fokker–Planck equation:

Tk(g)
∂

∂t
wk(g, t)

=
ν2

2
∂

∂g

{
M0
k (g) exp [−µVk(g)]

∂

∂g
[exp [µVk(g)]wk(g)]

}
. (10.240)

Let us introduce the new unknown:

φk(g, t) = wk(g, t) exp [µVk(g)] . (10.241)

In terms of this unknown, Eq. (10.240) becomes:

Tk(g) exp [−µVk(g)]
∂

∂t
φk(g, t)

=
ν2

2
∂

∂g

{
M0
k (g) exp [−µVk(g)]

∂

∂g
φk(g, t)

}
, (10.242)

and the function φk(g, t) has to satisfy the previously discussed boundary
conditions at the graph nodes:

φki(gdh
, t) = φkj (gdh

, t), ∀ ki, kj ∈ I(dh), h = 1, 2, . . . , (10.243)∑
k∈I(dh)

Jk(gdh
) =

∑
k∈I(dh)

[
ν2

2
M0
k (gdh

) exp [−µVk(gdh
)]
∂

∂g
φk(gdh

, t)
]

= 0. (10.244)
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By taking into account that:

∑
k∈I(dh)

M0
k (gdh

) = 0, (10.245)

one obtains from Eq. (10.244) that:

∂φki

∂g
(gdh

, t) =
∂φkj

∂g
(gdh

, t), ∀ ki, kj ∈ I(dh), h = 1, 2, . . . .

(10.246)

Equations (10.243) and (10.246) suggest that φk(g, t) is continuously
differentiable on the entire graph.

Equation (10.242) can be solved for any initial condition by using the
following eigenfunction expansion:

φk(g, t) = A0 +
∞∑
n=1

Anφ
(n)
k (g) exp [−λnt] , (10.247)

where φ(n)
k are the solution of the following eigenvalue problem:

∂

∂g

{
M0
k (g) exp [−µVk(g)]

∂

∂g
φ

(n)
k (g)

}
+λnTk(g) exp [−µVk(g)]φ(n)

k (g) = 0. (10.248)

The above eigenvalue problem for φ(n)
k (g) can be formulated in terms of

minimization of the quadratic functional:

D[φk(g)] =
ν2

2

∑
k

∫
Ik

{
M0
k (g) exp [−µVk(g)]

[
∂

∂g
φk(g)

]2
}

dg, (10.249)

under the constraint:

H[φk(g), φk(g)] =
∑
k

∫
Ik

{
Tk(g) exp [−µVk(g)] [φk(g)]2

}
dg

= const. (10.250)
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and the orthogonality conditions:

H[φk(g), φ(m)
k (g)] =

∑
k

∫
Ik

{
Tk(g) exp [−µVk(g)]

[
φk(g)φ(m)

k (g)
]}

dg

= 0, (10.251)

for m = 0, 1, . . . , n − 1. Once this problem is solved, the eigenvalue λn is
given by:

λn =
D[φ(n)

k (g)]

H[φ(n)
k (g), φ(n)

k (g)]
. (10.252)

It must be remarked that one eigenvalue is always λ0 = 0, which
corresponds to the stationary solution φ

(0)
k = A0 = 1/Z(µ). In many

applications, one is mostly interested in the next eigenfunction φ
(1)
k and

the corresponding eigenvalue λ1. The constraint (10.251) yields:

∑
k

∫
Ik

Tk(g) exp [−µVk(g)]φk(g) dg = 0. (10.253)

The outlined procedure can be implemented to compute λn and φ(n)
k .

10.5 STOCHASTIC MAGNETIZATION DYNAMICS IN UNIAXIAL
SYSTEMS

The results discussed in the previous sections acquire a particularly simple
form when the problem exhibits uniaxial symmetry, i.e., when geometrical
and physical properties are invariant with respect to rotations around a
given axis. The deterministic magnetization dynamics in uniaxial systems
has been analyzed from various perspectives in Chapters 5 and 7–9. We
state now the symmetry condition for the stochastic dynamics. Consider
Eqs (10.40) and (10.41) for the generalized stochastic magnetization
dynamics:

dm =
[
m× ∂gL

∂m
+ αm×

(
m× ∂Φ

∂m

)]
dt− νm× dW, (10.254)

where W(t) is the standard vector isotropic Wiener process. It is assumed
below that the z axis of the chosen cartesian reference frame is along the
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symmetry axis. Then, the system (or particle) has uniaxial symmetry if the
two potentials gL and Φ depend only on mz :

gL = gL(mz), Φ = Φ(mz). (10.255)

The equation governing the deterministic magnetization dynamics in
uniaxial systems can be obtained from Eqs (10.254) and (10.255) by setting
ν = 0 in Eq. (10.254). In cylindrical coordinates (mz, φ), one obtains the
following equations:

dmz

dt
= −α ∂Φ

∂mz
(1−m2

z), (10.256)

dφ
dt

= − ∂gL
∂mz

= ω0(mz). (10.257)

As a consequence of uniaxial symmetry, the equation for mz is decoupled
from the equation for the azimuthal angle φ. Steady states of deterministic
magnetization dynamics (fixed points and steady-state precessions) are
found by solving the above equation for the case of dmz/dt = 0. One
finds that there are always two fixed points at mz = ±1. Steady-state
precessions around the symmetry axis correspond to solutions mz0 of the
equation ∂Φ/∂mz = 0, and have angular frequency ω0(mz0). By studying
the stability of these steady-state solutions, it is possible to construct the
complete stability diagram of deterministic dynamics.

A particularly interesting case is the spin-transfer-driven magnetiza-
tion dynamics discussed in Section 9.6. In that case, uniaxial symmetry is
present when the free-layer easy axis, the fixed-layer easy axis, and the ex-
ternal magnetic field directions are all along the z axis perpendicular to the
layer plane, while the layer properties show uniaxial symmetry around
the same axis. The two potentials in Eq. (10.255) are given by the formu-
las:

gL(mz; haz) = −κeff
m2
z

2
− hazmz, (10.258)

Φ(mz; haz, β/α) = gL(mz; haz) +
β

α

ln(1 + cpmz)
cp

, (10.259)

where κeff = D⊥ − Dz and all the notations used have been defined in
Section 9.6. The stability diagram can be constructed in the control plane
(haz, β/α), as shown in Fig. 9.8.

When thermal fluctuations are present, stochastic magnetization
dynamics can be studied by using the Fokker–Planck equation in
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cylindrical coordinates for the conditional probability density w =
w(mz, φ, t|mz0, φ0, t0) [277]. By using the fact that gL and Φ do not depend
on φ, we arrive at the following equation:

∂

∂t
w =

ν2

2
∆Σw + α

∂

∂mz

(
[1−m2

z]
∂Φ
∂mz

w

)
− ω0

∂w

∂φ
, (10.260)

where ∆Σ is the Laplacian operator on the unit sphere:

∆Σw =
∂

∂mz

{
[1−m2

z]
∂w

∂mz

}
+

1
1−m2

z

∂2w

∂φ2
, (10.261)

and w has to satisfy the initial condition:

lim
t→t0

w = δ(mz −mz0)δ(φ− φ0), (10.262)

where δ(·) is Dirac delta function.
Since for uniaxial systems ∇ΣgL is everywhere aligned with ∇ΣΦ, it

is possible to derive the stationary distribution weq(mz, φ) in closed form.
By carrying out usual algebraic manipulations, one derives that due to the
axial symmetry weq does not depend on φ and it is given by:

weq(mz) =
1
Z

exp [−µΦ(mz)] , (10.263)

where µ = 2α/ν2, while:

Z = 2π
∫ 1

−1

exp(−µΦ)dmz. (10.264)

As before, the value of µ is determined from the fluctuation-dissipation
relation:

ν2

2α
=

kBT

µ0M2
sV

, (10.265)

where V is the volume of the magnetic particle.
It must be remarked again that Eq. (10.263) is not the equilibrium

Boltzmann distribution, although it is formally similar to it. This can be
seen from the fact that the exponential contains the generalized potential
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FIGURE 10.4 Modifications of weq (bold line) and Φ (thin line) under increasing
spin-polarized current and fixed external field. System parameters: Dz = 1,
D⊥ = 0, α = 0.01, P = 0.3, V = 5 · 10−25 m3, Ms = 800 kAm−1, T = 300 K,
haz = 1.6. (a) β/α = 0.66; (b) β/α = 1.06; (c) β/α = 1.46; (d) β/α = 1.86.

Φ instead of the free energy of the system. This distribution has to be
viewed as a stationary out-of-equilibrium distribution for a system driven
by external excitations. Consider, for example, the case of spin-transfer-
driven systems. In this case, Φ is given by Eq. (10.259) and is a function of
the injected current density. This reflects the fact that weq is the stationary
distribution of an open system driven out-of-equilibrium by the injection
of the spin-polarized current. The dependence of weq on the current, i.e.,
β/α, is presented in Fig. 10.4. In this figure, distributions are plotted as a
function of the polar angle θ defined as:

cos θ = mz. (10.266)
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In the case shown in Fig. 10.4(c), θ = π is a stable state while θ = 0 is not,
which means that despite the large positive field haz = 1.6 acting on the
nanomagnet, the effect of the spin-polarized current is strong enough to
destroy the stability of the θ = 0 state. Two limit cycles exist for θ0 ' 1.15
and θ0 ' 2.23, of which the former is stable while the latter is unstable. The
barrier ∆Φ separating these two stable states is ∆Φ ≈ 0.1, corresponding
to an energy barrier of the order of 10 kBT .

The presence of uniaxial symmetry implies that one is often interested
only in the dynamics of the angle θ. This dynamics is described by the
reduced Fokker–Planck equation which is obtained by integrating Eq.
(10.260) with respect to φ and by taking into account that gL and Φ
are independent of φ because of symmetry. As a result, one obtains the
following equation:

∂P

∂t
=

∂

∂θ

[(
α
∂Φ
∂θ
− ν2

2
cot θ

)
P +

ν2

2
∂P

∂θ

]
, (10.267)

for the reduced probability density P (θ), defined as:

P = sin θ
∫ 2π

0

w dφ. (10.268)

The Fokker–Planck equation (10.267) corresponds to the following
Langevin-type equation for θ:

dθ =
[
−α∂Φ

∂θ
+
ν2

2
cot θ

]
dt+ νdW (t), (10.269)

where W (t) represents the scalar Wiener process. Equation (10.269)
reveals an additional drift term related to the description of the
magnetization state in terms of θ.

Two important remarks are in order. First, the angle θ is directly
related to the energy gL and is itself a slow variable for the magnetization
dynamics. Equations (10.267) and (10.269) describe the stochastic
dynamics of this slow variable with no approximations. In other words,
in uniaxial systems the separation of slow and fast time scales is exact and
it is valid for any value of α. Second, the dynamics of θ is the classical
relaxation dynamics governed by the potential Φ. Thus, one can use
Kramer’s approach in the limit of high-energy barriers [135] to derive the
expression for the transition rate 1/τij from one stable state (θi) to another
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stable state (θj). One obtains:

1
τij

= αki sin θm

√
αkm
πν2

exp [−µ (Φ(θm)− Φ(θi))] , (10.270)

where the maximum of Φ is achieved at θm (θi < θm < θj), while
ki = Φ′′(θi), and km = −Φ′′(θm). For the case shown in Fig. 10.4(c), the two
stable states are θ1 ' 1.15 and θ2 = π, whereas the maximum corresponds
to the unstable limit cycle at θm ' 2.23. In physical units, the transition
frequencies are f12 ≈ 40 kHz and f21 ≈ 100 kHz.

The fact that in the uniaxial case the coefficients of the Fokker–Planck
equation (10.260) do not depend on φ can be used to simplify the solution
of this equation. Indeed, instead of using the expansion of the solution in
terms of the eigenfunctions of the entire Fokker–Planck operator LFP (see
Section 10.2), one can use Fourier series to represent the dependence of w
on φ and φ0:

w =
1

2π

∑
n

wn(mz, t|mz0, t0) exp [in(φ− φ0)] . (10.271)

The factor 1/2π is due to the identity:

δ(φ− φ0) =
1

2π

∑
n

exp [in(φ− φ0)] . (10.272)

The substitution of Eq. (10.271) into Eqs (10.260)–(10.261) leads to the
sequence of equations:

∂wn
∂t

= Anwn, (10.273)

where the differential operators An are defined as:

Anwn =
ν2

2
Lnwn + α

∂

∂mz

(
[1−m2

z]
∂Φ
∂mz

wn

)
− inω0wn, (10.274)

with:

Lnwn =
∂

∂mz

{
[1−m2

z]
∂wn
∂mz

}
− n2

1−m2
z

wn. (10.275)
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The functions wn have to satisfy the initial condition:

lim
t→t0

wn(mz, t|mz0, t0) = δ(mz −mz0). (10.276)

We denote by A†n the operator adjoint to An with respect to the inner
product:

(f, g) =
∫ +1

−1

f∗(mz)g(mz)dmz, (10.277)

where the symbol ∗ denotes complex conjugate operation. The general
solution to the problem (10.273)–(10.276) is given by the following
expansion [277]:

wn(mz, t|mz0, t0) =
∑
k

ϕn,k(mz)ψ∗n,k(mz0) exp [λn,k(t− t0)] ,

(10.278)

where λn,k, ϕn,k and ψn,k are solutions of the following (adjoint)
eigenvalue problems:

Anϕn,k = λn,kϕn,k, (10.279)

A†nψn,k = λ∗n,kψn,k. (10.280)

The expansion (10.278) is based on the assumption that ϕn,k and
ψn,k form a complete set of biorthogonal functions, which means that
(ψn,k1 , ϕn,k2) = δk1,k2 (δk,h is the Kronecker symbol), and:

∑
k

ϕn,k(mz)ψ∗n,k(mz0) = δ(mz −mz0). (10.281)

Indeed, if one considers the limit of (10.278) for t→ t0, and one takes into
account (10.281), one easily checks that wn satisfies the initial condition
(10.276).

By combining the expansions (10.271) and (10.278), we arrive at the
following solution of the Fokker–Planck equation for the conditional
probability density:
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w =
1

2π

∑
n

∑
k

ϕn,k(mz)ψ∗n,k(mz0) exp [in(φ− φ0)]

× exp [λn,k(t− t0)] . (10.282)

This formula shows that the derivation of the complete information
concerning the magnetization stochastic process for uniaxial magnetic
systems requires the solution of the eigenvalue problems (10.279) and
(10.280). These are one-dimensional eigenvalue problems in terms of mz .

10.6 AUTOCORRELATION FUNCTION AND POWER SPECTRAL
DENSITY

In this section, the mathematical machinery of the Fokker–Planck
equation will be used for the calculation of the autocorrelation function
and the power spectral density (PSD) of the stochastic magnetization
dynamics. The latter quantity is of special interest, because it is directly
accessible to measurements.

The autocorrelation function of the scalar function f(m) of the
stationary stochastic process m(t) is defined as follows:

Cf (τ) = 〈[f(m(t0 + τ))− 〈f(m)〉] [f(m(t0))− 〈f(m)〉]〉, (10.283)

where the symbol 〈·〉 denotes statistical averages. The average 〈f(m)〉 can
be computed by using the stationary distribution weq :

〈f(m)〉=
{

Σ
f(m)weq(m)dS. (10.284)

The computation of the autocorrelation function is performed by
using the joint distribution function w(m, t0 + τ ; m0, t0) as follows:

Cf (τ) =
{

Σ

{

Σ
[f(m)− 〈f(m)〉] [f(m0)

− 〈f(m)〉]w(m, t0 + τ ; m0, t0)dSdS0. (10.285)

where dSdS0 is a concise notation for the elements of surface integration
with respect to m and m0. The independence of this quantity from t0 is a
consequence of the stationarity of the process. Since:

w(m, t0 + τ ; m0, t0) = w(m, τ |m0, 0)weq(m0), (10.286)
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the autocorrelation function can be expressed as follows:

Cf (τ) =
{

Σ
f(m)

{{

Σ
f(m0) [w(m, τ |m0, 0)

− weq(m)]weq(m0)dS0}dS. (10.287)

As discussed in Section 10.2, the general solution of the Fokker–Planck
equation can be written as the following expansion:

w(m, t|m0, t0) =
∑
r

ϕr(m)ψ∗r (m0) exp [λr(t− t0)] , (10.288)

where the symbol ∗ denotes complex conjugate operation, ϕr(m) and
ψr(m0) are right and left eigenfunctions associated with the eigenvalue
λr of the Fokker–Planck operator:

LFPw =
ν2

2
∆Σw − divΣ [(m×∇ΣgL − α∇ΣΦ)w] . (10.289)

Thus, in principle, by solving the eigenvalue problem for LFP , and
by using Eq. (10.288) in Eq. (10.287), it is possible to compute the
autocorrelation function.

There is an alternative approach to the computation of the
autocorrelation function, which takes advantage of the structure of
formula (10.287). This approach is based on the use of the following
auxiliary function:

p(m, τ) =
{

Σ
f(m0) [w(m, τ |m0, 0)− weq(m)]weq(m0)dS0. (10.290)

This function depends on the forward coordinates (m, τ) through the
conditional probability density w(m, τ |m0, 0) and, for this reason, this
function is a solution of the Fokker–Planck equation:

∂p

∂τ
= LFPp. (10.291)

The initial condition for p(m, τ) can be determined by using the initial
condition for w. One obtains:

p(m, 0) =
{

Σ
f(m0) [δ(m−m0)− weq(m)]weq(m0)dS0

= weq(m) [f(m)− 〈f(m)〉] . (10.292)



336 CHAPTER 10 Stochastic Magnetization Dynamics

Unlike probability densities, p(m, τ) is not positive-definite, and it
actually satisfies the condition:

{

Σ
p(m, τ)dS = 0. (10.293)

This relation is true for the initial condition (10.292) and it remains true
at subsequent times because the Fokker–Planck equation preserves the
integral (10.293) during the time evolution.

Once the initial value problem defined by Eqs (10.291) and (10.292)
has been solved (this can be again accomplished by using eigenfunction
expansions), the autocorrelation function can be computed through the
formula:

Cf (τ) =
{

Σ
f(m)p(m, t)dS, (10.294)

which is the consequence of Eqs (10.287) and (10.290). The main advantage
of the outlined technique is that one has to solve the FP equation for only
one initial condition (10.292), while the direct use of Eq. (10.287) requires
the solution of the Fokker–Planck equation for w(m, τ |m0, 0) for any m0

in the initial condition.
Having found the autocorrelation function, the power spectral density

(PSD) can be immediately computed by using the fact that the Fourier
transform of the autocorrelation function:

Sf (ω) =
∫ +∞

−∞
Cf (τ) exp (−iωτ) dτ. (10.295)

In the case when the auxiliary function (10.290) is used, the PSD can be
found from the following equation:

Sf (ω) =
{

Σ
f(m)P (m, ω) dS, (10.296)

where P (m, ω) is the Fourier transform of p(m, τ):

P (m, ω) =
∫ +∞

−∞
p(m, τ) exp (−iωτ) dτ. (10.297)

The function P (m, ω) can be directly computed by using the equation:

iωP (m, ω)− LFPP (m, ω) = weq(m) [f(m)− 〈f(m)〉] , (10.298)
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which is derived from the Fokker–Planck equation (10.291) and the initial
condition (10.292). The last equation can be concurrently solved for
various values of ω.

In the sequel, we shall apply the above general considerations to two
special cases of stochastic magnetization dynamics in spin-transfer-driven
devices: (i) computation of power spectral density in uniaxial systems;
and (ii) computation of power spectral density in the framework of
stochastic processes on graphs. In the first case we shall use the technique
based on the eigenfunction expansion, while in the second case we shall
make use of the auxiliary function technique outlined above. It will be
apparent that the discussion is quite general in nature and is applicable to
more complicated situations as well.

We begin with the discussion of uniaxial spin-transfer systems in
which the symmetry axis, the anisotropy axis, and the magnetization
direction in the fixed layer are all parallel to the z axis. This case has
been discussed in the previous section. The magnetization dynamics in
the free layer is described by Eq. (10.254), where the two potentials gL
and Φ depend only on mz and have the analytical form given by Eqs
(10.258)–(10.259). The study of stochastic magnetization dynamics can be
carried out by solving the Fokker–Planck equation (10.260)–(10.261) for
the conditional probability density w = w(mz, φ, t|mz0, φ0, t0). The gen-
eral solution is given by the Fourier series (10.271), where the expansion
(10.278) is valid for the coefficients wn of the series. The stationary proba-
bility density weq(mz) is given by Eq. (10.263).

