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Preface

The idea of this volume emerges from the “International Workshop on the
Physics of Zero and One Dimensional Nanoscopic Systems,” which was held
on 1-9 February 2006 at Saha Institute of Nuclear Physics, India. The theme
of the workshop was to understand physically the recent advances in nanoscale
systems, like, quantum dots, quantum wires, 2D electron gases, etc. A limited
number of distinguished physicists were invited to give pedagogical lectures
and discuss core methods including the latest developments. This volume con-
sists of self-contained review articles on recent theories of the evolution of
Kondo effect in quantum dots, decoherence and relaxation in charged qubits,
edge-state transport through nanographites and quantum Hall systems, trans-
port through molecular bridges, coherence and interaction in diffusive meso-
scopic systems, persistent current in mesoscopic rings, and, the thermoelectric
phenomena of nanosystems. As these are rapidly growing subjects, we hope
that this book with contributions from the leading experts will serve as a
stimulus for new researchers and also become a landmark to the body of the
knowledge in the field. We have presented the articles on quantum dots first,
then on quantum wires and finally on 2D electron gases. A brief account of
each chapter is given below:

The first chapter by Avraham Schiller starts with a brief historical note on
the Kondo problem. The Anderson Hamiltonian for the ultra-small quantum
dot is then mapped onto the Kondo Hamiltonian applying a suitable canonical
transformation eliminating charge fluctuations. A detailed study of resistivity
and conductance for tunneling through ultra-small quantum dots is given.
The Toulouse limit, where the model can be solved exactly using standard
techniques is studied here using Abelian bosonization. At T = 0 and B = 0,
a Lorentzian zero-bias anomaly is observed in the differential conductance
as a function of voltage bias. Nonzero temperature smears out the zero-bias
anomaly and nonzero magnetic field splits the peak into two. In this article,
a diagrammatic approach known as noncrossing approximation (NCA) to the
Kondo problem is also introduced within slave boson representation. There is
a sharp Abrikosov-Suhl resonance near the Fermi level in the equilibrium dot
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density of states. This resonance splits as the voltage bias sufficiently exceeds
the Kondo temperature which is also supported by experiments.

The second chapter by Yuval Oreg and David Goldhaber-Gordon reviews
a theoretical analysis of a system consisting of a large electron droplet cou-
pled to a small electron droplet. This system displays two-channel Kondo
behavior at experimentally accessible temperatures. Special emphasis is put
on the estimate of the two-channel Kondo energy scale using a perturbative
renormalization group approach. Their predictions for the differential conduc-
tance in a scaling form is convenient for experimental analysis. They have also
pointed out some open questions.

In the third chapter K. Kikoin and Y. Avishai show that a new ingredi-
ent in the study of the Kondo effect in quantum dots (also called artificial
molecules) is the internal symmetry of the nano-object, which proves to play
a crucial role in the construction of the effective exchange Hamiltonian. This
internal symmetry combines continuous spin symmetry (SU(2)) and discrete
point symmetry (such as mirror reflections for double dots or discrete C3v

rotation for equilateral triangular dots). When these artificial molecules are
attached to metallic leads, the effective exchange Hamiltonian contains oper-
ators which couple states belonging to different irreducible representations of
the internal symmetry group. In many cases, the set of dot operators appear-
ing in the effective exchange Hamiltonian generate a group which is referred
to as the dynamical symmetry group of the system dot-leads. These dynam-
ical symmetry groups are mostly SO(n) or SU(n). One of the remarkable
outcomes of their study is that the pertinent group parameters (such as the
value of n) can be controlled by experimentalists. The reason for that is that
the Kondo temperature turns out to be higher around the points of accidental
degeneracy where the dynamical symmetry is “more exact” and these points
can be tuned by experimental parameters such as gate voltages and tunneling
strength. In this review the authors have clarified and expanded these con-
cepts, and discussed some specific examples. They go from “light to heavy”
starting from a simple quantum dot, moving on to discuss double quantum
dot (where only permutation (reflection) symmetry can be considered as in-
ternal one) and finally elaborate on a triple quantum dot. In particular they
concentrate on the difference between the chain geometry (where the three
dots composing the triple dot are arranged in series) and the ring (triangular)
geometry. When a perpendicular magnetic field is applied, the triple quantum
dot in the ring geometry displays a remarkable combination of symmetries:
U(1) of the electromagnetic field, SU(2) of the dot spin and C3v of the dot
orbital dynamics. The magnetic field controls the crossover between SU(2)
and SU(4) dynamical symmetries and this feature shows up clearly in the
conductance versus magnetic field curve.

The fourth chapter with contribution from Alex Grishin, Igor V. Yurke-
vich and Igor V. Lerner describes some essential features of loss of coherence
by a qubit (controllable two-level system) coupled to the environment. They
first presented the well-known semiclassical arguments that relate both de-
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coherence and relaxation to the environmental noise. Then they show that
models with pure decoherence (but no relaxation in qubit states) are exactly
solvable. As an example, they have treated in detail the model of fluctuating
background charges which is believed to describe one of the most important
channels of decoherence for the charge Josephson junction qubit. They show
that the decoherence rate is linear in T at low temperatures and saturates to
a T -independent classical limit at ‘high’ temperatures, while depending in all
the regimes non-monotonically on the coupling of the qubit to the fluctuating
background charges. They have also considered, albeit only perturbatively, the
qubit relaxation by the background charges and demonstrated that a quasi-
linear behavior of the spectral density of noise deduced from the measurements
of the relaxation rate can be qualitatively explained.

The contribution by Katsunori Wakabayashi in the fifth chapter eluci-
dates the role of the edge states on the low-energy physical properties of
nanographite systems. He first discussed the basics of the electronic proper-
ties of the nanographte ribbons and pointed out the existence of edge-localized
states near the zigzag edge. He then presented the electronic properties of the
nanographite systems in the presence of magnetic field and provides a sim-
ple picture for the origin of half-integer quantum Hall effect in graphene. The
study of the orbital and Pauli magnetization shows that a nanographite system
with zigzag edges exhibits strong paramagnetic response at low-temperature
due to the edge states, and there exist a crossover from a weak diamagnetic
response at room temperature to a strong paramagnetic response at low tem-
perature. It is also observed that electron-electron interaction can produce a
ferrimagnetic spin polarization along the zigzag edge. In this article author
also describes the electron transport properties of nanographite ribbon junc-
tions. A single edge state cannot contribute to electron conduction due to
the non-bonding character of the edge states. However, in the zigzag ribbons
edge states can provide a single-channel for electron conduction in the low-
energy region due to the bonding and anti-bonding interaction between the
edge states. The remarkable feature is the appearance of zero-conductance
dips in the single-channel region where current vortex with Kekulé pattern
is observed. Its relation with the asymmetric Aharonov-Bohm ring is also
discussed.

The sixth chapter by K. A. Chao and Magnus Larsson is a review of
the thermoelectric phenomena in nanosystems. Starting from the discovery of
thermoelectric phenomenon in 1822 by Seebeck, the authors have divided the
development of thermoelectricity into three stages. They pointed out that the
thermodynamic theory was the driving force in the first stage, during which
the Seebeck effect, the Peltier effect, the Thomson coefficient, the dual roles of
thermoelectric power generation and refrigeration, and the efficiency of ther-
moelectric processes were extensively investigated and understood fairly well
qualitatively. For a long time the practical use of thermoelectricity was mea-
suring temperature with thermocouples. The beginning of the second stage
was marked by the correct calculation of the efficiency of thermoelectric gen-
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erator and refrigerator by Altenkirch in 1909. It was demonstrated that the
efficiency depends mainly on a quantity which was later called the figure of
merit. A higher value of this figure of merit indicates a better thermoelectric
material. Using the free electron gas as a model system, Ioffe calculated the
figure of merit and predicted doped semiconductors as favorable thermoelec-
tric materials. Using the figure of merit as an indicator, and guided by the
semi-classical transport theory, the search for better thermoelectric materials
had lasted for a long time until around 1980s when the modern material tech-
nology enabled the fabrication of layer materials with nanometer thickness.
This is the end of the second stage. In the second stage the search for new
thermoelectric materials was based on the semi-classical Boltzmann transport
equation, in which the dominating scattering process results in slow diffusive
transport and so low value of the figure of merit. In layer materials it is possi-
ble to reduce the scattering and a new thermoelectric mechanism is found in
the so-called thermionic transport. Thermionic emission of electrons from a
hot surface is a well-studied physical process, and the emitted current density
depends on the temperature and the work function of the emitting materials.
In principle, large thermionic current can be achieved if one can reduce the
work function to sufficiently low. With the advancement of material fabrica-
tion technology to produce high quality layer materials, there has been much
progress in thermionics. The reduction of layer thickness in order to achieve
efficient transport process also inevitably creates new fundamental problems,
many of which are of quantum mechanical nature. Therefore, in the present
third stage of thermoelectricity, we face the challenge of an entirely new field to
which the macro-scale thermoelectric theory does not apply. This new field is
the nano-scale thermoelectricity. The main theme of this chapter is to provide
a smooth transition of thermoelectric phenomena from macro-scale systems
to nano-scale systems.

The review article by Gilles Montambaux in the seventh chapter gives a
nice introduction to coherent effects in disordered electronic systems. Avoid-
ing technicalities as most as possible, he presented some personal points of
view to describe well-known signatures of phase coherence like weak localiza-
tion correction or universal conductance fluctuations. He showed that these
physical properties of phase coherent conductors can be simply related to the
classical return probability for a diffusive particle. The diffusion equation is
then solved in various appropriate geometries and in the presence of a mag-
netic field. The important notion of quantum crossing is developed, which is at
the origin of the quantum effects. The analogy with optics is exploited and the
relation between universal conductance fluctuations and speckle fluctuations
in optics is explained. The last part concerns the effect of electron-electron in-
teractions. Using the same simple description, the author derived qualitatively
the expressions of the Altshuler-Aronov anomaly of the density of states, and
of the correction to the conductivity. The last part, slightly more technical,
addresses the question of the lifetime of a quasi-particle in a disordered metal.
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The eighth chapter by Georges Bouzerar is on the phenomenon of per-
sistent current in mesoscopic normal metal rings. With a brief introductory
note he first showed that the single particle picture can neither explain the
magnitude nor the sign of the persistent current measured in diffusive metallic
mesoscopic rings. This naturally lead him to the main part of the article – the
interplay between electron-electron interaction and disorder. One important
result is that electron-electron interaction can either enhance or suppress per-
sistent current depending on the strength of the interaction. The underlying
physics has been discussed in details.

The ninth chapter by Santanu K. Maiti and S. N. Karmakar focuses on
electron transport through nanostructures. The authors first briefly introduce
the Green’s function technique in this study. Electron transmission through
various molecular bridges are investigated in detail within the tight-binding
framework. They show that the transport properties through such bridges
are highly sensitive to relative position of the atoms in the molecule, cou-
pling between molecule and electrodes, and also to the external magnetic or
electric fields. The theoretical results are in qualitative agreement with the
experimental observations. These model calculations provide better physical
understanding of the transport problems through nanostructures. The au-
thors have suggested some molecular devices in which electron transport can
be tuned efficiently.

Finally, the tenth chapter by S. Sil, S. N. Karmakar and Efrat Shimshoni
is on quantum Hall effect. This article provides an account of the exotic sta-
tistical nature of the quasi-particles in quantum Hall system. For instance, an
electron in the presence of electron-electron interaction and strong magnetic
field may undergo Bose condensation by charge-flux composite, and fractional
charge excitations emerge as quasi-particles. These quasi-particles manifest lot
of surprises in the studies of quantum Hall systems. This review is on both the
integer and fractional quantum Hall effects within the field theoretic frame-
work. In this review, the authors have also discussed the role of the edge states
on integer and fractional quantum Hall effects to understand the experimental
results.

It is our great pleasure to thank Prof. Yuval Gefen and Prof. Bikas K.
Chakrabarti for their invaluable cooperation and support in organizing the
international workshop without which this book might have not seen the light
of the day. In this context, we also thank Prof. Hans Weidenmueller, Prof.
Yoseph Imry, Prof. Markus Buttiker, Prof. Amnon Aharony and Prof. Yigal
Meir for their advices and encouragements. We wish to thank all the invited
speakers who made the workshop successful and all the authors who have
contributed to this volume. We are very much grateful to Prof. Peter Fulde and
Dr. Claus Ascheron for recommending the publication of this book. Thanks
are also due to Dr. Angela Lahee and Dr. Elke Sauer from Springer-Verlag
for friendly collaboration. Fine help and constant encouragement from our
colleagues in this endeavor is also highly appreciated. Finally, we thank the
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“Centre for Applied Mathematics and Computational Science (CAMCS)” of
Saha Institute of Nuclear Physics in India for providing financial support.

Kolkata, Sachindra Nath Karmakar
January 2007 Santanu K. Maiti

Jayeeta Chowdhury



Contents

From Dilute Magnetic Alloys to Confined Nanostructures:
Evolution of the Kondo Effect
Avraham Schiller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Two Channel Kondo Effect in Quantum Dots
Yuval Oreg, David Goldhaber-Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Kondo Physics in Artificial Molecules
K. Kikoin, Y. Avishai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Low Temperature Decoherence and Relaxation in Charge
Josephson Junction Qubits
Alex Grishin, Igor V. Yurkevich, Igor V. Lerner . . . . . . . . . . . . . . . . . . . . 77

Low-Energy Physical Properties of Edge States in
Nanographite Systems
Katsunori Wakabayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Thermoelectric Phenomena from Macro-Systems to
Nano-Systems
K. A. Chao, Magnus Larsson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Coherence and Interactions in Diffusive Systems
Gilles Montambaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Transport and Persistent Currents in Mesoscopic Rings:
Interplay Between Electron-Electron Interaction and Disorder
Georges Bouzerar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Electron Transport Through Mesoscopic Closed Loops and
Molecular Bridges
Santanu K. Maiti, S. N. Karmakar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



XIV Contents

2D Disordered Electronic System in the Presence of Strong
Magnetic Field
S. Sil, S. N. Karmakar, Efrat Shimshoni . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331



List of Contributors

Y. Avishai
Department of Physics
Ben-Gurion University
Beer, Sheva 84105, Israel
yshai@bgumail.bgu.ac.il

Georges Bouzerar
Laboratoire Louis Néel, CNRS
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From Dilute Magnetic Alloys to Confined
Nanostructures: Evolution of the Kondo Effect

Avraham Schiller

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
avaraham@phys.huji.ac.il

1 Introduction

The Kondo problem occupies a central chapter in condensed matter physics,
with a long history in dilute magnetic alloys and valence-fluctuating systems.
Originally observed some 70 years ago as a minimum in the resistivity of
dilute magnetic alloys, the Kondo effect has evolved in time into a paradig-
matic example for strong electronic correlations in condensed matter physics.
It pertains to the many-body screening of an impurity spin by the surrounding
conduction electrons, leading to the formation of a strong scattering center
at low temperatures. Besides the dramatic effect on the resistivity of other-
wise pure metals, the Kondo effect is manifested in anomalous enhancements
of thermodynamic and dynamic properties such as the specific heat, mag-
netic susceptibility, and thermopower to name a few. Over the past 40 years,
the Kondo effect has played a pivotal role in the development of the field
of strongly correlated electron systems. Many of the basic concepts and no-
tions of the field have either been conceived or significantly advanced in the
Kondo arena. Notable examples are the renormalization-group ideas of Ander-
son [1,2] and Wilson [3]. Nearly all techniques of modern many-body physics
have been applied to the problem, which continues to serve as an important
testing ground for new approaches.

The last decade has witnessed a dramatic resurgence of experimental in-
terest in the Kondo effect following its discovery in lithographically defined
quantum dots [4–6] and its measurement for isolated magnetic adatoms on
metallic surfaces [7,8]. In contrast to real magnetic impurities, quantum dots
can be controlled in exquisite detail, and can be tuned at will from weak
coupling to the Kondo regime. The precise control of the microscopic model
parameters in combination with the advanced capabilities of detailed sample
engineering have turned quantum-dot devices into a valuable testing ground
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for our fundamental understanding of electronic correlations. Scanning tun-
neling microscopy of individual magnetic adatoms offers the complementary
ability to spatially resolve the electronic structure around the impurity. Al-
though lacking the enormous flexibility of quantum dots in terms of design-
ing and tuning the microscopic parameters of an individual impurity, mag-
netic adatoms can be manipulated into forming small clusters [9] as well as
novel resonators [10]. These settings offer an ideal setup for probing the in-
terplay between interactions and quantum interference. Other nanostructures
where Kondo physics has recently been observed include nanotube quantum
dots [11,12], single-atom transistors [13], and single-molecule [14] transistors.
Each of these systems has its own distinct advantage toward sampling new as-
pects of Kondo physics. For example, nanotube quantum dots were deposited
on superconducting electrodes in order to study the interplay of Kondo physics
and superconductivity [15], whereas the effect of ferromagnetic leads was in-
terrogated using C60 molecules as magnetic impurities [16].

Parallel to the flurry of activity in the mesoscopic realm, the renewed in-
terest in Kondo physics has been amplified by important developments in the
context of correlated electron systems. The first of these developments is of
purely theoretical nature and goes under the name of dynamical mean-field
theory [17] (DMFT). The DMFT has become one of the primary methods
for studying strong electronic correlations. It is based on the mapping of a
lattice problem onto that of a quantum impurity, self-consistently embedded
in an effective medium. The main virtue of the method is that it captures all
local time-dependent correlations, allowing for detailed studies of phenomena
such as the Mott-Hubbard metal-insulator transition or the phase diagram
of different Kondo lattices. In the last few years the method has matured
into a highly advanced tool for studying real materials [18, 19]. However, its
successful implementation relies on the availability of highly accurate, flexi-
ble, and efficient methods for solving the associated impurity problem in the
presence of a structured density of states (DOS). This necessity has led to a
vigorous quest for quantum-impurity solvers that can cope with the somewhat
unconventional variants of the Kondo problem encountered in DMFT.

Another important development to be noted is the emergence of the con-
cept of quantum criticality. There is increasing evidence that some of the
deviations from conventional Fermi-liquid behavior observed in certain heavy
fermion compounds and in the cuprates may be due to the proximity to a
quantum critical point, where a transition temperature is suppressed to zero.
In lattice systems, the nature of such quantum critical points is still not well-
understood. While theoretical descriptions typically start from well-defined
quasi-particle excitation modes, the non-Fermi-liquid behavior is interaction
driven, and arises from persisting quantum-mechanical fluctuations between
these modes. The multi-channel Kondo effect [20] provides one of the out-
standing paradigms for a local quantum critical point, where the concept of
quantum criticality can be studied in great detail. Suitably designed nanos-
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tructures may again provide a valuable testing ground for confronting theory
with well-controlled experiments on local quantum criticality.

As emphasized above, the Kondo effect is an old problem in condensed-
matter physics. Numerous reviews have been devoted to this fundamental
problem, the most comprehensive of which is the book by Hewson [21]. While
earlier reviews of the problem were naturally focused on classical realizations
of the Kondo effect, more recent reviews (see, e.g., [22]) mainly address its
manifestations in quantum dots. It is the intention of the current article to
provide somewhat of a bridge between these complementary points of view.
The objective of this article is three-fold: (i) To briefly review the evolution of
the Kondo problem from its classic realizations in dilute magnetic alloys and
valence-fluctuation systems to its current manifestations in confined nanos-
tructures. (ii) To provide an exposition of the basic physics of the Kondo
effect in nanostructures. (iii) To present some of the theoretical techniques
that are available for studying this fundamental effect. Since a comprehensive
review of the many theoretical approaches that have been devised and applied
over the years to the problem is beyond the scope of this article, we chose to
highlight just a few leading methods. Our selection of methods is motivated
in part by the particularly transparent physical picture they provide, and in
part by their extensions to non-equilibrium conditions.

2 Brief Historical Notes

To put the renewed interest in the Kondo problem in historical perspective,
we provide here a brief, albeit highly selective list of milestones in the history
of this effect. The Kondo effect was first observed in the 1930s as a resistivity
minimum in noble-metal samples containing small amounts of magnetic impu-
rities [23]. This behavior marked a striking departure from Mathiessens’ rule
that prevailed at the time, and which states that the total resistivity of a crys-
talline metallic specimen is the sum of the resistivity due to electron-phonon
scattering and the residual resistivity due to the presence of imperfections
in the crystal. The cause of the resistivity minimum remained obscure for
many years. It was only in 1964, thirty years after its discovery, that Kondo
demonstrated [24] that it originated from scattering off individual magnetic
impurities.

Kondo’s theory was inspired by mounting experimental evidence in the late
1950s and early 1960s that correlated the occurrence of the resistivity mini-
mum with a Curie-Weiss term in the impurity susceptibility. To this end, he
considered the so-called antiferromagnetic s-d exchange Hamiltonian, which
nowadays bears his name:

H =
∑

k,σ

εkc
†
kσckσ + JSimp · s(0) . (1)
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Here Simp is the impurity spin, s(0) is the conduction-electron spin density
at the impurity site, and J > 0 is the spin-exchange coupling. Using third-
order perturbation theory in J , Kondo predicted a logarithmic increase in the
impurity contribution to the resistivity, which actually diverged for T → 0.
Combining the logarithmic impurity contribution to the resistivity with the
T 5 contribution that stems from electron-phonon scattering, Kondo’s calcula-
tions successfully explained the one-fifth power-law relation between the con-
centration of magnetic impurities, cimp, and the temperature Tmin at which

the resistivity develops it minimum: Tmin ∝ c1/5imp.
Kondo’s discovery of unexpected logarithmic divergences in perturbation

theory has generated considerable theoretical interest in the problem, aimed at
finding a solution valid in the low-temperature regime. Numerous approaches
were devised in the mid 1960s, but were met with only partial success. Using
an infinite resummation procedure, the Suhl-Nagaoka theory [25,26] provided
the first resistivity calculation respecting unitarity. However, it produced un-
physical results for T → 0. Yosida’s variational wave function predicted a sin-
glet ground state for antiferromagnetic exchange [27]. However, the approach
was restricted to zero temperature and predicted an erroneous exponential
form for the so-called Kondo temperature. The first flavor of scaling ideas
had appeared in the work of Abrikosov [28], who introduced a convenient
representation of the impurity spin in terms of auxiliary (slave) fermions.
Carrying out an infinite summation of the leading logarithmic divergences for
the Kondo Hamiltonian, Abrikosov showed that the bare coupling J can be
replaced at temperature T with an effective coupling

Jeff(T ) =
J

1 + ρJ ln(kBT/D)
. (2)

Here ρ is the DOS at the Fermi energy and D is the half bandwidth. An
important corollary of Abrikosov’s calculation was the distinction between
antiferromagnetic and ferromagnetic exchange. The impurity contribution to
the resistivity was shown to be free of logarithmic diverges when the spin-
exchange was ferromagnetic.

A major step forward in the understanding of the Kondo effect was taken in
the late 1960s, in the ground-breaking work of Anderson and coworkers [1,2].
In these papers, the ideas of scaling and the renormalization group (RG)
had been put forward. The basic idea underlying these works was the re-
alization that lowering the temperature can be translated into a continuous
evolution of the effective low-energy Hamiltonian, describing excitations on
the scale of the temperature. This philosophy is particularly transparent in
Anderson’s “poor man’s scaling” treatment of the Kondo Hamiltonian [2].
Upon lowering the temperature, high-energy electronic states are quenched.
Integration of the frozen electronic degrees of freedom maps the Hamiltonian
onto an effective low-energy Hamiltonian with renormalized parameters. By
going continuously to smaller and smaller bandwidths, or temperature, a se-
quence of effective Hamiltonians is thus generated, with couplings that vary
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smoothly as a function of the effective bandwidth. All Hamiltonians that flow
along the same scaling trajectory share the same low-energy physics, with the
Kondo temperature

kBTK = D
√
ρJ exp

[
− 1

ρJ

]
(3)

playing the role of a scaling invariant.
The calculations of Anderson and coworkers were perturbative in nature,

and consequently broke down as soon as the renormalized exchange coupling
became large. Nonetheless, they suggested that the scaling procedure could be
continued into the non-perturbative regime, and that an initial antiferromag-
netic coupling would renormalize to infinity. This hypothesis was confirmed by
Wilson [3], who devised a non-perturbative renormalization-group method —
the numerical renormalization group (NRG) — for accurately solving the ther-
modynamics of the Kondo model for all parameter regimes. Wilson’s approach
provided the first complete solution of the Kondo problem. The fixed-point
structure of the model was mapped out, and the universal scaling function
for the susceptibility was obtained. The impurity spin was shown to be pro-
gressively screened by the conduction electrons, reaching complete screening
for T → 0. The low-temperature strong-coupling fixed point was found to
be that of infinite coupling, corresponding to the formation of a local Fermi
liquid. Thirty years after its development, Wilson’s approach continues to be
the leading non-perturbative method for solving quantum-impurity problems.

By the mid 1970s, the original Kondo problem was essentially solved. A
first wave of renewed interest in the problem was sparked in the early 1980s by
the exact Bethe ansatz solutions of the s-d [29,30] and Anderson [31] models,
and by intense experimental investigations of alloys with rare earth elements
such as Ce and Yb. The large orbital degeneracy in these ions (N = 6 for Ce3+

and N = 8 for Yb3+) precluded the application of the NRG, which could not
cope with the large computational effort involved. This has led to the pursuit
of large-N approaches that treat 1/N as a small parameter, whether in the
framework of mean-field theory [32, 33], diagrammatic calculations [34, 35],
or variational wave functions [36]. Large-N approaches proved to be a very
useful platform for comparison with experiment. They were extensively used
to calculate dynamic quantities not accessible by the Bethe ansatz and NRG,
such as the impurity DOS and the dynamic susceptibility.

Just as the theory of the Kondo effect appeared to be reaching its final
plateau, another extremely powerful approach was added to the arsenal in the
early 1990s: boundary conformal field theory (BCFT) [37]. The key idea of
BCFT is that the impurity spin can be replaced at sufficiently low energies by
a conformally invariant boundary condition for the linearly dispersed conduc-
tion electrons. The nature of the boundary condition must comply with the
underlying symmetries of the problem, but cannot be generally determined
based on symmetry considerations alone. A comparison with other solutions
of the problem, e.g., the finite-size spectrum obtain by the NRG, is usually re-
quired in order to uniquely determine the boundary condition, or fixed point,
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that applies. Once at hand, this enables a complete analytical characteriza-
tion of the fixed point reached, including the leading irrelevant operators,
their physical content, and the exact leading temperature and frequency de-
pendences of thermodynamic and dynamic properties.

Although traditional investigations of the Kondo effect were mainly fo-
cused on bulk systems, the study of Kondo-assisted tunneling likewise dates
back to the 1960s. The phenomenon was first discovered by accident [38, 39],
when magnetic impurities were present in planner tunnel junctions between
two normal metals. A zero-bias anomaly was seen, which enhanced the conduc-
tance at low voltages. Shortly after the original experiments, Appelbaum [40]
and Anderson [41] developed a perturbative theory that captured the essential
features of the experiment: a zero-bias conductance that increased logarith-
mically with decreasing temperature, and a zero-bias anomaly that split in
the presence of a sufficiently large magnetic field. Although quite successful
in explaining the qualitative and in some cases the quantitative results, the
Appelbaum–Anderson theory was perturbative, and hence could not describe
the strong-coupling regime of the Kondo effect. An adequate theory of non-
equilibrium conditions remains an outstanding challenge today as well.

The early experiments on tunnel junctions probed the simultaneous tun-
neling through many impurities. It was not before the early 1990s that tunnel-
ing through a single impurity was first observed in two separate experiments:
in a crossed-wire tunnel junction formed between tungsten wires [42], and in
tunneling through individual charge traps formed in a point-contact tunnel
barrier [43]. These two experiments marked an important step forward in the
study of Kondo-assisted tunneling. However, in spite of the compelling evi-
dence in favor of tunneling through a single magnetic impurity, neither exper-
iment permitted a microscopic characterization of defects involved, let alone
a microscopic control of their model parameters. This situation has changed
dramatically in 1998 with the discovery of the Kondo effect in lithographi-
cally defined quantum dots [4, 5], and its measurement for isolated magnetic
adatoms on metallic surfaces [7, 8].

3 Essentials of the Kondo Effect

3.1 The Anderson Impurity Model

The standard description of magnetic impurities in metals is by means of the
Anderson model [44]. Introduced in 1961 in an effort to explain how local
moments are formed in a metal, the model describes the hybridization of
an interacting level, or ion, with the itinerant electrons of the metal. The
Anderson model has three main ingredients: (i) a localized level with energy
εd, corresponding to the outer-most atomic shell; (ii) an on-site repulsion U ,
representing the screened Coulomb repulsion between a pair of electrons in
the outer-most shell; and (iii) an hybridization matrix element t between the
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−εd
U+εdt t

Fig. 1. Schematic description of the non-degenerate Anderson model

atomic electrons and the underlying conduction electrons of the metal. In its
simplest non-degenerate form, the Anderson Hamiltonian reads

H =
∑

k,σ

εkc
†
kσckσ +

∑

k,σ

t
{
c†kσdσ + h.c.

}
+ εd

∑

σ

d†σdσ + Un̂↑n̂↓ , (4)

where d†σ creates an atomic electron with spin projection σ, c†kσ creates a
conduction electron with wave number k and spin projection σ in an s-wave
state centered about the ion, and n̂σ = d†σdσ are the local number operators.

A realistic description of lanthanide and actinide ions requires inclusion of
the orbital degeneracy of the f -shell electrons, which is lifted in turn by the
spin-orbit and crystalline-electric-field terms. In practice this means replacing
the spin index σ in (4) with a combined index m that runs over all relevant
atomic states. The spin-orbit and crystalline-electric-field splittings of the level
are accounted for by substituting εd → εm. The orbitally degenerate model,
commonly referred to as the degenerate Anderson model, has been extensively
used for describing Ce- and Yb-based alloys. We shall focus, however, on the
non-degenerate case, which usually suffices for modeling the Kondo effect in
ultra-small quantum dots. A schematic illustration of the model is depicted
in Fig. 1.

3.2 Anderson-Model Description of Ultra-Small Dots

Quantum dots behave in many respects as tunable “artificial” atoms. Due to
quantum confinement, single-particle levels are discrete inside the dot with a
finite level spacing ∆. When sufficiently “pinched off” from the leads, and for
temperatures small as compared to ∆, the dot can be modeled by only one
single-particle level ε0. The electrostatic energy of the dot is well represented
in this case by the classical charging term

Hcharging = EC

(
∑

σ

d†σdσ −Ng
)2

, (5)
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where EC = e2/2C is the charging energy, C is the total capacitance of the
dot, andNg is the dimensionless gate voltage. Here d†σ creates a spin-σ electron
in the relevant dot level.

The charging energy EC clearly plays the role of the on-site repulsion U for
an Anderson impurity. The remaining ingredient required for an Anderson-
model description of the dot is furnished by the tunneling to the leads. De-
noting the creation of a conduction electron in the left and right lead by c†Lkσ
and c†Rkσ , respectively, the corresponding tunneling term reads

Htunneling =
∑

α=L,R

∑

k,σ

tα

{
c†αkσdσ + h.c.

}
, (6)

where tL and tR are the tunneling matrix elements to the left and right lead.
Although the coupling to two leads may appear different at first from the
coupling to a single band in equation (4), this distinction turns out to be cos-
metic. The physical reason is simple, as the dot couples only to the “bonding”
combination

b†kσ =
1√

t2L + t2R

[
tLc

†
Lkσ + tRc

†
Rkσ

]
. (7)

The orthogonal “anti-bonding” combination

a†kσ =
1√

t2L + t2R

[
tRc

†
Lkσ − tLc

†
Rkσ

]
(8)

decouples from the impurity, much in the same way as all partial waves but
one decouple from a magnetic impurity when placed in a metal. Thus, upon
converting to the “bonding”–“anti-bonding” basis, one recovers the Hamilto-
nian of (4) with the following correspondence of parameters:

εd = ε0 − 2ECNg , U = EC , and t =
√
t2L + t2R . (9)

Two comments should be made at this point about the hopping t quoted
above. Firstly, in writing t of (9) we have implicitly assumed that the two
leads share the same dispersion εk, or DOS ρ. If the conduction-electron DOS
is different in both leads, i.e., ρL 6= ρR, then the correspondence of parameters
is slightly modified. Specifically, the hybridization width associated with (4),
Γ = πρt2, must equal the sum of the hybridization widths to the two leads:
Γ = ΓL + ΓR with Γα = πραt

2
α.

The second comment pertains to the role of a finite voltage bias. Although
the “anti-bonding” modes remain decoupled from the impurity at the level of
the Hamiltonian, they cannot be discarded for a finite voltage bias. This stems
from the fact that the boundary condition imposed by the bias applies to the
left- and right-lead electrons rather than the “bonding” and “anti-bonding”
ones. Hence, the full two-lead Hamiltonian must be retained for a finite voltage
bias.
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3.3 From the Anderson Model to the Kondo Hamiltonian

The physics of the Anderson impurity model depends continuously on the
interplay between the hybridization width Γ and the inter-configurational
energies εd and εd + U (recall that U > 0). At low temperatures the model
flows to a line of Fermi-liquid fixed points, parameterized by the scattering
phase shift δ. The latter is given in the wide-band limit by δ = πnd/2, where
nd = 〈n̂↑ + n̂↓〉 is the total impurity occupancy at zero temperature (see
Sect. 4.1 below). It is customary to distinguish between several continuously
connected regimes of the model.

• When εd � Γ , the level is essentially depopulated for kBT � εd. This
regime, commonly referred to as the empty-orbital regime, is characterized
by a small phase shift, δ ≈ 0, for T = 0.

• When −εd, U + εd � Γ , a local moment is formed on the level for kBT �
min{−εd, U + εd}. It is in this regime that the Kondo effect takes place.
The local moment is initially coupled weakly to the band electrons, but
is then progressively screened as the temperature T is lowered below the
Kondo temperature TK. Eventually a Fermi-liquid fixed point is reached
with a phase shift, δ, close to π/2.

• When −(εd +U)� Γ , the level is doubly occupied for kBT � −(εd +U).
This regime can be viewed as the inverted particle-hole image of the empty-
orbital regime.

• If either Γ ≥ |εd| or Γ ≥ |εd + U |, the impurity valence undergoes strong
quantum fluctuations between two or more charge configurations. The im-
purity does not have stable valance in this case, and is said to be in the
mixed-valent regime.

Let us focus on the local-moment regime, where the Kondo effect takes
place. As the temperature is lowered below TL ∼ k−1

B min{−εd, U + εd},
charge fluctuations are suppressed on the impurity and a stable local mo-
ment is formed. The role of the two excited charge configurations (the empty
and doubly occupied ones) is demoted to mediating virtual transitions among
the two spin states. The adequate way to formulate an effective low-energy
Hamiltonian in this regime is by means of the so-called Schrieffer-Wolff trans-
formation [45]. A suitable canonical transformation H′ = eSHe−S is applied
to the Anderson Hamiltonian such that charge fluctuations are eliminated
within H′ up to second order in the hybridization matrix element t. To this
end, the anti-hermitian operator S is taken to be

S =
∑

k,σ

{[
t

εk − εd
(1− n̂−σ) +

t

εk − εd − U
n̂−σ

]
c†kσdσ − h.c.

}
. (10)

ExpandingH′ up to second order in t and projecting the resulting Hamiltonian
onto the singly occupied space, one recovers the Kondo Hamiltonian



10 Avraham Schiller

HK =
∑

k,σ

εkc
†
kσckσ + JSimp · s(0) + V

∑

k,k′,σ

c†kσck′σ , (11)

where

Simp =
1

2

∑

σ,σ′

d†σdσ′τσσ′ (12)

is the impurity spin, and

s(0) =
1

2

∑

k,k′

∑

σ,σ′

c†kσckσ′τ σσ′ (13)

is the conduction-electron spin density at the impurity site. Here τ are the
Pauli matrices. The exchange coupling J and potential scattering V are given
in turn by

J = 2t2
[

1

|εd|
+

1

U + εd

]
, V =

t2

2

[
1

|εd|
− 1

U + εd

]
, (14)

where we have omitted momentum dependence. The effective bandwidth per-
taining to the Hamiltonian of (11) is Deff = kBTL ∼ min{−εd, U + εd}.

In writing the couplings of (14), we have expressed them in terms of the
bare parameters that appear in the parent Anderson Hamiltonian. As noted by
Haldane [46], the energy level εd is actually slightly renormalized if U+2εd 6= 0.
Specifically, εd is modified to

εd +
Γ

π
ln

(
U + εd
|εd|

)
(15)

whenD � |εd|, U . Although the above correction to εd is typically small, it can
substantially modify the pre-exponential factor that appears in the expression
for the Kondo temperature, and therefore should generally be retained.

Once the mapping onto the Kondo Hamiltonian has been established, one
can make use of known results for the latter model in order to unravel the
low-energy physics. Specifically, the antiferromagnetic spin-exchange J flows
to strong coupling, with TK marking the departure from weak coupling. The
most accurate expression for TK is provided by the Bethe ansatz solution of
the Anderson model [31]. Defining the Kondo temperature according to the
zero-temperature susceptibility,

χ(T = 0) =
(µBg)

2

2πkBTK
, (16)

one finds [31]

kBTK = (
√

2UΓ/π) exp
[
π
(
Γ 2 + εdU + ε2d

)
/(2U Γ )

]
(17)

in the wide-band limit.
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4 Resistivity and Conductance

So far we mainly considered the low-energy fixed-point structure. The key
quantity for computing transport properties, whether in dilute magnetic alloys
or in a tunnel-junction geometry, is the conduction-electron T -matrix. For the
non-degenerate Anderson model, the latter is independent of the momentum
of the scattered electron, and is related to the impurity Green function Gd
through

T (z) = t2Gd(z) . (18)

In dilute magnetic alloys, scattering off the impurities hampers the ballistic
motion of the electrons. For a small concentration of magnetic impurities,
cimp � 1, the impurity contribution to the resistivity is given by [47]

ρ−1(T ) =
ne2

m

∫ ∞

−∞
τ(ε)

(
−∂f
∂ε

)
dε , (19)

where
~τ−1(ε) = cimp2πt

2Ad(ε) (20)

is the transport time of the electrons. Here n and m are the conduction-
electron density and mass, while Ad(ε) = − 1

π Im{Gd(ε + iη)} is the impurity
spectral function. The residual T = 0 resistivity is therefore equal to

ρ(T = 0) = cimp
2πm

ne2~
t2Ad(0) . (21)

For a tunnel geometry of the type realized for ultra-small quantum dots,
transport is facilitated by scattering off the impurity. In this case the conduc-
tance is equal to

G(T ) =
e2

~

4ΓLΓR

ΓL + ΓR

∫ ∞

−∞
Ad(ε)

(
−∂f
∂ε

)
dε , (22)

which reduces for T = 0 to

G(T = 0) =
e2

~

4ΓLΓR

ΓL + ΓR
Ad(0) . (23)

Evidently, there is an intimate relation between the resistivity in dilute
magnetic alloys and the conductivity for tunneling through an ultra-small
quantum dot. Indeed, both quantities increase logarithmically for T > TK, and
are proportional to Ad(0) at zero temperature. However, the two quantities
do not exhibit identical temperature dependences. The resistivity in alloys is
proportional to the reciprocal of the average of A−1

d (ε) with respect to the
derivative of the Fermi function, whereas the conductance for a quantum dot
is directly proportional to the average of Ad(ε) with respect to −∂f(ε)/∂ε.
Below we focus on zero temperature, where exact results can be obtained for
the conductance G(0).
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4.1 Friedel-Langreth Sum Rule

One of the most important results of Fermi-liquid theory for the Anderson
model is the Friedel-Langreth sum rule [48], relating the zero-temperature
impurity Green function at the Fermi level to the number of electrons dis-
placed by the impurity. The derivation of the sum rule is quite compact, and
relies solely on the assumption that a Fermi liquid is formed. Below we briefly
outline Langreth’s derivation of the sum rule [48], allowing both for spin-
dependent hybridization tσ and for the presence of a finite magnetic field hz .
While the spin dependence of tσ may appear superfluous in the context of
dilute magnetic alloys, it occurs quite naturally in the case of ferromagnetic
leads [49].

The number of displaced electrons in the spin channel σ is defined as

∆Nσ = 〈d†σdσ〉+
∑

k

[
〈c†kσckσ〉 − 〈c

†
kσckσ〉0

]
, (24)

where the zero subscript denotes averaging with respect to the unperturbed
(i.e., t = 0) Hamiltonian. Setting T = 0, this quantity can be conveniently
expressed in terms of the dressed impurity Green function Gdσ(z) as

∆Nσ = −
∫ 0

−∞

dε

π
Im

{
Gdσ(ε+ iη)

[
1 +

∑

k

t2σ
(ε− εk + iη)2

]}
, (25)

which follows from the fact that the conduction-electron T -matrix equals
Tσ(ε + iη) = t2σGdσ(ε + iη). Writing the impurity self-energy in the form
Σσ(z) = Σ0

σ(z) +ΣU
σ (z), where

Σ0
σ(z) =

∑

k

t2σ
ε− εk + iη

(26)

is the non-interacting (U = 0) self-energy, and using the Fermi-liquid relation

∫ 0

−∞

dε

π
Im

{
Gd(ε+ iη)

∂ΣU
σ (ε+ iη)

∂ε

}
= 0 , (27)

(25) is rewritten as

∆Nσ = −
∫ 0

−∞

dε

π
Im

{
Gdσ(ε+ iη)

[
1− ∂Σσ(ε+ iη)

∂ε

]}
. (28)

Note that the expression in the curly brackets is nothing but the derivative
of lnG−1

dσ (ε + iη) with respect to ε. Hence the right-hand side of (28) can be
readily integrated to obtain

Im {lnGdσ(0 + iη)} = π (∆Nσ − 1) . (29)
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Combined with the Fermi-liquid property −Im {Σ(0 + iη, T = 0)} = Γσ , this
yields the exact result

Gdσ(0 + iη, T = 0) = −eiδσ

Γσ
sin δσ , (30)

where δσ = π∆Nσ is the scattering phase shift in the spin channel σ.
Two comments should be made about this result. Firstly, ∆Nσ differs

in principle from the corresponding impurity occupancy ndσ. The difference
between the two quantities is negligibly small in the conventional case where
the conduction-electron DOS is a slowly varying function of energy, with a
bandwidth far greater than all other energy scales in the problem (the so-called
wide-band limit). However, this need not be the case in mesoscopic systems,
where the DOS itself may vary on small energy scales. A case in point is that
of a finite-length quantum wire, studied, e.g., in [50–52]. Second, from the
expression above it is clear that the impurity DOS reaches its maximal value of
1/πΓσ when ∆Nσ equals one half. That is, when the corresponding scattering
phase shift is π/2. In the wide-band limit and for SU(2) spin symmetry, this
unitary limit is reached in two generic cases: (i) when the system is deep in the
Kondo regime (ndσ ≈ 1/2), and (ii) for all values of U obeying U + 2εd = 0.
In the latter case ndσ = 1 is guaranteed by symmetry, irrespective of whether
the impurity is in the local-moment or mixed-valent regime.

4.2 Exact Zero-Temperature Conductance

From the discussion above it is clear that the zero-temperature conductance
for tunneling through a quantum dot is exclusively determined in the wide-
band limit by the occupancy of the dot and by the tunneling asymmetry to
the left and right leads. Indeed, combining (23) and (30) one obtains

G(T = 0) = G0 sin2
(πnd

2

)
, (31)

where nd is the total occupancy of the dot and

G0 = 2
e2

h

4ΓLΓR

(ΓL + ΓR)2
(32)

parameterizes the tunneling asymmetry. Here we have restored SU(2) spin
symmetry, that is we have set again tσ = t and hz = 0.

The occupancy nd, and thus the conductance, can be computed exactly
using the Bethe ansataz solution of the Anderson model [31]. The resulting
conductance curves are depicted in Fig. 2 as a function of εd, for three different
values of Γ/U = 0.05, 0.1, and 0.5. Here Γ = ΓL+ΓR is the total hybridization
width of the level. Experimentally εd can be tuned by varying a gate voltage,
as described in (9). Upon going from the mixed-valent to the local-moment
regime, G(εd) develops an extended plateaux at which the conductance is
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pinned to the unitary value G0. For Γ � U , the plateaux extends throughout
most of the domain −U < εd < 0. The shoulders on either side of the plateaux
are smeared on the scale of Γ . For either εd � Γ or −(U + εd) � Γ , the
conductance is vanishingly small.

-2 -1 0 1
εd/U

0

0.2

0.4

0.6

0.8

1

G
( ε

d)/G
0

Γ/U = 0.05

Γ/U = 0.1

Γ/U = 0.5

Fig. 2. Exact zero-temperature conductance vs εd, for tunneling through an ultra-
small quantum dot. The dot is modeled by an Anderson impurity model, with Γ =
ΓL + ΓR and G0 = (2e2/h)(4ΓLΓR/Γ 2). Here Γ/U equals 0.05, 0.1, and 0.5 for the
solid, dotted-dashed, and dashed line, respectively

5 Toulouse Limit

One particularly revealing limit of the Kondo Hamiltonian is the so-called
Toulouse point [53], where the model can be solved exactly using somewhat
standard techniques. The Toulouse point corresponds to a particular value of
the longitudinal exchange coupling given by

ρJz =
4

π
tan

[
π

2

(
1− 1√

2

)]
. (33)

Although well removed from realistic parameters in quantum dots and mag-
netic ions, the Toulouse limit can be used to extract universal low-temperature
properties of the Kondo effect. For example, the Wilson ratio (see below).
This follows from the fact that all Hamiltonians with antiferromagnetic spin
exchange flow to the same strong-coupling fixed point as T → 0 [54]. Thus,
while physical properties away from the fixed point are model-dependent, any
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solvable model can be used to extract the universal behavior near the common
fixed point.

To expose the Toulouse point we resort to a continuum version of the
anisotropic Kondo Hamiltonian, written in terms of one-dimensional fields. In
the standard fashion [37], the conduction-electron modes that couple to the
impurity are reduced to left-moving fields ψασ(x), where σ =↑, ↓ labels the
spin projection. Here we have linearized the conduction-electron dispersion
around the Fermi level: εk = ~vFk, where εk and k are measured relative
to the Fermi level and Fermi wave number, respectively. The coordinate x
is a fictitious position variable conjugate to k. In terms of these fields, the
Hamiltonian takes the form

H = i~vF
∑

σ

∫ ∞

−∞
ψ†
σ(x)∂xψσ(x)dx +

J⊥a

2

[
S+ψ†

↓(0)ψ↑(0) + h.c.
]

(34)

+
Jza

2
Sz
∑

σ

σψ†
σ(0)ψσ(0)− µBghz

[
Sz +

∑

σ

σ

2

∫ ∞

−∞
ψ†
σ(x)ψσ(x)dx

]
,

where S is a spin- 1
2 operator, a is a short-distance cutoff corresponding to a

lattice spacing, µB is the magneton Bohr, and g is the Landé g-factor shared
by the conduction electrons and the impurity spin. Here and throughout the
section we use the labels σ =↑, ↓ and σ = ±1 interchangeably to designate
the spin projection.

To treat the Hamiltonian of (34), we resort to Abelian bosonization. Ac-
cording to standard prescriptions [55], two boson fields Φσ(x) are introduced,
one boson field for each left-moving fermion field ψσ(x). The fermion fields
are written as

ψσ(x) =
P̂√
2πα

e−iΦσ(x) , (35)

where the Φσ ’s obey

[Φσ(x), Φσ′ (y)] = −iπδσσ′ sign(x − y) . (36)

The ultraviolet momentum cutoff α−1 = π/a is related to the conduction-
electron bandwidth D and the density of states per lattice site ρ through
D = ~vF/α and ρ = 1/(2D) = α/(2~vF), respectively. The operator P̂ in (35)
is a phase-factor operator, which comes to ensure that the different fermion
species anticommute. Our explicit choice for this operator is P̂ = eiπN↑ , where
Nσ is the number operator for electrons with spin projection σ. When written
in terms of the boson fields, the Hamiltonian reads

H =
~vF
4π

∑

σ

∫ ∞

−∞
[∂xΦσ(x)]

2
dx+

J⊥
4

{
S+ei[Φ↓(0)−Φ↑(0)] + h.c.

}
(37)

+
aδz
π2ρ

Sz
∑

σ

σ∂xΦσ(0)− µBghz

[
Sz +

∑

σ

σ

4π

∫ ∞

−∞
∂xΦσ(x)dx

]
,
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where

δz = arctan

(
πρJz

4

)
(38)

is the phase shift associated with Jz (in the absence of J⊥). Note that δz is
bounded in magnitude by π/2, which stems from the cutoff scheme used in
bosonization.

Exploiting the emergence of spin-charge separation in the Kondo problem,
we proceed by converting to the spin and charge fields

Φs(x) =
1√
2

[Φ↑(x) − Φ↓(x)] , Φc(x) =
1√
2

[Φ↑(x) + Φ↓(x)] , (39)

which yields

H =
~vF
4π

∑

ν=c,s

∫ ∞

−∞
[∂xΦν(x)]

2
dx+

J⊥
4

{
S+e−i

√
2Φs(0) + h.c.

}

+
√

2
aδz
π2ρ

Sz∂xΦs(0)− µBghz

[
Sz +

1√
8π

∫ ∞

−∞
∂xΦs(x)dx

]
. (40)

To this Hamiltonian we apply the canonical transformation H′ = U †HU with
U = exp

[
i(1−

√
2)SzΦs(0)

]
to obtain

H′ =
~vF
4π

∑

ν=c,s

∫ ∞

−∞
[∂xΦν(x)]

2 dx+
J⊥
4

{
S+e−iΦs(0) + h.c.

}
(41)

+
√

2
aδ′z
π2ρ

Sz∂xΦs(0)− 1√
2
µBghz

[
Sz +

1

2π

∫ ∞

−∞
∂xΦs(x)dx

]

with
δ′z = δz −

π

2
(
√

2− 1) . (42)

At this point we transform to a new fermion representation. To this end we
first express the impurity spin in terms of a fermion operator d = S−. The
boson fields are then “refermionized” according to

ψs(x) =
eiπd†d

√
2πα

e−iΦs(x) , (43)

ψc(x) =
eiπ(d†d+Ns)

√
2πα

e−iΦc(x) , (44)

where Ns is the number operator for the ψs “spin” fermions. The end result
of these manipulations is the following fermionic Hamiltonian

H′ = i~vF
∑

ν=c,s

∫ ∞

−∞
ψ†
ν(x)∂xψν(x)dx +

J⊥
√
a

2
√

2

[
d+ψs(0) + h.c.

]
(45)

+ V a
[
d†d− 1/2

]
:ψ†
s(0)ψs(0) : −µBghz√

2

[
Sz +

∫ ∞

−∞
ψ†
s(x)ψs(x)dx

]
,
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Fig. 3. The differential conductance as a function of voltage bias at the Toulouse
limit. At T = 0 and B = 0 (upper panel), there is a Lorentzian zero-bias anomaly
with half-width kBTK and a peak height of G0 that depends on the tunneling asym-
metry to the left and right leads. For symmetric coupling, G0 = 2e2/h. The effect
of a temperature is to smear the zero-bias anomaly (upper panel), while a non-zero
magnetic field splits it into two peaks at ±µBghz (lower panel)

where

V =
2

πρ
tan

(√
2δ′z

)
. (46)

Here :ψ†
s(0)ψs(0): stands for normal ordering with respect to the unperturbed

ψs Fermi sea. Note that in order to refermionize the Hamiltonian H′ we had
to assume that |δ′z| < π√

8
. However, this condition is not very restrictive. It

encompasses the entire antiferromagnetic regime, Jz > 0, and a fair part of
the ferromagnetic regime, Jz < 0. Subject to this constraint, the mapping of
(34) onto (45) is exact.

The Hamiltonian of (45) describes an interacting resonant level, where the
strength of the interaction, V , depends on ρJz through (38), (42), and (46).
Remarkably, V vanishes at the particular point described by (33). When tuned
to this point, (45), and thus the original Kondo Hamiltonian, can be solved
exactly using elementary methods. Any observable that can be expressed in
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terms of simple combinations of the ψs and d fermions can be evaluated ex-
actly. While not all physical quantities fall in this category, several do. For
example, the spin component Sz equals d†d − 1/2. Hence, both the impu-
rity susceptibility and the impurity contribution to the specific heat can be
computed straightforwardly at the Toulouse point to obtain

lim
T→0

χimp =
(µBg)

2

2πΓK
, lim

T→0

Cimp

T
=
π

3

(kBT )2

ΓK
. (47)

Both quantities depend solely on ΓK = ρJ2
⊥/8, which plays the role of a Kondo

temperature at the Toulouse point. From these expressions one obtains the
correct Wilson ratio

RW = lim
T→0

χimp

Cimp
· Cbulk

χbulk
= 2 . (48)

The discussion above was restricted to thermal equilibrium. An extension
of the Toulouse limit to non-equilibrium tunneling through a Kondo impurity
was devised in [56], using the Emery-Kivelson construction for the two-channel
case [57]. Applications of the model to dc [56,58], ac [59], and pulsed-bias po-
tentials [60] have shown all the qualitative features of Kondo-assisted tunnel-
ing: a zero-bias anomaly that splits in an applied magnetic field; Fermi-liquid
characteristics in the low-T and low-V differential conductance; side peaks in
the differential conductance at eV = ±n~ω for an ac drive of frequency ω;
and a hierarchy of time scales for the rise, saturation and falloff of the current
in response to a pulsed bias potential. The Toulouse limit was also recently
applied to compute the full counting statistics for tunneling through a Kondo
impurity [61]. Here we settle with a brief demonstration of the main point
listed above, namely, the emergence of a zero-bias anomaly that splits in an
applied magnetic field, see Fig. 3.

As emphasized above, the Toulouse point with all its success cannot be
used to access all physical quantities. Observables that do not have a simple
representation in terms of the new fermionic degrees of freedom cannot be
computed based on this special point. One important quantity that falls in the
latter category is the impurity spectral function. Hence, a different approach
is required to track the evolution of the impurity DOS with an applied voltage
bias. Such an approach will be presented in the following section.

6 Noncrossing Approximation

Among diagrammatic approaches to the Kondo problem, the most established
is the so-called noncrossing approximation (NCA). The NCA was extensively
used in the 1980s to study dilute magnetic alloys, especially Ce- and Yb-
based alloys with large orbital degeneracy. Its usefulness for treating the multi-
channel Anderson model was later emphasized by Cox and Ruckenstein [62],
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who noticed that the NCA pathology hampering the single-channel case [63]
actually corresponds to the exact non-Fermi-liquid power laws and logarithms
of the multi-channel Kondo effect. Compared to exact methods such as the
Bethe ansatz and conformal field theory, the NCA has the crucial advantage
that it is not restricted to idealized models, it could be used to compute dy-
namical properties over extended temperature and parameter regimes, and
it has a natural extension to non-equilibrium. Indeed, the method has been
successfully applied to numerous variants of the out-of-equilibrium Kondo
effect, including dc [64], ac [65,66], pulsed-bias [67], and multi-lead [68] trans-
port through a single-channel Anderson impurity, as well as Kondo-assisted
tunneling through different multi-channel impurities [69–71]. In the follow-
ing section we briefly review the approach, and discuss its application to the
out-of-equilibrium impurity DOS.

6.1 Slave-Boson Representation

The NCA represents a self-consistent perturbative expansion about the atomic
limit. Applied primarily to the infinite-U Anderson model, the approach is
most conveniently formulated within the slave-boson representation of Barnes
and Coleman [35, 72]. In order to facilitate usage of standard diagrammatic
techniques, each of the three impurity states (double occupancy is forbidden
for U →∞) is assigned a pseudo-particle according to the convention

b†|0〉 ←→ |nd = 0〉 , (49)

f †
↑ |0〉 ←→ |nd = 1, Sz =↑〉 , (50)

f †
↓ |0〉 ←→ |nd = 1, Sz =↓〉 . (51)

Here b† is a pseudo-boson, while f †
↑ and f †

↓ are pseudo-fermions analogous to
ones used in Abrikosov’s slave-fermion representation of the Kondo Hamilto-
nian [28]. The physical subspace corresponds to the constraint

N̂f ≡ b†b+
∑

σ

f †
σfσ = 1 , (52)

reflecting the fact that one is working within an enlarged Hilbert space. It
is the latter constraint on the number of pseudo-particles that distinguishes
b† and f †

σ from ordinary bosons and fermions. Subject to this constraint, the
infinite-U Anderson model is written in the form

H =
∑

k,σ

εkc
†
kσckσ +

∑

k,σ

t
{
c†kσb

†fσ + h.c.
}

+ εd
∑

σ

f †
σfσ . (53)

As noted above, the advantage of the slave-boson representation stems
from the ability to apply standard diagrammatic many-body techniques to



20 Avraham Schiller

(b)

(d)

(a)

(c)

Fig. 4. Diagrammatic representation of the NCA. Figure (a) displays the NCA gen-
erating functional, ΦNCA. Here dashed, wiggly, and solid lines represent a dressed
pseudo-fermion, dressed pseudo-boson, and local conduction-electron Green func-
tion, respectively. Filled circles mark interaction vertices. Figures (b) and (c) de-
pict the corresponding pseudo-fermion and pseudo-boson self-energies, obtained by
a functional derivative of ΦNCA. The impurity Green function is displayed in turn
in figure (d)

compute physical observables. The difficulty lies in implementing the con-
straint, which necessitates the introduction of a fictitious “chemical poten-
tial” λ for the pseudo-particles. In order to project onto the N̂f = 1 physical
subspace, the pseudo chemical potential is taken to minus infinity at the end
of the calculation. Specifically, modifying the Hamiltonian of the system from
H to H− λN̂f , physical averages are written as

〈Ô〉phys =
1

Zimp
lim

λ→−∞
e−βλ〈ÔN̂f 〉λ , (54)

where
Zimp = lim

λ→−∞
e−βλ〈N̂f 〉λ (55)

is the “impurity contribution” to the partition function. Here λ subscripts
denote averages within a grand-canonical ensemble for the pseudo-particles,
and β = 1/kBT is the reciprocal temperature. In practice, one can drop the
N̂f operator in (54) for those physical operators Ô that give zero when acting

on the N̂f = 0 subspace, which greatly simplifies the calculations.