Once the conditional probability density is found, the joint probability
distribution can be obtained as w(mz, φ, τ |mz0, φ0, 0)weq(mz0) and then
can be used to compute the correlation functions of the components of
m(t). Here, we limit ourself to the analysis of the component mx(t). The
autocorrelation of mx is given by:

Rmx(t− t0) = 〈sin θ cosφ sin θ0 cosφ0〉, (10.299)

where it has been taken into account that mx = sin θ cosφ and 〈mx〉 = 0
due to the uniaxial symmetry. Since in the expansion (10.271) only the
terms with n = ±1 give rise to nonzero averages, Eq. (10.299) yields:

Rmx(t− t0) =
∑
k

Re
{

1
2
ak exp [λ1,k(t− t0)]

}
, (10.300)



338 CHAPTER 10 Stochastic Magnetization Dynamics

where:

ak =
[∫ +1

−1

√
1−m2

z ϕ1,k(mz)dmz

]
×
[∫ +1

−1

√
1−m2

z0 ψ1,k(mz0)weq(mz0)dmz0

]
. (10.301)

From Eq. (10.300), the power spectral density can be computed by taking
the Fourier transform.

The most difficult step in the outlined procedure is the solution of
the eigenvalues problems (10.279)–(10.280) for the operators An and A†n.
We addressed this problem numerically, by using the Chebychev pseudo-
spectral method to compute a matrix approximation of the operator An.
After obtaining this matrix, we numerically computed the eigenvalues
along with the associated right and left eigenvectors, and this allowed us
to arrive at an approximate expression for the autocorrelation (10.300).
In Fig. 10.5, we present the computed power spectral density or three
different values of β/α. Peaks in the PSD correspond to stable steady
states, which can be one of the fixed points mz = ±1 (with free
precessional frequencies of 4.6 and 27.4 GHz, respectively), or a steady-
state precession at a frequency in between those associated with mz =
±1. In Fig. 10.6, the linewidths of the various peaks are reported: the
linewidths are in the order of 0.1–1 GHz, in reasonable agreement with
experiments in nanopillars [398,578]. In the case of point-contact devices
[558,378], the measured linewidths are usually smaller. This can be partly
ascribed to the fact that in point-contact devices the volume of the free
layer is not precisely defined.

Now, we turn to the problem of computing the autocorrelation
function and the power spectral density in the framework of stochastic
processes on graphs. It has been shown that the vectorial stochastic
differential equation (10.139) is reduced to the following scalar stochastic
differential equation for the energy on the graph edge Ik (see Eq. (10.168)):

dg = bk(g)dt+ νσk(g)dW, (10.302)

where W (t) is the standard scalar Wiener process, while the coefficients
bk(g) and σk(g) are obtained through the appropriate averaging of
the right-hand side of Eq. (10.139) along curves Ck(g). Namely, these
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FIGURE 10.5 Effective potentials Φ(mz) (upper plots) and corresponding power
spectral densities (lower plots, presented in log-log scale) for a uniaxial spin-
transfer device, for three values of injected spin-polarized current: β/α =
−0.5, −0.64, −0.8. System parameters: haz = −0.7, κeff = 0.5, cp = 0.5, α = 0.01,
T = 300 K, Ms = 6.5 · 105 A/m, V = 80 × 40 × 3.125 nm3 = 10−23 m3. Bold
symbols P,A,O have same meanings as in Fig. 9.8.

FIGURE 10.6 −3dB linewidth of power spectral density peaks versus β/α. “+”:
linewidth of peaks associated with the state mz = +1; “ ”: linewidth of peaks
associated with state mz = −1; “◦”: linewidth of peaks associated with self-
oscillations. Applied field and other system parameters are the same as in Fig. 10.5.
The frequencies denoted as f+ and fO are the values of Kittel frequency around
states mz = +1 and mz = −1, respectively. When a peak is not present the
linewidth is set to zero.
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coefficients are given by the formulas:

bk(g) = −αMk(g)
Tk(g)

+
ν2

2Tk(g)
∂M0

k (g)
∂g

, (10.303)

σk(g) =

√
M0
k (g)

Tk(g)
, (10.304)

where:

Tk(g) =
∮
Ck(g)

dl
|∇Σg|

, M0
k (g) =

∮
Ck(g)

|∇ΣgL|dl, (10.305)

Mk(g, β/α) = M0
k (g) +

β

α

∮
Ck(g)

[
m× (m× ep)
1 + cpm · ep

· n
]

dl. (10.306)

The stochastic differential equation (10.302) defines a Markov process on
the entire graph, provided the appropriate gluing (boundary) conditions
[265,266] are imposed at each node (vertex) of the graph G.

Next, we proceed to the discussion of calculation of the autocorrela-
tion function and the power spectral density of some function f(g). It can
be shown that the calculation of the autocorrelation and spectral density
of some measurable quantity F (m) is reduced to the calculation of the au-
tocorrelation and power spectral density of the following function defined
on the graph G:

f(g) =
1

Tk(g)

∫
Ck(g)

F (m)
dl
|∇Σg|

. (10.307)

By definition, the autocorrelation Cf (τ) of f(g) is:

Cf (τ) = 〈[f(g)− 〈f(g)〉] [f(g′)− 〈f(g′)〉]〉, (10.308)

where g and g′ are the energy values at times t = τ and t = 0, respectively,
while as before the notation 〈·〉 is used for (statistical) expected values.
Autocorrelation Cf (τ) can be expressed in the integral form as follows:

Cf (τ) =
∫ ∫

f(g)f(g′) [ρ(g, τ ; g′, 0)− ρeq(g)ρeq(g′)] dgdg′,

(10.309)
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where ρ(g, τ ; g′, 0) is the joint probability density function, ρeq(g) is the
stationary distribution function, while integration with respect to g and g′

are performed over the entire graph G.
The joint probability is given by:

ρ(g, τ ; g′, 0) = ρ(g, τ |g′, 0)ρeq(g′), (10.310)

where ρ(g, τ |g′, 0) is the transition probability function. This function
satisfies the following Fokker–Planck equation on each edge Ik of the
graph:

∂

∂τ
ρk(g, τ |g′, 0) = L̂(k)

g ρk(g, τ |g′, 0), (10.311)

where:

L̂(k)
g ρk = − ∂

∂g
[bk(g)ρk(g)] +

ν2

2
∂2

∂g2

[
σ2
k(g)ρk(g)

]
. (10.312)

The transition probability function satisfies the following initial condition:

ρk(g, τ ; g′, 0)|τ=0 = δ(g − g′), (10.313)

and special boundary conditions at each vertex of the graph. These
boundary conditions express the conservation of probability current
at each vertex as well as the continuity of the transition probability
normalized by Tk(g). For instance, this transition probability continuity
at the vertex d1 in Fig. 4.2(b) is expressed as follows:

ρ1(gd1)
T1(gd1)

=
ρ2(gd1)
T2(gd1)

=
ρ3(gd1)
T3(gd1)

, (10.314)

where gd1 is the energy value corresponding to the saddle d1.
The stationary distribution function ρeq(g) satisfies the stationary

Fokker–Planck equation:

L̂(k)
g ρeqk (g) = 0. (10.315)

We note from Eqs (10.309) and (10.310) that, in order to compute
the autocorrelation Cf (τ), the transition probability function ρ(g, τ |g′, 0)
needs to be computed for all initial conditions g′ (see formula (10.313)).
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However, this deficiency can be completely circumvented by introducing
an appropriately defined auxiliary (“effective”) distribution function. To
this end, by using Eq. (10.310), we shall rewrite formula (10.309) as
follows:

Cf (τ) =
∫
f(g)

{∫
f(g′) [ρ(g, τ |g′, 0)− ρs(g)] ρs(g′)dg′

}
dg.

(10.316)

Now, we introduce the effective distribution function p(g, τ):

p(g, τ) =
∫
f(g′) [ρ(g, τ |g′, 0)− ρs(g)] ρs(g′) dg′, (10.317)

and write formula (10.316) in the form:

Cf (τ) =
∫
f(g)p(g, τ) dg. (10.318)

Thus, if the effective distribution p(g, τ) is somehow found, then
Cf (τ) can be easily computed. Next, we shall derive the initial-boundary
value problem for p(g, τ). It is clear from Eqs (10.312) and (10.315) that
the difference ρ(g, τ |g′, 0) − ρeq(g) satisfies Eq. (10.311). By replacing
ρ(g, τ |g′, 0) by ρ(g, τ |g′, 0) − ρeq(g) in Eq. (10.311), multiplying the latter
equation by f(g′)ρs(g′), and next integrating it with respect to the
“backward” variable g′ over the graph G, we derive the following
equation for p(g, τ):

∂

∂τ
pk(g, τ) = L̂(k)

g pk(g, τ). (10.319)

Next, by substituting the initial condition (10.313) into formula (10.317),
we derive the following initial condition for the effective distribution
function:

pk(g, 0) = [f(g)− 〈f(g)〉] ρeqk (g). (10.320)

It is also clear that the boundary conditions for p(g, τ) at the vertices of
the graph G will be the same as the boundary conditions for ρ(g, τ |g′, 0).
This is because these boundary conditions are formulated in terms of the
“forward” variable g, while the transformation (10.317) from the transition
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probability function to the “effective” probability function involves only
integration over the “backward” variable g′.

Thus, appreciable simplification of computation of Cf (τ) has been
achieved. Indeed, the initial boundary value problem (10.319)–(10.320)
needs to be solved only once, and then Cf (τ) can be computed by using
formula (10.318), i.e., by means of only one integration. This simplification
can be translated into the simplification of computation of power spectral
density Sf (ω), which is related to Cf (τ) as follows:

Sf (ω) =
∫ +∞

−∞
Cf (τ) exp (−iωτ) dτ. (10.321)

By using formulas (10.318) and (10.321), we derive:

Sf (ω) =
∫ +∞

−∞
f(g)P (g, ω) dg, (10.322)

where:

P (g, ω) =
∫ +∞

−∞
p(g, τ) exp (−iωτ) dτ. (10.323)

From the definition (10.323) and the initial-boundary value problem
(10.319)–(10.320), we derive the following ordinary differential equations
for P (g, ω) on the graph edges:

iωPk(g, ω) + L̂(k)
g Pk(g, ω) = [f(g)− 〈f(g)〉] ρeqk (g). (10.324)

Thus, by solving the ordinary differential equations (10.324) subject to the
same boundary vertex conditions, the function P (g, ω) can be calculated.
Then by using formula (10.322), the power spectral density of f(g) is
computed.

To illustrate the presented technique, we apply it to the uniaxial spin-
transfer device considered in Section 10.5, for which anisotropy axis,
applied field, and spin polarization are all aligned along the symmetry
axis ez . The energy of the system is given by Eq. (10.258), where the
constant κeff = D⊥ − Dz takes into account both crystalline and shape
anisotropies, while haz is the amplitude of the external magnetic field
applied along the z axis. In this case the graph has two branches. The
magnetization component mz is a one-to-one function of g on each edge
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of the graph:

mz = mz,k(g) =
(
−haz ±

√
h2
az − 2κeffg

)
/Dz, k = {1, 2}, (10.325)

where the two values of k correspond to “+” and “−” signs, respectively.
Note that the energy intervals associated with the two edges of the graph
are −(haz + κeff/2) ≤ g ≤ h2

az/(2κeff), and haz − κeff/2 ≤ g ≤ h2
az/(2κeff),

respectively. The potential Φ for spin-transfer effects is given by
Eq. (10.259).

After appropriate algebraic manipulations of Eqs (10.305)–(10.306), it
can be shown that:

Tk(g) =
2π

|κeffmz,k(g) + haz|
= 2πsk

[
∂gL
∂mz

(mz,k(g))
]−1

, (10.326)

M0
k (g) = 2π [1−mz,k(g)]2 |κeffmz,k(g) + haz|

= [1−mz,k(g)]2 2πsk

[
∂gL
∂mz

(mz,k(g))
]
, (10.327)

Mk(g, β/α) = M0
k (g) +

β

α
[1−mz,k(g)]2

2πsk
(1 + cpmz,k(g))

= [1−mz,k(g)]2 2πsk
∂Φ
∂mz

(mz,k(g)), (10.328)

where sk is the sign of ∂gL/∂mz .
The functions in Eqs (10.326)–(10.328) are continuous on the entire

graph due to the continuity of the function mz,k(g). By substituting Eqs
(10.326)–(10.328) into Eqs (10.303), (10.304) and (10.312), one obtains the
following Fokker–Planck equation:

∂ρk
∂t

= α
∂

∂g

{(
∂gL
∂mz

(mz,k(g))
)

[1−mz,k(g)]2
∂Φ
∂mz

(mz,k(g))ρk

}
+
ν2

2
∂

∂g

{∣∣∣∣ ∂gL∂mz
(mz,k(g))

∣∣∣∣ [1−mz,k(g)]2

× ∂

∂g

(∣∣∣∣ ∂gL∂mz
(mz,k(g))

∣∣∣∣ ρk)} . (10.329)

One can derive the stationary probability, which is given by:

ρeqk (g) =
1
Z

∣∣∣∣ ∂gL∂mz
(mz,k(g))

∣∣∣∣−1

exp [−µΦ(mz,k(g))] , (10.330)
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FIGURE 10.7 Power spectral density of the stochastic process mz(g) for the three
values of β/α: β/α = −1.0 (dash-dotted line), β/α = 0 (dashed line), β/α = 0.5
(continuous lines). Other parameters: haz = −0.2, κeff = 0.5, cp = 0.5, α = 0.01,
T = 300 K, V = 4.8 · 10−24m3, Ms = 6.5 · 105 A/m.

where µ = 2α/ν2 and Z is a normalizing constant such that the integral of
ρeqk over the entire graph is one.

By using the technique described above, we have computed the
power spectral density of the function mz(g) for three different values of
the spin-polarized injected current, i.e., β/α. The results are presented in
Fig. 10.7. They reveal that the linewidth tends to decrease as a result of the
current injection.

10.7 STOCHASTIC MAGNETIZATION DYNAMICS IN
NONUNIFORMLY MAGNETIZED FERROMAGNETS

In this section, we consider the problem of thermal fluctuations of
magnetization in nonuniformly magnetized objects. In this case, the
magnetic state is described by the magnetization vector field m(r, t) and
the equation governing the stochastic dynamics of m(r, t) is obtained
by adding a spatially distributed random magnetic torque to the
deterministic equation. This leads to the following stochastic equation:

∂m
∂t

= −m× heff − αm× (m× heff)− νm× hN (r, t), (10.331)

where hN (r, t) is a random field and ν is the constant measuring the
intensity of thermal fluctuations. We recall that, in the case of spatially
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distributed magnetic systems, heff is an operator which is defined as the
variational derivative of the free energy functional gL(m(.); ha):

heff = −δgL
δm

, (10.332)

where:

gL(m(.); ha) =
1
V

∫
Ω

[
1
2
|∇m|2 + ϕAN (m)

− 1
2
hM ·m− ha ·m

]
dV. (10.333)

In this equation, ϕAN (m) is the anisotropy energy density, hM and ha
are the demagnetizing and applied fields, Ω indicates the region occupied
by the object, and lengths are measured in units of the exchange length

lEX =
√

2A/µ0M2
s. In particular, V represents the normalized volume

of the object, measured in units of l3EX . Finally, homogeneous Neumann
boundary conditions ∂m/∂n = 0 are imposed at the boundary of Ω.

The random field hN (r, t) is assumed to be a normalized Gaussian
white-noise random field characterized by the following mean value and
autocorrelation function:

〈hN (r, t)〉 = 0,
〈hN,i(r, t)hN,j(r′, t′)〉 = δijδ(t− t′)δ(r− r′),

(10.334)

where i, j are indexes labeling cartesian components.
The stochastic dynamics (10.331) driven by the white noise (10.334)

is defined in an infinite-dimensional space. The mathematical theory of
infinite-dimensional SDEs is not completely established and it is very
difficult to give an appropriate mathematical meaning to the solutions
of such stochastic differential equations. For this reason, instead of the
continuous stochastic process (10.331), a finite-dimensional formulation
will be introduced in terms of an appropriate finite dimensional
representation of the vector field m(r). In this representation, m(r) is
specified in a finite number of points in space, and values in intermediate
points are computed by interpolation. Other types of discretization might
be devised as well, by using, for example, spectral representations of
m(r) by means of a truncated Fourier series. As it is often done, the
discretization will be used under the tacit assumption that the discretized
equation can approximate the evolution of the actual vector field m(r, t)
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with the desired accuracy, even though this assumption cannot be given a
rigorous mathematical justification.

In accordance with the above discussion, we introduce the following
discretized version of Eq. (10.331). We consider a partition of the region Ω
in N cells Ωk with volume Vk. The vector field m(r, t) is described by the
collection of vectors Mk(t) representing the integrals of m(r, t) over each
cell:

Mk(t) =
∫

Ωk

m(r, t)dV. (10.335)

Similarly, the discretized effective field is defined as the collection of the
average effective fields over each cell:

heff;k =
1
Vk

∫
Ωk

heff(r, t)dV. (10.336)

We note that Mk(t) has the meaning of the normalized magnetic moment
associated with the cell Ωk. It is also assumed that the cells Ωk are small
enough that m(r, t) can be considered spatially uniform in Ωk. It is usually
expected that m(r, t) is spatially uniform over spatial scales comparable
with the exchange length lEX . Thus, the uniformity assumption implies
that the cells should have a diameter in the order of unity or smaller.

The uniformity assumption and the fact that |m(r, t)| = 1 lead to the
following constraint on the magnitude of the vectors Mk(t):

|Mk(t)| = Vk. (10.337)

Next, we proceed to the careful discussion of the discretization of the
thermal field hN (r, t). The discretized random field hN ;k(t) is introduced
as the spatial average of the continuous random field over the cell Ωk.
Namely, the following definition is adopted:

νkhN ;k(t) =
1
Vk

∫
Ωk

νhN (r, t)dV, (10.338)

where the constants νk are to be determined. From Eq. (10.334), one can
readily show that the processes hN ;k(t) are zero-mean gaussian white-
noise stochastic processes in time. In addition, the stochastic processes
hN ;k(t) and hN ;h(t) associated with two distinct cells are statistically
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independent. We shall use the following normalization conditions:

〈hN ;k,i(t)hN ;h,j(t′)〉 = δkhδijδ(t− t′). (10.339)

In this equation, k and h are indexes denoting cells, while i and j
denote cartesian components. To guarantee that the conditions (10.339)
are satisfied, we have to choose the appropriate value of νk in Eq. (10.338).
To this end, let us consider the following identity, which can be readily
derived from Eq. (10.334):〈∫

Ωk

hN,i(r, t)dV
∫

Ωh

hN,j(r′, t′)dV ′
〉

= Vkδkhδijδ(t− t′). (10.340)

By comparing the last equation with Eqs (10.338) and (10.339), one obtains
the value of the constant νk:

ν2
k =

ν2

V 2
k

Vk =⇒ νk =
ν√
Vk
. (10.341)

By using the discretization outlined above, we arrive at the following
set of discretized stochastic equations:

dMk

dt
= −Mk × heff;k −

α

Vk
Mk × (Mk × heff;k)

− ν√
Vk

Mk × hN ;k(t). (10.342)

The analysis of the coupled stochastic differential equations (10.342)
can be carried out in the same way as the one presented in Section 10.1 for
the stochastic magnetization dynamics in uniformly magnetized objects.
Equation (10.342) can be rewritten in a different form by dividing both
sides by Vk. This yields:

dmk

dt
= −mk × heff;k − αmk × (mk × heff;k)

− ν√
Vk

mk × hN ;k(t), (10.343)

where mk(t) represents the average magnetization in the kth cell:

mk(t) =
1
Vk

∫
Ωk

m(r, t)dV. (10.344)
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This quantity satisfies the normalization condition:

|mk(t)| = 1. (10.345)

Discretized LL equations in the form Eq. (10.343) are commonly
used as the starting point in computational micromagnetics studies.
The form (10.342), on the other hand, turns out to be more convenient
for the theoretical considerations that are presented in the sequel. This
convenience is due to the presence of the factors 1/Vk and 1/

√
Vk

respectively in the damping and fluctuation terms in Eq. (10.342). The
specific form of these factors simplifies the derivation of fluctuation-
dissipation relations.

The discretized free energy GL(M1, . . . ,MN ; ha) for the model must
be defined in such a way that its gradient yields the discretized effective
field, namely:

heff;k,i = − ∂GL

∂Mk,i
, (10.346)

where i labels the cartesian components. The energy GL is an
approximation of the free energy functional gL(m; ha):

GL(M1, . . . ,MN ; ha) ≈ V gL(m(.); ha), (10.347)

where V is the volume of the magnetic object. To write formula (10.346)
in concise vector form, we introduce the following vectors in the R3N

Euclidean space:

M = (MT
1 , . . . ,M

T
N )T

= (M1,1,M1,2,M1,3, . . . ,MN,1,MN,2,MN,3)T , (10.348)

Heff = (hTeff;1, . . . ,h
T
eff;N )T

= (heff;1,1, heff;1,2, heff;1,3, . . . , heff;N,1, heff;N,2, heff;N,3)T , (10.349)

HN = (hTN ;1, . . . ,h
T
N ;N )T

= (hN ;1,1, hN ;1,2, hN ;1,3, . . . , hN ;N,1, hN ;N,2, hN ;N,3)T , (10.350)

where superscript T indicates transposition. With these notations, Eq.
(10.346) can be written as:

Heff = − ∂

∂MGL(M). (10.351)
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In addition, we introduce the following block-diagonal matrices:

Λ(M) =


Λ(M1) 0 · · · 0

0 Λ(M2) 0 . . . 0
...

. . .
0 · · · 0 Λ(MN )

 , (10.352)

D =


V1I3 0 · · · 0

0 V2I3 0 . . . 0
...

. . .
0 · · · 0 VNI3

 , (10.353)

where Λ(·) represents the vector product:

Λ(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 , (10.354)

while I3 is the 3× 3 identity matrix.
By using the above notations, the discretized Eq. (10.342) can be

written as an evolution equation in R3N Euclidean space:

d
dt

M = Λ(M) · ∂GL

∂M + αD−1 · Λ2(M)

· ∂GL

∂M − νD−1/2 · Λ(M) ·HN , (10.355)

where we recall that HN is a 3N -dimensional normalized white-noise
stochastic process. Equation (10.355) can be written in the usual SDE
notation:

dM = V (M) dt+ σ(M) · dW(t), (10.356)

where:

V (M) = Λ(M) · ∂GL

∂M + αD−1 · Λ2(M) · ∂GL

∂M , (10.357)

σ(M) = −νD−1/2 · Λ(M). (10.358)
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In Eq. (10.356), the vector field V (M) represents the deterministic drift
term, while W(t) is the standard 3N -dimensional Wiener process with
uncorrelated components.

Equation (10.356) is formally similar to Eq. (10.40), which describes
the stochastic magnetization dynamics in uniformly magnetized objects.
Thus, all the considerations of Section 10.1 related to the multiplicative
nature of the noise and the necessity of specifying the type of stochastic
calculus (Itô’s or Stratonovich’s) are applicable to Eq. (10.356) as well. In
particular, if we require that the stochastic dynamics described by Eq.
(10.356) has to preserve the constraint |Mk| = Vk, we have to adopt the
Stratonovich calculus. With this adoption, the stochastic dynamics of M
described by Eq. (10.356) takes place on the following 2N -dimensional
manifold (immersed in R3N ):

ΣNM = Σ(V1)⊗ Σ(V2)⊗ · · · ⊗ Σ(VN ), (10.359)

where Σ(R) denotes the ordinary two-dimensional sphere with radius R,
while “⊗” denotes the cartesian product. In other terms, we have that:

M ∈ ΣNM =⇒M1 ∈ Σ(V1),M2 ∈ Σ(V2), . . . ,MN ∈ Σ(VN ). (10.360)

By using the correspondence between the Stratonovich SDE and
the Fokker–Planck equation, we arrive at the following Fokker–Planck
equation:

∂w

∂t
= −divM J . (10.361)

The probability current J is defined as:

J = V (M)w − 1
2
σ (M) ·

{
divM [σ (M)w]

}T
, (10.362)

where T denotes matrix transposition, while w is the conditional
probability density:

w = w (M, t|M0, t0) . (10.363)

The divergence divMJ can be written as:

divMJ =
∑
k,i

∂

∂Mk,i
Jk,i =

∑
k

divMk
J k, (10.364)
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where J k is the three-dimensional vector:

J k = (Jk,1,Jk,2,Jk,3)T . (10.365)

By using the specific mathematical forms of V (M) and σ (M) (see
Eqs (10.357)–(10.358)) in Eq. (10.362), we arrive at the following expression
for the probability currents J k:

J k =
[
Mk ×

∂GL

∂Mk
+

α

Ωk
Mk ×

(
Mk ×

∂GL

∂Mk

)]
w

+
ν2

2Ωk
Mk ×

(
Mk ×

∂w

∂Mk

)
, (10.366)

which can be summarized in the vector formula:

J = Λ(M) ·
[(

∂GL

∂M + αD−1 · Λ(M) · ∂GL

∂M

)
w

+
ν2

2
D−1 ·

(
divM (·Λ(M)w)

)T]
. (10.367)

The probability current J (M) is tangential to the manifold ΣNM (see Eq.
(10.359)). Indeed, it can be verified that there are N linearly independent
vectors, orthogonal to the tangent space of the manifold at the point
M = (M1, . . . ,MN ), given by:

f1(M) = (M1, . . . ,0),
f2(M) = (0,M2, . . . ,0),

. . . ,

fN (M) = (0, . . . ,MN ).

(10.368)

Thus, f1(M), . . . , fN (M) is a basis of the vector space orthogonal (in the
3N -dimensional Euclidean space) to the tangent space of the manifold ΣNM
at M = (M1, . . . ,MN ). To verify that the vector J (M) is tangential to
ΣNM, it is sufficient to check that it is orthogonal to all f1, . . . , fN . Indeed:

fk(M) ·J (M) = 0, k = 1, 2, . . . , N, (10.369)

because:

fk(M) · Λ(M) = 0, k = 1, 2, . . . , N. (10.370)
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The above result shows that the vectors f1(M), . . . , fN (M) are a basis
of the kernel of the matrix Λ(M). This reveals an important property of
the Fokker–Planck equation: if the distribution w is different from zero
only at points on the manifold ΣNM, the evolution equations (10.361)–
(10.367) for w will preserve this property. In other terms, there will be
no diffusion of probability density outside the manifold. This fact has
important consequences in the statistical mechanics of the problem. In
fact, one can prove that:

{

ΣN
M

w(M, t)dSN =
{

ΣN
M

w(M, t = 0)dSN , (10.371)

for any time instant t > 0. Therefore, one can impose the following
normalization condition on w:

{

ΣN
M

w(M, t)dSN = 1. (10.372)

The stationary solution to the Fokker–Planck equation (10.361)–(10.367)
is obtained by solving the equation:

divMJ = 0. (10.373)

We shall look for a solution in the form:

weq(M) = F

(
GL(M) +

∑
k

λk
2
|Mk|2

)
= F (HL(M)) , (10.374)

where:

HL(M) = GL(M) +
∑
k

λk
2
|Mk|2, (10.375)

while λk are arbitrary multipliers related to the constraints |Mk| = Vk.
Consider the conservative part of the drift:
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V0 (M) = Λ(M) · ∂GL

∂M . (10.376)

First, we intend to prove that:

divM [V0 (M)weq] = weqdivMV0 (M) + V0 (M)
·gradMweq = weqdivMV0 (M) . (10.377)

The proof proceeds as follows. According to Eq. (10.374), we have:

gradMweq = F ′ (HL(M)) gradMHL, (10.378)

which implies that:

V0 (M) · gradMHL =
(
∂HL

∂M

)T
· Λ(M) · ∂GL

∂M = 0. (10.379)

The last equality is established by using the antisymmetric nature of
Λ(M), Eq. (10.370), and the identity:

∂

∂M

(
1
2

∑
k

|Mk|2
)

= fk(M). (10.380)

Since the diagonal blocks of the matrix Λ represent cross-products, from
formula (10.376) we derive:

divMV0 (M) =
∑
k

divMk

(
Mk ×

∂GL

∂Mk

)
= 0. (10.381)

By using this formula in Eq. (10.377), we find:

divM [V0 (M)weq] = 0. (10.382)

Thus, the problem of finding the stationary solution of Eq. (10.361) is
reduced to the solution of the following equation:

divM

{[
αD−1 · Λ2(M) · ∂GL

∂Mweq
]

+
ν2

2
D−1 · Λ(M) ·

[
divM (Λ(M)weq)

]T} = 0. (10.383)
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It is demonstrated below that this solution is given by the function (10.374)
because this function satisfies the following “detailed balance” equation:

[
αD−1 · Λ2(M) · ∂GL

∂Mweq
]

+
ν2

2
D−1 · Λ(M) ·

[
divM (Λ(M)weq)

]T = 0. (10.384)

We first observe that:

divM (Λ(M)weq) =
∑
k

divMk
(Λ(Mk)weq)

= weq
∑
k

divMk
Λ(Mk) +

∑
k

Λ(Mk) · ∂w
eq

∂Mk
. (10.385)

Then, by using the fact that:

divMk
Λ(Mk) = 0, (10.386)

and by taking into account formulas (10.374) and (10.385), Eq. (10.384) can
be rewritten in the form:

D−1 · Λ2(M) ·
(
α
∂GL

∂MF (HL) +
ν2

2
∂F (HL)
∂M

)
= 0. (10.387)

By factoring out F (HL), one arrives at the equation:

F (HL)D−1 · Λ2(M) ·
(
α
∂GL

∂M +
ν2

2
∂ log (F (HL))

∂M

)
= 0, (10.388)

i.e.:

α
∂GL

∂M +
ν2

2
∂ log (F (HL))

∂M =
∑
k

λkfk(M), (10.389)
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where the fact has been used that the vectors fk form a basis of the kernel
of the matrix Λ(M). This finally yields the solution:

weq(M) = F (HL(M))

= C exp

[
−µGL(M) +

∑
k

λk
2
|Mk|2

]
, (10.390)

where µ = 2α/ν2.
The constant C is obtained from the normalization condition:

{

ΣN
M

weq(M)dSN = 1. (10.391)

The quantities |Mk|2 in Eq. (10.390) are all constants and thus they can be
included into the constant C itself. By using Eq. (10.391), we conclude that
the distribution function can be written in the form:

weq(M) =
1

Z(µ)
exp [−µGL(M)] , (10.392)

where Z(µ) is the “partition function”:

Z(µ) =
∫

ΣN
M

exp [−µGL(M)] dS. (10.393)

The stationary distribution (10.392) must coincide with the Boltzmann
distribution:

wB(M) = C exp
[
−µ0M2

sl
3
EX

kBT
GL(M)

]
, (10.394)

where the normalization constant µ0M2
s has been included to measure

energy in physical units. By comparing Eqs (10.392) and (10.394), we end
up with the following fluctuation-dissipation relation:

ν2 =
2αkBT
µ0M2

sl
3
EX

, (10.395)

which permits one to determine the noise intensity in the original
LLG equation. This result is completely independent of the discretization
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procedure, because formula (10.395) does not contain any quantity related
to the cell partition. This is consistent with the meaning of the quantity ν.

Finally, by using Eq. (10.395) in Eq. (10.341), one finds:

νk =

√
2αkBT

µ0M2
sl

3
EXVk

, (10.396)

where l3EXVk is the volume of the kth cell in physical units. This formula
gives the intensity of the noise terms in the spatially discretized LLG
equation.

The analysis of the evolution of the conditional probability density
through the solution of the Fokker–Planck equation is quite difficult,
due to the very high dimensionality of the state space. The study of
fluctuations in nonuniformly magnetized bodies can be carried out by
direct numerical integration of Eqs (10.356)–(10.358). In applications,
ferromagnetic devices are designed to be relatively stable against
thermal fluctuations. This means that stable magnetization states are
separated by large energy barriers and thermally activated transitions
between these states occur on very long time scales. Under these
conditions, magnetization dynamics has very different time scales of
evolution: stochastically perturbed precessional dynamics occurs on the
picosecond time scale, while thermally activated dynamics may occur
on the microsecond or millisecond time scales. Since a correct stochastic
time integration requires an accurate description also of the fast time
scale, direct numerical simulations of magnetization dynamics may
become computationally very expensive. The study of thermally activated
transitions under these weak noise conditions can be carried out by using
appropriate asymptotic techniques, such as nudged elastic band method
[223], string method [235], and action functional method [412]. These
techniques provide estimates for the probability of certain transitions.
The probability is estimated in terms of exponential factors which can
be computed by determining the most probable dynamic path to realize
the transition under investigation. This issue is related to the area of
mathematics referred to as large deviation theory. A discussion of this
issue goes beyond the scope of this book.



CHAPTER 11

Numerical Techniques for
Magnetization Dynamics

Analysis

11.1 MID-POINT FINITE-DIFFERENCE SCHEMES

Due to the nonlinear nature of the Landau–Lifshitz–Gilbert or
Landau–Lifshitz equation, analytical solutions can be derived in very
few special cases [394,459,81]. For this reason, the most general and
mostly used method to study magnetization dynamics is to solve
the LLG equation numerically. Typically, the dynamic problem is first
discretized in space by using finite-difference or finite element methods
[258]. This leads to a discretized version of the micromagnetic free
energy and to a corresponding system of ordinary differential equations
(ODEs). Then, this system of ODEs is numerically integrated by using
appropriate time-stepping techniques. While the spatial discretization is
carried out by preserving the main properties of the energy functional
gL(m(.); ha), little attention is paid to the preservation of the unique
features of LLG dynamics. In this regard, the main emphasis in this
chapter is on the derivation of finite-difference schemes that preserve
the qualitative features of time-continuous magnetization dynamics.
The main structural feature of LLG dynamics which is important to
preserve is the conservation of magnetization magnitude. In addition, it
is desirable to preserve other intrinsic properties of the dynamics such as
the monotonic decrease of free energy under constant external fields, or
the Hamiltonian structure in the limit of zero damping. It is demonstrated
in this chapter that this can be achieved by using “mid-point” finite-
difference schemes. These schemes are unconditionally stable and of
second-order accuracy. They also preserve the fundamental structural
properties of LLG dynamics [193].

The problem of designing time-stepping techniques which preserve
structural properties of LLG dynamics has been largely overlooked
in magnetization dynamics studies. In fact, most researchers use

359
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“off-the-shelf” algorithms such as Euler, linear multi-step methods
(e.g., Adams-Bashforth, Adams-Moulton, Crank-Nicholson, Backward
Differentiation Formulas (BDF)) or Runge–Kutta methods [499,585]. This
is partly due to the fact that the main emphasis has been on static
micromagnetics and on obtaining accurate approximations of the free
energy landscape. This goal has been generally achieved by using
sufficiently accurate spatial discretizations. On the other hand, when
magnetization dynamics has to be investigated, the issue of accurate
numerical time integration techniques becomes crucial.

Existing discretization techniques (e.g., fourth- or higher-order
explicit Runge–Kutta, predictor-corrector, etc.), when applied to the
LLG or LL equation, usually corrupt the conservation of magnetization
magnitude in time. For this reason, it is very important to develop finite-
difference schemes that preserve this property, especially when the long-
term dynamical behavior of the system has to be investigated. It is also
desirable to have discretization schemes that lead to finite-difference
equations that are not spatially coupled. For such schemes, magnetization
at each spatial mesh point can be updated in time independently of other
spatial mesh points. In addition, it is beneficial to have finite-difference
schemes that are linear and of second-order accuracy as far as truncation
error is concerned. A finite-difference two-step scheme that fulfills the
above requirements is presented below. The property of conservation
of magnetization magnitude in the numerical integration is achieved by
using the mid-point rule. In fact, the use of the mid-point rule to devise
numerical schemes that preserve dynamic invariants (e.g., magnetization,
energy, angular momentum, etc.) has been extensively explored in the
area of Hamiltonian dynamics [161,417]. It is important to observe that
the application of the standard mid-point rule to the Landau–Lifshitz
equation would produce spatially coupled finite-difference equations that
would require the inversion of a large system of nonlinear equations at
each integration step. The finite-difference scheme discussed below is
based on the coupling of the mid-point rule with an appropriate two-
step extrapolation formula which leads to spatially uncoupled difference
equations.

For the sake of simplicity and clarity, the formulas in this section are
derived in the case of uniformly magnetized objects. Later in this chapter,
these formulas are extended to the case of nonuniformly magnetized
ferromagnets.

We start the discussion by writing the Landau–Lifshitz–Gilbert
equation in the form:

dm
dt

= −m×H(m, t), (11.1)
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where H is a generalized effective field which takes into account all effects
driving the dynamics of m. In the case of the Landau–Lifshitz equation H
takes the following form:

H = (heff + αm× heff) . (11.2)

More generally, if one considers effects due to spin transfer or effects due
to rotating fields, H can be written in the following two-scalar-potential
form (see Chapter 3):

H =
∂gL
∂m

+ αm× ∂Φ
∂m

. (11.3)

In order to develop a numerical integration scheme for Eq. (11.1), we
consider the temporal mesh consisting of the sequence of time instants
t1, t2, t3, . . ., which, for the sake of simplicity, are uniformly spaced, i.e.,
tk+1 − tk = ∆t. A numerical time-stepping scheme is a map:

m(k+1) = Fk(∆t,m(k),m(k−1), . . .), k = 1, 2, . . . , (11.4)

which generates a sequence of approximate values m(k) of the unknown
solution m(t) of the LLG equation at the time instants tk.

The first point to be addressed is whether there are techniques which
preserve the magnetization magnitude in the numerical integration. It is
shown below that the conservation of |m| can be achieved by using the
following mid-point rule formulas:

dm
dt

(tk + ∆t/2) =
m(tk+1)−m(tk)

∆t
+O

(
∆t2

)
, (11.5)

m(tk + ∆t/2) =
m(tk+1) + m(tk)

2
+O

(
∆t2

)
. (11.6)

By substituting Eqs (11.5) and (11.6) in Eq. (11.1), we obtain:

m(tk+1)−m(tk)
∆t

= −
(

m(tk+1) + m(tk)
2

)
×H(tk + ∆t/2) +O

(
∆t2

)
. (11.7)

To arrive at the final form of the finite-difference scheme, we have to
express H(tk + ∆t/2) in terms of values of H at the mesh points. This
can be done by using different techniques. However, the conservation of
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magnetization magnitude does not depend on a particular formula by
which H(tk + ∆t/2) is approximated. By using any formula H(k) of the
second order of accuracy in time, we will arrive at the expression:

H(tk + ∆t/2) = H(k) (m(tk+1),m(tk),m(tk−1), . . .) +O
(
∆t2

)
. (11.8)

By using Eqs (11.7) and (11.8), we can devise the following second-order-
accuracy time-stepping scheme:

m(k+1) −m(k) = −∆t
2

(
m(k+1) + m(k)

)
×H(k+ 1

2 ), (11.9)

where:

H(k+ 1
2 ) = H(k)

(
m(k+1),m(k),m(k−1), . . .

)
. (11.10)

The remarkable property of the scheme (11.9)–(11.10) is that it preserves
the magnetization magnitude. Indeed, by computing the dot products of
both sides of equation (11.9) with the vector m(k+1) + m(k), we obtain:(

m(k+1) + m(k)
)
·
(
m(k+1) −m(k)

)
= 0, (11.11)

which is equivalent to:

|m(k+1)|2 = |m(k)|2 = const. (11.12)

This conservation property is valid for any form of the function H(k) used
in Eq. (11.8). Furthermore, this property of the scheme is valid for any
excitation conditions (constant or time-varying applied fields, constant or
time-varying spin-transfer effects, various anisotropy properties, etc.).

The numerical scheme (11.9) is implicit in nature since it contains
m(k+1) on both sides. However, we can use explicit extrapolation formulas
in Eq. (11.10). This implies the choice of functions H(k) which do not
depend on m(k+1) but only on m at previous time steps. Then, the
computation of m(k+1) in Eq. (11.9) requires only the solution of a linear
equation. It is convenient to rewrite the finite-difference scheme (11.9) as
follows:

m(k+1) +
∆t
2

m(k+1) ×H(k+ 1
2 ) = m(k) − ∆t

2
m(k) ×H(k+ 1

2 ). (11.13)
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The last formula can be interpreted as a linear vector equation for m(k+1)

(or as three simultaneous linear equations for the cartesian components of
m(k+1)).