6.2 Noncrossing Diagrams

Equations (54) and (55) relate the physical average of any observable Ô to
its average within the enlarged Hilbert space for the pseudo-particles. For
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any given value of λ, one can compute the latter average using standard di-
agrammatic techniques, whose building blocks are the pseudo-fermion and

pseudo-boson Green functions G
(λ)
fσ (z) and G

(λ)
b (z), respectively. The NCA

consists of a particular set of diagrams for computing the pseudo-fermion and

pseudo-boson self-energies, Σ
(λ)
fσ (z) and Σ

(λ)
b (z), respectively. The approxi-

mation scheme is defined by the generating function portrayed in Fig. 4(a),
from which the self-energies are obtained by functional derivatives. The cor-
responding self-energy diagrams are depicted in Fig. 4(b) and Fig. 4(c).

The pseudo-particle Green functions enter the calculation of physical ob-
servables in their projected forms

Gγ(z) = lim
λ→−∞

G(λ)
γ (z − λ) , γ = fσ, b . (56)

They maintain the standard structure

Gfσ(z) =
1

z − εd −Σfσ(z)
, (57)

Gb(z) =
1

z −Σb(z)
, (58)

where Σfσ(z) and Σb(z) are the projected self-energies. Evaluating the self-
energy diagrams of Fig. 4(b) and Fig. 4(c) and implementing the projection
rule of (56), one obtains the following pair of self-consistent equations for the
pseudo-particle self-energies:

Σfσ(z) =
Γ

π

∫ ∞

−∞
Gb(ε+ z)f(ε)ν(−ε)dε , (59)

Σb(z) =
∑

σ

Γ

π

∫ ∞

−∞
Gfσ(ε+ z)f(ε)ν(ε)dε . (60)

Here f(ε) = 1/(eβε + 1) is the Fermi-Dirac distribution function, and ν(ε) =
ρ(ε)/ρ is the reduced conduction-electron density of states (ν = 1 for a flat
band).

In the slave-boson representation, the impurity annihilation operator dσ
is identified with b†fσ. Therefore, the impurity Green function is given within
the NCA by the diagram of Fig. 4(d). Upon evaluation and projection of the
diagram onto the physical subspace we obtain

Gdσ(z) =
1

Zimp

∫ ∞

−∞
e−βε [Gfσ(ε+ z)Ab(ε)−Afσ(ε)Gb(ε− z)] dε . (61)

Here

Aγ(ε) = − 1

π
Im {Gγ(ε+ iη)} (62)

with γ = fσ, b are the pseudo-particle spectral functions.
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Figure 5 shows the impurity spectral function in thermal equilibrium, with
the impurity tuned deep into the Kondo regime. Here the temperature is set
equal to TK. In addition to a broad charge fluctuation peak slightly below
the bare level εd, there is a sharp Abrikosov-Suhl resonance near the Fermi
level. The width of the peak is roughly TK. Its height roughly equals 90%
of the unitary limit, which is somewhat overestimated by the NCA. Indeed,

-1 -0.5 0 0.5
ε/D

0

1

2

3

4

D∗
A d(ε

)

Fig. 5. Equilibrium dot density of states as obtained by the NCA for U = ∞. Here
we have used a joint semi-circular conduction-electron DOS with half-width D for
both leads. The remaining model parameters are εd/D = −0.278, ΓL + ΓR = D/15
(symmetric junction), and T = TK. The corresponding Kondo temperature equals
kBT/D = 2.5 × 10−4. In addition to a broad charge-fluctuation peak slightly below
εd, there is a sharp Abrikosov-Suhl resonance near the Fermi level

the NCA overshoots the unitary limit as the temperature is further decreased
below TK. The second charge fluctuation peak near U + εd cannot be seen as
it was shifted to infinity along with U .

6.3 Non-Equilibrium Conditions

Equations (59), (60), and (61) were derived under the condition of thermal
equilibrium. Several important modifications appear when a finite voltage bias
is applied, mostly related to the need to adopt the Keldysh formulation [73].
In the Keldysh formulation, each pseudo-particle Green functions and self-
energy is replaced with two independent components, a retarded function
and a lesser function. In addition, Γf(ε) terms are replaced within the NCA
equations with terms of the form



From Magnetic Alloys to Nanostructures 23

ΓLf(ε∓ µL) + ΓRf(ε∓ µR) , (63)

reflecting the different distribution functions on the two leads. Skipping the
technical details (see, e.g., reference [64, 70] for details), we proceed directly
to the results. Figure 6 shows the evolution of the Abrikosov-Suhl resonance
with increasing voltage bias. As originally noted by Wingreen and Meir [64],
the resonance splits as the voltage bias sufficiently exceeds the Kondo tem-

-50 0 50
ε/kBTK

0

1

2

3

4

5

D∗
A(

ε) 0

10
25

50100

Fig. 6. Non-equilibrium splitting of the Abrikosov-Suhl resonance in the dot density
of states for different values of the voltage bias, as obtained by the NCA for U =
∞. Here we have used a joint semi-circular conduction-electron DOS with half-
width D for both leads. The remaining model parameters are εd/D = −0.278,
ΓL = ΓR = D/30 (symmetric junction), and T = TK. The corresponding Kondo
temperature equals kBT/D = 2.5 × 10−4. The voltage bias eV takes the values
eV/kBTK = 0, 10, 25, 50, and 100, according to the labels attached

perature. Physically this stems from the fact that there are now two sharp
Fermi steps, one at the chemical potential of each lead. At the same time, the
resonances are broadened by the dissipative lifetime induced by the bias [64].
Splitting of the Abrikosov-Suhl resonance was recently observed both in a
three-terminal device [74], and in a setup where a ballistic quantum wire with
a split distribution was side-coupled to the dot [75].
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1 Introduction

The Kondo effect has become a hallmark of coherent electron transport in a
variety of nanostructures ranging from lithographically-defined semiconduc-
tors [1] to carbon nanotubes [2] and molecules [3,4]. Kondo first introduced a
phenomenological Hamiltonian [5] to describe how localized spin S couples an-
tiferromagnetically with strength J to spins s of electrons in the surrounding
reservoir.

The Kondo Hamiltonian was later found to be derivable from the more
microscopic Anderson model, which consists of an electron bound to an im-
purity site in a metal host. The combined system of localized electron and
metal host can lower its energy through tunneling: for example, an electron
hops off the localized site into the Fermi sea and a new electron with opposite
spin hops back from the Fermi level. Higher-order spin-flip tunneling processes
coherently add at low temperature, screening the local spin.

Although the Kondo ground state is complex, its low-lying excitations
look like individual weakly interacting quasi-particles. In contrast, some of the
most intriguing problems in solid state physics arise when the motion of one
electron dramatically affects the motion of other surrounding electrons, so that
excitations become collective rather than single-particle-like. Examples of such
highly-correlated systems include Tomonaga-Luttinger liquids [6], fractional
quantum Hall Laughlin liquids [7], superconducting BCS condensates [8], and
two-channel Kondo impurities [9].

In the two-channel Kondo (2CK) model, introduced 25 years ago by
Nozières and Blandin [10], and independently by Zawadowski [11] , a local-
ized spin S is antiferromagnetically coupled to two independent reservoirs of
electrons according to the Hamiltonian
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H2CK = J1s1 · S + J2s2 · S +Hreservoirs . (1)

The symmetric 2CK state is formed when the two independent channels (or
reservoirs) are equally coupled to the magnetic impurity, i.e., J1 = J2. Each
reservoir individually attempts to screen the local spin – if both succeeded,
they would overcompensate the spin. This is an unstable situation, resulting in
a new ground state in which a local “flavored spin” is only partially screened.
Unlike the single-channel Kondo (1CK) the new 2CK state exhibits fascinating
low energy behavior. In the 2CK state the quasi-particle concept of Fermi
liquid theory does not apply: the decay rate for a low energy excitation (∝ √ε)
is greater than the energy ε of the excitation itself. Stable low-lying excitations
must thus be collective [9, 12].

Any difference in channel coupling will force the system away from the
non-Fermi liquid 2CK fixed point and toward the 1CK fixed point associated
with the more strongly-coupled reservoir. Although the 2CK fixed point might
therefore seem difficult to access, it has been invoked to explain remarkable
low-energy properties of some heavy Fermion materials [9,13], and glassy met-
als [14–16]. However, the connections of these experimental observations to
2CK theory remain problematic [17], in part because the microscopic elec-
tronic structure of the various materials is unclear. Starting fifteen years ago
there have been several theoretical suggestions for systems that should show
the two-channel Kondo effect [18,19], but until recently none were realized in
experiments.

Several years ago the present authors suggested [20] that a system consist-
ing of a small single-level quantum dot coupled to two leads and a large but
finite metallic dot (see Fig. 1) should exhibit the exotic two-channel Kondo
physics at low temperature. The key observation is that due to the finite charg-
ing energy Ec of the large finite dot (c), electron transfer between leads and
large dot is suppressed at energies smaller than Ec. Thus we have effectively
two independent channels connected to the dot (one associated with the open
leads, the other with the large dot.) By tuning gate voltages it is possible to
control the values of the coupling constants and to drive the system to the
isotropic two-channel point. Recently this system was realized experimentally
and the two-channel Kondo effect was observed [21,22].

The article is arranged in the following way. In Sect. 2 we introduce an
Hamiltonian of the system which by assumption captures its most important
characteristics. In Sect. 3 we analyzed the model using approximate Renor-
malization Group (RG) scaling methods and find the conditions for the stabi-
lization of the two-channel Kondo effect. A theoretical estimate for the two-
channel Kondo temperature [23] is given in (22). In Sect. 4 we give examples
for the conductance [24] and the scaling curves that were used to analyze the
experimental result of [21, 22]. A detailed derivation of the relation [24, 25]
between the differential conductance and the T matrix is given in an Ap-
pendix (A) using the generalization of the Landauer formula for interacting
systems [26] as a starting point.
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2 Model of the System

Our system consists of a small quantum dot connected to two leads and to a
large but finite dot with a continuous level spacing, as was suggested theoret-
ically [20] and recently implemented experimentally [21, 22].

rl d

c

Fig. 1. Schematic view of the system

The Hamiltonian that describes the system is given by

H =
∑

kσ

εlkσ l
†
kσlkσ +

∑

kσ

εrkσr
†
kσrkσ

+
∑

kσ

εckσc
†
kσckσ +Ec(n−N )2

+ εdσd
†
σdσ + Und↑nd↓

+
∑

kσ

(
tkll

†
kσdσ + tkrr

†
kσdσ + tkcc

†
kσdσ + h.c.

)
. (2)

In this Hamiltonian the first three terms describe the free electrons of the
two leads and the large but finite dot. Let the index α run over the values
l, r, c for the left lead, the right lead and the large dot respectively. Then the
operator ασk(α

†
σk) are the annihilation (creation) operator of an electron at

state k with spin σ in the one of the leads or the large dot.
The fourth term is the interaction energy in the large dot and its inter-

action with an external gate. The operator n =
∑
kσ c

†
kσckσ is the number

operator of the electrons in the large dot, and N denotes the effective inter-
action of the electrons in the large dot with an external gate. The fifth and
sixth terms describe the Hamiltonian of the small dot, with dσ (d†σ) the anni-
hilation (creation) operator of an electron with spin σ on the small dot, and
ndσ = d†σdσ . The last term is the hybridization between the small dot and its
neighbors (the two leads and the large dot.) We will assume henceforth that
the hopping matrix elements tkα do not depend on k, and define tα ≡ tkα.

We have assumed that there is only one level in the small dot, so this
Hamiltonian should be valid only at energy scale D smaller than the level
spacing of the small dot ∆d, which serves as the ultraviolet cutoff of our
theory, D0. For simplicity of presentation we have ignored in this Hamiltonian
the mutual electrostatic coupling between dots d and c. By changing external
gates one may control the values of tα, N and εd.
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3 Model Analysis

In this section we analyze the model Hamiltonian (2) by progressively inte-
grating out the “fast” degrees of freedom in the renormalization group sense.
Hamiltonian (2) has a few energy scales: U the charging energy of the small
dot (d), εdσ the position of the single-particle (spin full) level on the small dot,
the charging energy3 Ec of the large dot, and the tunneling matrix elements
tα, α = l, r, c.

The parameters’ phase space is large, so we limit ourself to the case where
U � Ec and obtain the proper effective Hamiltonian at the different running
scales D. The different scales and the procedure used to derive the RG flow
are depicted schematically in Fig. 2.

D|U+2εd||εd|EcTKT2CK0

No significunt
renormalizationHaldane 

S-W Tran.

High T 1CK High T 2CK

Fig. 2. We assume |U + 2εd| � |εd| � Ec � TK1 > TK2. For each energy scale we
use the appropriate RG method, see details in the text

3.1 Effective Hamiltonian at D > Ec and its Scaling Analysis

At energy scales much bigger than Ec we can safely mix operators in the
free leads and in the big dot, such that we have one linear combination of
the l, r and c operators that is coupled to the small dot (while the other
two combinations are decoupled). We will find these rotated operators in two
steps:

3 In fact there are two energy scales associated with the large dot, determined by
the distance of the working position from the adjacent Coulomb blockade peaks.
The two-channel Kondo effect may emerge when electron transfer between the
leads and the large dot is not possible. Therefore, we tune the effective gate
potential N so that the system is between Coulomb blockade peaks of the large
dot. While the charging energy Ec sets the distance between Coulomb blockade
peaks, N sets where the system sits relative to those peaks. We have two energy
scales because the distances from the nearest Coulomb peaks are not necessarily
identical, and in principle they may be parametrically different. Since typically
both are fractions of Ec we will ignore that effect in the following analysis.



The Two Channel Kondo Effect in Quantum Dots 31

l-r Rotation: l-r ⇒ ψ, φ

First write the Hamiltonian in terms of the rotated operators:

(
ψ†
k

φ†k

)
=

(
cos θ sin θ
− sin θ cos θ

)(
eiϕl 0
0 eiϕr

)(
l†k
r†k

)
(3)

with cos θ = |tl|/tψ, t2ψ = |tr|2 + |tl|2 and ϕr(l) = arg tr(l) [see also discussion
before (47)]. The Hamiltonian in terms of the rotated basis is:

Hcψφ =
∑

kσ

εφkσφ
†
kσφkσ +

∑

kσ

εψkσψ
†
kσψkσ

+
∑

kσ

εckσc
†
kσckσ +Ec(n−N )2

+ εdσd
†
σdσ + Und↑nd↓

+
∑

kσ

(
tψψ

†
kσdσ + tcc

†
kσdσ + h.c.

)
. (4)

Thus we have two channels that are coupled to the small dot (ψ and c)
and one free channel (φ).

ψ-c Rotation: ψ-c ⇒ ξ, ζ

At scales above Ec we can ignore the term ∝ Ec in (4) and mix the ψ and c
operators using the rotation:

(
ξ†k
ζ†k

)
=

(
cos θ′ sin θ′

− sin θ′ cos θ′

)(
1 0
0 eiϕc

)(
ψ†
k

c†k

)
, (5)

with cos θ′ = tψ/tξ, t
2
ξ = t2ψ + |tc|2 and ϕc = arg tc.

The Hamiltonian in terms of the channel ξ and the two free channels ζ
and φ is given by:

Hξζφ =
∑

kσ

εφkσφ
†
kσφkσ +

∑

kσ

εζkσζ
†
kσζkσ +

∑

kσ

εξkσξ
†
kσξkσ

+ εdσd
†
σdσ + Und↑nd↓ +

∑

kσ

(
tξξ

†
kσdσ + h.c.

)
. (6)

Hamiltonian (6) is valid up to a scale D � D1 = aEc where a & 1. For
D > D1 we can follow the standard RG poor man’s scaling procedure for the
Anderson model [27]. For completeness we reproduce the scaling equations
here.
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3.2 Haldane Flow: D > min {|U + εd|, |εd|}

To perform the renormalization group transformation in this regime, we look
at the many-body energies of the small dot with zero (E0 = 0), one (E1 = εd)
and two (E2 = 2εd + U) electrons in second order perturbation theory and
integrate out the fast degree of freedom. Following [28] and the pedagogical
presentation in [27], we find

δεd
δD

= Γξ

[
2

D + εd
− 1

D − εd
− 1

D + εd + U

]
,

δU

δD
= 2Γξ

[
1

D − εd
− 1

D + εd

+
1

D + εd + U
− 1

D − εd − U

]
, (7)

with Γξ = ν|tξ |2. There are number of parameter regimes to study. There is no
significant renormalization if |εd|, |εd + U | � D. At these scales the impurity
is practically non-interacting. In the regime |εd +U | � D � |εd|, U does not
flow and the scaling equation for εd become:

d log εd
d logD

= −Γξ . (8)

It can be shown that Γξ does not flow in this limit so that integration of (8)
gives:

εd(D) = ε∗d − Γξ log
D

Γξ
(9)

with ε∗d = εd(D0)+Γξ log D0

Γξ
is a scaling invariant constant expressed in term

of the ‘bare’ parameters at the initial scale D0 ∼ ∆d.
The scaling in this form can be continued until D reaches a scale D̃ so that

|D̃| & |ε(D̃)|. For ε(D), ε(D) + U � D real charge fluctuations cannot occur
and we may explicitly eliminate them by a Schrieffer-Wolff transformation.
The scale ε̃d ∼ D̃ at which the Haldane flow (8) applies is set by:

ε̃d + Γξ log

(
ã
|ε̃d|
Γξ

)
= ε∗d , (10)

with ã a positive constant of O(1). At this stage we may perform the Schriffer-
Wolff transformation [29] with the effective parameters ε̃d, U, Γξ.

3.3 Schrieffer-Wolff Transformation D ∼ ε̃d

The Schrieffer-Wolff transformation [29] lead us now to the Hamiltonian:
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H1CK =
∑

kσ

εφkσφ
†
kσφkσ +

∑

kσ

εζkσζ
†
kσζkσ

+
∑

kσ

εξkσξ
†
kσξkσ + 2J̃ξS · sξ(0) (11)

with

J̃ξ = Jξ(D̃) = t2ξ

[
1

|ε̃d|
+

1

|ε̃d + U |

]
. (12)

Here, S = (Sx, Sy, Sz);S
± = Sx ± iSy, S

± = d†↑(↓)d↓(↑), 2Sz = d†↑d↑ − d
†
↓d↓.

The ξ channel spin operators are: sξ(0) =
∑

kq s
kq
ξ with s±kqξ = ξ†k↑(↓)ξq↓(↑)

and 2szkqξ = ξ†k↑ξq↑ − ξ
†
k↓ξq↓.

Now we may continue the RG flow utilizing the single-channel Hamiltonian
of (11) up to a scale of order but greater than the charging energy Ec of the
large dot.

3.4 Flow for ε̃d > D & Ec

To perform the scaling transformation on the Hamiltonian (11), we follow
the poor man’s scaling transformation of the Kondo model [27, 30]. Formally
this is done by progressively integrating out the fast degrees contribution to
the T -matrix Tξ(E) at energy E � D. This procedure leads to the following
equation for the spin isotropic Kondo model:

δJξ = −J2
ξ ν |δD|

[
1

E −D + εξk
+

1

E −D − εξk′

]
. (13)

The first (second) term correspond to an intermediate electron (hole) process.
As long as D � Ec, E we ignore the dependence of the denominator on E
and εξk. Therefore for these scales E can be above or below Ec.

Inclusion of the next order terms in the RG equation leads to the scaling
equation:

δJξ
d logD

= −2νJ2
ξ + 2ν2J3

ξ , for U > D > aEc, a & 1 . (14)

The solution of this equation can be written in terms of the single-channel
Kondo temperature TK (that means the Kondo temperature of the single-
channel ξ we would have if Ec was zero) as:

2νJξ(D) =
1

log(D/TK)
,

TK = D̃

√
2Jξ(D̃)νe−1/[2νJξ(D̃)] ≈

√
Γξ ε̃dU

|ε̃d + U |e
− |ε̃d||ε̃d+U|

2ΓξU , (15)

where in the last approximate equality we have used (10) and (12) for ε̃d and
Jξ(D̃).
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3.5 Elimination of the c - ψ Couplings at D ∼ Ec

At the scale D = aEc we have to stop the RG procedure that led to (14) as
at this scale real charge excitations on the large dot c are not energetically
favorable. These charge fluctuations were implicitly included until this scale
as the rotation (5) mixes channel c with channel ψ and therefore allows charge
fluctuations on the large dot.

Thus now we rotate back Hamiltonian (11) (with the scaled parameter)
with the help of the transformation (5) to the basis ψ, c and φ. During the
flow from D0 to D1 the channels ζ and φ remain free, so the angle θ′, which
does not appear in Hamiltonian (11), does not change during that flow. The
rotation gives:

H2CK
cψφ =

∑

kσ

εφkσφ
†
kσφkσ +

∑

kσ

εψkσψ
†
kσψkσ

+
∑

kσ

εckσc
†
kσckσ +Ec(n−N )2

+ 2JψψS · sψψ(0) + 2JcψS · scψ(0)

+ 2JψcS · sψc(0) + 2JccS · scc(0) (16)

with Jψψ = cos2 θ′Jξ(D1), J
∗
cψ = Jψc = cos θ′ sin θ′e−iϕcJξ(D1), Jψψ =

cos2 θ′Jξ(D1). The a, b = ψ, c channel spin operators are: sab(0) =
∑

kq s
kq
ab

with s±kqab = a†k↑(↓)bq↓(↑) and 2szkqa = a†k↑bq↑ − a
†
k↓bq↓.

Elimination of Charge Fluctuations on Large Dot at Scales < Ec

We now continue and integrate out energy scales in the vicinity of Ec. This
can be done in a single RG step where we integrate out all degrees of freedom
from the band width D1 = aEc, a & 1 which is wider than Ec to a band
width D2 = a′Ec, a′ . 1 which is narrower than Ec . At the scale D2 charge
fluctuation on the small dot are not possible, thus the off-diagonal terms Jψc
and Jcψ are strongly suppressed and we set them to zero.

At the same time we should take into consideration the flow of the diag-
onal terms Jψψ and Jcc which do not cause charge fluctuations on the large
dot. However, if Ec � TK the flow of these parameters is not significant.
We therefore may substitute Jξ(D1)ν by 1/ log(Ec/TK) knowing that we are
making a mistake by a factor of order a/a′ inside the logarithm. This type
of mistake is within the “logarithmic” accuracy of the RG scaling procedure.
We arrive therefore at scales below Ec to the Hamiltonian:

H2CK
cψφ =

∑

kσ

εφkσφ
†
kσφkσ +

∑

kσ

εψkσψ
†
kσψkσ

+
∑

kσ

εckσc
†
kσckσ +Ec(n−N )2

+ 2J̃ψS · sψψ(0) + 2J̃cS · scc(0) (17)
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with 2J̃ψν ≡ 2J̃ψψν = cos2 θ′/Λ and 2J̃cν = 2J̃ccν = sin2 θ′/Λ, where Λ =
log(Ec/TK).

Hamiltonian (17) is identical to the (possibly anisotropic) 2CK Hamilto-
nian, discussed extensively in the literature [9]. To stabilize the two-channel
fixed point one needs to tune

cos2 θ′ = sin2 θ′ = 1/2⇒ |tψ| = |tc| . (18)

This condition for the stabilization of the two-channel Kondo effect is obtained
with the assumption Ec � U .

3.6 Scaling Below Ec

Below Ec we should examine the two-channel Kondo Hamiltonian (17).
Nozieres and Blandin [10] analyzed it and found the scaling equations:

dJψ
d logD

= −2νJ2
ψ + 2ν2Jψ(J2

ψ + J2
c ) ,

dJc
d logD

= −2νJ2
c + 2ν2Jc(J

2
ψ + J2

c ) . (19)

When cos2 θ′ = 1/2 we have Jψ = Jc ≡ J , so the system should flow to the
two-channel fixed point. The scaling equation then becomes:

dJ

d logD
= −2νJ2 + 4ν2J3 . (20)

The extra factor 2 in front of the third order term (compared to the single-
channel case (14)) appears because there are now two channels.

Integrating out these equations we find that J diverges at the scaling-
invariant temperature:

T2CK ≈ Ec2J(Ec)νe
−1/2νJ(Ec) . (21)

Using now (15) and the symmetric condition cos2 θ′ = 1/2 we have 2νJ(Ec) =
1/ (2 log (Ec/TK)) and we find, as long as TK � Ec

T2CK ≈
1

2 log (Ec/TK)

T 2
K

Ec
. (22)

Our treatment ceases to be valid when TK ∼ Ec.
Experimentally one would like to make the level spacing in the large dot

small, maintaining the validity of the assumption of a continuum of levels in
the big dot. This will necessarily make Ec small as well. At the same time one
would like to make T2CK (21) as large as possible, since two-channel Kondo
phenomena will be most dramatic well below T2CK. We conclude that one
should tune the system so that Ec ∼ TK . These were the guidelines for the
choice of dot sizes and coupling strengths in [21, 22].

The case Ec � TK was analyzed in [23] and it was found that the highest
T2CK is obtained for Ec ∼ TK .
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4 Examples of Conductance Curves

After establishing the conditions for the observation of the 2CK, we will now
derive the conductance scaling curves appropriate for comparison with exper-
iments. In a typical experiment one fixes the temperature T , applies a bias
voltage V between the left and the right leads, and measures the current I
through them. The differential conductance of the system is defined as:

G(V, T ) =
dI

dV
. (23)

Starting from a general relation between the conductance and the dot
propagators [26] we give in the Appendix A a detailed derivation of the general
relation between the conductance [24,25] and the scattering matrix. Applying
this relation to the specific expressions for the scattering matrix T of [12] we
can calculate the scaling curves.

4.1 2CK Case G(V, T )

Zero Bias

The conditions for the realization of the two-channel Kondo case are discussed
in Sect. 3. When they are fulfilled we can utilize (for V, T � TK2) the results
for the T -matrix obtained by conformal field theory [12]. We repeat them here
for convenience:

ImT (ε) = − 1

2πν

[
1− 3λ

√
πTI1

( ε

2πT

)]
(24)

with λ ∝ 1/
√
Tk2, (the proportionality coefficient cannot be obtained by con-

formal field theory) and I1(x) is a function defined in (53) of Appendix B.1.
Substituting ImT from (24) in the expression (50) for G(0, T ) we find:

G(0, T ) =
e2

2π~
sin2(2θ)

(
1− 3λ

√
πTI

)
. (25)

Using the results: π/2
∫

dx cos (x log u) / cosh2(πx) =
√
u| logu|/(1 − u) for

0 < u < 1 we have

I =
π

2

∫
dx

1

cosh2 xπ
I1(x) ≈ −4/3 . (26)

The last integral was estimated numerically [12].
Substituting (26) in (25) we find:

G(0, T ) =
e2

2π~
sin2(2θ)

(
1 + 4λ

√
πT
)
. (27)
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Since by assumption the initial coupling constants are small we may as-
sume (see the discussion of [12] after their Eq. (3.64)) that λ is negative, and
we choose the definition

λ = − 1

4
√
TK2

, (28)

this choice4 yields:

G(0, T ) =
e2

2π~
sin2(2θ)

(
1−

√
πT

TK2

)
. (29)

Defining

G0 = 2 e2

2π~
sin2(2θ) = 8

e2

2π~

|tl|2 |tr|2

|tl|2 + |tr|2
(30)

|tl|�|tr |−−−−−→ 8
e2

2π~

|tl|2

|tr|2
, (31)

we find5:

G(0, T ) =
1

2
G0

(
1−

√
πT

TK2

)
. (32)

Finite Bias

Using (52) and manipulating ImT as done in the previous section and in [12],
we find for the extremely left-right asymmetric case (|tl| � |tr|):

G(V, T ) =
e2

2π~

(
2|tl|
|tr|

)2 [
1− 3λ

√
πTI2

(
eV

2πT

)]
. (33)

With the definition (30) and the choice (28) for λ we have:

G(V, T ) = G0
1

2

[
1−

√
πT

TK2
F2CK

(
eV

πT

)]
(34)

with
F2CK(x) = −3/4I2(x/2) . (35)

The function I2(x) is defined in (54) of Appendix B.2.

4 We emphasize that the coefficient 1/4 as the proportionality coefficient is a bit
arbitrary. A different choice would yield a different value for the crossover energy
scale TK2.

5 Notice that in the symmetric case θ = π/4 the conductance G0 is twice e2/2π~.
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Scaling Curves

Examining (34) we notice that

2

G0

G(0, T )−G(V, T )√
πT/TK2

= Y

( |eV |
πT

)
(36)

with the scaling function Y (x) = F2CK(x) − 1, and F2CK given by (35). The
scaling curve Y (x) was used in [21, 22].