A convenient second-order finite-difference scheme can be devised by
using the following Adams extrapolation formula:

H(tk + ∆t/2) =
3
2
H (m(tk), tk)− 1

2
H (m(tk−1), tk−1)

+O
(
∆t2

)
. (11.14)

This leads to the following expression for the field H(k+ 1
2 ) in Eq. (11.9):

H(k+ 1
2 ) =

3
2
H
(
m(k), tk

)
− 1

2
H
(
m(k−1), tk−1

)
. (11.15)

The resulting finite-difference scheme is fast and quite simple to
implement. It is also very convenient for the analysis of spatially
nonuniform dynamics, where the extrapolation formula given by Eq.
(11.15) can be used at each spatial location by using the values of m(k) and
H(k) at previous time instants at the same location. In this way, by using
the two-step structure of the scheme, it is possible to achieve a complete
decoupling in spatially nonuniform magnetization dynamics analysis.
This two-step scheme presents a minor difficulty for the calculation of
H( 1

2 ) at the first step. This difficulty can be circumvented by using
the second-order Runge–Kutta method to compute m( 1

2 ) needed for the
calculation of H( 1

2 ).
Next, we shall investigate the mid-point rule for the preservation

of the energy balance properties of LLG dynamics in numerical
computations. The preservation of the magnetization magnitude by the
mid-point rule is valid for any excitation conditions and it is only based
on the cross-product structure of the equation of motion. On the other
hand, in the study of the energy balance property we need to be more
specific about the excitation conditions. We start our discussion with the
case of a uniformly magnetized ferromagnet subject to a constant-in-time
applied field. It is convenient to use the Gilbert form of the magnetization
dynamics equation, namely Eq. (11.1) with:

H = heff − α
dm
dt

. (11.16)
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The effective field heff has the following form:

heff = −D ·m + ha, (11.17)

where D is the 3 × 3 symmetric matrix describing anisotropies, and ha
is the constant applied field. Under these conditions, the energy is a
quadratic function of m:

gL =
1
2
m ·D ·m− ha ·m. (11.18)

Furthermore, the energy satisfies the following energy balance equation
(see Chapter 3):

dgL
dt

= −α
∣∣∣∣dm

dt

∣∣∣∣2 . (11.19)

It has been shown above that the following finite-difference scheme
preserves the magnetization magnitude:

m(tk+1)−m(tk)
∆t

= −
(

m(tk+1) + m(tk)
2

)
×H(tk + ∆t/2) +O

(
∆t2

)
. (11.20)

The mathematical form of the evolution equation (11.19) for the free
energy can be mimicked by using the following mid-point formula for
H(tk + ∆t/2):

H(tk + ∆t/2) = −D ·
[
m(tk+1) + m(tk)

2

]
+ ha

−αm(tk+1)−m(tk)
∆t

+O(∆t2). (11.21)

The last two formulas lead to the following mid-point scheme for Eq.
(11.1):

m(k+1) −m(k) = −∆t
2

(
m(k+1) + m(k)

)
×H(k+ 1

2 ), (11.22)
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with:

H(k+ 1
2 ) = −D ·

[
m(k+1) + m(k)

2

]
+ ha − α

m(k+1) −m(k)

∆t
. (11.23)

By dot-multiplying both sides of Eq. (11.22) by H(k+ 1
2 ), we obtain H(k+ 1

2 )·
(m(k+1)−m(k))/∆t = 0. Then, by substituting formula (11.23) for H(k+ 1

2 )

in the last identity and by using the symmetry of the matrixD and formula
(11.18), we find the following energy balance for the discretized dynamics:

g
(k+1)
L − g(k)

L

∆t
= −α

∣∣∣∣m(k+1) −m(k)

∆t

∣∣∣∣2 , (11.24)

where g(k)
L = gL(m(k)).

Equation (11.24) has very important consequences. First, it shows
that the mid-point rule is an unconditionally stable algorithm which
reproduces the relaxation behavior in LLG discretized dynamics for any
choice of the time step. In addition, for α = 0 the energy is exactly
preserved regardless of the time step. This property indicates that for
slightly dissipative systems the mid-point rule will tend to reproduce
correctly the time-evolution of the energy during the LLG dynamics.

In order to test the accuracy of the finite-difference scheme (11.13)
and (11.15), we have studied the magnetization dynamics in the case of
a uniformly magnetized thin film subjected to an in-plane and circularly
polarized magnetic field as well as to a dc magnetic field normal to
the film plane. For this case exact analytical time-harmonic solutions (P-
modes) can be found (see Chapter 7). These exact solutions are compared
with numerical solutions in Figs 11.1 and 11.2. These figures demonstrate
that the numerical solution converges after some transient to a periodic
(uniformly rotating) solution for which |m⊥| as well as the angle between
ha⊥ and m⊥ are constant (the subscript⊥ denotes components in the film
plane). The calculations were performed near ferromagnetic resonance
conditions, by using the following data: Ms = 8 × 105 A/m, α = 0.01,
dc field haz = Haz/Ms = 1.1, in-plane rotating ac field with amplitude
ha⊥ = Ha⊥/Ms = 5 × 10−4 and with normalized angular frequency ω =
0.103, which is equivalent to 1.82 × 1010 Hz. Under these conditions, the
magnetization dynamics exhibits the foldover effect (see Section 7.5) and
there are two possible stable uniformly rotating steady-state solutions.
In Figs 11.1 and 11.2, two time-evolutions of magnetization are reported
which eventually reach the two different stable steady-state regimes.
These evolutions can be obtained by choosing the initial conditions
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FIGURE 11.1 Comparison between analytical and numerical solutions for |m⊥|.
Dashed lines represent the analytically computed P-mode solutions. Symbol “◦”
indicates time evolution starting at t = 0 from m(0) = (0.5774, 0.5774,−0.5774);
values of the parameters: Ms = 8 × 105 A/m, α = 0.01. Symbol “+” indicates
time evolution starting at t = 0 from m(0) = (0.2357, 0.2357, 0.9428); values of
parameters: ω = 0.103, haz = 1.1, ha⊥ = 1× 10−4.

FIGURE 11.2 Comparison between analytical and numerical solutions for sin θ
where θ is the angle between ha⊥ and m⊥. Dashed lines represent the analytically
computed P-mode solutions. Symbols and values of the parameters are the same
as in Fig. 11.1.
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FIGURE 11.3 Relative error in the magnetization amplitude for the simulations
reported in Figs 11.1–11.2.

m(0) = (0.5774, 0.5774,−0.5774) (results are indicated with the symbol
“◦” in Figs 11.1 and 11.2) and m(0) = (0.2357, 0.2357, 0.9428) (indicated
with the symbol “+” in Figs 11.1 and 11.2), respectively. Figure 11.3
demonstrates that the magnitude of magnetization |M(t)| is conserved for
both simulations with high accuracy (relative error is smaller than 10−12

after 15 000 time steps).

11.2 MID-POINT FINITE-DIFFERENCE SCHEMES FOR
STOCHASTIC MAGNETIZATION DYNAMICS

The mid-point rule is also very effective in time-stepping schemes for
solving the Landau–Lifshitz–Gilbert equation in the presence of noise.
In this situation, the equation of magnetization dynamics is a stochastic
differential equation. As we discussed in Chapter 10, special attention
must be paid to the mathematical interpretation of the solution of this kind
of equation. These mathematical facts are also important in the numerical
integration of this equation since different time-stepping techniques
may be compatible, in the limit of vanishing time step, with different
interpretations (i.e., Itô’s or Stratonovich’s) of the stochastic differential
equation. In this respect, it is interesting to demonstrate that the mid-point
scheme (11.22)–(11.23) is compatible with the Stratonovich interpretation.

To start the discussion, we recall the basic facts concerning
magnetization dynamics in uniformly magnetized particles in the
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presence of thermal fluctuations. The equation governing magnetization
dynamics is the Landau–Lifshitz equation:

dm
dt

= −m× (heff + νhN )− αm× [m× (heff + νhN )], (11.25)

where the random thermal field νhN (t) is an isotropic vector gaussian
white-noise process with variance ν2. As a consequence, hN (t) can be
expressed in terms of the Wiener process as follows:

hN (t)dt = dW(t), (11.26)

where W(t) is the isotropic vector Wiener process characterized by
〈|Wi(t)−Wi(s)|2〉 = t− s (〈·〉means statistical average).

As discussed in Chapter 10, the fact that we describe the thermal
fluctuations by a multiplicative white-noise process produces the so-
called Itô–Stratonovich dilemma [277]. This means that Eq. (11.25) has to
be complemented by the specification of the type of stochastic calculus
to be used. In this respect, following Brown [135] and Kubo [425],
we interpret Eq. (11.25) in the sense of Stratonovich. Since in this
interpretation the ordinary rules of calculus apply, one can immediately
derive from Eq. (11.25) that:

d(|m|2) = 2m · dm = 0, (11.27)

which means that SDE (11.25) generates a stochastic process on the unit
sphere (this is not strictly true if one interprets (11.25) in Itô sense). We
now rewrite Eq. (11.25) as follows:

dm = v(m, t)dt−m× (νdW + ανm× dW), (11.28)

where v(m) = −m × (heff + αm × heff). The SDE (11.28) can be also
transformed into the alternative Itô SDE by adding the noise-induced drift
term [264] (see Section 10.1):

dm =
[
v(m, t)− ν2m

]
dt−m× (νdW + ανm× dW). (11.29)

Equation (11.28) in the sense of Stratonovich and Eq. (11.29) in the
sense of Itô are statistically equivalent and describe the same stochastic
process m(t) on the unit sphere |m|2 = 1. Indeed, it has been shown in
Section 10.2 that the Fokker–Planck equations associated with these two
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SDEs are the same and can be written in the form:

∂w

∂t
= −∇Σ · J, (11.30)

where J = v(m, t)w(m, t) −
(
ν2/2

)
∇Σw(m, t), while w(m, t) is the

probability density of m on the unit sphere Σ and ∇Σ is the gradient
operator on Σ. The value of the constant ν can be derived from the
fluctuation-dissipation theorem. This leads to the following expression:

ν2 =
2αkBT
µ0M2

sV
, (11.31)

where V is the volume of the particle. This expression is consistent with
the one derived by Brown [135] and later by Garcia-Palacios [275] and
Fredkin [264] (see Chapter 10).

The choice of specific interpretations of the solution of the stochastic
LLG equation requires the use of specific numerical schemes for its
integration. For instance, if one considers Eq. (11.28) in the sense of
Stratonovich, one has to choose a numerical scheme that in the limit
of time step ∆t → 0 converges to the Stratonovich solution. Similarly,
considering Eq. (11.29) in the sense of Itô, one has to choose specific
numerical schemes converging to the Itô solution for ∆t → 0. In the
case of Itô SDE, this is generally achieved by using methods such as
the forward Euler and Milstein methods [585], whereas in the case of
Stratonovich SDE one has to adopt numerical schemes such as Heun [275,
585] or methods based on the mid-point rule [492]. The most common
choice for the integration of stochastic LLG equation is the adoption
of explicit integration methods like forward Euler and Heun. However,
despite the fact that the Euler (Heun) numerical solution converges to
the Itô (Stratonovich) solution with mean square error of order 1/2 (m.s.
error of order 1 for the Heun scheme) for ∆t → 0, for finite ∆t the use
of these explicit methods does not preserve magnetization magnitude.
In order to circumvent this problem, some researchers use the naive
approach of renormalizing the magnitude of the magnetization computed
with the forward Euler (Heun) method at each time step. This is a
nonlinear modification of the forward Euler (Heun) scheme for which
the convergence towards the Itô (Stratonovich) solution should yet be
proved. In addition, explicit methods have to deal with numerical stability
requirements which impose the constraints of very small time steps.

Conversely, it has been proved [492] that the implicit mid-point rule
scheme converges to the Stratonovich solution of Eq. (11.28) with mean



370 CHAPTER 11 Numerical Techniques for Magnetization Dynamics Analysis

square error of order 1/2. It has been also demonstrated that this scheme
has clear advantages in the numerical integration of the deterministic
LLG equation [591,193]. In fact, despite the implicit nature of the scheme
requiring the solution of a nonlinear system of coupled equations at each
time step, the computational cost of the mid-point rule is comparable to
that of explicit methods since one can choose considerably larger time
steps due to the unconditional stability (details on the analysis of the
computational cost can be found in Ref. [193]). It is shown below that these
advantages are even more pronounced in the numerical integration of the
stochastic LLG equation.

The mid-point discretized version of Eq. (11.28) is given by:

m(k+1) −m(k) = −m(k+ 1
2 ) × (h(k+ 1

2 )

eff + αm(k+ 1
2 ) × h(k+ 1

2 )

eff )∆t

−m(k+ 1
2 ) × [ν(W(k+1) −W(k)) + ανm(k+ 1

2 )

× (W(k+1) −W(k))], (11.32)

where m(k+ 1
2 ) = (m(k+1) + m(k))/2 and h(k+ 1

2 )

eff = heff(m(k+ 1
2 )). Now, by

dot-multiplying both sides of Eq. (11.32) by m(k+ 1
2 ), one can verify that:

|m(k+1)|2 − |m(k)|2 = 0. (11.33)

This means that the magnetization magnitude is conserved uncondition-
ally, i.e., for any choice of ∆t. This reveals that the discrete-time stochastic
process m(k) evolves on the unit sphere.

It is also interesting to study the energy balance properties of mid-
point discretized stochastic dynamics. For the sake of simplicity, we
assume that the applied field ha is constant in time. By dot-multiplying

both sides of Eq. (11.32) by [h(k+ 1
2 )

eff ∆t+ ν(W(k+1)−W(k))], and by taking

into account that h(k+ 1
2 )

eff = −D ·m(k+ 1
2 ) +ha and gL(m) = (m ·D ·m)/2−

ha ·m (the matrix D = diag[Dx, Dy, Dz]), one obtains:

g
(k+1)
L − g(k)

L −
(
m(k+1) −m(k)

)
·

(
ν
W(k+1) −W(k)

∆t

)

= −α

∣∣∣∣∣m(k+ 1
2 ) ×

(
h(k+ 1

2 )

eff + ν
W(k+1) −W(k)

∆t

)∣∣∣∣∣
2

∆t, (11.34)
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where g(k+1)
L = gL(m(k+1)) and g

(k)
L = gL(m(k)). As a consequence of Eq.

(11.34), one finds:

g
(k+1)
L − g(k)

L ≤
(
m(k+1) −m(k)

)
·

(
ν
W(k+1) −W(k)

∆t

)
. (11.35)

The last inequality implies that for any finite ∆t the variation of the
free energy cannot exceed the average work performed by the thermal
field on the magnetization. From Eqs (11.34)–(11.35) it follows that: (i)
in the deterministic case (ν = 0), the free energy is always a decreasing
function of time; (ii) in the conservative case (α = 0, ν = 0), the
discretized free energy is exactly preserved. Both (i) and (ii) are fulfilled
unconditionally. The property (i) is a consequence of the unconditional
stability of the mid-point rule, which allows one to choose the time step
∆t only for accuracy reasons, whereas explicit methods have to deal
with strict numerical stability constraints. The property (ii) guarantees
an accurate reproduction of the precessional magnetization dynamics.
This property is very important for stochastic dynamics with moderately
low noise, in which the magnetization motion is mainly driven by the
precession and the influence of thermal fluctuations occurs on a much
longer time scale. As far as the actual solving of Eq. (11.32) is concerned,
it can be performed by using a quasi-Newton technique similar to the one
described in Ref. [193].

To test the effectiveness of the mid-point rule numerical technique,
we have simulated the thermal relaxation of a cobalt spheroidal particle
to the superparamagnetic state. In the simulations, the x, y, z half-axis
lengths have been respectively chosen as 2 nm, 2 nm, 4 nm, while the
choice of material parameters has been as follows: Ms = 1.42 × 106 A/m,
K1 = 105 J/m3 (Dz = Nz − 2K1/(µ0M2

s), Dx = Nx, Dy = Ny , Dx = Dy =
D⊥, Nx, Ny, Nz are the demagnetizing factors along x, y, z directions),
α = 0.005. It has been assumed that the temperature T = 300 K and
there is no external applied field. In Fig. 11.4(a) the plot of the time
evolution of mz is presented, while the plot of 1 − |m| as a function of
time is given in Fig. 11.4(b). One can clearly observe that the property
(11.33) is fulfilled with computer precision. Next, we analyze the system
in the superparamagnetic state. In this state, the equilibrium expression
for weq(m) has the following Boltzmann-like form [135] (see Section 10.4):

weq(m) =
1

Z(µ)
exp(−µgL(m)), Z(µ) =

{

Σ
weq(m)dS, (11.36)
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FIGURE 11.4 Numerical results for thermal fluctuations of magnetization in a
spheroidal Co particle under zero external field. (a) Plot of the time evolution of
mz . (b) Plot of 1− |m| as a function of time. Simulation parameters: Dz = 0.0946,
Dx = Dy = 0.4132, α = 0.005, Ms = 1.42× 106 A/m, T = 300 K.

where µ = 2α/ν2 = µ0M2
sV/kBT . In the case of spheroidal particles, Eq.

(11.36) is reduced to the following simple function of mz :

weq(m) =
1

Z(µ)
exp(−µ(Dzm2

z +D⊥(1−m2
z))/2), (11.37)

which is presented in Fig. 11.5 by the solid line. Since the distribution
weq(mz) is symmetric with respect to zero, it is clear that at
thermodynamic equilibrium 〈mz〉 = 0. In order to compute the
equilibrium distribution by using numerical simulations, we have
proceeded as follows: an ensemble of N particles with magnetization
initially aligned along the easy axis has been used, then Eq. (11.32) has
been repeatedly solved until the ensemble average stabilized at zero.
Afterwards, the histogram of theN final values of mz has been computed.
This histogram, after appropriate normalization toN , is an approximation
of the probability distribution function weq(mz). The results of this
calculation are presented in Fig. 11.5 by the dashed line with black dots. It
can be observed that the agreement with Eq. (11.37) is quite good. The time
step used in the simulations was such that (γMs)−1∆t = 1.6 ps, which
is considerably larger than the time step used with explicit methods,
but comparable with the time scale of actual magnetization dynamics
phenomena.
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FIGURE 11.5 Equilibrium distribution function weq(mz). Solid line refers to the
analytical expression (11.37). Dashed line with black dots refers to the numerically
computed equilibrium distribution. The simulation parameters are the same as in
Fig. 11.4. The number of simulated particles is N = 100 000.

11.3 NUMERICAL TECHNIQUES FOR NONUNIFORMLY
MAGNETIZED PARTICLES

To treat the case of nonuniformly magnetized ferromagnets, we shall
first introduce a spatially discretized version of the Landau–Lifshitz–
Gilbert dynamics. The spatial discretization of magnetization dynamics
has been already introduced in Section 10.7 in connection with the
study of thermal fluctuations in nonuniformly magnetized objects. The
discussion here follows the same line of reasoning and it is briefly
summarized here for the reader’s convenience. It is important to stress
that we tacitly assume that the spatially discretized LLG equation can
approximate the continuous problem with any degree of accuracy by
appropriately increasing the number of discretization cells. Although a
formal proof of this convergence result is not available (to our knowledge),
this assumption justifies the use of numerical techniques to analyze the
spatially nonuniform LLG dynamics. The discussion presented below is
quite general and applicable to all spatial discretization techniques such
as finite difference or finite elements [193,258].

We start our discussion by recalling the Landau–Lifshitz–Gilbert
equation for nonuniformly magnetized bodies. This equation can be
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written in the following form:

∂m
∂t
− αm× ∂m

∂t
= −m× heff, (11.38)

or equivalently (up to appropriate rescaling of time) as:

∂m
∂t

= −m× heff − αm× (m× heff) , (11.39)

where:

heff = −δgL
δm

, (11.40)

gL(m(.); ha) =
1
V

∫
Ω

[
1
2
|∇m|2 + ϕAN (m)− 1

2
hM ·m− ha ·m

]
dV.

(11.41)

Here, ϕAN (m) is the anisotropy energy density (which for the sake of
simplicity is assumed to be uniaxial), hM and ha are the demagnetizing
and applied fields, Ω indicates the region occupied by the ferromagnet,
and V is the volume of the region. In addition, homogeneous Neumann
boundary conditions ∂m/∂n = 0 are imposed at the object surface. We
also remind that, in the equations above, time is measured in units of
(γMs)−1 and space in units of the exchange length lEX . Thus, the volume
in physical units of the region occupied by the ferromagnet is V l3EX .