The asymptotes of Y (x) are:

Y (x) u

{
c x2 for x� 0

3√
π

√
x− 1 for x� 1

(37)

and we found numerically that c = 0.748336.

4.2 1CK Case G(V, T )

In case of the asymmetric two-channel Kondo Problem, one of the channels
(the finite reservoir or the free reservoirs) “wins”, so that at temperature
smaller then the crossover temperature T∆ [24] we should have a regular
single-channel behavior. Here ∆ is the asymmetry parameter – we define ∆
to be positive when the free reservoirs “wins”.

Zero Bias

At T , eV � T∆ the scattering matrix is given by [12]

ImT (ε) = − 1

2πν

[
2θ(∆)− sign(∆)

(3πλ)
2

4

(
3ω2 + π2T 2

)
]
. (38)

Choosing now (T 2
∆)−1 = (3πλ)2/4 and substituting into (50) we find:

G(0, T ) = G0

{
θ(∆)− sign(∆)

(
πT

T∆

)2
}
. (39)

Finite Bias

At finite bias we can derive a closed formula only for the case |tl| � |tr|

G(V, T ) = G0

{
θ(∆) − sign(∆)

(
πT

T∆

)2
[
1 +

3

2

(
eV

πT

)2
]}

. (40)
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Scaling Curves

Examining (40) we note that

1

G0

G(0, T )−G(V, T )

(πT/T∆)2
= sign (∆)

3

2

(
eV

πT

)2

. (41)

This scaling curve was used in the analysis of the experimental data [21, 22].

5 Summary and Conclusions

To summarize we reviewed the temperature and voltage dependence of the
differential conductance of a small quantum dot coupled to both two free leads
and a large dot. The relation between the single-channel Kondo temperature
and the two-channel Kondo temperature (for Ec � TK) is given in (21).
The scaling functions of the conductance for the two-channel Kondo and the
single-channel Kondo cases are given in (36) and (41). As explained in the text
the system crosses from the single-channel Kondo behavior to a two-channel
Kondo behavior at a scale T∆ determined by the asymmetry between the
couplings to the two channels. Finding the scaling functions that describe the
crossover between the single- and the two-channel Kondo behavior remains a
challenge for future studies.
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Appendixes

A Conductance Through the Dot G(V, T )

In a typical experimental set up a bias voltage V is applied between the left
and the right leads and the current I is measured between them. In this section
we express the differential conductance defined as

G(V, T ) =
dI

dV
, (42)

in terms of other properties of the system. In addition to the temperature
T and the bias potential V , the differential conductance depends upon other
parameters that control the state of the system, such asEc,N , U, εd, tα and an
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external magnetic field (see (2)). An expression for the differential conductance
of the two-channel Kondo system, based on the Kubo formula, appears in [25].
For pedagogical reasons and completeness of presentation we derive here these
results using the Keldysh approach.

A.1 Differential Conductance G(0, T )

To find the conductance we start from a general formula for the finite bias
current in terms of the local spectral density of the small dot6 [26].

I =
e

h

∑

s=↑,↓

∫
dε [fl (ε)− fr (ε)]

[
2ΓlΓr
Γl + Γr

As (ε)

]
. (43)

We assume that Γl(r) = πν
∣∣tl(r)

∣∣2 does not depend on spin, and that the
density of states ν is identical for the two leads, and we denote the Fermi
function in the left (right) lead by fl(r). The spectral density of spin s, As(ε)
is related to the retarded Green’s function of the dot Gret

ds (ε) through:

As (ε) = −2 Im
[
Gret
ds (ε)

]
. (44)

In the general case As(ε) may depend upon the chemical potential at the left
and right leads, however there are two simple cases for which we can express
the spectral density in terms of the T -matrix at equilibrium. Note: The T
matrix is defined below in (48).

When the bias V is small we find the differential conductance by expanding
the Fermi function, and assuming that the electrochemical potential difference
between the left and right lead is µl − µr = eV :

G(0, T ) =
dI

dV

∣∣∣∣
V=0

=

−e
2

h

∑

s=↑,↓

∫
dεf ′(ε)

[
2ΓlΓr
Γl + Γr

As (ε)

]
. (45)

In this case As(ε) is the equilibrium spectral density, since both leads are at
the same electrochemical potential. To find the relation between As and the
T -matrix, we use the relation (at equilibrium)

Ĝ ≡ Ĝ0 + Ĝ0 t̂Ĝ0Gd and t̂ =

(
|tl|2 tlt

∗
r

trt
∗
l |tr|

2

)
, (46)

where the components of the matrix Ĝ, Gij are the propagators associated
with annihilating an electron in lead i and creating an electron in lead j. At

6 Notice that (43) is valid only when the coupling matrix to the left lead is pro-
portional to the coupling matrix to the right lead. In our case we have only one
state in the dot and therefore this condition holds.
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energy scales below Ec the electrons from the large dot cannot be transferred
to the leads so that its Green’s function Gc is decoupled from the equation.
The matrix Ĝ0 = G0I, with G0 denoting the free fermions Green’s function
and I is the identity matrix in the space of left and right leads.

A rotation in the left-right space [31] with û = exp(−iθτ y) exp(−iϕτz),
cos(θ) = |tl|/tψ, t2ψ = |tl|2 + |tr|2, 2ϕ = arg(tlt

∗
r) diagonalizes the matrices

and gives:

û†Ĝû =

(G0 + G0t
2
ψGdG0 0

0 G0

)
≡
(
Gψ 0
0 Gφ

)
. (47)

Using (47) and the standard definition of the T -matrix:

G = G0 + G0T G0 (48)

we find
Tφ = 0, Gd = Tψ/t2ψ . (49)

Introducing into (49) the spin index, combining it with the definition of the
spectral density in (44), the result for the conductance at zero bias in (45)

and the relation Γl(r) = πν
∣∣tl(r)

∣∣2 we find:

G(0, T ) =
dI

dV

∣∣∣∣
V=0

= πν
e2

h
sin2(2θ)

∑

s=↑,↓

∫
dεf ′(ε)Im T sψ (ε) , (50)

sin(2θ) =
2 |tl| |tr|
|tl|2 + |tr|2

.

This result is almost identical to the result of [31] that was derived using
the Kubo formalism. In the case at hand after the rotation (see (47)) we
have two effective channels (ψ and c) connected to the dot. The conductance
between the left and right leads is determined by the T -matrix of channel ψ.

A.2 Differential Conductance G(V, T )

At finite bias between the left and the right leads of Fig. 1, it is impossible to
perform the rotation of (47) because the left and the right leads are at different
electrochemical potentials. In other words, the spectral function As(ε) of the
small dot depends on the non-equilibrium potential in a non-trivial way. If
however the tunneling matrix element to one of the leads is small (we assume
without loss of generality that it is the left lead, i.e., tl � tr, tc) then the
small dot will be in equilibrium with the large dot and the right lead. Even
at finite bias V, tunneling from the left lead will just probe the dot, but will
not influence its properties, in analogy to scanning tunneling spectroscopy of
electrons on surfaces.
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More formally we expand (43) in |tl/tr|, giving 2ΓlΓr/(Γl + Γr) → 2Γl.
The Green’s function of the small dot is given now by Gd = Tr/|tr|2. Using
the relation (44) between the spectral density and the local Green function
we find:

I = −πν e
h

4 |tl|2

|tr|2
∑

s=↑,↓

∫
dε [fl (ε)− fr (ε)] Im Tr(ε) . (51)

Since Tr does not depend on the electrochemical potential in the left lead, eV ,
we have for tl � tr

G(V, T ) =
dI

dV

= πν
e2

h

4 |tl|2

|tr|2
∑

s=↑,↓

∫
dεf ′ (ε− eV ) Im Tr(ε) . (52)

B A Few Definitions

B.1 The Function I1(x)

The function I1(x) is defined as

I1(x) =

∫ 1

0

du
4

π

1√
u (1− u)3

[cos (x logu)F (u)− 1] ,

F (u) =
1−√u

2
E

(
−4
√
u

(
√
u− 1)

2

)
(53)

with E(x) the complete elliptic function.

B.2 The Function I2(x)

The function I2(x) is given by:

I2(x) =
π

2

∫
dy

1

cosh2 (π(y − x))
I1(y)

=

∫ 1

0

du
4

π

1√
u(1− u)3

[ | logu|√u
1− u F (u) cos(x log u)− 1

]
. (54)

The numerical calculation of I2(x) is plotted in Fig. 3. The asymptotic limits
are:

I2(x) u

{−4/3− 3.99 x2 for x� 0

−
(
4
√

2
π

)√
x for x� 1 .

(55)
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1 2 3 4 5
x
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8
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I2HxL

Fig. 3. The function −I2(x) of (54) is plotted in thick line. The dashed lines
represent the asymptotic forms for at x � 1 and x � 1 [see (55)]
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1 Introduction: Kondo Mapping and Beyond

There are numerous models in the literature of condensed matter theory,
whose significance for achieving progress in our understanding of nature goes
far beyond the original aim of explaining specific experimental observations.
One may mention in this context the Bardeen-Cooper-Schrieffer’s explanation
of the nature of electron pairing in superconductors, the Ginzburg-Landau
equation intended for describing critical fluctuations, the concept of self-
localization of excitations in a perfect crystal formulated by Deigen, Pekar
and Toyozawa and various other seminal ideas. The explanation offered by J.
Kondo for the puzzling shallow minimum in the temperature dependent re-
sistivity of metals doped by magnetic impurities [1] is one of the most salient
examples of this kind of scenario. To explain it, consider first Kondo’s original
idea, which was formulated within the framework of a well-established Hamil-
tonian describing exchange interaction between an impurity spin Sr located
on a given site r and the spin density sr pertaining to a Fermi sea of conduc-
tion electrons at this site. The latter is defined by the Fourier transform of
the itinerant spin skk′ = c†kσ τ̂ ck′σ′ projected on the impurity site r, namely
sr =

∑
kk′ skk′ exp[i(k − k′) · r]. Here τ̂ is the vector of Pauli matrices for a

spin 1/2. The so-called sd-exchange Hamiltonian is,

Hsd =
∑

k,σ

εkc
†
kσckσ + JSr · sr (1)

where εk is the energy dispersion of the itinerant electrons and J is the ex-
change coupling constant. At first glance, it looks deceptively simple. However,
Kondo noticed that the first correction to the impurity scattering amplitude of
the conduction electrons beyond the Born approximation suffers an infrared
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logarithmic divergence in energy or temperature. This results in a singular
behavior of amplitudes for an antiferromagnetic sign of the exchange coupling
(that is, J > 0), and renders perturbation theory inapplicable below a cer-
tain energy scale known as the Kondo temperature. Nearly two decades of
incessant efforts to take this singularity properly into account and to find the
ground state of the system had crowned with finding the exact solution both
numerically (in a framework of Numerical Renormalization Group, NRG) [2]
and analytically (by using the Bethe ansatz) [3, 4].

Soon after Kondo’s breakthrough, theoreticians started to extend this
promising conceptual framework for other physical situations and for more
complex objects than simple localized moments. It was recognized that the
Kondo mechanism should work also in systems exhibiting electron tunnel-
ing, where two metallic slabs are separated by thin dielectric layer, which
forms a tunnel barrier for electrons moving from one slab to the other. It
was shown [5,6] that the magnetic impurity located somewhere near the tun-
neling layer plays the same role in tunnel conductance as magnetic impurity
immersed in a metal (and subject to exchange interaction with Fermi sea
electrons) does for impurity resistance. It was also shown [7] that the Friedel-
Anderson model [8,9] for resonance scattering of conduction electrons by the
electrons occupying the 3d levels of transition metal impurities can be mapped
on the exchange Hamiltonian (1) provided the strong Coulomb interaction
in the 3D shell suppresses charge fluctuations on the impurity site. In the
next stage of development orbital degrees of freedom were incorporated in
the Kondo physics. The idea of this generalization is based on the fact that
the magnetic impurity being put in the center of coordinates imposes its point
symmetry on the otherwise translationally invariant crystal, and the appropri-
ate description of scattered waves should exploit the formalism of partial wave
expansion (either in spherical waves [8] or in cubic harmonics [10]). Based on
this idea, the generalized Schrieffer-Wolff model was proposed [11,12], where
the magnetic impurity is described as an effective N -component moment,
but the exchange scattering is not restricted by the usual spin selection rule
∆m = 0, ±1 for the projection m of this moment. Another version of this
model allots the impurity and band states both by spin and orbital (referred
to as “color” in the general case) index. In case of spin s = 1/2 and N colors
the symmetry of the impurity is SU(2N) [13, 14]. Appearance of additional
degrees of freedom in the Kondo Hamiltonian might lead to the interesting
scenario of overscreened Kondo effect, which arises when the number of con-
duction electron “colors” exceed that of impurity moment [15]. This effect is
characterized by the non-Fermi-liquid low-temperature thermodynamics un-
like the standard Kondo effect, which only modifies (although radically)) the
Fermi liquid properties of undoped metal [16].

Another direction of expanding the Kondo physics is realized in mapping
the Kondo or Anderson Hamiltonian on those of other (not necessarily mag-
netic) systems. A great variety of such generalizations is possible because
some quantum systems may be described by a pseudospin, provided their
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low-energy states are characterized as an effective two-level system (TLS)
and external perturbations allow transitions between these levels. The first
example of such generalization was suggested by the Hamiltonian describing
tunneling between a Fermi sea electrons and an atom sitting in a double-well
potential [17]. Another possibility of this sort arises when the crystal field
splitting is involved in formation of the low-energy states of impurity atom
(quadrupolar Kondo effect) [18, 19]. This type of “exotic” Kondo system was
surveyed in a detailed review [20]. One should mention also the possibility of
involving orbital degrees of freedom in the formation of Kondo-resonance for
an adsorbed transition metal impurity, where the orbital degeneracy is lifted
by the surface effects, e.g., the potential of atomic step edge [21].

A powerful incentive for further extension of the realm of Kondo physics
has been offered in 1988, when the idea of underbarrier tunneling in presence of
Kondo center was extended on the tunneling between metallic electrodes and
nanoobjects like quantum dots or small metallic grains [22,23]. Such nanoob-
ject may serve as a Kondo center (a localized moment) provided (i) the elec-
tron spectrum is discrete due to spatial quantization, so that the level spacing
δε exceeds the tunneling rate, (ii) Coulomb blockade prevents charge fluctu-
ations and (iii) the electron occupation number is odd, so that the effective
spin of the nanoobject is 1/2. In this case the tunneling Hamiltonian may be
mapped on the effective spin Hamiltonian (1), and the Kondo-like singularity
arises as a zero-bias anomaly (ZBA) in tunnel transparency. This theoretical
prediction was confirmed ten years later [24–26] in the experiments on planar
quantum dots. Many experimental and theoretical studies then followed this
experimental breakthrough ever since.

In the course of developing this new realm of condensed matter physics,
further possibilities of extending the Kondo physics were subsequently discov-
ered and exploited. Original idea of using the charge fluctuations as a source
of Kondo tunneling was proposed [27] in the interim between the theoretical
prediction of Kondo tunneling and its experimental verification. It was shown
in this paper that in a situation, where two charge states of the quantum dot
with occupationN,N+1 are nearly degenerate, this dot behaves as a two-level
system, where the fluctuating charge configuration plays part of pseudospin,
whereas the real spin projections may be treated as channel indices. Later on
this idea was further developed and modified [28,29].

Another facet of Kondo physics in nanoobjects was unveiled, when the
possibility of Kondo effect in quantum dots with even electron occupation
number was considered in several theoretical publications [30–33]. In this case
the quantum dot with a singlet ground state may become magnetically active
due to external forces, and Kondo effect arises either at finite energy [30]
or at finite magnetic field [31–33]. Later on it was recognized that in many
cases the direct mapping of the original Kondo model into such system is
impossible, because the effective symmetry of the pertinent nanoobject is
neither SU(2) nor SU(2N). The aim of this review is to describe various
physical situations where the underlying nanoobject possesses complex (and in
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some sense unusual) symmetries which are characterized by non-compact Lie
groups or combinations of such groups with discrete groups of finite rotations.

2 Surplus Symmetries

Among the sources of surplus symmetries which enrich Kondo physics of
nanoobjects one may find both discrete and continuous rotations stemming
from complicated geometrical configurations of complex quantum dots, as well
as those induced by external fields used in practical realizations of nanode-
vices. In this short review we will refrain from description of great variety of
these devices, which may be found in current literature (see e.g., [34–36]). For-
tunately, most of the relevant physics may be exposed in a relatively simple
situation of electron tunneling through multivalley quantum dots in contact
with metallic electrodes (leads).

A multivalley dot is an island with electrons confined by electrostatic po-
tential in such a way that the spatially quantized electrons are distributed
between several valleys. These valleys are coupled with each other by capaci-
tive interaction and tunneling channels. Up to now there are several realiza-
tions of quantum dots with two and three valleys (double quantum dot, DQD,
and triple quantum dot, TQD, respectively). Experimentally, the first such
realizations of DQDs go back to mid 90-es [37–39]. It was pointed out that
these objects can be treated as some forms of artificial molecules with each
constituent dot playing the role of an artificial atom [40–43].

Compared with DQD, fabrication of TQD is a much more difficult ex-
perimental task and the first experimental realizations of these nanoobjects
appeared only recently. One may mention in this connection the realization
of TQD with an “open” central valley [44]. The term “open” here means
that the tunneling between the side dots and the adjacent leads is limited by
strong Coulomb blockade (see below), whereas the central dot freely donates
and accepts electrons to and from its own reservoir, so its role in the de-
vice is only to mediate indirect exchange between the two side dots. Another
successful attempt to fabricate a TQD was recorded in response to a theo-
retical proposal [45] to use this geometry for realization of ratchet effect in
tunneling through nanoobjects. In this realization [46] the charge fluctuations
were suppressed by the Coulomb blockade mechanism in all three valleys. The
feasibility of filling the TQD with 1, 2 and 3 electrons by changing the gate
voltages was demonstrated quite recently [47].

Theoretical studies of electronics in the TQD geometry were also inspired
by possible applications in the field of quantum information [48, 49]. Investi-
gation of the Kondo physics in TQD [50] was motivated by the experimental
observation of molecular trimers Cr3 on gold sublayers [51] by means of the
tunnel electron spectroscopy, which allows to observe Kondo-type ZBA in
conductance. Later on, other properties of these trimers such as the two-
channel Kondo effect [52,53], and the interplay between the Kondo effect and
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Aharonov-Bohm effect in tunnel spectroscopy [54] were considered theoreti-
cally.

Our main focus of interest is a theoretical modeling of a device consisting of
a multivalley quantum dot, metallic electrodes and corresponding gates. The
latter regulate the electron occupation of any particular valley and of the dot
as a whole. These properties and others are predetermined by the geometrical
position of the valleys relative to the metallic leads (source and drain) in the
device. Basically, there are three types of such devices which are possible for
describing electric circuits with a DQD connected with a source s and drain d.
They may be refereed as sequential, parallel and T-shape connections (Fig. 1a,
Fig. 1b and Fig. 1c respectively). The two small dots which combine to form
the DQD may either be identical or may differ in their size. Besides, different
gate voltages may be applied to different valleys.

(c)

s

d

l r
V

V

W

(a) (b)

Fig. 1. Double quantum dot in (a) sequential, (b) parallel and (c) T-shape geome-
tries. Filling black marks are the valley detached from the leads

In the most symmetrical configuration of identical dots the only additional
symmetry which characterizes a DQD is the permutation symmetry P2. In
close analogy with Kondo effect in magnetically doped metals, one should
consider the total symmetry of a device ‘source + DQD + drain’. Then the
symmetry group of the sequential configuration (Fig. 1a) contains the only
discrete element, namely the s-d reflection axis, and this element adds nothing
to the P2 symmetry of the isolated DQD. The same statement is valid for the
T-shape geometry (Fig. 1c). In the parallel geometry the system as a whole
possesses two reflection axes, namely source-drain s-d and left-right l-r, where
the indices l and r label two valleys of DQD.

Triple quantum dots (TQD) present theoreticians (and experimentalists
as well) with a richer variety of geometrical configurations and possess more
symmetries (Fig. 2). Similarly to DQD these trimers may be oriented both
in sequential (vertical) and parallel (lateral) geometries (Fig. 2a and Fig. 2b,
respectively). The natural generalization of the T-shape geometry presented
in Fig. 1c is the cross geometry (Fig. 2c). Besides, TQD may be organized in
a form of a triangle, which may form a closed or open element in an electronic
circuit (Fig. 2d, Fig. 2e and Fig. 2f, respectively). In the two latter cases
one deals with a three-terminal tunnel device. We will call the conformations
shown in Fig. 2e and Fig. 2f as “ring” and “fork” configurations.
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21
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Fig. 2. Triple quantum dot in (a) sequential, (b) parallel, (c) cross-shape,
(d) two-terminal triangular, (e) three-terminal triangular and (f) fork geometries

Now let us discuss the discrete symmetry elements characteristic for the
above TQD configurations. If all three valleys are equivalent, the discrete sym-
metry of an isolated linear TQD is that of the permutation group P3. The
contact with the leads adds one more symmetry element, the s-d reflection,
provided all three dots are coupled with the leads. We however consider the
devices, where the central dot (filled black) is not coupled directly with the
leads. Then the P3 symmetry is lost. The only discrete symmetry element,
namely s-d reflection is left in a vertical geometry (Fig. 2a), whereas both
s-d and l-r reflections characterize a symmetry of lateral TQD (Fig. 2b). The
same is valid for the cross geometry of Fig. 2c. The P3 symmetry is inher-
ent in the three-terminal configuration of Fig. 2e. In this case it is better to
use the classification of discrete rotation group C3v, which is isomorphic to
the permutation group P3. One may say [54, 55] that in the perfect trian-
gular configuration the TQD imposes its C3v symmetry on the device as a
whole in close analogy with the Coqblin-Schrieffer-Cornut version [11, 12] of
the conventional Kondo problem. In the geometries of Fig. 2d and Fig. 2f,
the only element which is remained of the original symmetry of triangle is
the l-r symmetry like in the cross geometry. External magnetic field applied
perpendicularly to the plane of the triangle lowers the symmetry of a device
by adding one more element, that is, chirality of the electron tunneling from
the source to the drain.

Before considering the consequences of these symmetries for the Kondo
physics, several introductory remarks about the derivation of the Kondo
Hamiltonian are in order. In an early period of the theoretical studies, the
problem of electron tunneling through short chains of quantum dots under
strong Coulomb blockade restrictions was formulated in terms of the Mott-
Hubbard picture [56, 57]. The theory was based on the idea that electrons
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injected from the source do not lose coherence when propagating through the
sequence of quantum dots until they leave the chain from the drain electrode.
This approach is valid only for short enough “Hubbard chain”, where the tun-
neling W between the adjacent valleys exceeds the tunneling V between the
dot and the metallic leads. Using generalized Landauer method, one describes
the tunnel transparency in terms of the Green functions of a nanoobject in
contact with the leads [58]. Such a procedure starts with diagonalization of
the Hamiltonian of nanoobject with subsequent calculation of renormalization
of the spectrum of quantum dot due to tunnel contact with the leads. Early
studies of these problems concentrated on the calculations of the Coulomb
blockade peaks which arise with changing the occupation of the valleys (so-
called Coulomb staircases). In terms of the Hubbard model, the Coulomb
resonances are the Hubbard “minibands” [56], which arise as a result of col-
lective Coulomb blockade [59] (Hubbard repulsion). It is known, however, that
the spectral function of the Hubbard model contains also the central peak of
predominantly spin origin. This peak is responsible for zero-bias anomalies in
the tunnel conductance, which are at the center of our attention.

If the “chain” contains a single dot, one deals with the conventional map-
ping of the Anderson-like tunneling problem onto the Kondo-like cotunneling
problem [22,23], so that the central peak is indeed the famous Abrikosov-Suhl
resonance pinned to the Fermi level of the band electrons [3, 4, 60], which is
responsible for the ZBA in tunnel conductance. DQD in sequential geometry
is the first non-trivial generalization of the single dot case, and one of the
primary tasks is to look whether some qualitative differences from the con-
ventional Kondo effect arise because of combining the features of Anderson
and Hubbard models in the effective tunneling Hamiltonian.

In any case, working in the above paradigm [56,57], one should derive the
effective exchange Hamiltonian Hex in accordance with the following proce-
dure. The starting Hamiltonian is chosen in the same form as the original
Anderson impurity Hamiltonian [9]:

H = Hband +Hdot +Ht (2)

where Hdot describes the properties of a chain detached from the lead in terms
of its eigenstates |Λ〉:

Hdot =
∑

Λ

EΛ|Λ〉〈Λ|+Q(N̂ −N ) . (3)

Here N̂ is the operator of total electron number in the dot. The last term
in (3) describes the Coulomb blockade mechanism: the total occupation of
the dot N in neutral and charged states is fixed by the Coulomb blockade
parameter Q entering the capacitive energy of a complex quantum dot as a
whole. The eigenvalues EΛ are found at fixed occupation N of DQD or TQD
with all tunneling matrix elements W and interdot capacitive interactions Q′

taken into account. The tunneling Hamiltonian Ht intermixes the states from
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adjacent charge sectors N ,N ′ due to injection or extraction of an electron
from the complex dot:

Ht =
∑

ΛΛ′

∑

b=s,d

∑

kσ

V ΛΛ
′

bkσ c
†
bkσX

ΛΛ′

+ h.c.. (4)

where XΛΛ′

= |Λ〉〈Λ′| are the universal Hubbard operators [61]. The tunnel
parameters V ΛΛ

′

bkσ are usually approximated by a single parameter V . In the
Hamiltonian (4) these configuration changing operators describe transitions
between the states belonging to different charge sectors (one of this sectors
corresponds to the neutral DQD and another belong to positively or negatively
charged DQD. The index b enumerates the leads (b = s, d in the two-terminal
configurations)

The Hamiltonian Hband has the standard form

Hband =
∑

bkσ

εkc
†
bkσcbkσ . (5)

Comparing to the corresponding term in (1), this Hamiltonian contains one
more index b. In the geometries with s-d reflection symmetry one may rotate
the frame in such a way that the band operators are classified as even and
odd operators relative to this reflection

cekσ = 2−1/2(cskσ + cdkσ) , cokσ = 2−1/2(cskσ − cdkσ) . (6)

In case of single and double quantum dots this rotation usually excludes the
odd combination from the tunneling Hamiltonian [22]. However in case of
TQD it is not necessarily the case. We will return to this question in Sect. 4.

The cotunneling (exchange) Hamiltonian is usually obtained from (2) by
means of the Schrieffer-Wolff (SW) canonical transformation [7], which ex-
cludes the states |Λ〉 belonging to the charge sectors N ± 1 from the effective
Fock space. At fixed N we are left solely with spin degrees of freedom. In a
conventional situation, the relevant symmetry is SU(2) and the SW proce-
dure results in an effective Hamiltonian (1). In case of even N and geometries
including discrete rotations, the situation is more complicated, and the SW
procedure intermixes the states |Λ〉 belonging to different irreducible repre-
sentations of the Hamiltonian (3). The corresponding terms in the effective
Hamiltonians may be expressed by means of the corresponding Hubbard op-
erators XΛΛ′

. In many cases, combinations of these operators form closed
algebras which generate non-compact groups SO(N) or SU(N) with N > 2,
describing the dynamical symmetry of complex quantum dots. Involvement
of these dynamical symmetries turns the procedure of mapping the tunnel
problem onto an effective exchange problem to be more complicated than in
the simpler situations which were briefly described in Sect. 1. New features
of the Kondo effect arising as a result of this procedure were described for
the first time using the T-shaped DQD as an example [43]. Various mani-
festations of dynamical symmetries in physical problems are described in the
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monographs [62,63]. Some mathematical aspects of the dynamical symmetries
as applied to the Kondo problem may be found in the recent reviews [64,65].

3 Kondo Physics for Short Chains

Short chains represented in Figs. 1a-c, Figs. 2a-c are the most elemen-
tary objects, where many aspects of Kondo tunneling beyond the original
paradigm [5, 22] of Kondo mapping may be demonstrated. There is much in
common between the linear DQD and TQD in vertical and lateral geometries,
although there are some effects specific only for T-shaped and cross-shaped
configurations (Fig. 1c and Fig. 2c), which will also be emphasized in this
section.

3.1 Double Quantum Dots

We start a more detailed discussion of Kondo tunneling through artificial
molecules with the case of DQD in the vertical geometry (Fig. 1a). Histori-
cally, this is the first generalization of a single dot problem (see above). At
present, the tunneling through this simplest DQD is well-understood. Follow-
ing an extensive theoretical discussion of Kondo physics in vertical quantum
dot geometry [66–74], it turned out that the most general description of Kondo
tunneling through vertical DQD may be given in terms of SU(4) and SO(4)
symmetries of a low-energy multiplet in cases of odd and even electron occu-
pation N , respectively.