The spatial discretization is achieved by subdividing the magnetic
object in N cells or finite elements. We denote the magnetization vector
associated with the kth cell or node by mk(t) ∈ R3. Analogously, the
effective and the applied fields at each cell will be denoted as heff;k(t)
and ha;k(t), respectively. In addition to the vectors associated with the
cells, we introduce vectors associated with the entire mesh. These are R3N

vectors formed by the collection of all cell vectors. We will indicate the
mesh vectors associated with m,heff,ha by the notations m, heff, ha. These
vectors are as follows:

m =

m1

...
mN

 heff =

heff;1
...

heff;N

 ha =

ha;1

...
ha;N

 . (11.42)

We assume that the discretization cells are small enough that for the
magnetization vector mk associated with each discretization cell we can
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assume the validity of fundamental micromagnetics constraint:

|mk| = 1. (11.43)

This means that the R3N vector m is associated with a point of the 2N -
dimensional manifold (embedded in R3N ):

ΣN = Σ⊗ · · · ⊗ Σ, (11.44)

where Σ denotes the ordinary two-dimensional sphere with unit radius,
and “⊗” denotes the cartesian product. In other terms, we have:

m ∈ ΣN =⇒m1 ∈ Σ,m2 ∈ Σ, . . . ,mN ∈ Σ. (11.45)

Next, we discuss the form of the free energy and the effective
fields which appear in the spatially discretized equations. Usual spatial
discretization techniques [258] (e.g., finite elements and finite differences)
quite naturally lead to a discretized version of the free energy (11.41),
which has the form:

g
L

(m; ha) =
1
2
m · C ·m− ha ·m, (11.46)

where C is now a 3N × 3N symmetric matrix [585] which describes
exchange, (uniaxial) anisotropy and magnetostatic interactions. Once the
discretized free energy has been defined, the corresponding spatially
discretized effective field heff(m, t) can be obtained as:

heff(m, t) = −
∂g

L

∂m
= −C ·m + ha(t). (11.47)

The matrix C can be naturally decomposed into the sum of the three terms
Cex, Cm, Can, which correspond to discretized exchange, magnetostatic
and anisotropy interactions:

C = Cex + Cm + Can. (11.48)

It can be observed that Cex and Can are sparse matrices since the exchange
and anisotropy interactions have a local character, whereas Cm is a
fully populated matrix due to the long-range nature of magnetostatic
interactions.
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In the above notations, the spatially discretized LLG equations form
a coupled set of 3N ODEs, which for a generic kth cell can be written as
follows:

d
dt

mk = −mk ×
[
heff;k(m, t)− α d

dt
mk

]
. (11.49)

The entire set of ODEs is:

d
dt

m = −Λ(m) ·
[
heff(m, t)− α d

dt
m
]
, (11.50)

where Λ(m) is a block-diagonal matrix:

Λ(m) = diag(Λ(m1), . . . ,Λ(mN )), (11.51)

with blocks Λ(·) ∈ R3×3 such that Λ(v) · w = v × w, for any v,w ∈ R3.
We also observe that Λ(m) is linearly dependent on m:

Λ(m) = Γ ·m, (11.52)

where tensor Γ has N diagonal 3 × 3 × 3 third-order permutation
tensors and the dot product in Eq. (11.52) represents an index contraction.
The meaning of this contraction can be inferred by observing that the
component of the vector v · (Γ ·w) corresponding to the kth cell is given
by:

(v · (Γ ·w))k = vk ×wk, (11.53)

where we have used the notation introduced above for mesh vectors
v, w and cell vectors vk, wk. The semi-discretized LLG equation can be
transformed to the following Landau–Lifshitz form:

d
dt

m = −Λ(m) · heff(m, t)− αΛ(m) · (Λ(m) · heff(m, t)) . (11.54)

Now, we briefly describe the properties of the semi-discretized LLG
(11.49)–(11.50). These properties are similar to the properties of the
continuous equation (11.38). First, it can be easily proved that:

|mk(t)| = |mk(t0)|, (11.55)
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for any t ≥ t0, k = 1, . . . , N . If |mk(t0)| = 1, then each cell vector evolves
on the two-dimensional unit sphere Σ. In other words, LLG dynamics
takes place on the 2N -dimensional manifold ΣN (see Eq. (11.45)). It is
worthwhile to point out that the rich topological structure of this manifold
is responsible for the multiplicity of metastable states which, in turn, leads
to the complexity of LLG dynamics.

As far as the energy balance is concerned, one obtains:

d
dt

g
L

(m(t); ha(t)) = −α
∣∣∣∣dm

dt

∣∣∣∣2 −m · dha
dt

= −
N∑
k=1

α

∣∣∣∣dmk

dt

∣∣∣∣2 − N∑
k=1

mk ·
dha;k

dt
. (11.56)

In the case of constant applied field, one derives:

d
dt

g(m(t); ha) = −α
∣∣∣∣dm

dt

∣∣∣∣2 = −
N∑
k=1

α

∣∣∣∣dmk

dt

∣∣∣∣2 , (11.57)

which reveals the relaxation dynamics toward an energy minimum.
As a final remark, we observe that semi-discretized magnetization

dynamics equations can be put in the form:

d
dt

m = −Λ(m) · H(m, t), (11.58)

where:

H(m, t) = heff(m, t) + hdis(m, t), (11.59)

and hdis(m, t) is a term which takes into account dissipative effects. In the
case of the LLG equation (11.50), one has:

H(m, t) = heff(m, t)− α d
dt

m, (11.60)

while for the LL form (11.54), one finds:

H(m, t) = heff(m, t) + αΛ(m) · heff(m, t). (11.61)
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Now, we proceed to the discussion of the numerical integration of
spatially discretized LLG equations. In order to develop a numerical
integration scheme for Eq. (11.50), we consider the temporal mesh
consisting of the sequence of time instants t1, t2, t3, . . ., which, for the
sake of simplicity, are uniformly distributed, i.e., tk+1 − tk = ∆t. As
we discussed in previous sections, a numerical time-stepping scheme is
a map:

m(k+1) = Fk(∆t,m(k),m(k−1), . . .), k = 1, 2, . . . , (11.62)

which generates a sequence of approximate values m(k) of the unknown
solution m(t) of the LLG equation at the time instants tk. The first
issue that we address is the conservation of magnetization amplitude in
each computational cell. By following the same line of reasoning as in
Section 11.1, we start with Eq. (11.58), and we shall use the following mid-
point formulas:

dm
dt

(tk + ∆t/2) =
m(tk+1)−m(tk)

∆t
+O

(
∆t2

)
, (11.63)

m(tk + ∆t/2) =
m(tk+1) + m(tk)

2
+O

(
∆t2

)
. (11.64)

By substituting Eqs (11.63) and (11.64) in Eq. (11.58), and considering the
equation for the lth cell, we obtain:

ml(tk+1)−ml(tk)
∆t

= −
(

ml(tk+1) + ml(tk)
2

)
×Hl(tk + ∆t/2) +O

(
∆t2

)
. (11.65)

To arrive at the final form of the finite-difference scheme, we have to
express Hl(tk + ∆t/2) in terms of values of m at the time instants tk. This
can be done by using the formula:

H(tk + ∆t/2) = H(k) (m(tk+1),m(tk),m(tk−1), . . .) +O
(
∆t2

)
,

(11.66)

where H(k) is a function which provides a second-order approximation
to H(tk + ∆t/2) in terms of m(k+1), m(k), m(k−1), etc. By using Eqs
(11.65) and (11.66), we arrive at the following second-order-accuracy
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time-stepping scheme:

m(k+1)
l −m(k)

l = −∆t
2

(
m(k+1)
l + m(k)

l

)
×H(k+ 1

2 )
l , (11.67)

which can be written for the entire spatial mesh as follows:

m(k+1) −m(k) = −∆t
2

Λ
(
m(k+1) + m(k)

)
·H(k+ 1

2 ), (11.68)

where the following notation has been adopted:

H(k+ 1
2 ) = H(k)

(
m(k+1),m(k),m(k−1), . . .

)
. (11.69)

One can prove that the numerical scheme specified by Eqs (11.67)–
(11.69) preserves the magnetization magnitude associated with each
spatial cell. Indeed, by taking the dot products of both sides of Eq. (11.67)
with the vector m(k+1)

l + m(k)
l , we obtain:(

m(k+1)
l + m(k)

l

)
·
(
m(k+1)
l −m(k)

l

)
= 0, (11.70)

which is equivalent to:

∣∣∣m(k+1)
l

∣∣∣2 =
∣∣∣m(k)

l

∣∣∣2 = const. (11.71)

This conservation property is valid regardless of the choice of the function
H(k) used in Eq. (11.66) to approximate H(tk + ∆t/2). The conservation
of |m| is also valid regardless of which expression, either (11.60) or (11.61),
is used for H, and for even more general situations when H accounts for
effects due to spin-transfer injection or other nonconservative excitation
effects.

The numerical scheme (11.67) is implicit in nature since it contains
m(k+1)
l on both sides of the equation. By using the linearity of Λ(m)

with respect to m, it is possible to rewrite the finite-difference scheme as
follows:

m(k+1) +
∆t
2

Λ
(
m(k+1)

)
·H(k+ 1

2 ) = m(k) − ∆t
2

Λ
(
m(k)

)
·H(k+ 1

2 ).

(11.72)
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If explicit extrapolation formulas are used in Eq. (11.69), then the
determination of m(k+1) in Eq. (11.67) requires only the inversion of 3× 3
linear equations. This is evident by writing (11.72) for the lth cell as
follows:

m(k+1)
l +

∆t
2

m(k+1)
l ×H(k+ 1

2 )
l = m(k)

l −
∆t
2

m(k)
l ×H(k+ 1

2 )
l . (11.73)

When H(k+ 1
2 ) does not depend on m(k+1), the last formula can be

interpreted as a linear system of 3N equations composed of N decoupled
3×3 linear equations. In other words, by choosing H(k) in such a way that
it does not depend on m(k+1), one obtains a complete spatial decoupling
in the time-stepping calculations.

A very effective explicit second-order extrapolation formula to
achieve this spatial decoupling is the one used in Section 11.1:

H(tk + ∆t/2) =
3
2
H (m(tk), tk)− 1

2
H (m(tk−1), tk−1)

+O
(
∆t2

)
. (11.74)

This leads to the following expression for H(k+ 1
2 ) in Eq. (11.68):

H(k+ 1
2 ) =

3
2
H
(
m(k), tk

)
− 1

2
H
(
m(k−1), tk−1

)
. (11.75)

Next, we shall discuss another scheme which accurately replicates the
energy time-evolution during the magnetization dynamics. We shall use
the Gilbert form (11.60) of H and the following mid-point formula:

H(tk + ∆t/2) = C ·
[
m(tk+1) + m(tk)

2

]
+ ha

−αm(tk+1)−m(tk)
∆t

+O(∆t2), (11.76)

where ha is assumed to be constant and the fact that heff(m, t) = −C ·
m + ha has been used. This leads to the following expression for the field
H(k+ 1

2 ) in Eq. (11.68):

H(k+ 1
2 ) = −C ·

[
m(k+1) + m(k)

2

]
+ ha − α

m(k+1) −m(k)

∆t
. (11.77)
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By multiplying both sides of Eq. (11.68) by H(k+ 1
2 ), we obtain H(k+ 1

2 ) ·
(m(k+1)−m(k))/∆t = 0. Then, by substituting formula (11.77) for H(k+ 1

2 )

in the last identity and by using the symmetry of the matrix C and
formula (11.46), one can derive the following equation for the time-
discrete dynamics:

g(k+1)

L
− g(k)

L

∆t
= −α

∣∣∣∣m(k+1) −m(k)

∆t

∣∣∣∣2 . (11.78)

Equation (11.78) has important implications. First, it shows that the mid-
point rule is an unconditionally stable algorithm which reproduces the
relaxation behavior in LLG discretized dynamics for any choice of the time
step. In addition, for α = 0 the energy is exactly conserved regardless of
the time step. This property indicates that for slightly dissipative systems
the mid-point rule will tend to reproduce accurately the time-evolution of
energy during the LLG dynamics.

In the following, we discuss the implementation of the mid-point
scheme defined by Eqs (11.72) and (11.77) for micromagnetic switching
problems. Since this scheme is implicit, we have to solve at each time step
the following system of 3N nonlinear equations with respect to the 3N
unknowns m(k+1):

F (k)(m(k+1)) = 0, (11.79)

where F (k)(y) : R3N → R3N is the following vector function:

F (k)(y) =

[
I− αΛ

(
y + m(k)

2

)](
y −m(k)

)
−∆tf (k)

(
y + m(k)

2

)
,

(11.80)

and:

f (k)(m) = −Λ(m) · heff

(
m, tk +

∆t
2

)
= Λ(m) ·

∂g

∂m

(
m; ha

(
t(k) +

∆t
2

))
. (11.81)

The solution of the system of equations (11.79) can be obtained by using
the Newton–Raphson (NR) algorithm. To this end, we derive the Jacobian
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matrix J(k)
F (y) of the vector function F (k)(y), which can be written in the

following form:

J(k)
F (y) = I− αΛ(m(k))− ∆t

2
J(k)

f

(
y + m(k)

2

)
, (11.82)

where J(k)
f is the Jacobian matrix for fn(m). By using Eqs (11.52) and

(11.81), one obtains:

J(k)
f (m) =

∂f (k)

∂m
(m)

= Λ(m) · C + Γ ·
[
−C ·m + ha

(
tk +

∆t
2

)]
. (11.83)

The main difficulty in applying the NR method is that the Jacobian J(k)
F (y)

of F (k)(y) is a fully populated matrix, due to the long-range nature of
magnetostatic interactions. It can be also observed that the damping term
affects only a small sparse component of the Jacobian J(k)

F (y) and thus
does not introduce any additional difficulty.

Since the matrix J(k)
F (y) is fully populated, the use of the NR method

would require an appreciable computational cost. This problem can be
circumvented by using a quasi-Newton method, which is based on a
sparse approximation of the Jacobian. Detailed discussion of this method
can be found in Ref. [193].

Since the time-stepping equations are solved through an iterative
procedure, the conservation properties of the mid-point rule are fulfilled
only within a certain accuracy. For this reason, it is important to test the
accuracy of the conservation properties during the computation.

As far as magnetization magnitude conservation is concerned, we
control its accuracy with the following quantities:

mav =
1
N

N∑
l=1

|ml|, σ2
m =

1
N

N∑
l=1

(|ml| −mav)2, (11.84)

which are mean value and variance of the magnetization magnitude over
the cells of the mesh, respectively.

As far as the energy balance equation is concerned, we use the self-
consistency criterion proposed by Albuquerque and coworkers [16]. This
criterion is valid for constant applied field and is based on Eq. (11.57)
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rewritten in the following form:

α =
(

d
dt

g(m(t); ha)
)/∣∣∣∣dm

dt

∣∣∣∣2 . (11.85)

To test the conservation of energy in numerical computation, we consider
the value:

α̂(k) = −

(
g(m(k+1); ha)− g(m(k); ha)

∆t

)/∣∣∣∣m(k+1) −m(k)

∆t

∣∣∣∣2 ,(11.86)

computed at each time step, and we have compared it with the constant
α. It can be observed that if we could exactly invert the nonlinear system
of equations (11.79), then α̂(k) would be constant and equal to α. When an
iterative procedure is used, α̂(k) are nonconstant and exhibit an oscillatory
behavior. In particular, unstable behavior corresponds to negative α̂(k).

For the conservative dynamics, the discretized energy is conserved:

g(m(k+1); ha) = g(m(k); ha), (11.87)

regardless of the time step. One can test the accuracy of the scheme by
recording the deviation of the total energy from its initial value. Again,
one cannot expect that this property will be exactly fulfilled with an
iterative procedure. For this reason, we will verify a posteriori that the
energy conservation is guaranteed with sufficient precision by computing
the relative error eg of g(m(k); ha) with respect to the initial energy
g(m(0); ha):

e
(k)
g =

g(m(k); ha)− g(m(0); ha)

g(m(0); ha)
, (11.88)

and checking that the sequence e(k)
g remains within the desired tolerance.

Up to this point the discussion of the implementation of mid-point
rule was rather independent of the chosen spatial discretization. To test
the method, we have chosen a finite-differences spatial discretization
method. In this method, the magnetic object is subdivided into rectangular
prisms with edges parallel to the coordinate axes and edge lengths
dx, dy, dz . It is convenient to identify each cell by three indices i, j, k. The
magnetization mi,j,k is assumed to be uniform within a generic (i, j, k)
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cell. With this notation, the effective field in the generic (i, j, k) cell can be
expressed as follows:

heff;i,j,k = hex;i,j,k + hm;i,j,k + han;i,j,k + ha;i,j,k. (11.89)

The exchange field hex;i,j,k is computed by means of a 7-point Laplacian
discretization, which is second order of accuracy. For interior cells, it can
be expressed as follows:

hex;i,j,k =
2A
µ0M2

s

[
mi+1,j,k + mi−1,j,k

d2
y

+
mi,j+1,k + mi,j−1,k

d2
x

+
mi,j,k+1 + mi,j,k−1

d2
z

−
(

2
d2
y

+
2
d2
x

+
2
d2
z

)
mi,j,k

]
. (11.90)

A similar expression holds for the boundary cells, where the Neumann
boundary condition has to be taken into account. Since the exchange
interaction is a next-neighbor interaction, one can easily observe that the
matrix Cex is a block-diagonal matrix.

The magnetostatic field hm;i,j,k can be expressed as discrete
convolution [582,754]:

hm;i,j,k =
∑
i′ 6=i

∑
j′ 6=j

∑
k′ 6=k

Ni−i′,j−j′,k−k′ ·mi′,j′,k′dxdydz, (11.91)

where Ni−i′,j−j′,k−k′ is the 3 × 3 block of the matrix Cm which describes
the magnetostatic interaction between the cells i, j, k and i′, j′, k′. The
discrete convolution (11.91) is computed by means of the 3D fast Fourier
transform (FFT) by using the zero-padding algorithm [73]. The kernel of
the convolution is obtained by generalizing the formulas proposed in Ref.
[582] for cubic cells to prisms.

As far as anisotropy is concerned, we assume that the anisotropy
field is:

han;i,j,k =
2K1

µ0M2
s

(mi,j,k · ean)ean, (11.92)

and the matrix Can is a diagonal matrix.
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FIGURE 11.6 (Left) Thin-film geometry for µ-mag standard problem n. 4. (Right)
Initial equilibrium S-state.

11.4 MICROMAGNETIC SIMULATIONS OF MAGNETIZATION
REVERSAL AND SPIN-WAVE EXCITATION

A stringent test of the above numerical techniques is to apply them to
the so-called µ-mag standard problems [499]. We have used them to solve
the standard problem n. 4. This problem is concerned with the study of
magnetization reversal dynamics in a permalloy thin film subject to a
constant and spatially uniform external field, applied almost antiparallel
to the initial magnetization. The geometry of the medium is sketched in
Fig. 11.6(a). The material parameters are A = 1.3 × 10−11 J/m, Ms =
8.0 × 105 A/m, K1 = 0 J/m3, and α = 0.02. The initial state is an
equilibrium “S-state” (see Ref. [499] and Fig. 11.6(b)) which is obtained
by slowly reducing a saturating field along the [1, 1, 1] direction to zero.
In all the numerical simulations, the magnetization is assumed to have
reached equilibrium when:

max
l=1,...,N

∣∣∣∣∣m(k+1)
l −m(k)

l

∆t

∣∣∣∣∣ < εtorque, (11.93)

i.e., the maximum of the (normalized) torque across the body is less than
a chosen tolerance εtorque. In our computations, εtorque = 10−5. Moreover,
the stopping criterion of the quasi-Newton iterative procedure has been
chosen as:

max
q=1,...,3N

|F(k)
q (y

n
)| < 10−14, (11.94)

where F(k)
q (y

n
) is the qth components of the vector F (k)(y

n
), and the index

n indicates the number of quasi-Newton iterations.
Two switching events have been calculated using fields applied in

the x–y-plane of different magnitude and direction. In the first case the
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FIGURE 11.7 Comparison between solutions of µ-mag standard problem no. 4.
Plots of 〈mx〉 and 〈my〉 versus time. The external field is applied at the angle of
170◦ with respect to the x axis.

external field is applied at the angle of 170◦ with respect to the x axis with
the components µ0Mshax = −24.6 mT and µ0Mshay = 4.3 mT. In the
second case the external field is applied at the angle of 190◦ with respect
to the x axis with the components µ0Mshax = −35.5 mT and µ0Mshay =
−6.3 mT. In both cases the cell edges are dx = 3.125 nm, dy = 3.125 nm,
dz = 3 nm and, therefore, the number of cells is N = 160× 40× 1 = 6400.