As was mentioned above, the microscopic description of Kondo tunneling
is analyzed in a framework of the generalized Anderson Hamiltonian (2). All
generic features of Kondo mapping are seen already in the most elementary
cases of N = 1, 2. DQD in these charge sectors can be treated as an artificial
analog of the molecular ion H+

2 and the neutral molecule H2, respectively.
In case of N = 1 the eigenstates of the Hamiltonian Hdot (3) are

E1,2 = εd ∓W , (7)

where εd is the discrete level position in the isolated valley of the DQD and
W is the inter-valley tunneling. These two levels forming the “Hubbard mini-
band” in the N = 1 charge sector correspond to even and odd combinations
of the electron wave functions in the double-well confinement potential of the
DQD. We are interested here not in the resonance tunneling through these
levels, but in the ZBA connected with the Kondo effect. The characteristic
energy TK which scales the Kondo effect, should be compared with the level
splitting W . However TK itself depends on the level splitting, so that the com-
parison procedure should be performed self-consistently. In the limiting case
TK(W ) � W , one may ignore the odd state E2. Since the odd combination
of the lead electron states in (6) is also excluded from the problem, we im-
mediately see that in this case the mapping procedure (SW transformation)
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reduces the tunneling problem to the case of single quantum dot with the
Hamiltonian (1), where the exchange constant J is estimated as J = V 2/EC ,
and EC is expressed via addition and extraction energies, i.e., the energy costs
to add or subtract an electron on/from the quantum dot:

E−1
C = E−1

+ +E−1
− , (8)

E+ = εd +Q− εF , E− = εF − εd .

The Kondo temperature is given by TK = D exp(−1/2ρJ), where D is the
characteristic energy scale for the band electrons in the leads and ρ is the
density of states at the Fermi level εF.

In the opposite limit TK(W ) � W , one may neglect W when calculating
TK , so that the dot level acquires “orbital” degeneracy. Due to this quasi-
degeneracy the effective exchange acquires an additional factor 2, so that the
Kondo temperature in this case is TK = D exp(−1/4ρJ). If fact, the difference
between the two limiting cases is the manifestation of the SU(4) symmetry,
which characterizes the spin state of an electron in the double well potential.
This symmetry will be described more strictly when we will turn to the case of
lateral DQD. One should note that here we encountered the first manifestation
of the complicated structure of spin multiplets in complex quantum dots,
namely with non-universality of TK : it crucially depends not only on the
parameters of the Hamiltonian but also on the effective symmetry of the low-
lying spin states involved in Kondo cotunneling. Interpolation between two
limiting cases may be described in terms of gradual SU(2)→ SU(4) crossover.

The study of the charge sector N = 2 uncovers another important aspect
of the Kondo mapping procedure. This sector corresponds to the half-filled
Hubbard chain, where the single-electron tunneling is suppressed by Coulomb
blockade (the interior of the Coulomb diamond in terms of the theory of single-
electron tunneling [34, 35]). On the surface of it, the Kondo tunneling is also
not achievable because the ground state of the DQD with N = 2 is a spin
singlet in close analogy with the case of hydrogen molecule H2. However, the
dynamical symmetry of DQD plays its part in this case as well.

Indeed, in case of strong Coulomb blockade β ≡ W/Q � 1 the spectrum
of isolated DQD consists of two low-lying spin states ES,T and two charge
transfer excitons Ee,o (even singlet and odd triplet), with

ES = 2ε− 2βW , ET = 2ε , (9)

Eo = 2ε+Q , Ee = 2ε+Q+ 2βW .

Only the low-energy singlet/triplet (S/T) pair is relevant for Kondo tunneling.
Like in the case of N = 1, the triplet state ET is frozen provided the exchange
gap ∆ex = 2βW essentially exceeds TK . In the opposite case ∆ex � TK the
spin multiplet as a whole is involved in Kondo tunneling, and the Kondo-type
ZBA may survive [69]. One may describe this phenomenon in terms of the
theory of conventional two-site Kondo effect [75]. According to this theory, the
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antiferromagnetic intersite exchange J12 competes with the single-dot Kondo
temperature TK0. At small J12 (small enough W in our case) each spin is
screened independently and the Kondo-type ground state may be achieved.
However, there exists a critical value Jc, so that at J12 > Jc the two spins are
locked into a singlet state and the Kondo effect does not apply.

The relevant dynamical symmetry is the SO(4) symmetry of S/T mani-
fold (“spin rotator” [43]). Again we postpone the derivation of the effective
Hamiltonian for the Kondo tunneling and the discussion of its observable
manifestations for the case of lateral DQD. Here one should note that in the
charge sector N = 2, the exchange gap ∆ plays the same role as the charge-
transfer gap W in case of N = 1: the dependence TK(∆) is determined by a
gradual symmetry crossover.

Now we turn to the parallel (lateral) geometry of Fig. 1b. A new element,
which arises in this case is the possibility of separate channel for each dot.
The new features brought by this additional quantum number were discussed
in several publications [74, 76]. In case of two channels the conduction elec-
trons retain additional “color” after rotation (6). We will enumerate the states
corresponding to this color by the same indices i, j = 1, 2 as those used for
the dots because they describe the odd and even states relative to the l-r
reflection like those in the states (7) and (9).

We start once more with the charge sector N = 1, where a single electron
in DQD is distributed between two wells. It is well-known that the electron
in a double well may be described by means of a pseudospin operator T with
the following components:

T z =
∑

σ

(
d†2σd2σ − d†1σd1σ

)
, T+ =

∑

σ

d†2σd1σ , T
− =

∑

σ

d†1σd2σ . (10)

This vector, together with four spin vectors Sij with the following compo-
nents,

Szij =
1

2

(
d†i↑dj↑ − d

†
i↓dj↓

)
, S+

ij = d†i↑dj↓ , S
−
ij = d†i↓dj↑ (11)

form the set of 15 generators for the SU(4) group.
To close the basis for the effective spin Hamiltonian, one has to introduce

similar vector operators for the electrons in the leads, namely, the pseudospin
operator t with components

tz =
∑

kk′,σ

(
c†2kσc2k′σ − c

†
1kσc1k′σ

)
, t+ =

∑

kk′ ,σ

c†2kσc1k′σ , t
− =

∑

kk′ ,σ

c†1kσc2k′σ

(12)
and four spin operators sij with components

szij =
∑

kk′

(
c†ik↑cjk′↑ − c

†
ik↓cjk′↓

)
, s+ij =

∑

kk′

c†ik↑cjk′↓ , s
−
ij =

∑

kk′

c†ik↓cjk′↑ .

(13)
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The SW transformation carried out in terms of these operators results in
the effective Hamiltonian,

Heff = Hband +Hdot + 2
∑

ij

JijSij · sji + 2KT · t . (14)

In the fully symmetric case which we describe here, all the effective exchange
constants have the same value Jij = K ≡ J. Then the Hamiltonian (14) may
be reduced to a more compact and familiar form of exchange Hamiltonian in
a fictitious magnetic field [74]

Heff = Hband + JS · s− B̃ · s , (15)

where

S =
1

2

∑

αβ

f †
αΣ̂αβfβ , s =

1

2

∑

kk′

∑

αβ

c†αΣ̂αβcβ . (16)

Spin fermion operators fα and the matrix Σ̂ involve 15 components, which
are generators of the Lie algebra SU(4), determined as

{(τ+, τ−, τz , I)⊗ σ+, σ−, σz, I} − {I ⊗ I}

where σν(τν) are the Pauli matrices in the spin (pseudospin) space and I is the
unit matrix. The fictitious magnetic field has only one non-zero component,
namely the τz ⊗ I component, and its magnitude is W , so that B̃ · s = WT z.
Thus one concludes that in DQD with odd occupation the formally multi-
channel Kondo Hamiltonian (14) may be mapped onto the standard Hamil-
tonian (15) in the case of complete channel degeneracy, and the contribution
of additional (permutation) degrees of freedom is described in this degenerate
case by a fictitious magnetic field

In the charge sector N = 2 the permutation symmetry degenerates into
trivial unit transformation. As to the spin degrees of freedom, one may try
to described them by means of two spin operators sl and sr using the above
mentioned analogy with the two-site Kondo problem [75]. However, such ap-
proach [77] should be used with some caution. One should take into account
that in a situation, where both triplet and singlet two-electron states are
involved in Kondo effect, these spins are non-independent because the kine-
matical constraint is imposed on the S/T manifold by the Casimir operator
C 6= s2

l + s2
r . In accordance with the prescriptions of the theory of dynamical

symmetries [62–64], one should construct two operators

S = sl + sr , R = sl − sr (17)

and impose on them the kinematic constraint

C = S2 +R2 = 3 . (18)
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Then the three components (Sz, S+, S−) of the vector S describe the states
within the spin triplet and transitions between them, whereas the three com-
ponents (Rz, R+, R−) of the vector R describe transitions between the singlet
S and the states with spin projections µ = 1, 0,−1 of the triplet T. Six com-
ponents of the vectors S, R form a closed algebra

[Sα, Sβ ] = ieαβγSγ , [Rα, Rβ ] = ieαβγSγ , [Rα, Sβ ] = ieαβγRγ . (19)

and form a set of generators of SO(4) group. Here α, β, γ are Cartesian coor-
dinate indices, and eαβγ is the anti-symmetric Levi-Civita tensor. Two vector
operators are orthogonal, S ·R = 0. Under these constraints, two vectors sl,r
are rather fictitious than real spin operators. More detailed discussion of in-
terconnections between two representations as well as the derivation of these
operators by means of the Hubbard operators XΛΛ′

may be found in [43]. If
one tunneling channel couples this “spin rotator” with the reservoir of conduc-
tion electrons, then the dynamical group SO(4) exhausts the spin degrees of
freedom involved in Kondo tunneling. This scenario is realized in the T-shape
geometry of Fig. 1c (see below).

More complicated is the mapping procedure for the two-channel Anderson
Hamiltonian describing the DQD shown in Fig 1b. In this case the discrete
symmetry is explicitly involved in the cotunneling process, so that the SW
transformation give the exchange part of Heff in the form

Hex = 2
∑

ij

JijSij · sji + 2
∑

ij

J̃ijRij · sji + 2KT · t . (20)

DQD with l-r reflection axis, where all the states are classified as even or
odd states relative to this reflection, is described by this Hamiltonian may
be qualified as a “double spin rotator” [78]. The corresponding dynamical
symmetry group is P2 × SO(4)× SO(4).

Before turning to the physical aspects of Kondo tunneling through the
objects of SU(4) and SO(4) symmetries, one should mention that the DQD
in lateral geometry with two channels is described by the same basic two-level
Anderson Hamiltonian as the single planar quantum dot with two levels, one
of which is occupied and another is empty. The latter model was considered
in many publications [31–33, 76, 77, 79–81] (see also the review papers [74,
82]). So the physical manifestations of “variable” symmetry are common for
both systems. Fig. 3 illustrates the variation of TK as a function of control
parameter (the tunnel splitting W in case of N = 1 and the exchange gap
∆ex in case of N = 2). In both cases the maximum value of TK correspond
to the degeneracy points.

This behavior may be easily understood within a perturbative (high-
temperature) renormalization group (RG) approach. This approach is based
on the study of flow diagrams describing the evolution of effective coupling pa-
rameters Ja(η) due to reduction of the effective energy scale D of conduction
electron kinetic energy [83] (label a enumerates the vertices in the exchange
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Fig. 3. Dependence of the Kondo temperature on the control parameter W and
∆ = −∆ex for odd occupation (left panel) and even occupation (right panel)

Hamiltonian, η = lnD is the scaling variable). The general form of the system
of scaling equations is

dja
dη

= −
∑

b

cabjajb . (21)

Here ja = ρJa are dimensionless coupling constants and cab are numerical
coefficients. These equations should be solved under the boundary conditions
j(D0) = ρJa0, where D0 and Ja0 are the initial conduction bandwidth and the
bare exchange integrals entering the Hamiltonian Hex. One may neglect the
splitting of energy terms in the system (21) when D ∼ D0 � (W,∆ex) and all
coupling constants Ja evolve together. When the scale D is reduced down to
the splitting energy W or ∆ex, the coupling parameters related to the upper
level in the multiplets (7) or (9) stop to evolve, because the corresponding
degrees of freedom are quenched below these energies. These parameters are
K both in the Hamiltonians (14) and (20), and the exchange vertices J̃ij
are related to the singlet-triplet transitions in (20). In a degenerate model

(15), TK is partially suppressed by the fictitious magnetic field (B̃). As a
result the temperature TK obtained as a solution of these equations becomes
explicit function of the splitting energy. Its behavior is illustrated in the left
and right panels of Fig. 3 for the charge sectors N = 1, 2, respectively. In
case of odd occupation N = 1 the point W = 0 corresponds to two equivalent
dots decoupled from each other. The system remains quasi-degenerate till
W < TK(0) = D exp(4/ρJ0). With further increase of the level splitting, the
contribution of the state E2 in (7) to the Kondo tunneling diminishes. In the
asymptotic regime |W |/TK(0) � 1, the evolution of TK is described by the
asymptotic equation [33,74]

TK(W ) =
TK(0)γ+1

|W |γ . (22)
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This asymptotic curves are shown bold in Fig. 3. The exponent depends on
the model parameter and detailed geometry of quantum dot [33, 74, 77, 78].

Similar asymptotic curve describes also the evolution of TK for even occu-
pation N = 2 with |W | substituted for ∆ex. But in this case such behavior is
characteristic only for ∆ex < 0, where the ground state is spin triplet. TK is
maximal in the “critical point” of S/T crossover. On the triplet side of S/T
transition, it diminishes due to gradual quenching of triplet-singlet excitations
described by the operator R in the Hamiltonian (20). On the singlet side of
S/T crossover, the Kondo temperature falls down steeply as ∆ex > 0. The
singlet-triplet crossover driven by some external parameter (magnetic field,
gate voltage, etc.) in DQD with even occupation is the most salient effect
predicted and observed in these systems.

Additional information unveiling specific features of Kondo screening in
complex quantum dots can be extracted from the temperature and magnetic
field dependence of tunnel conductance Gmax at given W or ∆ex. Its behavior
was discussed time and again [71, 76, 77, 81, 82]. The most interesting is the
behavior of conductance in the charge sector N = 2.

On the triplet side of S/T crossover Gmax(T ) increases with decreasing T.
At high T � TK(|∆ex|), it grows logarithmically,

Gmax(T )/G0 ∼ ln−2(T/TK) (23)

where G0 = 2e2/h is the limiting value of tunnel conductance in a Kondo
regime (unitarity limit, where the sum of all phase shifts on the Fermi levels
δiσ equals π/2). This limiting value quantify the tunnel conductance at T = 0.
According to the Friedel sum rule [8, 60], generalized for the two-channel ge-
ometry [79,80] one has

G(T = 0) = G0 sin2
[π
2

(n̄2 − n̄1)
]

(24)

where n̄(2,1) is the change in number of electrons under the Fermi level due to
Kondo screening in two channels (even and odd). In terms of the phase shifts
the argument of the sine function in the r.h.s. of (24) reads 1

2

∑
iσ δiσ . This

means that the demand of spin rotation invariance and l-r symmetry means
that the phase shift in each channel reaches π/4 at T = 0. According to the
theory of Kondo scattering [16], the deviation from the unitarity limit is of
standard Fermi-liquid character

G(T )/G0 =
[
1− π (T/TK)

2
]

(25)

at T � TK . The monotonic interpolation [82] between two limiting temper-
ature regimes (23) and (25) may be violated due to multistage Kondo effect.
We will discuss this regime, when considering the case of triple quantum dots
(see below).

The influence of external magnetic field B on the tunnel conductance at
low T � B is easily tractable [82]: in accordance with the general theory of
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Kondo effect in presence of Zeeman splitting of the levels in the dot, in this
regime T should be substituted for B in the asymptotic equations (23) and
(25). At low T � TK additional information may be obtained by means of
the NRG method [81]. Due to the loss of spin rotation symmetry, the phase
shifts δiσ become explicit functions of magnetic field. In a single-channel case
this dependence is scaled by TK , namely δσ(B) = δ(0) + σ(B/TK). In a
two-channel regime, level splitting W between the dot levels enters this de-
pendence explicitly. A simple equation describing this dependence was derived
analytically [80],

δiσ = δ(0) + σ(B/Ti) + (−1)i(B/T ′
i ) +O(B3) . (26)

Here the parameters Ti and T ′
i , which scale the field B depend on W . NRG

calculations [81] show great variety of magnitoconductance curves G(B,W ).
On the singlet side of S/T crossover the ground state of DQD is non-

magnetic, so that there is no room for Kondo-type ZBA at T = 0 (see the
right panel of Fig. 3). However, at T > ∆ex the triplet state is still involved in
perturbative scaling (21), so that G(T ) grows with decreasing T in accordance
with (23). The T/S crossover occurs at T ∼ ∆ex, and conductance starts to
fall with further decrease of T ending with exponentially small value of G(T =
0) [76]. Similar effect should be observed in the behavior of G as a function of
source-drain voltage vds. At evds > ∆ex the DQD shows Kondo tunneling, but
with lowering bias the triplet channel is quenched, and conductance shows up
a zero field dip instead of zero field peak. Apparently this type of crossover
was observed [84] in a two-orbital planar dot with even occupation.

T-Shape Geometry

In a T-shape geometry one of two dots is detached from the leads (Fig. 1c). In
the first experimental device of this type [38], the role of the side (right) dot
was to control single-electron tunneling through the left dot. Recently several
new effects related to the Kondo-regime were discovered in this geometry.

First, it was shown [43] that the T-shape double dot with even occupation
N = 2 demonstrates the properties of spin rotator with SO(4) symmetry. The
simplest form of the Hamiltonian (20), namely

Hex = 2JS · s+ 2J̃R · s (27)

was derived just for this model. Besides, it was shown that in the asymmetric
T-shape DQD, where the Coulomb blockade in the right dot is sufficiently
larger than in the left dot, the S/T crossover may occur because of the many-
body logarithmic renormalization [85, 86], which is determined by the renor-
malization group invariants E∗

Λ, namely

E∗
Λ = EΛ(D)− π−1ΓΛ ln(πD/ΓΛ) . (28)
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The level crossing is possible because the inequality ΓT > ΓS for the tunneling
rates ΓΛ is realized for asymmetric DQD, so that the renormalization of the
triplet level ET is stronger than that of the singlet state ES . Similar effect
may be achieved in a symmetric DQD by means of the gate voltage applied to
the side dot (later on the possibility of inducing the S/T crossover by means
of the gate voltage was found also for two-orbital planar dots [87]).

Another interesting possibility arises at the odd occupation N = 1, where
the strong Coulomb blockade exists only in the side dot [88–91]. It was found
that in this case the Kondo resonance arises on the background of otherwise
non-correlated transport between the electrodes via the right dot. The in-
terference between the resonance scattering and free propagation is known
as Fano effect discovered originally in the optical absorption spectra of free
atoms [92]. The Fano effect in atoms is described by the same Hamiltonian
as the Anderson impurity hybridization [9], so there is no wonder that similar
effect was found in the resonance impurity scattering in metals [93]. Since the
single electron transport through the quantum dot is also described by the
Anderson Hamiltonian (2), the Fano effect ubiquitous in resonance scattering
was expected in tunnel conductance of quantum dots, and the structures of
characteristic Fano-type form were indeed observed in the tunneling spectra
of planar quantum dot [94]. In the latter case the Fano effect arises due to
the interference between the resonance level in the quantum dot and the band
continuum in the leads. The corresponding contribution to the conductance
has the form

GFano(ε) = G0
(ε+ q)2

ε2 + 1
, (29)

where ε = 2(ε−εd))/Γ , q is the so-called asymmetry parameter predetermined
by the spectral characteristics of the lead electrons, Γ = πρV 2 is the tunneling
rate. In simple terms, Fano effect is nothing but modification of the spectral
density of conduction electrons due to its repulsion from the resonance level
superimposed on the continuous spectrum.

In a T-shape geometry, the Fano effect arises due to superposition of the
Abrikosov-Suhl resonance created by the Kondo effect in the right dot on the
continuous tunneling spectra of the system ‘source – left dot – drain’. As was
noticed by Kang et al. [88], this Fano-Kondo effect looks as an anti-resonance
in conductance: instead of the standard Friedel-Langer formula (24), one has

G(T = 0) = G0 cos2
[π
2
n̄r

]
, (30)

where nr stands for the average occupation number of the right dot. Such
“unitarity limit” for conductance means that in the T-shape geometry, the
Kondo effect in the right dot results in complete suppression of resonance
tunneling through the left dot and a dip arises in the tunnel conductance
instead of the usual peak. As was mentioned above, the phase shifts in the
Kondo regime are spin dependent, so the modification of tunnel spectra due to
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destructive Kondo-Fano interference is also spin-dependent, and the T-shape
dot in this regime may work as a spin filter in external magnetic field [95].

One more advantage of the TQD geometry is the possibility to approach
the two-channel Kondo effect [96, 97]. Such possibility arises in the geometry
of Fig. 1c, when the Coulomb blockade is strong in the left dot and the right
dot is big enough so that the level spacing is less than the tunnel rate, but the
Coulomb blockade is still strong and fixes the electron occupation number.
In such conditions the way opens to overcome the main difficulty in realiz-
ing a physical system that materializes the two-channel Kondo model. The
necessary precondition for this regime is in creating two separate channels
that equally screen the spin [15]. In conventional setups an electron from one
channel that hops on the dot may hop to the other channel and thus cause
mixing between the channels. This mixing lead eventually to two“eigen chan-
nels” with one channel coupled stronger than the other one. The channel with
the stronger coupling fully screen the spin and the other channel is decoupled,
and we thus have again the single-channel Kondo case. It was suggested [96] to
overcome this mixing problem by using a large quantum dot as an additional
channel. Then, the free leads form one channel [even one in accordance with
our classification (6)] and the large dot forms the second channel. The chan-
nels do not mix as transfer of electrons between them charges the large dot.
As a result, the SW transformation maps the original Anderson Hamiltonian
for a T-shape quantum dot onto the two-channel exchange Hamiltonian

H2ch =
∑

γ,k

εγ,kc
†
γ,kcγ,k +ΣγJγS · sγ +BSz . (31)

Here the channel index γ stands for the even lead-dot channel and the states
in the large dot r. The tunnel conductance in the 2-channel non-Fermi-liquid
regime is realized at J2 = Jr. It demonstrates specific temperature depen-
dence. In accordance with predictions of conformal field theory [97,98],

Gnfl(T ) =
G0

2

(
1−

√
πT/TK

)
. (32)

Practically, the zero temperature limit cannot be achieved because the Kondo
screening in the large dot is quenched due to discreteness of its electron spec-
trum at T ∼ δε.

Unlike the single-channel case, the magnetic field is a relevant parameter
in the two-channel case [99]. Introducing the channel anisotropy parameter
∆ch = Jr − J2 � J2, which describes deviation from the 2-channel fixed
point (∆ch = 0), the following equation for the magnitoconductance may be
derived [97,99]

Gnfl(T,B) = G0

[
1

2
+ a sign(∆ch)

B∆
B
− b B

TK
ln
TK
B

]
(33)

where B∆ = ∆chTK/J
2
2 , and a, b are positive numerical coefficients of the

order of 1.
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3.2 Triple Quantum Dots

In this section we consider new features of Kondo mapping which are charac-
teristic for the chains consisting of three dots (Figs. 2a-c). Simple increase of
the number of sites in the chain promises no new qualitative results, so we will
discuss here the configurations where the central dot differs from two side dots
in its size (and hereby by the magnitude of the Coulomb blockade parameter
Qc), but the latter dots are identical, so that the TQD retains its reflection
symmetries. Both conceivable situations, namely Qc � Qs and Qc � Qs will
be considered (the indices c, s are used in this section to indicate the physi-
cal quantities related to the central and side dots, respectively). In the first
experimental realization of TQD [44] the former option was chosen, whereas
the first theoretical study [78] was devoted to the second possibility.

In a TQD with “open” central dot and Qc � Qs, its role in formation of
Kondo tunneling regime reduces to providing the channel for indirect RKKY-
type mechanism of exchange between two localized spins formed in side dots.
Thus, from the theoretical point of view this problem is in fact may be mapped
onto that for a DQD (see Sect. 3.1) with specific exchange mechanism. The
Kondo effect may be described in terms of two-site Kondo Hamiltonian, where
the trend to interdot spin coupling competes with the trend to individual
Kondo coupling between two side dots and the electrons in the leads [100,101].
One may mention in this connection that the phase diagram of effective two-
site Kondo effect has been calculated in a framework of the model, where the
pair of spins is coupled to the linear electron chain in a side geometry [102].

Qualitatively new features of Kondo mapping problem were found out
in the opposite limiting case Qc � Qs. As follows from the general scheme
of Kondo-mapping based on the dynamical symmetry of artificial molecule
(Sect. 3.1), the form of effective exchange Hamiltonian (20) depends on the
structure of spin multiplet of isolated multivalley quantum dot. Up to now only
two possibilities were exploited: spin and orbital doublet for odd occupation
N = 1 and singlet-triplet pair for even occupation N = 2. Study of TQD with
odd and even occupations N = 3 and N = 4 give us new opportunities [78,
103].

To demonstrate these opportunities let us consider TQD in lateral ge-
ometry. Genesis of spin multiplets may be understood from a general set-up
illustrated by Fig. 4. In case of N = 3 three electrons are distributed over
three dots in such a way that the state with doubly occupied central dot is
suppressed by strong Coulomb blockade Qc. In accordance with the Young
tableaux for a system with l-r permutation symmetry, the spin multiplet con-
sists of two doublets with S = 1/2 having even and odd symmetry relative to
this permutation and one quartet S = 3/2 with full orbital symmetry. In case
of N = 4 the spin manifold consists of two spin singlets Se,o and two triplets
Te,o, both even and odd relative to l-r permutation. Varying the gate voltages
vgl, vgr and playing with tunnel parameters Vl,r and Wl,r, one may break l-r
symmetry (Fig. 4) and change the singlet-triplet splitting, so that the spin
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Fig. 4. TQD in parallel geometry and energy levels of each dot εa −evga at Wa = 0

states are classified as Sl,r and Tl,r. The relative positions of energy levels in
spin multiplets evolve as a function of model parameters and various types
of level crossings occur (see [78] for detailed calculations). Similar situation
arises for vertical configuration of Fig. 2a.

In accordance with general theory of dynamical symmetries [64], quasi-
degeneracy of low-lying states in spin multiplets within the energy scale ∼ TK
generates special symmetries of TQD. For example, if the multiplet of low-
lying states consists of two singlets and one triplet, the relevant dynamical
symmetry is SO(5). If this multiplet is formed by two triplets and one singlet,
the corresponding symmetry is SO(7), etc. The methods of constructing the
generators for these groups are described in details in the reviews [64, 65].
As a result, an unique opportunity arises to change the value of index n
characterizing the symmetry SO(n) of TQD by varying the gate voltages and
other experimentally controllable parameters of a device. The phase diagram
of vertical TQD with N = 4 calculated in [78] is presented in Fig. 5. This
diagram shows great variety of phases with different symmetries from the
most symmetric one P2 ⊗SO(4)⊗SO(4) to conventional SO(3) phase where
the ground state of TQD is spin triplet, or non-Kondo singlet ground state
(shaded areas). Each phase is characterized by its own TK , and this means that
the ZBA in conductance should follow the change of the Kondo temperature,
so that each crossover from one symmetry to another is accompanied by the
abrupt change of conductance at given temperature.

At N = 3 we meet a somewhat unexpected situation where Kondo tunnel-
ing in a quantum dot with odd occupation demonstrates the exchange Hamil-
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Fig. 5. Dynamic symmetries in TQD. Phase diagram in the coordinates x = Γl/Γr

and y = (εl − εc)/(εr − εc)

tonian of a quantum dot with even occupation. The reason for this scenario
is the specific structure of the wave function of TQD with N = 3. The cor-
responding wave functions are vector sums of states composed of a “passive”
electron sitting in the central dot and singlet/triplet (S/T) two-electron states
in the l, r dots. Then using certain Young tableaux [78], one concludes that
the spin dynamics of such TQD is represented by the spin 1 operator S cor-
responding to the l− r triplet, the corresponding R-operator R and the spin
1/2 operator sc of a passive electron in the central well. The latter does not
enter the effective Hamiltonian Hex but influences the kinematic constraint
via Casimir operator C = S2 +R2 + s2

c = 15/4. The dynamical symmetry is
therefore SO(4)⊗ SU(2), and only the SO(4) subgroup is involved in Kondo
tunneling. Similar situation, although for different reasons is realized in fork
and cross geometries (see below).

Remarkable symmetry reduction occurs in external magnetic field [78].
First example of such reduction was found in a situation where the exchange
splitting of S/T multiplet (symmetry group SO(4)) is compensated by the
Zeeman splitting [31], so that the up spin projection |T1〉 of triplet forms
a pseudospin with singlet |S〉 and the symmetry reduction SO(4) → SU(2)
takes place. In case of TQD with SO(5) symmetry, due to the same com-
pensation the system may be left in a subspace {T1l, Sl, Sr}. The symmetry
reduction in this case is SO(5) → SU(3), and the Anderson Hamiltonian
is mapped on a very specific anisotropic Kondo Hamiltonian involving only
operators Ri,

Hex =
∑

ij

∑

µν

Jµνij R
µ
i s
ν
j (34)

where µ, ν are Cartesian components of scalar product. Here the Kondo effect
is described exclusively in terms of dynamical symmetry.

Another non-standard manifestation of Kondo mapping for linear TQD
is the possibility of two-channel Kondo effect in vertical geometry of Fig. 2a
with Qc � Qs at N = 3 with preserved s-d mirror symmetry [103]. The
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strong Coulomb blockade in central dot prevents direct s-d tunneling. The
cotunneling is possible only because the wave functions of electrons centered
on the side dots have small tails on the central dot. It is crucially important
that the standard rotation (6) does not eliminate the odd channel from the
tunneling Hamiltonian in TQD. In the situation, where the ground state of
TQD is the spin doublet with even parity |De〉, the SW transformation for the
original Anderson Hamiltonian results in anisotropic two-channel exchange
Hamiltonian,

Hex = JsS · ss + JdS · sd + JsdS · (ssd + sds) . (35)

Due to the presence of non-diagonal vertex Jsd the incurable orbital anisotropy
arises: the tunneling through two channels is controlled by the parameters
J± = (Js + Jd)/2 ±

√
(Js − Jd)2/4 + J2

sd). In accordance with the the-
ory of two-channel Kondo effect [15], this anisotropy makes the 2-channel
fixed point unattainable, but due to strong Coulomb blockade in central dot
Jsd =∼ V 2W 2/Qcε

2
d is extremely small, so that one may approach the fixed

point close enough, and the predecessor of 2-channel regime may be observed
experimentally as a dip in conductance G as a function of the difference of
gate voltages vgs − vgd applied to the side dots (this difference controls the
degree of channel anisotropy).

TQD in Cross and Fork Geometry

To complete the studies of linear artificial molecules we consider in this sec-
tion the configurations shown in Fig. 2c and Fig. 2f. We have seen above that
one may meet the situation, where the linear TQD with odd occupation and
half-integer spin demonstrates the Kondo physics characteristic for even oc-
cupation with integer spin due to the fact that one of the electrons in the dot
does not participate in tunneling. Here we will discuss two more mechanisms
of such “disguise” [104].

One of these mechanisms is realized in cross geometry at occupationN = 3
under condition Qs � Qd for Coulomb blockade parameters. In this case two
side electrons are passive: the tunneling between source and drain occurs
through the central dot. However, these passive electrons influence Kondo
mapping because they are responsible for the parity of the 3-electron wave
function relative to the l-r reflection. Diagonalization of the low-energy spin
states shows that it consists of three spin doublets and one spin quartet, and
the lowest state in this manifold is the doublet Du, which is odd relative to
the mirror reflection (see [104] for details). Although the wave functions of
two passive electrons do not enter explicitly in the indirect exchange integral
arising due to SW transformation, this integral changes its sign due to odd
parity of the state Du. Thus, in contrast to the standard paradigm of Kondo
mapping, the effective exchange Hamiltonian corresponds to ferromagnetic
coupling, which is irrelevant to Kondo effect, and the Kondo-type ZBA does
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not arise in this case in spite of the fact that the net spin of quantum dot is
1/2.

However, this is not the end of the story. The excited states in the spin
multiplet which are Kondo active, influence the tunnel transparency and con-
ductance at finite temperature and finite energies of incident electron due
to non-trivial dynamical symmetry of TQD described above. The states in-
volved in the Kondo effect are the even spin doublet Dg and the quartet
Q, so that the overall dynamical symmetry of TQD in cross geometry is
SU(2)⊗SU(2)⊗SU(2). We meet here the situation, which reminds the “two-
stage” Kondo effect in DQD with N = 2, on the singlet side of S/T crossover
(see Fig. 3b and subsequent discussion). Here, however, there are three stages
of Kondo screening, where the states Q andDg are quenched one after another
with decreasing energy or temperature and the Kondo screening eventually
stops at zero T . Besides, the hierarchy of tunneling rates ΓQ > ΓDg > ΓDu
exists in this charge sector, so the level crossing controlled by the parameters
of TQD is possible in accordance with (28). This level crossing is shown in
Fig. 6. Here the scaling variable is chosen in the form η = ln(πD/ΓQ). The
value of D̄ is determined from the crossover condition D̄Λ ≈ EΛ(D̄Λ), where
the renormalization (28) changes for the SW regime with fixed charge, D̄0 is
the initial value of scaling variable.
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Three points (ln D̄u, ln D̄Q, ln D̄cr,) on the abscissa axis correspond to
three values of the control parameters where the crossover to the SW regime
occurs for the ground states EDu

, EQ and the completely degenerate ground
state, respectively. By means of appropriate variation of the control param-
eters, the system may be transformed from a non-Kondo regime with the
ground state EDu to the underscreened Kondo regime with the ground state
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EQ and spin S = 3/2. In accordance with the general theory of Kondo map-
ping (Sect. 3.1), TK is maximum in the point of maximum degeneracy. Evolu-
tion of TK is shown in Fig. 7, which should be compared with Fig. 3b. Unlike
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the case of singlet/triplet crossover in DQD with N = 2, here one deals with
the crossover from the non-Kondo spin doublet Du to the Kondo spin quartet
Q via the highly degenerate region of SU(2)⊗ SU(2)⊗ SU(2) symmetry.

Let us turn to the fork geometry shown in Fig. 2f. In this geometry non-
trivial Kondo physics arises already in the simplest case of odd occupation
N = 1 in a situation with the l-r mirror symmetry. The fork may be considered
as a “quantum pendulum” [49,105]. Three one-electron eigenvalues are

EDb,a
= εc ∓ 2W 2/∆ , EDn

= εs , (36)

(∆ = max{|εs−εc|, |Qc−Qs|}). The eigenstates are classified as a non-bonding
spin doublet Dn (odd combination of the wave functions centered in the sites
1,2) and bonding/antibonding pair Db,a of corresponding even combination
with the state centered in the site 3 (see [104] for details). The latter pair is
the analog of resonant valence bonds (RVB) known in “natural” molecules. To
describe this pendulum one should introduce the pseudospin vector T defined
in (10) and work with the Hamiltonian (14). Like in the cross geometry, the
level crossing effect as a function of control parameter takes place (Fig. 8).

Here TK is non-zero on both sides of the crossover and its evolution is
described by the bell-like curve similar to that in Fig. 3a (although slightly
asymmetric). However the tunnel conductance is drastically influenced by
the pendulum structure of the electron wave function. In the three-terminal
fork geometry, one should consider separately the situations, where the bias
voltage is applied between the leads 1 and 2 and between the leads 1 and 3.
We define the corresponding components of tunnel conductance as G22 and
G33, respectively. The Kondo anomaly in G22 is predetermined by the RVB
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pair, and the ZBA roughly follows the evolution of TK through the crossover.
More peculiar behavior is expected in 1-3 channel because the non-bonding
state Dnσ = 2−1/2(d†1σ − d†2σ) is detached from the lead 3. As a result the
Kondo contribution to G33 manifests itself as a finite bias anomaly (FBA) in
a situation where the ground state of TQD is EDn

. Tunnel conductance as a
function of bias voltage in both channels is illustrated in Fig. 9. The dip in
the curve b on the right panel reminds similar dip in the tunnel conductance
of DQD with N = 2 on the singlet side of S/T crossover [76, 84].
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Thus, we see that some manifestations of the Kondo effect in TQD with
odd occupation may mimic those for DQD with even occupation due to spe-
cific influence of the mirror reflection on the structure of the electron wave
functions in trimers.
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4 Kondo Physics for Small Rings

In previous sections we discussed the Kondo effect in short “Hubbard chains”
in contact with metallic reservoirs. Meanwhile, the Hubbard-like objects were
studied also in closed ring geometries as well (see, e.g., [106,107]). Experimen-
tally Kondo effect on closed rings was observed on gutter-like dots in planar
geometry [108,109], but the impact to theoretical investigation of Kondo effect
in ring-like nanoobjects [50] was given by experimental studies of Co trimers
adsorbed on metallic sublayer [51]. It was shown that the basic symmetry of
equilateral triangular triple quantum dot (TTQD, Fig. 2e) with odd occupa-
tion is SU(4) due to the interplay between the spin and orbital degrees of
freedom, similar to that in two-orbital DQD (see Sect. 3.1). Special attention
was paid to the caseN = 3 which models triangular Co trimer [53,110]. In this
charge sector the effective spin Hamiltonian contains not only exchange inter-
action between the spins in the dots and adjacent leads, but also the two-site
Heisenberg exchange between spins in the neighboring dots. Magnetic frus-
trations in triangular geometry affect the spin state and therefore influences
the Kondo-type ZBA in tunneling spectra. These spectra were calculated by
the NRG and quantum Monte-Carlo methods. Besides, it was found [53] that
in case of complete channel isotropy the non-Fermi-liquid regime arises from
the interplay of magnetic frustrations and Kondo physics.

Another phenomenon, which interplays with the Kondo physics is the
Aharonov-Bohm oscillation of tunnel transparency in magnetic field directed
perpendicularly to the plane of triangle. This effect may be seen already for
the Hubbard ring with 1/3 occupation (TTQD with N = 1), where there is no
room for exchange interaction between spins localized in neighboring sites and
concomitant magnetic frustrations. The starting point for solving the problem
of interplay between Kondo and Aharonov-Bohm phenomena [54, 111] is the
Anderson Hamiltonian (2) rather than the exchange Hamiltonian (14).

In accordance with the general scheme discussed in Sect. 2, one should
start with the diagonalization of the Hamiltonian of 3-site Hubbard ring. The
point symmetry of this equilateral triangle is C3v . This group describes the
“orbital” degrees of freedom, whereas the continuous spin symmetry is usual
SU(2) symmetry of spin 1/2. According to the irreducible representations of
C3v group, the spectrum of TTQD consists of three levels Λ = DA,DE±.
Here as usual D stands for spin doublet, A is the fully symmetric orbital
singlet and E± are two components of orbital doublet. The energies of these
states in out-of-plane magnetic field B are

EDΓ (p) = ε− 2W cos

(
p− Φ

3

)
, (37)

such that for negative W and for B = 0, p = 0, 2π/3, 4π/3 correspond
respectively to Λ = A,E± with the ground state DA, so that the orbital
degrees of freedom are quenched at low temperature and the SW mapping
procedure ends with conventional Kondo Hamiltonian (1). However, using
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the magnetic field as a control parameter, one may initiate level crossing by
varying the magnetic flux Φ through TTQD. This level crossing is shown on
the upper panel of Fig. 10. In each crossing points and its nearest vicinity
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the dynamical symmetry of TTQD is SU(4), so that the symmetry crossovers
SU(2)→ SU(4)→ SU(2) occur at Φ = (n+ 1

2 )Φ0, where Φ0 is the quantum
of magnetic flux. Each crossover is accompanied by the change of TK from
exp(−1/2J) to exp(−1/4J) and back (see Sect. 3.1). The ZBA peak in the
two-terminal tunnel conductance changes accordingly (Fig. 10, lower panel).

Although formally there are three tunneling channels, the non-Fermi-liquid
Kondo regime cannot arise, because the non-diagonal components Jij appear
in the exchange Hamiltonian (14). Further diagonalization should be done
by means of rotating frameworks for Bloch electrons. This diagonalization
introduces irremovable channel anisotropy, so that the 2-channel non-Fermi-
liquid fixed point cannot be achieved unlike the case considered in [53], where
the channel isotropy was postulated from the very beginning.

In order to realize the Aharonov-Bohm interference, one should use the
two-terminal geometry shown in Fig. 2d. In this case there are two paths
(1-3) and (2-3) for single electron tunneling between source and drain. In-
terference of two waves in the drain results in famous Aharonov-Bohm os-
cillations. The field B affects the lead-dot hopping phases. In the chosen
gauge, the hopping integrals are modified as, W → W exp(iΦ1/3), V1,2 →
Vs exp[±i(Φ1/6 + Φ2/2)], where Φ1,2 are magnetic fluxes through the upper
and lower loop of the device. As a result the exchange Hamiltonian reads

H = JsS · ss + JdS · sd + JsdS · (ssd + sds) +KT · t (38)

(the latter term becomes actual when the magnetic field induces level crossing
in accordance with Fig. 10). Magnetic flux enters the coupling constants Js, Jd,
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Jsd, K via SW transformation. As a result the constant Jsd(Φ1, Φ2) turns into
zero at some values of magnetic flux, so that the Aharonov-Bohm interference
completely blocks Kondo transparency. Thus TTQD serves simultaneously as
a Kondo “pass valve” and as an Aharonov-Bohm interferometer. It should
be stressed that both the continuous spin degrees of freedom and discrete
“rotations” of triangle are involved in these two phenomena in TTQD.

5 Concluding Remarks

Among many aspects of Kondo tunneling through complex quantum dots we
have chosen for this review only the symmetry related properties predeter-
mined by the structure of the low-lying states in the spin multiplet charac-
terizing the fixed charge sector of complex quantum dot. New features, which
are introduced by the dynamical symmetries in the Kondo physics are the
multistage process of Kondo screening, symmetry crossovers driven by ex-
perimentally tunable control parameters, interplay between continuous spin
rotation symmetry and discrete point symmetry of nanodevices. The main
tool of experimental monitoring of variable symmetries is the study of tem-
perature and magnetic filed dependence of zero- and finite-bias anomalies in
tunnel conductance.

Among other facets of Kondo effect in nanostructures one should mention
non-equilibrium Kondo effect at finite bias and under light illumination, where
both quantum dots and leads are far enough from thermodynamic balance.
Under this conditions such phenomena as spin relaxation, dephasing and de-
coherence influence the tunnel transport in Kondo regime. Real atoms and
molecules also may be included in electric circuit by means of advanced ex-
perimental techniques (scanning tunnel spectroscopy, break-junction method
etc). In this case phonon- and photon-assisted processes should be taken into
account, which result in interplay of Kondo resonance tunneling with various
“polaronic” and “excitonic” effects. Besides, Kondo processes may be included
in nano-electro-mechanical shuttling, so that Kondo physics of movable ob-
jects becomes one of the challenging items on the agenda.

References

1. J. Kondo: Prog. Theor. Phys. 32, 37 (1964)
2. K. G. Wilson: Rev. Mod. Phys. 47, 773 (1975)
3. A. M. Tsvelik, P. B. Wiegmann: Adv. Phys. 32, 453 (1983)
4. N. Andrei, K. Furuya, J. H. Lowenstein: Rev. Mod. Phys. 55, 331 (1983)
5. J. Appelbaum: Phys. Rev. Lett. 17, 91 (1966)
6. P. W. Anderson: Phys. Rev. Lett. 17, 95 (1966)
7. J. R. Schrieffer, P. A. Wolff: Phys. Rev. 149, 491 (1966)
8. J. Friedel: Can. J. Phys. 34, 1190 (1956)
9. P. W. Anderson: Phys. Rev. 124, 41 (1961)



Kondo Physics in Artificial Molecules 73

10. K. S. Dy: Phys. Status Solidi (b) 81, K111 (1977)
11. B. Coqblin, J. R. Schrieffer: Phys. Rev. 185, 847 (1969)
12. B. Cornut, B. Coqblin: Phys. Rev. B 5, 4541 (1972)
13. I. Affleck, J. Marston: Phys. Rev. Lett. 37, 3774 (1988)
14. N. Read, S. Sachdev: Nucl. Phys. B 316, 609 (1989)
15. P. Nozieres, A. Blandin: J. Phys. (Paris) 41, 193 (1980)
16. P. Nozieres: J. Low Temp. Phys. 17, 31 (1974)
17. A. Zawadowski, K. Vladar: Solid State Commun. 35, 217 (1980)
18. D. L. Cox: Phys. Rev. Lett. 59, 1240 (1987)
19. S. E. Barnes: Phys. Rev. B 37, 3671 (1988)
20. D. L. Cox, A. Zawadowski: Adv. Phys. 47, 943 (1998)
21. A. K. Zhuravlev, V. Yu. Irkhin, M. I. Katsnelson et al: Phys. Rev. Lett. 93,

236403 (2004)
22. L. I. Glazman, M. E. Raikh: JETP Lett. 47, 452 (1988)
23. T. K. Ng, P. A. Lee: Phys. Rev. Lett. 61, 1768 (1988)
24. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu et al: Nature 391, 156 (1998)
25. S. M. Cronenwett, T. H. Oosterkamp, L. P. Kouwenhoven: Science 281, 540

(1998)
26. F. Simmel, R. H. Blick, J. P. Kotthaus et al: Phys. Rev. Lett. 83, 804 (1999)
27. K. A. Matveev: Zh. Eksp. Teor. Phys. 98, 1598 (1991) [Sov. Phys. JETP 72,

892 (1991)]; Phys. Rev. B 51, 1743 (1995)
28. E. Lebanon, A. Shiller: Phys. Rev. B 64, 245338 (2001)
29. C. J. Bolech, N. Shah: Phys. Rev. Lett. 95, 036801 (2005)
30. K. Kikoin, Y. Avishai: Phys. Rev. B 62, 4647 (2000)
31. M. Pustilnik, Y. Avishai, K. Kikoin: Phys. Rev. Lett. 84, 1756 (2000)
32. D. Giuliano, A. Tagliacozzo: Phys. Rev. Lett. 84, 4677 (2000)
33. M. Eto, Yu. Nazarov: Phys. Rev. Lett. 85, 1306 (2000)
34. Single Charge Tunneling, ed by H. Grabert, M. H. Devoret (Plenum, New York

1992)
35. Mesoscopic Electron Transport, ed by L. L. Son, L. P. Kouwenhoven, G. Schön

(Kluwer, Dordrecht 1997)
36. W. G. van der Wiel, S. De Franceschi, J. M. Enselman et al: Rev. Mod. Phys.

75, 1 (2003)
37. F. Hofmann, T. Heinzel, D. A. Wharam et al: Phys. Rev. B 51, 13872 (1995)
38. L. W. Molenkamp, K. Flensberg, M. Kemerlink: Phys. Rev. Lett. 75, 4282

(1995)
39. C. Livermore, C. H. Crouch, R. M. Westervelt et al: Science 274, 1382 (1996)
40. J. J. Palacios, P. Hawrilak: Phys. Rev. B 51, 1769 (1995)
41. D. Loss, D. P. DiVincenzo: Phys. Rev. A 57, 120 (1998)
42. B. Partoens, F. M. Peeters, Phys. Rev. Lett. 84, 4433 (2000)
43. K. Kikoin, Y. Avishai: Phys. Rev. Lett. 86, 2090 (2001); Phys. Rev. B 65,

115329 (2002)
44. N. J. Craig, J. M. Taylor, E. A. Lester et al: Science 304, 565 (2004)
45. M. Stopa: Phys. Rev, Lett. 88, 146802 (2002)
46. A. Vidan, R. M. Westervelt, M. Stopa et al: Appl. Phys. Lett. 85, 3602 (2004)
47. L. Gaudreau, S. Studenikin, A. Sachrajda et al: cond-mat/06015967 (2006)
48. T. Tanamoto: Phys. Rev. A 61, 022305 (2000)
49. D. S. Saraga, D. Loss: Phys. Rev. Lett. 90, 166803 (2003)
50. G. Zaránd, A. Brataas, D. Goldhaber-Gordon: Solid State Commun. 126, 463

(2003)



74 K. Kikoin and Y. Avishai

51. T. Jamneala et al: Phys. Rev. Lett. 87, 256804 (2001)
52. B. Lazarovits, P. Simon, G. Zaránd et al: Phys. Rev. Lett. 95, 077202 (2005)
53. K. Ingersent, A. W. Ludwig, J. Affleck: Phys. Rev. Lett. 95, 257204 (2005)
54. T. Kuzmenko, K. Kikoin, Y. Avishai: Phys. Rev. Lett. 96, 046601 (2006)
55. T. Kuzmenko, K. Kikoin, Y. Avishai: Physica E 29, 334 (2005)
56. C. A. Stafford, S. Das Sarma: Phys. Rev. Lett. 72, 3590 (1994)
57. C. Klimek, G. Chen, S. Datta: Phys. Rev. B 50, 2316 (1994)
58. Y. Meir, N. S. Wingreen: Phys. Rev. Lett. 68, 2512 (1992)
59. J. M. Golden, B. I. Halperin: Phys. Rev. B 53, 3893 (1996)
60. D. C. Langreth, Phys. Rev. 150, 516 (1966)
61. J. Hubbard, Proc. Roy. Soc. A 285, 542 (1965)
62. M. J. Englefield: Group Theory and the Coulomb Problem (Wiley, New York

1972)
63. I. A. Malkin, V. I. Man’ko: Dynamical Symmetries and Coherent States of

Quantum Systems (Fizmatgiz, Moscow 1979) [in Russian]
64. K. Kikoin, Y. Avishai, M. N. Kiselev: In: Nanophysics, Nanoclusters, Nanode-

vices (Nova Science, New York 2006)
65. M. N. Kiselev: Int. J. of Mod. Phys. B 20, 381 (2006)
66. T. Ivanov: Europhys. Lett. 40, 183 (1997)
67. T. Pohjola, J. König, M. M. Salomaa et al: Europhys. Lett. 40, 189 (1997)
68. T. Aono, M. Eto, K. Kawamura: J. Phys. Soc. Jpn. 67, 1860 (1998)
69. A. Georges, Y. Meir: Phys. Rev. Lett. 82, 3508 (2002)
70. V. N. Golovach, D. Loss: Europhys. Lett. 62, 83 (2003)
71. L. Borda, G. Zarand, W. Hofstetter et al: Phys. Rev. Lett. 90, 026602 (2003)
72. Y. Tanaka, N. Kawakami: J. Phys. Soc. Jpn. 73, 2795 (2004); Phys. Rev. B

72, 085304 (2005)
73. R. Sakano, N. Kawakami: Phys. Rev. B 73, 155332 (2005)
74. M. Eto: J. Phys. Soc. Jpn. 74, 95 (2005)
75. B. A. Jones, C. Varma: Phys. Rev. B 40, 324 (1989)
76. W. Hofstetter, H. Schoeller: Phys. Rev. Lett. 88, 016803 (2002)
77. M. Pustilnik, L. I. Glazman: Phys. Rev. Lett. 85, 2993 (2000); Phys. Rev. B

64, 045328 (2001)
78. T. Kuzmenko, K. Kikoin, Y. Avishai: Phys. Rev. Lett. 89, 156602 (2002); Phys.

Rev. B 69, 195109 (2004)
79. W. Izumida, O. Sakai, Y. Shimizu: J. Phys. Soc. Jpn. 67, 2444 (1998)
80. M. Pustilnik, L. I. Glazman, W. Hofstetter: Phys. Rev. B 68, 161303 (2003)
81. W. Hofstetter, G. Zarand: Phys. Rev. B 69, 235301 (2004)
82. M. Pustilnik, L. I. Glazman: J. Phys.: Cond. Mat. 16, R513 (2004)
83. P. W. Anderson: J. Phys. C 3, 2436 (1980)
84. W. G. van der Wiel, S. de Francheschi, T. Fujisawa et al: Science 289, 2105

(2000)
85. A. F. Barabanov, K. A. Kikoin, L. A. Maksimov: Teor. Mat. Fiz. 20, 364 (1974)
86. F. D. M. Haldane: Phys. Rev. Lett. 40, 416 (1978)
87. A. Kogan, G. Granger, M. A. Kastner et al: Phys. Rev. B 67, 113309 (2003)
88. K. Kang, S. Y. Cho, J-J. Kim et al: Phys. Rev. B 63, 113304 (2001)
89. T-S. Kim, S. Hershfield: Phys. Rev. B 63, 245326 (2001)
90. Y. Takazawa, Y. Imai, N. Kawakami: J. Phys. Soc. Jpn. 71, 2234 (2002)
91. M. E. Torio, K. Hallberg, A. H. Ceccatto et al: Phys. Rev. B 65, 085302 (2002)
92. U. Fano: Phys. Rev. 124, 1866 (1961)



Kondo Physics in Artificial Molecules 75

93. A. Shibatani, Y. Toyozawa: J. Phys. Soc. Jpn. 25, 335 (1968)
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1 Introduction

Research interest in controllable two-level systems, which have been enthusi-
astically called quantum bits or qubits, has grown enormously during the last
decade. Behind a huge burst of activity in this field stands an idea of what
is possible in principle but extremely difficult to achieve instrumentally - the
fascinating idea of quantum computing. The very principle of quantum super-
position allows many operations to be performed on a quantum computer in
parallel, while an ordinary ‘classical’ computer, however fast, can only handle
one operation at a time. The enthusiasm is not held back by the fact that ex-
ploiting quantum parallelism is by no means straightforward, and there exist
only a few algorithms (e.g., [1, 2]) for which the quantum computer (if ever
built) would offer an essential improvement in comparison with its ‘classical’
counterpart. Even if other uses of quantum computing prove limited (which
might or might not be the case), its existence would most certainly lead to a
breakthrough in simulations of real physical many-particle systems.

Whether or not the ultimate goal of building a working quantum computer
is ever achieved, both experimental and theoretical studies of properties of sin-
gle or entangled qubits are flourishing. One of the most compelling reasons for
this is an exciting overlap of the possibility of a future technological break-
through and the reality of research in fundamentals of quantum mechanics.
There exist various experimental realizations of the qubit, amongst which
solid state qubits are of particular interest as they provide one of the most
promising routes to implementing a scalable set of qubits, which is one of the
minimal requirements for implementing quantum computations. However, any
solid state qubit, albeit representing effectively a two-level system, comprises
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a huge number of internal degrees of freedom whose unavoidable coupling to
the environment leads to loss of coherence. Quantum computations require a
set of fully or at least partially entangled states on which some unitary opera-
tions are performed. Decoherence would make evolution of states non-unitary
and would lead to the loss of entanglement between the states. Thus, the
loss of coherence before a sufficient amount of quantum operations was per-
formed would be the major impediment in using solid-state qubits in quantum
computations. It is believed that tens of thousands of unitary operations are
required for quantum computation to become a reality [3] so that sufficiently
long decoherence times (much longer than those currently archived in the best
solid state qubits) should be achieved experimentally. It necessitates a better
theoretical understanding of realistic mechanisms of decoherence.

In this article, after illustrating in a simple way the main features of de-
coherence in a generic qubit coupled to the environment (Sect. 2), we will
consider onset of decoherence in one particular realization of qubit, namely
charge Josephson junction (JJ) qubit. First, we will describe briefly what is
the JJ qubit (Sect. 3) and then focus on a mechanism widely believed to
be responsible for one of the main channels of decoherence for the charge
JJ qubit, namely its inevitable coupling to fluctuating background charges
(Sect. 4). This model has been thoroughly investigated in all regimes [4–7]
and has a tutorial advantage of being exactly solvable within a fully quantum
approach [7] and showing a rich variety of different regimes with a non-trivial
dependence on temperature and on (unfortunately ill known experimentally)
the strength of coupling between the qubit and the fluctuating charges.

In Sect. 5 we will offer a solution for decoherence rate in this model which
is formally exact at an arbitrary temperature T . In the ‘high-T regime’ (which
could still correspond to rather low temperatures), the decoherence rate sat-
urates and becomes T -independent, while at low temperature it turns out
to be linear in T and behave non-monotonically as a function of the cou-
pling strength between qubit and the environment. In conclusion we will also
consider the relaxation rate, albeit only perturbatively with respect to the
coupling strength, and demonstrate that the model can qualitatively explain
the experimentally observed [8] quasi-linear behavior of the spectral density
of noise with humps at certain frequencies.

2 Coupling to the Environment and Decoherence

Before considering a realistic solid-state qubit, we start with illustrating what
is the loss of coherence in a generic qubit. Such a qubit is a two-level system
so that its Hamiltonian can be mapped to that of spin 1

2 and written

Ĥ0 = 1
2Bzσ̂z − 1

2Bxσ̂x . (1)

whereB is an effective ‘magnetic field’ (measured here in energy units). States
of the qubit can be described in terms of its density matrix,
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ρ̂(t) =
∑

i,j=↑,↓
|i〉 ρij(t) 〈j| . (2)

When the qubit (or any system) is in a pure state, one can always find a basis
where ρ̂ =

∑
i |i〉 〈i|. In any other (rotated) basis, the density matrix of a pure

state obeys ρ̂2 = ρ̂. In a rotated basis, the density matrix performs a unitary
evolution described by the Heisenberg equation of motion,

∂ρ̂(t)

∂t
= −i

[
Ĥ0, ρ̂(t)

]
, (3)

whose solution is ρ̂(t) = Û ρ̂(0)Û † where in this trivial case the evolution
operator is Û = e−iH0t. In a semiclassical language, such an evolution is

x

y

S(t)

B0

θ

φ

Fig. 1. Bloch representation

convenient to visualize using the Bloch sphere representation, shown in Fig. 1.
There the spin evolution is parameterized by two angles on a unit sphere, θ
and φ. For the simple system described by (1)–(3) above, such an evolution is
simply rotating around z axis, provided that the ‘field’ B = (Bz , 0), and the
initial state of the spin was diagonal in a different basis. The Bloch angles are
related to the density matrix by

ρ(t) =
1

2
(1 + S(t) · σ) . (4)

An inevitable coupling to the environment (bath) can be schematically
described by the Hamiltonian

Ĥ = Ĥ0 + V̂coupl + Ĥbath . (5)

Now it is the full density matrix of the qubit + bath which obeys the Heisen-
berg equation of motion. As we are interested in states measured on the qubit,
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we need to introduce a so-called ‘reduced’ density matrix, ρ̂q = Trbath ρ̂ where
the trace is taken over all the bath states with the proper Gibbs weight. We
will describe a consistent way of performing such a trace in Sect. 5. Here we
want just to illustrate how the coupling to the environment makes the time
evolution non-unitary and leads to the loss of coherence.