Next, we report the comparison between the solution obtained using
the above numerical technique and the solutions submitted by other
researchers [499] to the µ-mag website. The time step of the mid-point
numerical algorithm is constant and it is such that (γMs)−1∆t = 2.5 ps.
This value has been chosen only on the basis of accuracy, since the
mid-point rule is unconditionally stable. In this respect, we observe
that the time steps chosen in the other submitted computations (see
Ref. [499]) are considerably smaller (from tens of femtoseconds to 0.2
picoseconds). These small time steps are presumably due to numerical
stability requirements. In the results presented in the sequel, we plot
average value of magnetization components. For instance, the average
value 〈mx〉 of the mx component is computed as:

〈mx〉 =
1
N

∑
i,j,k

mx;i,j,k. (11.95)
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FIGURE 11.8 Comparison between solutions of µ-mag standard problem no. 4.
Plots of 〈my〉 versus time. The external field is applied at the angle of 190◦ with
respect to the x axis.

FIGURE 11.9 Numerical results for µ-mag standard problem no. 4. Snapshot of
magnetization vector field when the average 〈mx〉 crosses zero for the first time.
The external field is applied at the angle of 170◦ (up) and 190◦ (down) with respect
to the x axis.

In Figs 11.7 and 11.8 plots of 〈mx〉 and 〈my〉 as a function of time
are reported. We observe that in the first case (Fig. 11.7) there is good
agreement between different submitted solutions (see Ref. [499]) and,
for this reason, we report only the solution proposed by McMichael and
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FIGURE 11.10 Numerical results for µ-mag standard problem no. 4. Plots of 〈my〉
versus time for two different sizes of the mesh edge length. The external field is
applied at the angle of 190◦ with respect to the x axis.

FIGURE 11.11 Numerical results for µ-mag standard problem no. 4. (a) Plot of
1 −mav as a function of time. (b) Plot of the variance σ2

m as a function of time. In
both plots δ = 190◦, N = 6400.

coworkers. In Fig. 11.9 the plots of magnetization vector field when 〈mx〉
crosses zero for the first time are reported. To check whether the numerical
solution depends on the cell’s size, numerical simulations of the same
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FIGURE 11.12 Numerical results for µ-mag standard problem no. 4. Plot of the
relative error e(k)α = (α̂(k)−α)/α as a function of time. (a) δ = 170◦, N = 6400. (b)
δ = 170◦, N = 10 000. (c) δ = 190◦, N = 6400. (d) δ = 190◦, N = 10 000.

problem were performed with a smaller cell edge (2.5 nm, number of
cells N = 10 000). The results reported in Fig. 11.10 for the two different
mesh sizes are almost coincident. As far as the accuracy is concerned,
the self-consistency conditions mentioned above have been verified by
means of the computation of the values mav, σ2

m and α̂n. The results of
these computations are reported in Figs 11.11–11.12. One can observe from
Fig. 11.11 that the magnetization magnitude is very well preserved, since
the mean value mav ∼ 1 ± 10−16 and the variance σ2

m is in the order
of 10−30. It is remarkable that the accuracy in magnetization magnitude
conservation is within machine precision. Moreover, one can see from
Fig. 11.12 that the relative error e(k)

α = (α̂(k) − α)/α is on the order of
10−7 in all cases.

To analyze the conservative dynamics, the same problem has been
simulated with α = 0. The results, reported in Fig. 11.13, show that the
reversal of the thin film occurs, in the sense that the average magnetiza-
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FIGURE 11.13 Numerical results for µ-mag standard problem no. 4 in the
conservative case α = 0. Plot of 〈mx〉 (top), 〈my〉 (middle), 〈mz〉 (bottom) as
functions of time; δ = 190◦, N = 6400.

FIGURE 11.14 Comparison of numerical results for µ-mag standard problem no.
4 in the conservative and dissipative case. Solid lines refer to the conservative case
α = 0, dashed lines refer to the dissipative case α = 0.02. Plot of the free energy g
(top), 〈mx〉 (bottom) as functions of time. δ = 190◦, N = 6400.

tion exhibits a persistent oscillation around the reversed state. In fact, by
comparing the conservative and dissipative dynamics, reported in
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FIGURE 11.15 Numerical results for µ-mag standard problem no. 4 in the
conservative case α = 0. Plots of exchange, anisotropy, magnetostatic, Zeeman
and total free energy as functions of time. δ = 190◦, N = 6400.

Fig. 11.14, one can observe that on a short time scale (0 < t < 0.2 ns),
the conservative and dissipative dynamics are quite close. This means that
the precessional effects are prevalent with respect to the damping effects
in the reversal process. One can see from Fig. 11.15 that the free energy is
conserved. In this numerical experiment, we have checked that the rela-
tive error eg of the free energy with respect to its initial value is in the order
of 10−8 as one can see from Fig. 11.16. We observe that the conservative
switching process occurs mainly through a transfer of energy from mag-
netostatic form to exchange form. This transfer of energy process is con-
nected to the generation of spin-waves with decreasing wavelength [574].

Finally, we shall apply the numerical techniques of the previous
section to the simulation of spin-wave excitation in the case of an ultra-
thin (few nm thickness) uniaxial ferromagnetic disk subjected to circularly
polarized and spatially uniform external fields (see Fig. 11.17). This case
was analyzed in detail in Section 8.5. For small disk dimensions (diameter
D ≈ 100lEX and thickness d ≈ lEX ) and under spatially uniform
excitation conditions, spatially uniform modes are expected to be the main
dynamic modes: either periodic P-modes or quasi-periodic Q-modes (see
Chapter 7). We recall that P-modes can be determined analytically. Each
P-mode is identified by the angle θ0 of m with respect to ez and by the lag
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FIGURE 11.16 Numerical results for µ-mag standard problem no. 4 in the
conservative case α = 0. Plot of the relative error e

(k)
g = (g(m(k); ha) −

g(m(0); ha))/g(m(0); ha) as a function of time. δ = 190◦, N = 6400.

FIGURE 11.17 Sketch of thin-disk geometry and exitation conditions.

angle φ0 of m⊥ with respect to ha⊥. These angles satisfy the equations:

ν0 =
haz − ω
cos θ0

+ κeff, ν2
0 =

h2
a⊥

sin2 θ0

− α2ω2, (11.96)

where ν0 = αω cotφ0 and κeff = κ + N⊥ − Nz (Nz and N⊥ are the disk
demagnetizing factors). The angle φ0 is in one-to-one correspondence with
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FIGURE 11.18 Portion of the spin-wave instability (shaded) region in the
(cos θ0, ν0)-plane. The inset is a magnification of a portion of the diagram. The
value of parameters are µ0Ms = 1 T, α = 0.02, ω = 0.25 (which corresponds
to 7 GHz), lEX = 5.71 nm, d = 3 nm, Nz = 0.9498, κeff = −0.9248. The lines
labeled with values of ha⊥ and values of haz are lines of the (cos θ0, ν0)-plane
characterized by constant values of ha⊥ and haz , respectively. The analytical form
of these lines can be derived by Eq. (11.96). The line labeled with detA0 = 0
correspond to instability due to spatially uniform perturbations (P-mode foldover
phenomenon). The points A, B, C, D, J, H are indicated in order to compare this
figure with Fig. 11.19.

ν0 because 0 ≤ φ0 ≤ π under all circumstances. The plane (cos θ0, ν0) is the
natural plane for the representation of P-modes (see Fig. 7.3).

P-modes can become unstable as a consequence of spatially uniform
or spatially nonuniform perturbations. Stability with respect to uniform
perturbations is governed by Eqs (7.38)–(7.41). Instabilities occur when
the determinant det A0 changes from positive to negative (the critical
condition is det A0 = 0, which corresponds to a saddle–node bifurcation)
or when the trace tr A0 changes from negative to positive (the critical
condition is tr A0 = 0, which corresponds to a Hopf bifurcation). On the
other hand, as discussed in Section 8.5, in ultra-thin films P-mode stability
with respect to plane-wave (spin-wave) nonuniform perturbations can
be investigated under the assumption that the magnetization vector is
uniform across the film thickness. The amplitudes of the spin-wave
perturbation of wave-vector q satisfy the set of equations (8.126)–(8.130).
The key information about spin-wave instabilities is provided by the one-
period map associated with Eq. (8.126). Given the matrix solution Φq(t) of
Eq. (8.126), with Φq(0) = δij , the one-period map Mq is defined as Mq =
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Φq(2π/ω). Stability is controlled by the eigenvalues µ± of Mq . Instability
occurs whenever |µ+| > 1 or |µ−| > 1. Therefore, one can immediately
determine the stability of all P-modes with respect to any particular spin-
wave perturbation by numerical integration of Eq. (8.126) for all possible
values of q (see Fig. 11.18). The integration is performed for any value of
(cos θ0, ν0) and for q ≥ qmin, where qmin = πlEX /D. The shaded region
in Fig. 11.18 is the region in the (cos θ0, ν0)-plane corresponding to P-
modes which are unstable for at least one value of q. This figure should
be compared with Fig. 8.2, which was computed for the case of spin-wave
instabilities in bulk systems.

We have performed numerical simulations of spin-wave excitation in
an ultra-thin permalloy disk (lEX = 5.71 nm, µ0Ms = 1 T, d = 3 nm,
D = 200 nm). The disk is subdivided into rectangular prisms with
dimensions 5 × 5 × 3 nm with edges parallel to the coordinate axes.
The magnetization is assumed uniform within each cell. As previously
discussed, the exchange field is computed using a 7-point finite-difference
Laplacian approximation. The magnetostatic field is expressed as a
discrete convolution and this convolution is evaluated by means of the
3D fast Fourier transform (FFT). The time-integration of the LLG equation
is performed by using the mid-point rule scheme. The preservation of the
main qualitative properties of the magnetization dynamics is particularly
important in the present case, where very long simulation times are
required. c

The numerical results are reported in Fig. 11.19. The dc field haz is
changed in a step-wise fashion from 1.3 to 0.8 and then back to 1.3. After
each step, a time interval of 10 ns is needed (50 ns along the branch FEG)
for the magnetization to approach a steady state. Then the maximum
value (in time) of the quantity m⊥ = (〈mx〉2 + 〈my〉2)1/2 is stored (〈·〉
denotes spatial average over the disk). The total simulation time is almost
600 ns and the time step is 5 ps.

The spatial uniformity is monitored during the simulations. It is found
that the value of (〈mx〉2 + 〈my〉2 + 〈mz〉2)1/2 usually deviated from 1 by a
few percent except at the irreversible jumps CE and JB, as well as along the
branch HJ, where the deviation from 1 is between 10 and 20 percent. In the
first part of the simulation the branch ABC is traced, where P-modes are
observed. The numerical solution is reasonably close to the curve (dotted
line) given by P-mode theory. However, the irreversible jump CE occurs at
a value of the field (haz ≈ 0.9) higher than the field for foldover switching
(point D). This instability can be justified by taking into account that the
point C represented in the (cos θ0, ν0)-plane (see Fig. 11.18) is just inside
the spin-wave instability region. After the jump the system reaches Q-
modes regimes (branch FEG) which disappear through a Hopf bifurcation
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FIGURE 11.19 Numerical simulations of foldover and instability processes. On
the vertical axis the maximum (in time) value of m⊥ = (〈mx〉2 + 〈my〉2)1/2 is
represented (〈·〉 denotes spatial average) after the system has reached a steady
state. The RF field has values ha⊥ = 0.75αω, while the field haz (plotted along
the horizontal axis) is changed from 1.3 to 0.8 and then back to 1.3. All other
parameters are the same as in Fig. 11.18. The continuous line with symbol “ ”
represents numerical simulations. The dotted line represents the spatially uniform
P-mode foldover theoretical curve. The points A, B, C, D, H, J are also indicated
in Fig. 11.18. The shaded region around the branch F, E, G indicates numerically
observed Q-modes. In the inset, spatially averaged mx and my versus time in the
case of a Q-mode.

at the value of haz ≈ 0.95. This is slightly larger than the value predicted
by the theory haz = −κeff ≈ 0.92, but still in a very reasonable agreement.
In the branch GH the solution follows the P-mode foldover lower branch
up to the point H where again the system (see Fig. 11.18) enters in the
spin-wave instability region and the solution is driven into a new regime
in which spatial nonuniformity is pronounced. It is interesting to note that
magnetization jumps back to the foldover upper branch at point J, exactly
at the point where the jump is expected to be according to the P-mode
theory.

We can conclude that, despite the approximations inherent in the
spin-wave theory and in the numerical treatment of the problem, the
quantitative comparison between theoretical predictions and numerical
simulations is reasonably good. This means that the spin-wave theory
applied to ultra-thin disks can reasonably predict the excitation conditions
for which deviations from P-modes theory have to be expected.
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11.5 MICROMAGNETIC SIMULATIONS OF CHAOTIC
DYNAMICS

In the case when the frequency of the driving field approaches the
characteristic frequency of precession of the spin around the applied dc
field, various nonlinear phenomena can be observed and the dynamics of
spins may become very complicated. For example, chaotic dynamics has
been studied and observed experimentally in ferrites and in conducting
ferromagnetic thin films. In these cases, complex dynamics is attributed to
the nonlinear coupling of the spatially nonuniform magnetization modes.

In this section, the case of a uniformly magnetized sample is
considered. Therefore, the possible excitation of nonuniform modes is
not taken into account. Nevertheless, it is shown that in this simple case
the spin dynamics may exhibit complicated nonlinear phenomena such
as spontaneous symmetry breaking, bifurcations, quasi-periodicity and
chaotic behavior.

We shall consider the magnetization dynamics of a uniformly
magnetized ferromagnetic spheroidal particle with uniaxial anisotropy.
The easy axis is coincident with the symmetry axis and they are both
oriented along the z axis of the cartesian reference frame. The applied rf
field Ha⊥(t) is elliptically polarized and its polarization is characterized
by using the Poincaré sphere and the following Stokes parameters:

I = H2
ax +H2

ay, Q = H2
ax −H2

ay (11.97)
U = 2HaxHay cos θ0, V = −2HaxHay sin θ0, (11.98)

where θ0 = θx − θy . The last two parameters U and V characterize
the orientation of the polarization ellipse in the (x, y)-plane and can be
arbitrarily chosen since the ferromagnetic particle is isotropic in the (x, y)-
plane. For the sake of simplicity, we shall assume θx = θy = θ0 = 0.

As was discussed in Chapter 7, when all the equilibria are unstable
the steady state of the system is a limit cycle on the sphere which, in
the original frame of reference, corresponds to a quasi-periodic solution
(see Fig. 11.20). The emergence of quasi-periodic solutions in the case of a
circularly polarized applied magnetic field can be seen as a manifestation
of spontaneous symmetry breaking. In fact, the solution shown in
Fig. 11.20 is only one of a continuous set of quasi-periodic solutions which
can be obtained from each other by a rotation around the z axis. Therefore,
after the bifurcation which leads to the appearance of quasi-periodic
solutions, the symmetry of the system is reflected in the symmetry of the
whole set of solutions rather than in individual solutions.



11.5 Micromagnetic Simulations of Chaotic Dynamics 397

FIGURE 11.20 My/Ms vs Mx/Ms for the quasi-periodic steady-state LLG
dynamics subject to a rotating applied field. Value of the parameters: bz = −2.825,
a⊥ = 35.4, Ω = 2.825 · 10−2, α = 0.01 and κeff = −1.

An important consequence of the reduction of the LLG equation to the
autonomous form on the sphere in the case of the circularly polarized rf
field is that the system cannot exhibit chaotic behavior for this polarization
of the applied field (see Chapter 7). This is because chaotic motion may
occur only in dynamical systems evolving on manifolds with at least three
dimensions. On the other hand, it has been reported that the system may
exhibit chaotic behavior in the case of a linearly polarized magnetic field
[250]. This suggests the detailed study of the route to chaos through the
gradual change of polarization of the Ha⊥(t) field from circular to linear.

In the case when Hax 6= Hay , the mathematical formulation of the
problem is not rotationally symmetric in the (x, y)-plane. However, it can
be easily verified that the mathematical formulation of the problem is
invariant with respect to reflection around the origin of the (x, y)-plane.

This kind of symmetry is inherited by the solutions of the problem in
a certain range of parameters. This fact is shown in Fig. 11.21(a) where the
projections on the (my,mx)-plane of two period-1 (i.e., period T = 2π/ω)
solutions corresponding to two different values of the parameter ap = Q/I
(which characterizes the polarization of Ha⊥(t)), are presented. The two
figures show that the above solutions are symmetric with respect to the
origin of the reference axes. In Fig. 11.21(b), two period-1 solutions are
shown for an increased value of ap. These periodic solutions are obtained
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FIGURE 11.21 Mx/Ms vs My/Ms for period-1 solutions in the case of elliptically
polarized applied field. Value of the parameters: a⊥ = 35.35, Ω = 0.05, bz = 0.9,
α = 0.05, κeff = 0.1, (a) ap = 0.75 and ap = 0.91, (b) in both figures ap = 0.96 but
the two solutions are obtained from two different and symmetric (with respect to
the origin) initial conditions.

for the same value of ap by solving the LL equations starting from
two initial conditions symmetric with respect to the origin. It is evident
that the steady-state solutions are not symmetric. However, these two
solutions can be mapped into one another by reflection with respect to the
origin. This demonstrates that for some critical value of the parameters
ap there is symmetry breaking bifurcation which leads to the set of two
nonsymmetric solutions. These solutions together reflect the symmetry of
the dynamical system with respect to the origin.

The possible bifurcations of the period-1 solution under the change of
polarization, i.e., under the change of ap, strongly depend on the values of
the chosen parameters. We have also observed subharmonic steady states
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FIGURE 11.22 (a) Bifurcation diagram for Mx/Ms and My/Ms vs ap = Q/I for
period-1 solutions; (b) example of chaotic transient: Poincaré map of Mx/Ms and
My/Ms vs number of period. Value of the parameters: a⊥ = 35.35, Ω = 0.05,
Ωz = 0.9.

in certain regions of the parameter space (often coexisting with the period-
1 periodic solutions) which can be reached by an appropriate choice of the
initial condition. In this section, however, we shall limit ourselves to the
discussion of the case of period-1 solutions.

In the sequel, we consider the bifurcation of the period-1 solutions for
the values of the parameters a⊥ = 35.35, Ω = 0.05, bz = 0.9, α = 0.05
and κeff = 0.1 (which coincide with those corresponding to the solutions
shown in Fig. 11.21). These values are such that in the case of linearly
polarized fields, i.e., ap = 1, the system has chaotic behavior according
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to the results reported in Ref. [250]. For these values of the parameters
the bifurcation diagram displays an interesting behavior: the period-1
solution exists and it is stable for almost any value of ap up to a critical
value (determined up to intrinsic numerical uncertainties) ãp ≈ 0.999 18,
where it loses its stability and the system enters a chaotic region. The
bifurcation diagram (see Fig. 11.22(a)) is created through the following
procedure. The value of ap = Q/I is increased by small steps starting
from the Q/I = 0, which correspond to the case of a circular polarization.
After each change in ap, we numerically solved the LLG equation for a
number of periods without recording the results. This is necessary to let
the system reach a steady state. After this transient is faded, we start to
sample the value of magnetization each T = 2π/ω s. In other words, we
extract a Poincaré map by sampling the time at multiple of the period of
the periodic driving field. The presence of only one point for each value of
Q/I has to be read as the existence of period-1 solutions, while a period-n
solution would show up as n points for the same value of Q/I .

From our numerical simulations, it is reasonable to conjecture that the
transition to chaos occurs through the so-called chaotic transient. Indeed,
we have found that when ap approaches the critical point, the average
time necessary to reach the period-1 solution increases progressively.
In Fig. 11.22(b) an example of a chaotic transient is reported for ap =
0.998 775. The value of magnetization is sampled at multiples of the
period 2π/ω. The trajectory eventually reaches a period-1 solution, but
for almost 1.4 · 104 periods the trajectory has a chaotic behavior. It must
be remarked that the final values of Mx/Ms and My/Ms in Fig. 11.22(b)
do not coincide with the corresponding values in Fig. 11.22(a) because the
period-1 solution is sampled at different time instants in the two cases.
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normalized LLG equation, 33
spatially uniform magnetism,

51–54
stochastic dynamics, 320

Brownian motion, 273–277

Calculus, see Stochastic calculus
Canonical Hamiltonian equations,

84–86
Cartesian reference frames, 36–38,

40, 60, 61
Casimir integral of motion, 87, 88
Central limit theorem, 271
Chaotic dynamics:

micromagnetic simulations, 19,
395–400

rotational invariance, 18, 19, 396
spatially uniform magnetism,

42
spin-transfer, 239
time-harmonic excitation, 157

Chebychev pseudo-spectral
method, 338

Circularly polarized fields:
chaotic dynamics, 396, 397
mid-point finite differences,

365, 367
spin-wave excitation, 391,

393–395
stochastic dynamics, 283
time-harmonic excitation,

184–192
Classical continuous-media

models, 195
Classical Landau–Lifshitz

equation, 292–297
Closed form expressions, 292–297
Cobalt layers, 237, 238
Cobalt spheroidal particles,

371–373
Coherent oscillations, 233, 234
Conditional probability density:

autocorrelation, 335–337
Fokker–Planck equation, 283,

285, 291, 296–299
graphs, 302, 310–312
nonuniformly magnetized

ferromagnets, 351, 357
power spectral density, 335, 336,

338
uniaxial systems, 329, 330, 334

Conducting ferromagnetic thin
films, 396

Conservation dynamics:
dissipative dynamics, 88, 89
magnetization reversal, 389–391
nonuniformly magnetized

particles, 379, 380, 382, 383
precessional dynamics, 57, 128,

129
precessional switching, 128, 129
spatially uniform magnetism,

41, 42
spin-wave excitation, 394, 395
stochastic dynamics, 370

Constant-energy ellipses, 68, 69
Constant-energy trajectories, 116,

118, 119
Continuity equations, 285
Coordinate invariance, 39
Coupled stochastic differential

equations, 348, 349
Critical curves, 63
Critical fields, 10, 131–138
Critical points, 52, 170, 171,

263–265, 301, 302
Cross products, 272, 273
Crystal anisotropy, 170, 171, 178,

179
Curl-free vector fields, 45–50
Current density:

spin-transfer, 246
stochastic dynamics
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autocorrelation, 314,
321–324

ferromagnetism, 351, 352
Fokker Planck equation, 285,

288, 289
graphs, 302–305, 309–312
power spectral density, 314,

321–324
stationary distributions, 314,

321–324
Current portraits, 248
Current-controlled nonlinear

ferromagnetic resonance,
268–270

Current-induced oscillations, 234,
235, 268–270

Current-perpendicular-to-plane
(CPP) geometry, 14, 233, 234

Curvilinear coordinates, 117–119
Cylindrical coordinates, 97, 98, 299,

328, 329

Damping, 6–8, 19, 91–126
conservative precessional

dynamics, 57, 88, 89
constants, 91, 95, 98

bifurcation diagrams, 171
precessional dynamics, 57,

88, 89
Q-modes, 169, 170
self-oscillations, 117, 118
spatially uniform

magnetism, 44
stochastic dynamics,

309–312
time-harmonic excitation,

154, 160, 161, 169, 170
two-time scale formulation,

104, 105
LLG equation, 27–29
longitudinal media, 109–115
magnetization reversal, 389–391

precessional switching, 128,
141–144

spin-waves, 205
stochastic dynamics, 272,

293–297, 301–303, 307–312
switching, 91–100, 109–115, 128,

141–144
uniaxial media, 91–100,

see also Dissipative dynamics
dc, see Direct current
Demagnetizing fields, 36, 38, 153,

154, 346, see also Magnetostatic
fields

Determinant matrices, 162–164,
166, 206

Deterministic drift, 275, 281, 287,
292, 294–297

Deterministic dynamics, 275, 281,
287, 293–297, 315

Deviations from rotational
symmetry, 12, 186–192

Diffusion equations, 285, 287,
303–306, 325

Direct current (dc) fields, 10–12,
179, 183–186

Discretization, 346–357, 359, 360,
373–385

Dissipative dynamics, 6, 8, 19,
91–113, 115–125,
see also Damping
conservative precessional

dynamics, 57, 88, 89
LLG equation, 27–29
magnetization relaxation, 7,

105–115
magnetization reversal, 389–391
Poincaré–Melnikov theory, 8,

117–126
precessional switching, 128,

141–144
self-oscillations, 8, 115–126
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stochastic dynamics, 272,
293–297, 301–303, 307–312

switching, 91–100, 109, 110, 112,
113, 115, 128, 141–144

thin films, 100–115
two-time scale formulation, 7, 8,

100–105
Divergence, 351, 352
Divergence-free vector fields, 45–50
Drift, 275, 281, 287, 292, 294–297,

308, 309
Dynamic stability:

spin-torque, 254–261

Easy axis, 91–100, 238, 246, 261
Effective anisotropy, 92, 166, 167
Effective distribution functions, 342
Effective fields:

damping switching, 92, 93
Discretization, 347
dissipative magnetization, 100,

101
LL equation, 22, 23
nonuniformly magnetized

particles, 373
normalized LLG equation, 31
spatially uniform magnetism,

37–39
spin-transfer, 238
thin film spin-waves, 226–231

Effective potentials, 262, 313,
315–317, 319, 320

Eigenfrequencies, 201
Eigenfunctions, 294–296, 325–327,

336–338
Eigenmodes, 206
Eigenvalues, 162–164, 335
Eigenvectors, 38
Electric current:

spin-transfer, 233
Ellipsoidal curves, 132–138
Ellipsoidal ferromagnets, 36, 37

Elliptical polarization, 19
Elliptical precessional dynamics,

63, 64, 67, 68, 75, 76, 132–138
Elliptical trajectories, 132–138
Energy balance:

dissipative magnetization, 101,
102

LLG equation, 27
mid-point finite differences,

363–365
nonuniformly magnetized

particles, 377, 382, 383
spatially uniform magnetism,

42, 43, 47–50
stochastic dynamics, 355,

370–373
Energy barriers, 301, 317, 318, 320,

321, 331
Energy dissipation, 141–144
Energy dynamics:

stochastic dynamics, 313–317,
319–325, 327

Energy extrema:
dissipative magnetization, 110,

111, 113
precessional dynamics, 5, 6,

58–63, 68, 69, 71–73, 79, 80
precessional switching, 128–130
Q-modes, 170, 171
spatially uniform magnetism,

52–55
stochastic dynamics, 301, 302,

306, 307
time-harmonic excitation, 163,

164, 166, 167, 170, 171, 173,
184

Energy graphs, 5, 59, 60, 78
Energy maxima:

dissipative magnetization, 110,
111

precessional dynamics, 5, 6,
58–63, 68, 69, 71–73, 79, 80
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precessional switching, 128–130
Q-modes, 170, 171
spatially uniform magnetism,

52–55
stochastic dynamics, 301, 302
time-harmonic excitation, 170,

171, 183
Energy minima:

dissipative magnetization, 110,
111

precessional dynamics, 5, 6,
58–63, 71, 72, 79, 80

precessional switching, 128–130
spatially uniform magnetism,

52–55
stochastic dynamics, 301, 302
time-harmonic excitation, 184

Energy rate of change, 25
Energy relaxation, 24, 25
Energy saddles:

dissipative magnetization, 110,
111, 113

precessional dynamics, 5, 6,
58–63, 69, 71, 72, 79–81

precessional switching, 128–130
spatially uniform magnetism,

52–55
stochastic dynamics, 301, 302,

306, 307
time-harmonic excitation, 163,

164, 166, 167, 173, 184
Energy time-evolution, 380, 381
Equilibrium:

distributions, 291–297, 330, 372,
373

magnetization reversal, 385
points (states)

LL equation, 22–26
LLG equation, 27
magnetization relaxation,

105–115

precessional switching,
128–130

spatially uniform
magnetism, 5, 42, 44,
51–55

probability, 291–297, 344
spatially uniform magnetism, 3,

42–44, 51–55
spin-waves, 193, 194, 204

Euclidean space, 349, 350
Euler methods, 369, 370
Evolution stochastic equations, 294
Exact analytical time-harmonics,

365, 367
Exact differential equations, 99, 100
Exchange interactions, 31, 32, 374,

384
Explicit extrapolation, 362, 363, 380

Far-from equilibrium conditions,
204

Fast Fourier transforms (FFT), 394
Fast precessional dynamics,

127–152
Fast time scales:

dissipative magnetization, 6–8,
91, 94, 97–100

stochastic dynamics, 17,
300–312

Ferrites, 396
Ferromagnetism:

disks, 391–395
layers, 14, 233
objects, 17, 271, 293–297,

345–357
resonance, 10, 11, 13, 153–164,

166–171, 173–192, 217,
268–270

spheroidal particles, 396–400
thin films, 396

FFT, see Fast Fourier transforms
Field pulses, 10, 131–152
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critical fields, 9, 131–138
duration, 10, 131–152
nonrectangular field pulses, 10,

144–152
Films, see also Thin films

thickness, 226–230
volume finiteness, 226–231

Finite elements, 373
Finite-difference schemes, 18

mid-point finite differences, 18,
359–365, 367–373

nonuniformly magnetized
particles, 373, 378, 379,
383–385

spatial discretization, 373,
383–385

Finite-dimensional formulation:
stochastic dynamics, 346

First-order
approximations/solutions, 103,
215, 216

First-order instabilities, 221–224
Fixed layers, 14, 233, 236
Fixed points:

spin-transfer, 239–242, 250–252
time-harmonic excitation, 11,

156–164, 166, 167, 171, 173,
175–180, 182–192

Floquet’s theory, 205, 211
Fluctuation-dissipation relations,

272, 294–297, 302, 303, 309–312
Focus, 163
Fokker–Planck equations:

cylindrical coordinates, 299, 329
equilibrium probability, 291,

292, 294–297
noise, 290–297
spherical coordinates, 297, 298
spin-transfer, 235
stationary probability, 291–297
stochastic dynamics, 16, 17

autocorrelation, 331,
333–335, 337, 338, 340–345

graphs, 302, 303, 307, 309
mid-point finite differences,

369
nonuniformly magnetized

ferromagnets, 351–354,
357

power spectral density,
331–338, 340–345

stationary distributions, 321,
322, 325, 327

thermal transitions, 321, 322,
325, 327

uniaxial systems, 329
Fokker–Planck–Kolmogorov (FPK)

equation, 16, 17, 341
Foldover:

mid-point finite differences, 367
spin-transfer, 268–270
spin-waves, 219–221, 394, 395
time-harmonic excitation, 164,

179, 181–186
Forward coordinates, 335
Forward Euler methods, 369, 370
Forward Kolmogorov equation,

335
Four-fold surfaces, 219–221
Four-folded sheets, 164
Fourier series, 332, 333, 337
Fourier transforms (FT), 336, 338,

394
FPK,

see Fokker–Plank–Kolmogorov
equation

Free energy, 18
critical points, 51
damping switching, 92, 93, 99,

100
discretization, 349–357
dissipative magnetization,

100–108, 111–115, 118
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LL equation, 22
magnetization relaxation,

106–108, 111–115
magnetization reversal, 391
mid-point finite differences,

359, 364, 365
nonuniformly magnetized

particles, 373
normalized LLG equation, 31,

32
precessional switching,

132–134, 139
self-oscillations, 118
spatially uniform magnetism,

39, 43, 44, 52
stochastic dynamics, 300,

349–357
two-time scale formulation,

100–105
Free layers:

spin-transfer, 14, 233–235, 238,
239, 246, 261–263, 265, 266,
268–270

stochastic dynamics, 336
FT, see Fourier transforms

Gaussian white noise, 271–277,
368–373

Generalized magnetization
dynamics, 4, 5, 44–51

Generic scalar functions, 279, 280
Geometric aspects:

precessional dynamics, 5, 6,
57–63

Gilbert equation, 27, 28,
see also Landau–Lifshitz–Gilbert
equation, 363, 364, 380, 381

Global bifurcation, 174
Graphs:

dissipative magnetization,
119–126

precessional dynamics, 5, 59, 60,
71

stochastic dynamics, 17, 18,
299–312, 336, 338, 340–345

time-harmonic excitation, 11,
12, 171, 173–179

Green identity, 46

Hamiltonian structures:
dissipative magnetization, 118,

122–124
mid-point finite differences, 359
precessional dynamics, 6, 84–89

Harmonic excitation,
see Time-harmonic excitation

Harmonic oscillators, 204–210
Helmholtz decomposition

theorem, 45
Heteroclinic trajectories, 128, 133,

244
Heun methods, 369, 370
High energy regions, 5, 6, 69,

72–75, 79, 82–84
Holder condition, 274
Homoclinic structures, 129
Homoclinic trajectories, 244
Homoclinic-saddle-connection

bifurcation, 174, 175
Hopf bifurcation:

spin-transfer, 250–252, 256, 260,
263, 266

spin-wave excitation, 393–395
time-harmonic excitation, 174,

184–186, 191
Hyperbolic lines, 160
Hysteresis, 184–186
Hysteric jumps, 181

In-plane fields, 365, 367
Instability:

diagrams, 217–226
spin-wave thresholds, 205,

222–224
spin-waves, 12–14, 202, 210–226
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Intermediate-energy regions,
72–74, 77

Inverse problem approach, 10, 144,
146–148, 150–152

Inverse pulse time, 96, 97
Inverse switching time, 10, 141,

143–152
Isotropic vector Weiner process,

273–276
Itô calculus, 16, 276–283, 286, 287,

298, 299, 368–370
Itô lemma, 279–283
Itô–Stratonovich dilemma, 368

Jacobi elliptic functions, 68, 75, 76
Jacobian matrices, 381, 382
Joint probability distribution, 337,

341
Jumps, 181, 394, 395

Kittel modes/oscillations, 199, 259
Kolmogorov-forward equation, 285
Kramers’ methods, 309, 320, 321

Laboratory reference frames:
basis vectors, 196
time-harmonic excitation, 157,

159, 160, 167
Lag angles, 158
Landau–Lifshitz (LL) equation, 1,

2, 4, 21–26, 34
dissipative magnetization, 6–8,

91, 100–102
precessional dynamics, 57, 85
Q-modes, 169
spatially uniform magnetism,

41–51
stochastic dynamics, 16–19,

271–283, 292–297, 300, 301
time-harmonic excitations, 10,

11
two-time scale formulation,

100–102

Landau–Lifshitz–Gilbert (LLG)
equation, 2, 3, 13–16, 27–29, 34
chaotic dynamics, 396, 397
dissipative magnetization, 6,

91–93, 100–102, 108, 125
magnetization relaxation, 108
mid-point finite differences,

359–361, 363–365, 367–373
normalized form, 31–34
precessional dynamics, 57
precessional switching, 127,

132, 145
rotational invariance, 153–157
self-oscillations, 125
spatial discretization, 373–381
spatially uniform magnetism,

35–41, 51
spin-transfer, 233–239
spin-waves, 194–202, 217, 394
stochastic dynamics, 16–19,

271–283
time-harmonic excitation, 10,

11, 153–157, 171, 183, 184, 186
two-time scale formulation, 100,

102
Landau–Lifshitz–Gilbert–Maxwell

equation, 3, 4, 35–41
Langevin-type stochastic

equations, 235, 331
Larmor frequency, 179
Layers:

spin-transfer, 14, 233–239, 246,
261–263, 265, 266, 268–270,
337

Limit cycles:
dissipative magnetization, 8,

116–126
Q-modes, 168, 169
spatially uniform magnetism,

42–44
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spin-transfer, 14, 238, 239,
242–246, 253–256, 259,
261–263, 265

stochastic dynamics, 301
time-harmonic excitation, 11,

12, 167–171, 173–179
Linearized

Landau–Lifshitz–Gilbert
equation, 194–202

Linearly polarized fields, 397
Linewidth trends, 345
Liouville theorem, 212–215
LLG, see Landau–Lifshitz–Gilbert

equation
Local bifurcation, 174
Longitudinal magnetic fields, 78–84
Longitudinal media, 109–115
Low-energy regions, 69, 73, 79–83

Magnetic recording, 91
Magnetic storage technology, 14,

36, 233, 234, 271
Magnetic torque, 233, 271
Magnetization constraints, 57, 58
Magnetization magnitude:

magnetization reversal, 389
mid-point finite differences,

359, 361–365, 367, 370
nonuniformly magnetized

particles, 379, 380, 382, 383
Magnetization reversal,

see also Precessional switching,
9, 381–383, 385–391, 393

Magnetostatic fields:
nonuniformly magnetized

particles, 375, 384
spin-waves, 197–203, 226–231,

394
time-harmonic excitation, 91, 99

Magnetostatic modes, 197–202
Magnon generation, 234
Manifolds, 299

Markovian stochastic processes,
16–18, 284, 285, 307

Matrices:
block-diagonal matrices, 350
determinant matrices, 162–164,

166, 168, 206
Hamiltonians, 85, 86
Jacobian matrices, 381, 382
principle matrix solution, 205
time-independent matrices, 206

Maxwell equations, 3, 4, 12, 35–41,
195

Melnikov function:
dissipative magnetization, 98,

100, 114–116
Q-modes, 170, 171
spin-transfer, 15, 16, 243–246,

253, 254
stochastic dynamics, 305, 314,

316, 324
Micromagnetism, 21, 22

constraints, 25, 26, 44, 46, 375
free energy, 31, 32
simulations

chaotic dynamics, 395–400
magnetization reversal,

385–391, 393
spin-wave excitation, 385,

391, 393–395
switching, 381–383

Microwave oscillators, 14, 233–235
Mid-point finite differences:

magnetization magnitude, 359,
361–365, 367, 370

stochastic differential equations,
18, 19, 359–365, 367–373

Mid-point rule:
magnetization reversal,

381–383, 385–391, 393
micromagnetic switching,

381–383, 385–391, 393
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nonuniformly magnetized
particles, 378, 380–383

spin-wave excitation, 394
stochastic dynamics, 276

Milstein methods, 369, 370
Minimal pulse time, 95–97
Möbius transformations, 73, 74
Monte-Carlo-type analysis, 18, 19
Multiplicative noise, 277, 278,

368–373

Nano-scale films, 127, 128
Nanocontacts, 235
Nanopatterning, 14, 234, 235
Nanopillars, 14, 15, 234
Negative branches, 146–150
Newton–Raphson (NR) algorithm,

381, 382
Nodes, 163
Noise:

Fokker–Planck equation,
290–297

mid-point finite differences,
367–373

stochastic dynamics, 271–277,
289–297, 307–312, 346,
367–373

Nondifferentiability, 274–276
Nonlinear ferromagnetic

resonance, 179–186, 268–270
Nonrectangular field pulses, 10,

144–152
Nonuniformly magnetized

ferromagnets, 18, 345–357
Nonuniformly magnetized

particles, 373–385
Normalization conditions, 306, 307,

310, 347–349
Normalized

Landau–Lifshitz–Gilbert
equation, 31–34

NR, see Newton–Raphson (NR)
algorithm

Numerical integration techniques,
18, 19, 359–365, 367–391,
393–400
µ-mag standard problems,

385–391, 393
chaotic dynamics, 19, 396–400
magnetization reversal,

381–383, 385–391
magnetization switching,

385–391, 393
micromagnetic simulations,

385–391, 393–400
mid-point finite differences, 18,

19, 359–365, 367–373
mid-point rule, 378, 380–383,

385–391, 393, 394
nonuniformly magnetized

particles, 373–385
spin-waves, 213, 385, 391,

393–395
stochastic dynamics, 18, 19,

367–373

ODE, see Ordinary differential
equations

Oersted field torque, 233
One-period maps, 212–215,

221–224, 393
Operators:

stochastic dynamics, 294–296,
337, 338

Ordinary differential equations
(ODE), 343, 359

Orthogonal unit vectors, 121
Orthogonality conditions, 295, 296
Oscillations,

see also Self-oscillations
coherent oscillations, 233, 234
current-induced oscillations,

233–235, 268–270
harmonic oscillators, 204–210
Kittel modes/oscillations, 199,

259
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microwave oscillators, 14,
233–235

spin-waves, 204–212

P-modes, see Periodic rotating
solutions

Parametric harmonic oscillators,
204–210

Parametric instabilities, 12–14, 193,
205, 210–226

Parametric resonance, 204–210, 217
Partition functions, 356
Period-1 solutions, 398–400
Periodic motion, 8, 117–126
Periodic rotating solutions

(P-modes):
chaotic dynamics, 397, 398
spin-transfer, 242, 256, 266,

268–270
spin-waves, 12–14, 193–202,

206–220, 223, 227, 391,
393–395

time-harmonic excitation, 11,
157–164, 166, 167, 171, 173,
175–192

Permalloy disks, 394, 395
Permalloy thin films, 385–391, 393
Perpendicular media:

dissipative magnetization,
91–100

field pulse duration, 139–144
rotational invariance, 19
spin-waves, 391, 393–395
stochastic dynamics, 282, 283