Let us consider a model in which there is a minimal, so-called longitudinal
coupling of the qubit to the bath,

Vcoupl = X̂σ̂z . (6)

Let us further assume that the qubit was prepared in a pure state but in a
different basis, so that its density matrix has both diagonal and off-diagonal
elements,

ρ̂ ≡
(
ρ11 ρ12

ρ21 ρ22

)
=

(
n f
f∗ 1− n

)
,

with |f |2 = n − n2 at t = 0 assuming that the qubit was prepared in a
pure state, ρ̂2 = ρ̂. Let finally switch off the x component of the ‘magnetic
field’ B. In the absence of coupling, the spin that represents our qubit on
the Bloch sphere of Fig. 1 would simply rotate at a constant frequency ω0 ∝
Bz around z axis. The longitudinal coupling results in the appearance of an
additional, fluctuating time dependent component of the field, Bz(t). This
fluctuating field results from the thermal noise in the bath and inevitably
destroys coherence as we will now show.

The spin rotation is described in a semiclassical language by the Landau-
Lifshitz equation,

dS

dt
= S ×B .

In the absence of the transverse component of the magnetic field, the diagonal
elements of the density matrix, related to S by Eq. (4), remain constant. In
the presence of the environment-induced time-dependent component of the
longitudinal magnetic field, S rotates with a changing frequency resulting in
the off-diagonal elements of ρ̂ acquiring the following time-dependence:

ρ12(t) = 1
2 (Sx + iSy) = ρ12(0)eiω0t+i

R

t

0
B(τ)dτ . (7)

The contributions due to the fluctuating field, Bz(t), should be averaged
over time. It is natural to assume that fluctuations of Bz are Gaussian, as
they are due to a very large number of degrees of freedom in the bath. For
Gaussian fluctuations, one can use the standard averaging formula,

〈
eiϕ
〉

= e−
1
2 〈ϕ2〉 ,

so that
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〈ρ12(t)〉 = ρ12(0)eiω0t
〈
ei

R

t

0
dτB(τ)

〉

= ρ12(0)eiω0t exp

[
−1

2

∫ t

0

dτ

∫ t

0

dτ ′
〈
B(τ)B(τ ′)

〉]

= ρ12(0)eiω0t exp

[
−t
∫ t

−t
dτ
〈
B(0)B(τ)

〉]
≡ ρ12(0)eiω0te−Γ2t . (8)

Here we have semi-formally defined the decoherence rate Γ2 as the rate of
relaxation of the off-diagonal part of the density matrix, using that the corre-
lation function of the fluctuating field Bz depends only on the time difference.
In this definition, Γ2 can still be time-dependent. However, for large enough
t, longer than the longest relaxation time for thermal noise in the bath which
makesBz fluctuating, Γ2 should saturate at some limiting value. Thus, making
a bit more formal definition, we arrive at

Γ2 ≡
1

T2
= lim
t→∞

∫ t

−t
dτ
〈
B(0)B(τ)

〉
= SB (ω ≈ 0) , (9)

where SB(ω) is the noise power spectrum of the fluctuating field B,

SB(ω) ≡
∫ ∞

−∞

〈
B(0)B(t)

〉
e−iωtdt . (10)

The above calculation should be considered just as an illustration as we have
just introduced Gaussian fluctuations of the ‘magnetic field’ Bz. However, it
is very easy both to make this sort of calculations fully quantum-mechanical,
and to generalize the model beyond the longitudinal coupling .

To show that the effective coupling to the bath leads to the thermal noise
that directly results in the appearance of decoherence given by (9), one needs
to model the bath. The most standard theoretical approach to such modeling
and thus to decoherence by the environment is based on spin-boson models
[9, 10], where the environment is modelled as a set of harmonic oscillators,

Ĥbath =
∑

k

ωkb
†
kbk . (11)

The linear coupling in (6 ) should be understood as coupling to all the oscil-
lator degrees of freedom,

Vcoupl = X̂σ̂z ≡
∑

k

(
λkb

†
k + h.c.

)
σ̂z . (12)

The fluctuation-dissipation theorem allows one to express the noise power for
the coupling operator X̂(t) (in the interaction picture) as

SX(ω) =
〈
X2
ω

〉
+
〈
X2

−ω
〉

= 2J(ω) coth
~ω

2T
, (13)
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where J(ω) depends on the density of oscillator states, i.e., on the spectrum
ωk in (11), and on the coupling λ (ω) in (12). The decoherence rate is still
given by (9), where SX(ω) should be substituted for SB(ω). For the most
typical, Ohmic model, J (ω) ∝ ω so that Γ2 ∝ T . As we will show later, such
a linear dependence on temperature is characteristic for a realistic model to
be considered later in this article, but only for sufficiently low T.

It is straightforward to generalize our considerations beyond the longitu-
dinal model. To this end one should take into account the σx-proportional
contribution in the qubit action – this would be general enough even if one
leaves the coupling as it stands in (6) or (12).

3 Charge Josephson Junction Qubit

Not any two-level system could serve as a qubit. There is a set of requirements
that such a system must satisfy in the first place. In 1997 David DiVincenzo
[11] formulated five criteria which have to be satisfied by a physical system
considered as a candidate for quantum computation, conditions which are
widely known as the ‘DiVincenzo checklist’:
i) One needs well-defined two-state quantum systems (qubits);
ii) One should be able to prepare the initial state of the qubits with sufficient
accuracy;
iii) A long phase time coherence is needed, sufficient to allow for a large
number (∼ 104) of coherent manipulations;
iv) Control over the qubit’s Hamiltonian is required to perform the necessary
unitary transformations;
v) A quantum measurement is needed to read out the quantum information.
At the present time any known physical system falls short of the requirements
stipulated in the above list. Currently lots of different possibilities of building
a quantum computer are investigated including nuclear spins, quantum dots,
Josephson junctions, trapped ions, optical lattices, electrons on liquid helium
and some others with each of them being quite far from satisfying this or that
condition of the above set.

A route which seems to be one of the most promising is to build a system
of Josephson junction (JJ) qubits: the qubits which are based on Josephson
junctions and utilize the charge and flux degrees of freedom. The main advan-
tages of the superconducting devices involving Josephson junctions are a) a
relative easiness to manufacture - the lithographic methods used to fabricate
them are well-established; b) controllability - gate voltages controlling charge
Josephson qubits can be adjusted with a very high degree of accuracy al-
lowing, in particular, the high-fidelity preparation of the initial state of the
qubit; and finally c) measurability - the techniques for almost non-invasive
measurements which can be used for this type of qubits are quite advanced.
It is point iii) in the DiVincenzo checklist - decoherence - which causes the
greatest worry for the JJ qubit, as well as for any other realization of a solid
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state qubit. We stress again that ‘spin up’ and ‘spin down’ states in solid state
qubits are formed by a substantial number of electrons (which is not the case
for nuclear spins which can be effectively decoupled from the external world).
All degrees of freedom interact with the environment thus causing the loss of
quantum coherence. Whether this problem of decoherence can or cannot be
satisfactorily solved is most likely to determine the future of JJ qubits.

The JJ qubit is made of superconducting islands separated by a Josephson
junction; the scheme is depicted in Fig. 2. In the scheme, ‘SC’ marks the

C

C

SC

SC

Vg

JCJ ,E

Fig. 2. Scheme for charge JJ qubit

superconducting islands and the hatched area is the Josephson junction with
capacity CJ and Josephson coupling EJ . The superconductors are separated
from the leads by capacitors C, which do not allow any tunneling, and these
capacitors are biased by some controllable gate voltage Vg . Cooper pairs can
tunnel through the Josephson junction thus changing the total charge of each
island.

The charge JJ qubit is a two-level system in which states are different by
the charge of a single Cooper pair. The equilibrium number of Cooper pairs
in each island is controlled by the gate voltage. When it is tuned to be close
to half integer ∼ n0 +1/2 , the states with n0 and n0 +1 Cooper pairs (circled
in Fig. 3) can be arbitrarily close to each other in energy while the distance
to other energy levels (crossed in Fig. 3) is of the order of the charging energy
that – in the temperature units - could be tens or even a hundred degrees
of Kelvin which is much higher than typical experimental temperatures. We
assume that the Josephson coupling energy is much smaller than the charging
energy so that the states are really discriminated by charge. (In the opposite
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limit, a so called flux JJ qubit can be – very successfully – built). Thus we
effectively separate all the charge states with n < n0 or n > n0 + 1 and thus
have a two-level system, whose states are made of a macroscopic number of
electrons. In future we will be referring to these as states ‘spin up’ and ‘spin
down’.

n nn0 n00 0 +2-1 +1

n

CVg
2

δΕc

∆Ε >> Τ

Charging energy

Fig. 3. Two charge states

More formally, the total energy of the system which consists of charging
and Josephson contributions can be written as follows:

E =
1

2CJ + C

(
2|e|n− CVg

2

)2

−EJ cosΘ , (14)

where Θ is the superconducting order-parameter phase shift between the is-
lands. In properly chosen units, the pair of n and Θ are canonically conjugated
coordinate and momentum since they generate correct Hamiltonian equations
of motion. Differentiating with respect to momentum dn/dt = ∂E/∂Θ =
EJ sinΘ produces the correct equation for the Josephson current (in the units
chosen EJ coincides with the critical current), and differentiation with respect
to coordinate dΘ/dt = −∂E/∂n = (CVg − 2n)/(2CJ +C) = VJ produces the
correct value for the voltage drop VJ across the junction. The quantization of
(14) then gives:

Ĥ =
1

2CJ + C

(
n̂− CVg

2

)2

−EJ cos Θ̂,
[
n̂, Θ̂

]
= i . (15)

After taking the projection of the Hamiltonian (15) onto two states of
interest, in this ‘spin up’ and ‘spin down’ basis the charging part can be
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written as (δEc/2)σ̂z, where δEc is the charging energy difference between
the two states:

δEc(Vg) =
2

2CJ + C

(
n0 +

1

2
− CVg

2

)
. (16)

The commutator between n̂ and Θ̂ dictates the commutation relations
[n̂, e±iΘ̂] = ∓e±iΘ̂ from which it immediately follows that in the ‘spin up’
and ‘spin down’ basis cos Θ̂ is given by σ̂x/2. Summarizing the above we
substitute the Hamiltonian (15) with its projection:

Ĥ =
δEc(Vg)

2
σ̂z −

EJ
2
σ̂x . (17)

As the result we have a controllable two-level system, that is a qubit.
Control is exercised by changing the gate voltage Vg on which the σ̂z coefficient
δEc depends (16). If δEc is maintained large δEc � EJ , which is characteristic
for charge JJ qubit, then the Josephson part of the Hamiltonian is irrelevant
and evolution amounts to acquiring phase shift between ‘spin up’ and ‘spin
down’ states in the initial mixture. On the contrary, tuning charging part
to the degeneracy point δEc = 0 stimulates the spin flip process. It can be
shown that the ability to switch for arbitrary time to the above two regimes
is enough in order to provide all necessary one qubit quantum operations or
quantum gates.

In building a quantum computer, one and two-qubit gates will be required.
The details of how to build them are beyond the scope of this article and can
be found in the comprehensive review [12] of Makhlin et al. But what is crucial
for any quantum computation is to maintain entanglement between the qubits.
This will be undermined by inevitable decoherence. Therefore, understanding
its mechanisms and studying how it sets in is crucial for future progress in
this area.

4 Decoherence - Fluctuating Background Charges Model

4.1 The Model

The main problem with charge JJ qubits (as with any other solid state qubits)
is that they lose quantum coherence too quickly due to unwanted, but unavoid-
able, coupling to the environment. Recent experiments [13–17] show that hun-
dreds of elementary quantum operations can be achieved before coherence is
destroyed. This is at least two orders of magnitude short [3] of a rough estimate
of what is required for non-trivial quantum calculations. Thus the problem of
decoherence is currently the major obstacle for the progress of qubits of this
type, and requires a close theoretical examination.

Spin-boson models give a general description but will not offer us any
insight into how physical parameters of the problem affect decoherence. To
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obtain this we need a physical model describing the real processes which
decohere the qubit. It is widely believed [13, 14] that in charge JJ qubits the
main contribution to decoherence comes from coupling of the qubit to some
charge fluctuators present in the environment. The fluctuating background
charges (FBC) model, suggested in this context in [4] and then also used
in [5–7, 18], is a possible microscopic model for such a dominant channel of
decoherence.

The schematic picture of how the qubit interacts with the FBC is shown in
Fig. 4. Impurities which contribute to decoherence sit on the substrate where

dipole-dipole interaction
image charge

localized state

tunneling
metallic gate

qubit

s u b s t r a t e

s u b s t r a t e

Fig. 4. Interaction between the qubit and fluctuating background charges

the nanocircuit was grown on, close enough to a metallic lead to allow tun-
neling to and from the lead. Solid circles in Fig. 4 are charged impurities and
transparent circles are their image charges. These dipoles interact electrically
with the qubit, which in turn behaves like a dipole, since one of the super-
conducting islands has some number of excessive Cooper pairs and the other
one lacks the same number. The interaction depends on the number of such
extra pairs and thus is different for the two charge states of the qubit, enforc-
ing dependence of the coupling term on σ̂z . Although a static dipole-dipole
interaction could only shift the qubit states without any loss of coherence, the
tunneling between the impurities and the metallic lead makes charges on the
impurities to fluctuate, effectively creating a random time-dependent field on
the qubit. This random field causes decoherence. This is similar to the generic
case considered in Sect. 2: the time-dependent electric field coupled to σz plays
the role of the random ‘magnetic field’ Bz in (8). In the following section, we
will show that within the Fermi golden rule approximation (valid for a weak
coupling between the qubit and the FBC), both decoherence and relaxation
can be calculated in a way similar to that schematically developed in Sect. 2,
with an additional advantage of calculating the noise power-spectrum within
a fully microscopical model. In this section, we restrict considerations to the
longitudinal model of pure decoherence. Its advantage is that one can go well
beyond the Fermi golden rule, and calculate the decoherence rate (but not the
relaxation!) non-perturbatively and within a fully quantum description valid
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for any temperature, including T → 0 (in which limit there is no decoherence
in the absence of relaxation).

The Hamiltonian corresponding to the described model can be written as

Ĥ =
δEc
2

σ̂z −
EJ
2
σ̂x + σ̂zV̂ + ĤB ; V̂ =

1

2

∑

i

vi d̂
†
i d̂i ;

ĤB =
∑

i

ε0i d̂
†
i d̂i +

∑

i,k

[
tkîc

†
kd̂i + h.c

]
+
∑

k

εkĉ
†
kĉk . (18)

Here d̂i , d̂†i are the operators of annihilation and creation of an electron on

the i-th impurity; ĉk , ĉ†k are the operators of the conduction electrons in the
metal; tki are the hybridization amplitudes; ε0i is the energy of the localized
state on the i-th impurity; εk are the energies of the conducting electrons; vi
is the coupling strength between the qubit and the ith impurity.

The charge JJ qubit corresponds to δEc � EJ , which is always the case
for the small enough capacities (i.e., small superconducting islands and the
JJ junction in Fig. 2). A non-trivial circuit is supposed to consist of many
qubits, and most of the time each particular qubit is in an idle regime for
which the condition above is fulfilled. During relatively short times necessary
for operations involving spin-flips, the longitudinal model, EJ = 0, is not
appropriate. However, if there is any hope for a working qubit, the onset of
decoherence should only happen in the idle regime.

Apart from temperature, there are three other parameters of dimensions
of energy for each fluctuator: the coupling strength vi, tunneling rate γi (γi =
2π
∑

k |tki|2δ(ω−εk)), and fluctuator energy εi (note that the bare energy ε0i is
renormalized by hybridization). All three parameters are broadly distributed,
and temperature can be considered ‘low’ for some of them and ‘high’ for
others. In Sect. 5 we will show that these two regimes are defined as follows:




T � min
∣∣∣εi ± 1

2

√
v2
i − γ2

i

∣∣∣ or T � γi low− T regime

T � max
∣∣∣εi ± 1

2

√
v2
i − γ2

i

∣∣∣ and T � γi high− T regime

. (19)

In the high-temperature regime, the decoherence rate can be calculated
classically [4, 5] which gives for one fluctuator (omitting the index i)

Γ2 =
γ

2

[
1−<e

√

1− v2

γ2

]
=





γ/2 , v > γ

v2/4γ , v � γ
. (20)

The high temperature treatment of the model would be justified if the high
energy impurities, |εi| & T , were frozen. However, the same hybridization γ
which makes impurity charges to fluctuate, broadens their energy positions.
Such a broadening creates a Lorentzian tail which is, of course, power-law
suppressed but nevertheless allows for a contribution from the energetically
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remote impurities. Moreover, even impurities with |εi| � T may not sat-
isfy the high-T inequality (19) and contribute in a non-classical way. We will
present below some arguments that the impurities most relevant for decoher-
ence are likely to to be in the low-temperature regime.

4.2 Why Low Temperature?

Let us first illustrate why the hybridization leads to the Lorentzian tail. To
simplify notation, we will be considering a single impurity. The quadratic
Hamiltonian of the bath ĤB can be diagonalized by means of some lin-
ear transformation [19], after which it becomes ĤB =

∑
n εnα̂

†
nα̂n . The in-

teraction part V̂ gets transformed into a sum over all exact states: V̂ =
(v/2)

∑
n,m u

∗
numα̂

†
nα̂m, where coefficients un are related to the density of

states (DoS) νε(ω) on the impurity broadened by hybridization with the con-
duction band: |un|2 = νε(εn)δ; here δ is the level spacing in the conduction
band, and the DoS is given by the Lorentzian

νε(ω) =
1

π

γ/2

(ω − ε)2 + γ2/4
. (21)

In this notation, low temperature manifests itself in smallness of the inter-
action term V̂ , to which only n and m in the vicinity of the Fermi level
will effectively contribute (see Fig. 5). Since the smallness of u coefficients
is controlled by the Lorentzian (21) (rather than distribution function), the

Fig. 5. Qubit is coupled to the transitions between all exact states of the bath
Hamiltonian ĤB, with weight being proportional to u∗

num. Coefficients u∗
n, um are

governed by the Lorentzian |un|2 = νε(εn)δ

effect of such a high energy impurity can only be power law suppressed.
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The second observation concerns very stringent geometrical restrictions on
where an ‘effective’ impurity can be and a broad distribution of energies of
impurities. In order to allow tunneling to and from the impurity, it should not
be too far away from the metallic gate, which implies that the total volume
available for ‘effective’ impurities cannot exceed 1 µm× (10λF)2, where 1 µm
is a characteristic size of a metallic gate and λF is the Fermi wavelength in
the metal. If we are hoping to find at least one low energy |εi| < T impurity in
this volume, the total number of impurities there should be of order of D/T ,
where D is the width of the distribution function of energies. For temperature
which varies in experiments between 30 mK and 50 mK, and for D having a
typical chemical value of 1 eV the above ratio is of order of 105. Having that
many impurities in a volume which in total accommodates ∼ 106 atoms is
completely unrealistic.

So, the contribution of high energy impurities is suppressed but not
strongly enough in order to exclude them from consideration, and low energy
impurities effectively do not exist. If for a particular sample there happened
to be one, this sample will exhibit orders of magnitude stronger decoherence,
and should better be discarded.

The condition |εi| � T enforces low temperature regime which requires a
full quantum mechanical treatment. Such a treatment, valid at any tempera-
ture, will be offered in the next Section.

5 Exact Solution for FBC Model at Arbitrary
Temperature

5.1 Calculations

To calculate the decoherence rate we will need to know how the off-diagonal
elements of the reduced density matrix of the qubit decay with time. The
dynamics of the full density matrix of the whole system qubit + bath is given
by the Heisenberg equation of motion:

∂ρ̂(t)

∂t
= −i

[
Ĥ, ρ̂(t)

]
, (22)

where Ĥ is the Hamiltonian given by the (18) with Josephson energy being
taken equal to zero. Since in the longitudinal (EJ = 0) model the interac-
tion term commutes with the qubit Hamiltonian, one can trace out the bath
degrees of freedom thus yielding the following result for the reduced density
matrix of the qubit:

ρ̂ (q)(t) =

(
ρ
(q)
11 (0) ρ

(q)
12 (0) e−iδEctD(t)

ρ
(q)
21 (0) e iδEctD∗(t) ρ

(q)
22 (0)

)
, (23)
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where the standard separable initial condition for the full density matrix,

ρ̂(0) = ρ̂ (q)(0) ⊗ ρ̂B ; ρ̂B = e−βĤB/Tr e−βĤB , was assumed. The diagonal
elements of the reduced density matrix do not evolve since there are no spin flip
processes present, and the dynamics of the off-diagonal elements is governed
by the decoherence function D(t):

D(t) =
〈
e i(ĤB+V̂ )te−i(ĤB−V̂ )t

〉
, (24)

where averaging should be performed with the bath Hamiltonian ĤB. At long
times t the decoherence function must decay exponentially, D(t) ∼ e−Γ2t, so
that the decoherence rate Γ2 is defined as

Γ2 = −<e lim
t→∞

t−1 lnD(t) , (25)

in the agreement with equation (9).
The average in (24) can be represented as the following functional integral

with the Grassmann fields ξ and η defined on the Keldysh contour:

D(t) = Z−1

∫
Dξ∗DξDη∗Dη e

iS0[ξ]
e

iS0[η]
e

i
2

R

cK

P

i

vi(t
′)ξ∗i (t′)ξi (t′)dt′

×

× e
−i

R

cK

P

k,i
[tkiη

∗
k
(t′)ξi (t′)+t∗

kiξ
∗
i (t′)η

k
(t′)]dt′

. (26)

Here Z is the same functional integral but with vi(t
′) ≡ 0, the fields ξi , ξ

∗
i

correspond to the localized state on the i-th impurity, ηk, η
∗
k to the conduction

electrons, the impurity S0[ξ] and free electrons S0[η] actions are given by:

S0 [ξ] =

∫

cK

∑

i

ξ∗i (t
′)(i∂t′ − ε0i )ξi (t′)dt′

S0 [η] =

∫

cK

∑

k

η∗k(t′)(i∂t′ − εk)ηk(t′)dt′ , (27)

and the Keldysh time-dependent coupling vi(t
′) is zero everywhere on the

contour apart from the interval (0, t) where on the upper branch it takes the
value of vi, and on the lower branch it is equal to −vi (see Fig. 6). Since the
action S0[η] is quadratic and the hybridization term is linear in η fields, it is
straightforward to integrate out the conduction electrons:

D(t) = Z−1
0

∫
Dξ∗Dξ e

iS0[ξ]
e
−i

RR

cK

P

ij

ξ∗i (t1)Σij(t1,t2)ξj (t2)dt1dt2

e

i
2

R

cK

P

i

vi(t1)ξ
∗
i (t1)ξi (t1)dt1

. (28)

Again, here Z is the same functional integral but with vi(t
′) ≡ 0. All the

information about the conduction electrons is now encoded in the self-energy
matrix which is defined on the contour:
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Im

Re

t

vi( t )=0

vi( t )=0

vi( t

vi( t

vi( t )=0)=

)= - 

vi

vi0

- i β

t

Fig. 6. Dependence of vi(t) on time along the Keldysh contour

Σij(t1, t2) =
∑

k

t∗kitkjgk(t1, t2) , t1, t2 ∈ cK (29)

with gk(t1, t2) being the Green function of free electrons. The full action in
(28) is quadratic and therefore the corresponding functional integral can be
written in a standard symbolic trace-log notation:

D(t) = eTr ln[1̂+ĜÛ ] , (30)

where both Ĝ and Û are matrices in the space of impurity indices, and both
depend on two times along the Keldysh contour. The symbol Tr here stands
for trace with respect to the impurity indices and for integration along the
Keldysh contour over all the times involved. The Green function Ĝ obeys the
following integro-differential equation:

∫

cK

dt′
∑

m

[
δimδ(t1, t

′)

(
i
∂

∂t′
− ε0m

)
−Σim(t1, t

′)

]
Gmj(t

′, t2) = δijδ(t1, t2) ,

(31)

with δ-function δ(t1, t2) being defined on the contour. The impurity matrix Û
is made out of the time-dependent coupling vi(t

′):

Uij(t1, t2) = δijδ(t1, t2)
vi(t2)

2
. (32)

Being written explicitly, the symbolic expression in (30) becomes

D(t) = e

−
∞
P

n=1

(−1)n

n
tr

R

···
R

cK
2n integrals

dt1dt
′
1...dtndt′nĜ(t1,t

′
1)Û(t′1,t2)...Ĝ(tn,t

′
n)Û(t′n,t1)

(33)

where tr stands for a trace over impurity indices only.
Since the matrix Û(t1, t2) as function of its both times is non-vanishing

only between 0 and t, all the contour integrals in (33) can be converted into



92 A. Grishin, I. V. Yurkevich, I. V. Lerner

ordinary integrals from 0 to t by introducing the Keldysh structure for both
matrices Ĝ and Û . Both arguments of Ĝ(t1, t2) can either be on the upper
or on the lower branch of the Keldysh contour leaving four choices which
generate the following Keldysh structure:

Gij(t1, t2)t1,2∈cK
7→ Ǧij(t1 − t2)t1,2∈(−∞,+∞) =

(
Gij(t1 − t2) G<ij (t1 − t2)
G>ij (t1 − t2) G̃ij(t1 − t2)

)

(34)

where Gij(t1− t2) and G̃ij(t1− t2) are the time-ordered and anti-time-ordered

Green functions. Using the Keldysh structure for the Û -matrix,

Uij(t1, t2)t1,2∈cK
7→ 1

2δij σ̂z δ(t1 − t2) vi(t2)t1,2∈(−∞,+∞) ,

and the general rule,

∫

cK

A(t1, t
′)B(t′, t2)dt

′
∣∣∣∣
t1,2∈cK

7→
+∞∫

−∞

Ǎ(t1, t
′)σ̂zB̌(t′, t2)dt

′
∣∣∣∣
t1,2∈(−∞,+∞)

,

we rewrite the expression (33) for the decoherence function as follows:

D(t) = e
−

∞
P

n=1

(−1)n

n2n Tr
t

R

0

...
t

R

0

dt1dt2...dtnǦ(t1−t2)(v̂⊗1̂)Ǧ(t2−t3)(v̂⊗1̂)...Ǧ(tn−t1)(v̂⊗1̂)
.

(35)

Now the symbol Tr stands for the trace over both impurity and Keldysh
matrix indices, while (v̂⊗ 1̂) denotes the matrix with elements vi on the main
diagonal in the impurity space and which is the unity matrix in the Keldysh
space.

It is convenient to do a standard rotation [20] in Keldysh space:

Ĝij = L̂σ̂zǦij L̂†; L̂ =
1√
2
( 1̂− iσ̂y) , (36)

which converts the four-element matrix in (34) into the three-element one of
retarded, advanced and Keldysh Green functions:

Ĝij =

(
GRij GKij

0 GAij

)
. (37)

In the rotated basis the expression (35) for the decoherence function becomes:

D(t) = e
−

∞
P

n=1

(−1)n

n2n Tr
t

R

0

...
t

R

0

dt1dt2...dtn(v̂⊗σ̂x)Ĝ(t1−t2)(v̂⊗σ̂x)Ĝ(t2−t3)...(v̂⊗σ̂x)Ĝ(tn−t1)

(38)
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Since due to the time translation invariance each Ĝ depends only on the
difference of its time arguments, the nth order integrand depends on n − 1
differences in times, while the integration over the last time variable produces
the overall factor of t. The region of integration becomes, at arbitrary time,
quite complicated. However, when time t is much bigger than the characteristic
time on which Ĝ(τ) function decays (which is true if t � γ−1

i , T−1), all the
integrals over the time differences can be extended to the entire axis. Then
the integral has a convolution structure in time and, performing a Fourier
transform and a straightforward summation that restores the logarithm, it
finally reduces to

D(t) = e
t

+∞
R

−∞

dω
2π

Tr ln[1̂+ 1
2 (v̂⊗σ̂x)Ĝ(ω)]

. (39)

Using the definition of decoherence rate (25) and calculating trace in the
Keldysh space explicitly we have:

Γ2 = −<e

+∞∫

−∞

dω

2π
tr ln

[
1̂ +

v̂

2
ĜK(ω)− v̂

2
ĜR(ω)

v̂

2
ĜA(ω)

]
, (40)

where tr refers only to the impurity matrix indices.
It should be stressed that the analytical structure of the expression in the

r.h.s. of (40) ensures that there is no decoherence at zero temperature. Indeed,
using the standard relation [20] between the components of Keldysh Green
functions at equilibrium, ĜK(ω) = tanh(βω/2)[ĜR(ω) − ĜA(ω)], which at
T = 0 reduces to ĜK(ω) = sgn(ω)[ĜR(ω)− ĜA(ω)], we have:

Γ2(T = 0) = −<e

+∞∫

−∞

dω

2π
tr ln

[(
1̂ +

v̂

2
ĜR(ω)

)(
1̂− v̂

2
ĜA(ω)

)]
. (41)

Separating the retarded and advanced parts in the expression above, and then
expanding the logarithm in both of them, we see that starting from the second
order all the integrals are convergent at ω → ∞ and therefore equal to zero
since the retarded (advanced) Green function is analytic in the upper (lower)
half plane. Combining the first order contributions from both parts we see
that it is purely imaginary and therefore also vanishes.