Perturbations, see also Stochastic
dynamics
dissipative magnetization, 102,

103, 117–126
P-modes, 161–164, 166, 167
precessional dynamics, 117–126
spin-transfer, 244

spin-waves, 13, 14, 193, 199,
202–210, 213–231, 393

time-harmonic excitations, 12,
161–164, 166, 167, 186–192

Phase diagrams, 175–179, 238
Phase portraits:

bifurcation diagrams, 11, 12,
171, 173–179

dissipative magnetization, 119,
125

P-modes, 160, 161
precessional dynamics, 5–7,

58–84, 119, 125
precessional switching,

127–130, 133–137
spin-torque, 248, 249
spin-transfer, 238, 244, 246–257
stochastic dynamics, 301, 302
time-harmonic excitation, 11,

12, 160, 161, 171, 173–179
unit-disk representations,

61–65, 68–84
Phase-locking, 235, 268–270
Physical realizability of periodic

rotating solutions, 161–164, 166,
167

Pinned layers, 14, 233, 336
Pitchfork bifurcations,

see Saddle–node bifurcations
Plane-wave perturbations, 13, 14,

202
Poincaré index theorem, 55, 157,

160, 161, 164, 173
Poincaré maps, 119, 120, 122
Poincaré sections, 120–122
Poincaré spheres, 19, 396
Poincaré–Bendixson theorem, 42,

43, 167
Poincaré–Melnikov theory, 8, 11,

12, 117–126, 169–171, 242–246
Point-contacts, 234
Poisson brackets, 6, 86, 87
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Poisson equations, 46
Polarization, 19, 397,

see also Circularly polarized
fields; Spin-polarized current
injection

Positive branches, 146–150
Potential barriers, 301, 317, 319–321
Potentials:

spatially uniform dynamics,
45–50

spin-transfer, 262
stochastic dynamics, 313–317,

319, 320, 331
Power functions, 116, 124
Power spectral density (PSD), 17,

334–338, 340–345
Precessional dynamics, 5, 6, 18,

57–89
analytical studies, 63–70
damping switching, 99
dissipative magnetization,

111–115, 117–126
geometric aspects, 5, 6, 57–63
Hamiltonian structures, 6,

85–89
longitudinal magnetic fields,

78–84
magnetization relaxation, 78,

111–115
magnetization reversal, 391
phase portraits, 5, 6, 58–84
qualitative features, 59, 60
ringing phenomena, 105–108
self-oscillations, 117–126
stochastic dynamics, 300–312
time-harmonic excitation, 180,

181
trajectories, 57–64
transverse magnetic fields, 6,

70–72, 74–77
uniform magnetism, 48, 49, 57

Precessional period, 113

Precessional switching, 8–10, 70,
71, 127–152
in thin films, 8, 9, 127–152

analytic treatments, 10,
131–138

critical fields, 9, 131–138
damping switching, 128,

141–143
field pulse duration, 10,

138–152
inverse problem approach,

10, 144–152
nonrectangular field pulses,

10, 144–152
phase portraits, 127–130

Primed basis one-period maps, 221
Principle matrix solution, 205
Probability, see also Conditional

probability density
current density

autocorrelation, 314,
321–324

ferromagnetism, 351, 352
Fokker Planck equation, 285,

288, 289
power spectral density, 314,

321–324
stationary distributions, 314,

321–324
stochastic graphs, 302–305,

309–312
density, 16–18, 283–305,

309–317, 319–325, 327–329,
331–337, 340, 341, 351, 352,
357

precessional switching, 131
spin-transfer, 235
stochastic dynamics, 17, 18,

283–299, 312–317, 319–324,
326, 337

transition probability density,
16, 284, 285, 302, 341
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Pseudo-spectral methods, 338
Pseudo-torque, 233
Pulse time, 95–99
Pulsed fields, 10, 91–100, 131–152

Q-modes, see Quasiperiodic
solutions

Qualitative features:
precessional dynamics, 59, 60

Quasiperiodic solutions
(Q-modes):
chaotic dynamics, 396
spin-transfer, 266, 268–270
spin-waves, 391, 393
time-harmonic excitation, 11,

167–171, 177, 178, 184–186

Radio-frequency (rf) fields:
chaotic dynamics, 396, 397
spin-transfer, 262, 263, 265, 266,

268–270
spin-waves, 12, 13, 194, 217
time-harmonic excitation,

10–12, 156, 179, 189, 192
Random fluctuations, 271–277
Random magnetic fields, 346
Random precession torque,

281–283
Random-perturbations,

see Stochastic dynamics
Random-telegraph signals, 235
Rate equations, 321–326, 331
Rayleigh dissipation function,

27–29
Realization paths, 283, 285
Relaxation:

applied magnetic fields,
105–113, 115

dissipative magnetization, 6,
105–113, 115

LL equation, 24, 25
LLG equation, 27

mid-point finite differences,
371–373

precessional dynamics, 78,
111–115

precessional switching, 127–152
stochastic dynamics, 300, 301,

315, 331, 371–373
thermal relaxation, 49, 50, 300,

301, 315, 371–373
uniform magnetism, 48–50, 100,

107–115
zero applied magnetic fields,

105–108
Resonance:

ferromagnetic resonance, 10–13,
153–164, 166–171, 173–192,
217, 268–270

spin-waves, 204–210, 217
time-harmonic excitation,

10–13, 153–164, 166–171,
173–192

Riemann cut, 219–221
Riemann surfaces, 164, 219–221
Rigid body Poisson bracket, 6, 87
Ringing phenomena, 105–108
Root ordering, 72–74, 81–83
Rotating-frames:

basis vectors, 196
spin-waves, 196
stochastic dynamics, 282, 283
time-harmonic excitation,

10–12, 153–164, 166–171,
173–192
P-modes, 11, 157–164, 166,

167, 171, 173, 175, 176,
178–190, 192

Q-modes, 167–171
switching phenomena, 11,

179, 183–186
Rotational invariance:

chaotic dynamics, 18, 19, 395
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damping switching, uniaxial
media, 93

deviations, 12, 186–192
stochastic dynamics, 327
time-harmonic excitation,

10–12, 153–164, 166–171,
173–192

Runge–Kutta method, 363

Saddle points, see Energy saddles
Saddle-connection bifurcations,

253, 256
Saddle-node bifurcation:

spin-transfer, 250, 256, 266
spin-waves, 393
time-harmonic excitation, 174,

182, 185, 186
Scalar function autocorrelation, 334
Scalar potentials, 45–50, 361
Scalar Wiener process, 273–277,

307, 327, 338
SDE, see Stochastic differential

equations
Second-order finite difference

schemes, 363
Second-order instability, 221,

224–226
Self-consistency criterion, 382, 383,

389
Self-oscillations:

dissipative magnetization, 8,
115–126

Q-modes, 168, 169
spatially uniform magnetism,

42–44
spin-transfer, 11, 12, 15,

167–171, 173–179, 238, 239,
242–246, 253–256, 259,
261–263, 265

stochastic dynamics, 301
time-harmonic excitation, 11,

12, 167–171, 174–179

Semi-stable-limit-cycle
bifurcations, 175, 253–255

Separation of time scales, 17,
91–105

Separation of variables, 65, 66, 71,
94, 95

Separatrices, 5, 58
Slonczewski’s structure:

spin-transfer, 235–238
Slow time scale:

dissipative magnetization, 7, 8,
91, 93–97

stochastic dynamics, 17,
299–312

Spatial discretization, 359, 373–381,
383–385

Spatially uniform magnetism, 3–5,
35–55
dissipative magnetization,

91–105
equilibrium points, 5, 51–55
generalized magnetization

dynamics, 5, 44–51
Landau–Lifshitz–Gilbert–Maxwell

equation, 3, 4, 35–41
LL equation, 41–51
LLG equation, 36–41, 51
magnetization reversal,

385–391, 393
spin-wave excitation, 391,

393–395
stochastic dynamics, 271
structural aspects, 4, 41–44
time-harmonic excitation, 18,

153, 154, 159, 160, 162–164,
166, 167

Spectral density, 17, 295, 300, 335
Spherical angles, 157, 158, 196, 199
Spherical coordinates:

damping switching, 93
Fokker–Planck equation, 297,

298
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spatially uniform magnetism,
39–41

vector equilibrium condition, 51
Spin dynamics:

chaotic dynamics, 396
Spin-polarized current injection:

autocorrelation, 345
power spectral density, 345
spatially uniform magnetism, 4,

5
spin-transfer, 14–16, 233,

235–259, 261–263, 265, 266,
268–270

stochastic dynamics, 281–283,
315–317, 319–325, 327, 331,
344, 345

Spin-torque, 248, 249, 254–259, 261
Spin-transfer, 10, 15, 233–259,

261–263, 265, 266, 268–270
bifurcations, 238, 246–257, 259,

263, 266, 268
fixed points, 239–242, 250–252
foldover, 268–270
layers, 10, 233–239, 246,

261–263, 265, 266, 268–270,
336

LLG equation, 233–239
mid-point finite differences, 361
phase diagrams, 238
phase portraits, 238, 244,

246–257
precessional dynamics, 78
radio-frequency fields, 262, 263,

265, 266, 268–270
self-oscillation states, 238, 239,

242–246, 256, 259, 261
stability, 246, 254–259, 261, 266
stationary states, 238–242, 246,

256, 257, 259, 261
stochastic dynamics, 300, 301,

327, 328, 331, 337, 338,
340–345

symmetry, 238, 261–263, 265,
266, 268–270

uniaxial symmetry, 238,
261–263, 265, 266, 268–270

Spin-waves:
instabilities, 12–14, 193, 205,

210–226
linearized LLG equation,

193–202
LLG equation, 193–202
magnetostatic fields, 197–203,

226–231
magnetostatic modes, 197–202
micromagnetic simulations,

385, 391, 393–395
numerical techniques, 19
P-modes, 12–14, 193–202,

206–220, 223, 227, 391,
393–395

parametric instabilities, 12–14,
193, 205, 210–226

perturbations, 13, 14, 194, 199,
202–210, 213–231, 393

spin-transfer, 233
stability analysis, 12–14,

210–226
thin films, 226–231
ultra-thin films, 226–231
Walker modes, 197–202

Spintronics, 36, 233, 234, 271
Spontaneous fluctuations, 194
Spontaneous symmetry breaking,

260, 261, 396
Stability:

diagrams, 254–261, 266
equilibrium points, 5, 51–55
limit cycles, 168, 169
mid-point rule, 365
P-modes, 161–164, 166, 167, 184,

393, 394
Q-modes, 168
spin-transfer, 246, 254–261
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spin-waves, 12–14, 210–221
stationary states, spin-transfer,

239–242
State variables, 100, 157, 158
Static saturation, 193
Stationary distributions:

closed form expressions,
292–297

stochastic dynamics, 290–297,
312–317, 319–325, 327–329,
344, 353, 354

thermal transitions, 313–317,
319–325, 327

Stationary probability, 291–297, 344
Stationary solution:

Fokker–Planck equation, 353,
354

Stationary states:
spin-transfer, 238–242, 246, 256,

257, 260, 261
Statistical average, 282, 283
Steady-states, 42, 43, 246
Stereographic representation:

precessional dynamics, 59, 60,
63

precessional switching, 128–130
spatially uniform magnetism,

39, 40
Stochastic calculus:

differential calculus, 275
Itô calculus, 16, 276–283, 286,

287, 298, 299, 368–370
mid-point finite differences,

368–373
Stratonovich calculus, 16,

276–283, 287, 298, 299,
368–370

Stochastic differential equations
(SDE), 16, 276–283, 286, 287,
298–301
graphs, 307, 338, 340

mid-point finite differences, 18,
19, 359–365, 367–373

nonuniformly magnetized
ferromagnets, 346

spin-transfer, 235
Stochastic dynamics, 16–19,

271–310, 312, 314–317, 319–329,
331–338, 340–357
autocorrelation functions, 18,

333–338, 340–345
damping constant, 309–312
deterministic dynamics, 275,

281, 287, 292–297, 314, 315
discretization, 346–357
distribution functions, 341, 342
ferromagnetic objects, 18, 271,

293–297, 345–357
fluctuation-dissipation

relations, 272, 293–297, 302,
303, 309–312

Fokker–Planck equations, 16,
18, 283–299

autocorrelation, 331–334,
336–338, 340–345

graphs, 302, 303, 307, 309
mid-point finite differences,

369
nonuniformly magnetized

ferromagnets, 351–354,
357

power spectral density,
331–334, 336–338, 340–345

stationary distributions, 321,
322, 326, 327

thermal transitions, 321, 322,
326, 327

uniaxial systems, 328, 329
Gaussian white noise, 271–277,

368–373
graphs, 18, 300–312, 336, 338,

340–345
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Itô calculus, 16, 276–283, 286,
287, 298, 299

LL equation, 271–283, 292–297,
300, 301

LLG equation, 271–283
Markov processes, 16, 284, 285
mid-point finite differences, 18,

19, 359–365, 367–373
noise, 271–277, 289–297,

307–312, 346, 367–373
nonuniformly magnetized

ferromagnets, 18, 345–357
power spectral density, 17,

333–335, 337, 338, 340–345
precessional dynamics, 300–312
probability density, 16–18,

284–294, 296–301, 303,
309–311, 313–317, 320, 321,
323–325, 327, 329, 331–336,
338, 341, 351, 352, 357

probability distributions, 17, 18,
283–292, 294, 296, 297, 299,
300, 313, 315, 316, 318–322,
324, 325, 327, 337

random fluctuations, 271–277
relaxation dynamics, 300, 301,

315, 331, 371–373
spectral density, 17, 334–338,

341–345
spin-polarized current injection,

281–283, 315, 316, 319–321,
323–325, 327, 331, 345

spin-transfer, 300, 301, 327, 328,
330, 337, 338, 340–343, 345

stationary distributions,
290–292, 294, 296–298, 313,
315–317, 320–322, 324, 325,
327, 329, 340, 353, 354

Stratonovich calculus, 16,
276–283, 287, 299, 300,
368–370

thermal fluctuations, 271–283,
300, 301, 328, 329

thermal noise, 271–277, 307–309
thermal transitions, 300, 301,

313–317, 320–322, 324–327
time scales, 17, 299–301,

303–309, 311, 312
uniaxial systems, 282, 283,

327–329, 331, 332, 334, 337,
338

Weiner process, 273–277, 287
white noise, 271–277, 346,

368–373
Stokes parameters, 19, 396
Stoner–Wohlfarth theory, 12, 51,

53–55, 164, 176, 183
Stratonovich calculus, 16, 276–283,

288, 298, 300, 368–370
String descriptions, 63, 65
Structural aspects:

spatially uniform magnetism, 4,
41–44

Substitution rules, 173, 174
Suhl’s instability, 219–221, 224–226
Superparamagnetism, 371–373
Surface magnetic charges, 226–231
Switching, 8–10, 127–148, 150–152,

385–391, 393
dissipative magnetization,

91–100, 105, 110–115, 128,
141–144

in thin films, 8–10, 127–148,
150–152

micromagnetic switching,
381–383

precessional switching, 8–10,
70, 71, 127–148, 150–152

stochastic dynamics, 301
time-harmonic excitation, 12,

179, 183–185
transverse magnetic fields, 70,

71
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Symmetric nanopillar devices, 16
Symmetric switching, 147–149
Symmetry:

breaking, 260, 261, 396
chaotic dynamics, 397, 398
spin-transfer, 238, 261–263,

265–270
spin-waves, 208, 209, 211
stochastic dynamics, 327
time-harmonic excitations, 12,

186–190, 192
uniaxial symmetry, 12, 186–190,

192, 193, 238, 261–263,
265–270

Temporal meshes, 378
Thermal drift, 308, 309
Thermal equilibrium, 194, 293–297
Thermal fields:

discretization, 347
Thermal fluctuations:

spin-transfer, 235
stochastic dynamics, 16–18,

271–283, 300, 301, 328, 329,
368–373

Thermal noise, 271–277, 307–309
Thermal perturbations, 110, 111
Thermal relaxation, 49, 50, 301, 314,

371–373
Thermal transitions, 301, 313–317,

320–322, 324–327
Thin films:

chaotic dynamics, 396
dissipative magnetization,

100–115
magnetization reversal,

385–391, 393
mid-point finite differences,

365, 367
precessional switching, 8–10,

127–148, 150–152
critical fields, 10, 131–138

field pulse duration, 10,
138–152

inverse problem approach,
10, 144–152

spin-waves, 218, 219, 226–231
Thresholds:

spin-waves, 205, 222–224
Tilt angles, 157, 158
Time:

precessional switching, 138–152
critical fields, 10, 131–138
inverse switching time, 10,

141–152
scales

dissipative magnetization,
6–8, 91–111, 113–126

evolution, 111–114
stochastic dynamics, 17, 300,

301, 303–311, 313
Time-continuous magnetization,

18, 19, 359–365, 367–373
Time-dependent basis vectors, 196,

197
Time-dependent orthogonal unit

vectors, 121
Time-dependent vectors, 196, 197,

259
Time-evolution, 111–114
Time-harmonic excitation, 10–12,

153–164, 166–171, 173–192
bifurcation, 11, 12, 171, 173–179,

181–186, 192
bifurcation diagrams, 11, 12,

171, 173–179
deviations from rotational

symmetry, 12, 186–190, 192
foldover, 179, 181–186
limit cycles, 11, 12, 167–171, 173,

174, 176–179
LLG equation, 153–157, 171,

184, 186
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mid-point finite differences,
365, 367

nonlinear ferromagnetic
resonance, 179–186

P-modes, 11, 157–164, 166, 167,
171, 173, 175–186, 188–192

perturbations, 12, 161–164, 166,
167, 186–191

phase portraits, 11, 12, 160, 161,
171, 173–178

Poincaré–Melnikov theorem, 11,
169–171

Q-modes, 11, 167–171, 177, 178,
184–186

radio-frequency, 10–12, 156, 179,
189, 192

resonance, 10–12, 153–159,
161–164, 166–171, 173–192

rotating-frames, 10–12, 153–159,
161–164, 166–171, 173–192

rotational invariance, 10–12,
153–159, 161–164, 166–171,
173–192

switching phenomena, 12, 179,
183–186

Time-independent matrices, 206
Time-persistent modes, 239
Time-stepping schemes, 359,

361–365, 367, 378–383, 385, 386
Time-variance, 44
Topology, 5, 60, 155–157
Torque, 233, 271

spin-torque, 248, 249, 254–261
spin-transfer, 233, 235
stochastic dynamics, 271,

281–283
Traces:

spin-waves, 222
Transition probability density, 16,

17, 284, 285, 341
Transparent form, 163, 164
Transverse magnetic fields, 6, 70–78

Two-fold surfaces, 220, 221
Two-folded sheets, 164
Two-scalar potentials, 361
Two-time scales, 7, 8, 100–105, 300

Ultra-thin disks, 391, 393–395
Ultra-thin films, 226–231
Uniaxial (perpendicular) media:

dissipative magnetization,
91–100

ferromagnetic disks, 391, 393,
394, 396

field pulse duration, 139–144
power spectral density, 336–338
rotational invariance, 18, 19
spin-wave, 391, 393, 394, 396
stochastic dynamics, 282, 283,

327–329, 331–333, 336–338
Uniaxial symmetry, 12, 186–193,

238, 261–264, 266, 268–270
Uniform magnetism,

see also Spatially...
chaotic dynamics, 396–400
dissipative magnetization,

91–115
magnetization relaxation,

48–50, 106–115
magnetization reversal,

385–391, 393
mid-point finite differences,

359–365, 367–371
precessional dynamics, 48, 49,

57
pulsed magnetic fields, 91–100
spin-waves, 391, 393, 394, 396
stochastic dynamics, 271,

368–371
Unit spheres, 46, 155–157, 303
Unit vectors, 121
Unit-disk representation:

dissipative magnetization, 110,
111
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phase portraits, 61–65, 68–84
precessional switching, 132–138
spin-torque, 248, 249

Unperturbed dynamics, 117, 118,
120

Variable elimination, 303–306
Vector Brownian motion, 273–277
Vector equilibrium condition, 51, 52
Vector fields, 33, 34, 45–50
Vector isotropic Wiener process,

327
Vector magnitude constraints, 347

Walker modes, 197–202
Walker potentials, 200, 201

Wave vectors, 208, 209, 211, 393
White noise, 271–277, 346, 368–373
Wiener processes:

stochastic dynamics, 273–277,
287, 307, 327, 338, 351

mid-point finite differences,
368

Zeeman energy, 31
Zero applied magnetic fields,

105–108
Zero average energy change, 50, 51
Zero damping, 57
Zero statistical average, 282, 283
Zero-order solutions, 214–216
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