Assuming that the impurity states are well localized, the tunneling ampli-
tudes tki can be written as tki = tiVol−1/2e ikri , where ri is the position of
the i-th impurity. This in turn means that the self-energy matrix (29) has the
following representation:

Σ̂ij(t1 − t2) = t∗i tj ĝ(t1 − t2; rj − ri) . (42)

Since the characteristic distance l between the impurities is much bigger than
the Fermi wavelength, l � λF, all the off-diagonal elements of the self-energy
matrix will be averaged out while diagonal can be represented as
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Σ
A/R
ii (ω) =

[
∑

k

|tki|2
ω − εk

± iπ
∑

k

|tki|2δ(ω − εk)

]
=

[
αi(ω)

2
± i

γi(ω)

2

]
.

(43)

This allows one to solve (the Keldysh rotated analogue of) the equation (31):

G
A/R
ij (ω) =

δij

ω − ε0i −Σ
A/R
ii (ω)

=
δij

ω − εi ∓ iγi/2
, (44)

where both the real and imaginary parts of the self-energy matrix were as-
sumed ω-independent, and the real part was absorbed by renormalization of
the energy levels εi = ε0i + αi/2. In such a diagonal approximation for the
self-energy, the contributions from all the impurities are independent and the
total decoherence rate is given by their sum. Substituting (44) for the Green
functions into (40), subtracting (to improve the integral convergency) the
identically zero expression (41) for Γ0 and taking the real part of the resulting
expression, we obtain the following contribution of a single impurity at energy
εj ≡ ε to the decoherence rate:

Γ2(T ) = −
+∞∫

−∞

dω

4π
ln

[
1− v2γ2 cosh−2(ω/2T )

v2γ2 + 4
[
(ω − ε)2 + γ2/4− v2/4

]2

]
. (45)

5.2 Discussion of the Results

It is convenient to introduce an auxiliary ‘spectral function’ Λ(ω),

Λ(ω) =
1

1 + 4(ω − ε+)2(ω − ε−)2/v2γ2
, ε± = ε± 1

2

√
v2 − γ2 , (46)

thus rewriting (45) as follows:

Γ2(T ) = −
+∞∫

−∞

dω

4π
ln

[
1− Λ(ω) cosh−2 ω

2T

]
. (47)

Behavior of Λ(ω) is qualitatively different depending on whether g ≡ v/γ <
1 or g > 1. In the former case Λ(ω) is peaked at ω = ε, while in the latter the
peak splits into two Lorentzians which are centered at ω = ε± and travel in
different directions away from the ω = ε point as v increases. This signals a
qualitative change between the weak coupling (g � 1) and the strong coupling
(g � 1) regimes.

The decoherence rate is determined by the overlap of the temperature
function, cosh−2(ω/2T ), and Λ(ω) in (47). The former is centered at ω = 0
and exponentially decays for |ω| > T , while the latter has the power-law decay
away from the above described peaks. If the temperature function is wide and
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the Lorentzian peaks are sitting inside T , the overlap is solely controlled by
Λ(ω) as if the temperature function was equal to 1 everywhere. In the oppo-
site case when the temperature function is narrow either with respect to the
distance to the Λ-function peaks or to their width, the overlap is controlled
by cosh−2(ω/2T ) and Λ(ω) can be replaced by Λ(ω = 0). We will be call-
ing these two cases high-temperature (T � max|ε±|, γ) and low-temperature
(T � min|ε±| or T � γ) regimes correspondingly.

In the high-temperature regime, when either T � max|ε±| or T � γ, the
decoherence rate Γ2 saturates [4, 5] at ε-independent value:

Γ
(high)
2 = −

+∞∫

−∞

dω

4π
ln [1− Λ(ω)] =

γ

2

[
1−<e

√
1− g2

]
. (48)

In the low-T regime, when either T � min|ε±| or T � γ, the decoherence
rate becomes linear in temperature:

Γ
(low)
2 (T ) = −

+∞∫

−∞

dω

4π
ln

[
1− Λ(ω = 0) cosh−2 ω

2T

]

=
T

π
arctan2

(
2g

4ε2/γ2 − g2 + 1

)
. (49)

When both the coupling strength v and energy ε are smaller than the tun-
neling rate γ, the regime change occurs in the vicinity of T ∼ γ point (the
upper curve on the insert in Fig. 7). If γ is smaller than either of the other
two parameters: γ � A = max{ε, v/2}, then the high- and low-temperature
asymptotes parametrically mismatch. In this case there is a crossover between
the two regimes which is exponentially fast and occurs in the logarithmically
narrow interval of temperatures:

Γ
(x−over)
2 (T ) ∼ Γ (high)

2 e−A/T ,
A

lnA/γ
. T . A . (50)

The temperature dependence of the decoherence rate is shown in Fig. 7 for
the case of different couplings and fluctuator energies. We should stress that
although a linear in T behavior similar to that in the (49) would also follow
from the spin-boson models with the ohmic spectral function, as briefly de-
scribed in Sect. 2, only a full quantum mechanical treatment can result in a
non-trivial T dependence depicted in Fig. 7.

Let us also stress that, although at high temperatures decoherence is al-
ways stronger for a strongly coupled fluctuator, this does not have to be the
case as temperature is lowered, since in the crossover region the g � 1 fluctua-
tors undergo stronger suppression than their g � 1 counterparts. Such a non-
monotonic dependence of the decoherence rate Γ2 on the coupling strength v
outside the classical region of high T deserves special attention.
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Fig. 7. Dependence of the decoherence rate on temperature, (47), for strong and
weak coupling. The main picture shows a fluctuator with νε(ω) centered at ε̃ = 3,
the insert shows ε̃ = 0. T̃ , Γ̃2, ε̃ are measured in units of γ/2

When we start with a small value of v, v < γ, the peak of Λ(ω) grows as v
increases which leads to higher decoherence rate Γ2. This proceeds on until the
v = γ point is reached when the peak stops growing but splits into two instead.
One of those peaks then starts moving towards the origin which increases the
overlap between the temperature function and Λ(ω), so Γ2 keeps on growing.
The maximum possible overlap is achieved when the incoming Lorentzian is
centered at ω = 0 which happens at the v =

√
4ε2 + γ2 point. If the coupling

strength is increased beyond this point, the peak of Λ(ω) becomes de-tuned
from the peak of the temperature function and the decoherence rate goes
down. Since Λ(ω) plays the role of a spectral function, the positions of its
maxima ε± give us the energies of charge states of the system. Pushing them
away from the Fermi level leads to freezing them out so that the impurity is no
longer a fluctuator and thus does not contribute to the decoherence rate. Note
that such a strong coupling is still not a good news for the qubit operation as
the qubit and the impurity form together a four-level system which, although
remains coherent, does not operate as intended.

The above described behavior of the decoherence rate as a function of
coupling strength is depicted in Fig. 8. Note that the maximum of Γ2 has a
cusp which is not smeared by temperature (but would be smeared by including
the σx part into the Hamiltonian): Only at a rather high temperature (T̃ ∼
100) the decoherence rate practically saturates at its classical limit Γ

(high)
2 =

γ/2.
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Fig. 8. Non-monotonic dependence of the decoherence rate on the coupling strength
at different temperatures for ε̃ = 3; here g0 =

√
ε̃2 + 1

6 Relaxation in the FBC Model

Apart from decoherence, coupling of a qubit to the environment also leads to
relaxation processes, i.e., to a decay of diagonal elements of the density matrix
(23), as outlined in Sect. 2. In the model under consideration, equation (18),
the presence of the σ̂x-part inevitably induces relaxation. Such a relaxation
would also destroy coherence but the relaxation rate Γ1 is typically smaller
than the decoherence rate Γ2 and therefore the time available for quantum
operations is going to be determined by the latter. Experiments on the re-
laxation rate are of special interest as they can provide valuable information
about the degrees of freedom in the environment to which qubit is coupled.

It is convenient to diagonalize the qubit part of the Hamiltonian (18),
transforming simultaneously the interaction part σ̂z into a sum of τ̂z and τ̂x
terms - the Pauli matrices in the new basis:

Ĥ =
∆E

2
τ̂z + (cosΘ τ̂z + sinΘ τ̂x) V̂ + ĤB ; where

∆E =
√

(δEc)2 +E2
J , cosΘ =

δEc
∆E

, sinΘ =
EJ
∆E

. (51)

As it is well-known [10], in Born-Markov rotating-wave approximation the
decoherence rate Γ1 is given by:

Γ1 = sin2ΘS(∆E) , S(Ω) =
〈{
V̂ (t)− 〈V̂ 〉, V̂ (t′)− 〈V̂ 〉

}〉

Ω
, (52)

where S(Ω) is the spectral density of noise. (The appropriate derivation is
outlined in Sect. 2). The symbol 〈. . .〉Ω denotes the Fourier transform of the
bath-averaged expression with respect to t− t′ at the frequency Ω.
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In the experiment of Astafiev et al. [8] the authors determined the spectral
density of noise in a wide window of frequencies, by changing ∆E and measur-
ing the relaxation rate. The experimental data for S(Ω) is presented in Fig. 9.
Although the data points are somewhat scattered, the authors nevertheless
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Fig. 9. The experimental data by Astafiev et al. [8]: the noise spectral density S
deduced from measurements of Γ1; open and closed symbols correspond to different
samples while circles and triangles – to different measurement regimes; T ≈50 mK

claim that they observed a linear behavior of spectral density of noise with
peaks at 7 and 23 GHz.

Below we will demonstrate that qualitatively the same behavior is expected
from S(Ω) in the FBC model at low temperatures. A contribution to the
spectral density of noise from one impurity is given by

S(Ω) =
v2

4

〈{
d̂†(t)d̂(t)− 〈d̂†d̂〉 , d̂†(t′)d̂(t′)− 〈d̂†d̂〉

}〉

Ω
=

=
πv2

2
coth

Ω

2T

+∞∫

−∞

dω νε(ω)νε(ω +Ω) [nF(ω)− nF(ω +Ω)] , (53)

where the density of states νε(ω) is given by (21), and nF(ω) is the Fermi
distribution function.

The frequencies accessed in the experiment [8] are in the window T � Ω <
100T . Getting back to the rough estimates for the probability of having an
effective impurity with energy smaller than temperature (the end of Sect. 4),
we see that even a scenario with |εi| � 100T for all effective impurities is
quite likely. If this is the case then the condition T � Ω � |ε| holds and it is
clear that the spectral density of noise S(Ω) exhibits linear behavior at such
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frequencies. As the thermal factor is practically equal to 1 within the range
−Ω < ω < 0 and zero otherwise, the smearing of this step is of the order of
temperature. Far to the right (assuming ε to be positive) we have two peaks
in DoS at ε−Ω and ε. The main contribution to the integral (53) is coming
from the tails of νε at the interval −Ω < ω < 0, rather than from the thermal
function tail in the vicinity of DoS peaks which is exponentially suppressed.
The latter contribution would only win if γ itself was exponentially small, but
the corresponding impurity is obviously non-effective. If γ is not too small,
we find

S(Ω) =
πv2

2
ν2
ε (0)Ω , T � Ω � ε . (54)

The summation of contributions (54) coming from all the effective impurities
produces a linear in Ω function, which can be a possible explanation for a
linear (but very noisy) trend in S(Ω) observed in [8].

Fig. 10. The noise spectral density S(Ω) in arbitrary units at T = 0 for the case of
ten impurities with energies uniformly distributed between ε̃ = 60 and ε̃ = 240. The
inserts zoom the bottom left corner (the grey area on the main figure for ε̃ ≤ 40)
when there is either a) no impurity in this interval or b) two impurities (ε̃1 = 10,
ε̃ = 20) with coupling constants v1,2 50 times weaker than those for 60 ≤ ε̃ ≤ 240

Humps in Fig. 9 can be coming from less effective but more numerous
impurities which makes the situation T � |ε| < 100T possible. At the point
Ω ∼ ε the left one of the DoS double-Lorentzian overlaps with the thermal
function thus producing a peak in S(Ω). As Ω further increases, the overlap
between the left Lorentzian and the thermal function stays essentially the
same but the region where it occurs drifts away to the left from the second
Lorentzian which is stationary positioned at ω = ε. Qualitatively the picture
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of a linear behavior of S(Ω) followed by a peak at Ω ∼ ε is the same for any
relation between γ and T , but the form of the peak is different.

With a purely illustrative purpose we show in Fig. 10 a picture correspond-
ing to the following scenario: all the tunneling rates are the same, γi = γ,
obeying γ � T (which effectively allows one to put T to zero), and several
impurities are uniformly distributed in some interval of energies. All these
impurities contribute to the linear behavior on the left of this interval [the
grey area zoomed in the insert a)], while humps might be due to fluctuators
with smaller energies weakly coupled to the qubit which could not break the
general linear trend [the grey area zoomed in the insert b)]. The behavior of
S(Ω) in the grey area qualitatively resembles the experimental data.

7 Conclusions

In this review, we have described some essential features of loss of coherence
by a qubit coupled to the environment. We have first presented well-known
semiclassical arguments that relate both decoherence and relaxation to the
environmental noise. Then we have shown that models with pure decoherence
(when there is no relaxation in qubit states as the part of coupling to the
environment that excludes flipping of the states) can be exactly solvable. As
an example, we have treated in detail the model of fluctuating background
charges [4–7] which is believed to describe the most important channel for
decoherence for the charge Josephson junction qubit. Following our earlier
treatment [7], we have shown that the decoherence rate saturates at ‘high’
temperatures [4,5] while becoming linear in T at low temperatures and show-
ing in all regimes a non-monotonic behavior as a function of the coupling of
the qubit to the fluctuating background charges. We have also considered, al-
beit only perturbatively, the qubit relaxation by the background charges and
demonstrated that the quasi-linear behavior of the spectral density of noise
deduced from the measurements of the relaxation rate can be qualitatively
explained within this model in the low temperature regime.
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Low-Energy Physical Properties of Edge States
in Nanographite Systems
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1 Introduction

Recent advances in nanotechnology make it possible to fabricate ultra small
artificial physical systems like quantum dot, quantum interferometer, quan-
tum wire, etc. in which quantum effects are experimentally observable. Both
from the perspective of fundamental physics or potential applications, these
artificial systems have generated a lot of excitement as they enabled the re-
alization of a remarkable variety of physical phenomena such as the quan-
tum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conduc-
tance fluctuation, Kondo effect [1] etc. arising out of the quantum effects.
Among such artificial systems, the nanoscopic carbon systems like carbon nan-
otubes [2–4] and nanographite [5–7] have received enormous attention not only
for their intriguing form, but also for their unusual physical properties. In these
systems, the geometry of sp2 carbon networks crucially affects the electronic
states near Fermi surface [8–10]. Studies with scanning tunneling microscopy
and spectroscopy have confirmed the connection between the electronic states
of single wall carbon nanotubes (SWCN) and their geometry [11, 12]. The
nanometer-sized systems with open boundaries called “nanographites,” dis-
play many unusual features, where the shapes of their edges have very im-
portant role in determining the electronic structure of these systems [5]. The
edges of the nanographite systems can have two typical shapes, the armchair
and the zigzag edges. Zigzag edges leads to localized edge states near Fermi
level, while such localized states are completely absent in nanographite sys-
tems with armchair edges. These edge states correspond to the non-bonding
molecular orbitals which generate large peaks in the density of states and
have pronounced effect on the electronic, magnetic and transport properties
of nanographite systems [5,13–18]. Recent experiments on nanographites have
reported direct observation of the edge states [19], the paramagnetic response
at low-temperature [20, 21], and the ferromagnetic response at the graphite



104 Katsunori Wakabayashi

edges [22, 23]. The purpose of this article is to elucidate the role of the edge
states on the low-energy physical properties of nanographite systems.

2 Electronic States of Nanographite Ribbons

There are two typical shapes for a graphite edge, the armchair and the zigzag
edges as illustrated in Fig. 1(a). The two edges have 30 degrees difference in
their cutting directions. Here we briefly discuss how the graphite edges dras-
tically change the π-electronic structures. Especially, a zigzag edge provides
the localized edge states, while an armchair edge does not give such localized
states. We hereafter term these states as the “edge states” [5].

The graphite ribbons with zigzag and armchair edges are usually described
by the simple geometrical structures as depicted in Fig. 1(b) and Fig. 1(c),
respectively. The width N of graphite ribbon is taken as the number of dimer
lines (two carbon sites) or the number of zigzag lines corresponding to the
armchair and the zigzag ribbons, respectively. It is assumed that all dangling
bonds at the edges are terminated by hydrogen atoms, and thus they have
no contribution to the electronic states near the Fermi level. Throughout
this article, it is also assumed that graphite ribbons have the translational
invariance, and the unit cells can be defined as illustrated in Fig. 1(b) and
Fig. 1(c). We employ the single-orbital tight-binding model for the π-electron
network. This model has been successfully used for the calculation of electronic
structure of fullerene molecules, carbon nanotubes and other carbon-related
materials [9, 24]. The tight-binding Hamiltonian is given by,

H =
∑

〈i,j〉
tijc

†
i cj , (1)

where c†i creates an electron at site i. Here 〈i, j〉 denotes the nearest neighbor
sites. The transfer integrals between all the nearest neighbor sites are taken
as t for simplicity. This model Hamiltonian adequately describes the intrinsic
difference between the electronic structures of the topologically inequivalent
armchair and zigzag graphite ribbons. The value of t is considered to be about
3.0 eV in a graphite ribbon [25].

Prior to our discussion of the π-electronic states of graphite ribbons, we
first briefly review the π-band structure of a graphite sheet [24]. To diagonalize
the Hamiltonian of a graphite sheet, we use a basis of two-component spinor
c
†
k =(c†Ak, c†Bk), which is the Fourier transform of (c†i∈A, c†i∈B). Let a1, a2,
a3 be the displacement vectors from a B site to its three nearest-neighbor A
sites, so defined that ẑ · a1 × a2 is positive (see Fig.2(a)). Here ẑ is a unit
vector normal to the graphite sheet. In this representation Hamiltonian can
be expressed as H =

∑
k c

†
kHkck , where Hk is given by,

Hk = −t
3∑

i=1

(cos(k · ai)σ̂x + sin(k · ai)σ̂y) . (2)
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Fig. 1. (a) The typical graphite edge, armchair and zigzag. The structure of graphite
ribbons with (b) zigzag edges and (c) armchair edges. The rectangle with the dashed
lines is the unit cell
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Fig. 2. (a) Graphite sheet in real space, where the black (white) circles mean the
A(B)-sublattice sites. (b) The π band structure and (c) the density of states of
graphite sheet. The valence and conduction bands make contact at the degeneracy
point K

Here σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices. The energy eigenvalues for this

Hamiltonian are E±
k = ±t|∑3

i=1 exp(ik · ai)| and only the E−
k –band will

be completely filled as each carbon site has one π-electron on an average.
Hereafter, we call E−

k [E+
k ] as the valence [conduction] band.

In Fig. 2(b) and Fig. 2(c), the energy dispersion of π-bands in the 1st
Brillouin Zone (BZ) and the density of states (DOS) are depicted, respectively.
Near the Γ point, both valence and conduction bands have quadratic form
in kx and ky, i.e., Ek = ±(3 − 3|k|2/4). At the M points, the middle of the
sides of hexagonal BZ, we have the saddle points of energy dispersion and here
density of states diverges logarithmically. Near the K points, the corners of
the hexagonal 1st BZ, the energy dispersion is linear in the magnitude of wave
vector, and explicitly we have Ek = ±3ta|k|/2, where the density of states
also linearly depends on energy. Here a = |ai| (i = 1, 2, 3). The Fermi energy
is located at the K points and there is no energy gap at these points, since
Ek vanishes at these points by the hexagonal symmetry. Thus, the graphite
sheet is a zero-gap semi-conductor on this 2D model.
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The calculated band structures of the armchair ribbons are shown in
Figs. 3(a)-(c) for three different ribbon widths together with the density of
states. The wave number k is normalized by the length of the primitive transla-
tion vector of each graphite ribbon, and the energy E is scaled by the transfer
integral t. The top of the valence band and the bottom of the conduction band
are located at k = 0. It should be noted that the ribbon width decides whether
the system is metallic or semiconducting . As shown in Fig. 3(b), the system
is metallic when N = 3M − 1, where M is an integer. For the semiconducting
ribbons, the direct gap decreases with increasing ribbon width and tends to
zero in the limit of very large N .

0

3

0

−3

3

0

−3

3

0

(a) (b) (c)

D(E) D(E)

E

k
π π−π

k D(E)
π

k

E

0 0

E

−3

Fig. 3. Energy band structure E(k) and density of states D(E) of armchair ribbons
of various widths [(a) N = 4, (b) 5 and (c) 30 ]
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Fig. 4. Energy band structure E(k) and density of states D(E) of zigzag ribbons
of various widths [(a) N = 4, (b) 5 and (c) 30 ]

For zigzag ribbons, however, a remarkable new feature arises in the band
structure, as shown in Figs. 4(a)-(c). We see that the highest valence band and
lowest conduction band are always degenerate at k = π. It is found that the
degeneracy of the central bands at k = π does not originate from the intrinsic
band structure of the 2D graphite sheet. These two special central bands get
flatten as we increase ribbon width. A pair of almost flat bands appears within
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Fig. 5. Charge density plot form analytic solution of the edge states in a semi-infinite
graphite, when (a) k =π, (b) 8π/9, (c) 7π/9 and (d) 2π/3. (e) An analytic form
of the edge state for a semi-infinite graphite sheet with a zigzag edge, emphasized
by bold lines. Each carbon site is specified by a location index n on the zigzag chain
and by a chain order index m from the edge. The magnitude of the charge density
at each site, such as x, y and z, is obtained analytically (see text). The radius of
each circle is proportional to the charge density on each site, and the drawing is
made for k = 7π/9

the region of 2π/3 ≤ |k| ≤ π, where the bands sit in the vicinity of the Fermi
level. No such flat band is expected in the band structure of 2D graphite sheet.

The electronic states in the partial flat bands of the zigzag ribbons are
found to be localized near the zigzag edges which become apparent from the
charge density distribution [5, 13, 14, 26, 27]. The puzzle for the emergence of
the edge states can be solved by considering a semi-infinite graphite sheet with
a zigzag edge. First to have the analytic form for the edge states, in Fig. 5(a)-
(d) we depict the distribution of charge density in the flat band states for
some wave numbers, where amplitude is proportional to the radius. The wave
function has non-bonding character, i.e., finite amplitudes only on one of the
two sublattices that includes the edge sites. It is completely localized at the
edge sites when k=π, and starts to penetrate gradually into the inner sites
as k deviates from π and the state eventually becomes extended at k=2π/3.

Considering the translational symmetry, we can start constructing the
analytic solution for the edge state by letting the Bloch components of the
linear combination of atomic orbitals (LCAO) wave function be . . ., eik(n−1),
eikn, eik(n+1), . . . on successive edge sites, where n denotes a site location on
the edge. Then the mathematical condition necessary for the wave function
to be exact for E = 0 is that the total sum of the components of the complex
wave function over the nearest-neighbor sites should vanish. In Fig. 5(e), the
above condition is eik(n+1) + eikn + x = 0, eikn + eik(n−1) + y = 0 and x+ y+
z = 0. Therefore, the wave function components x, y and z are found to be
Dke

ik(n+1/2),Dke
ik(n−1/2),D2

ke
ikn, respectively. HereDk = −2 cos(k/2). Thus

we see that the charge density is proportional to D
2(m−1)
k at each non-nodal

site of the m-th zigzag chain from the edge. Then the convergence condition
|Dk| ≤ 1 must be satisfied otherwise the wave function would diverge in a
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semi-infinite graphite sheet. This convergence condition defines the region
2π/3 ≤ |k| ≤ π where the flat band appears.

From the analytic expression of the edge state, we can derive an analytic
expression for the density of states (DOS) near Fermi energy. We see that the
edge state penetrate into the inner sites when wave number changes from π to
2π/3. If we consider the graphite ribbons of width N , two edge states which
come from both the edges will overlap with each other and develop the bonding
and anti-bonding interaction. Since the magnitude of overlap becomes larger
as the wave number approaches 2π/3, the band gap between the bonding and
anti-bonding state formed by the two edge states gets larger near k = 2π/3.
Then the partly flat bands acquire a slight dispersion and it depends on the
ribbon width N . The energy dispersion can be calculated from the overlap
of two edge states. The amplitude of the edge state which penetrates from
the first zigzag line is given by ψn = Dn−1

k ≡ ψA, which is located only on
the A-sublattice. On the other hand, the amplitude of the edge state which
penetrate from N th zigzag line, is given by ψN−n = Dn−1

k ≡ ψB , which is
located only on the B-sublattice. Using the tight-binding Hamiltonian, the
overlap matrix element between the two edge states can be easily calculated,
and we have

〈ψA|H |ψB〉 = −2tNDN−1
k

(
1 +

Dk

2

)
≡ ηk . (3)

Then the energy eigenvalues for the edge states in the lowest order perturba-
tion in overlap is given by the following eigenvalue problem,

(
0 ηk
ηk 0

)(
ψA
ψB

)
= ε

(
ψA
ψB

)
. (4)

The energy eigenvalues are ε = ±ηk, and they have the form ε ∼ kN around
k = π. Therefore, the DOS corresponding to the edge states has the form,

ρ(ε) =
∂k

∂ε
∼ 1

N
εα , (5)

where α = 1/N − 1. Note that this DOS has a power-law dependence, which
is different from the ordinary van Hove singularity of ρ ∼ 1/

√
E observed in

one-dimensional system. It is found that the renormalized DOS is inversely
proportional to the ribbon width, which has also been confirmed by numerical
calculation [13].

In Fig. 6(a), we plot the energy gap ∆a of armchair ribbons at k = 0
and the energy gap ∆z of zigzag ribbons at k = 2π/3 with respect to W . It
shows that the energy gaps are inversely proportional to the width of graphite
ribbon. This result supports that the physical quantities related to energy gap
can be scaled by the ribbon width. Fig. 6(b) shows the plot of N times the
gap ∆ as a function of N . We observe that N∆ becomes constant when N
exceeds N = 30 (N = 60) for the zigzag (armchair) ribbon. The analytic
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expression for the ribbon width dependence of the energy gaps can be found
in [14,15, 18].

It should be noted that the same number N for both zigzag and armchair
ribbons does not give the same ribbon width, when the ribbons are measured
by the same unit of length. Therefore, we have introduced the following defi-
nition to compare physical quantities of zigzag and armchair ribbons with the
same width W ,

W =

{ 3
2Na− a ≡Wz zigzag ribbons

(N − 1)
√

3
2 a ≡Wa armchair ribbons

(6)

where a is the lattice constant.

2.1 k · p Equation

In the vicinity ofK point of the 1st BZ of graphene sheet, the energy band has
a conical structure, and we have a k-linear dispersion relation or a massless
spectrum. Since a graphene sheet is a half-filled system, the Fermi level is at
the center of this spectrum. Thus the massless Dirac equation or the so-called
k · p equation becomes a powerful tool to describe the low-energy electronic
properties of graphite or graphite-related materials. We use the k · p equa-
tion [28–33] for studying the electronic states of a graphene system in weak
magnetic fields and derive the half-integer quantized Hall conductance that
has been observed experimentally [34]. In this subsection, we use

√
3a as the

unit of length instead of the lattice constant.
In the absence of magnetic field, k · p equation at K-point is given by,

Ĥψ = εψ, ψ =

(
FA(r)
FB(r)

)
, (7)
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Ĥ = γ

(
0 k̂x ∓ ik̂y

k̂x ± ik̂y 0

)
. (8)

Here upper (lower) sign of the Hamiltonian corresponds to K (K ′) point, and
γ is the transfer integral. FK

A (r) (FK
B (r)) represents the envelope function on

the A(B)-sublattice of graphene. From the k · p equation, we can easily obtain
the energy spectrum as

ε = ±γ|k| . (9)

Also, when we introduce the mass term as

Ĥ → Ĥ +mσ̂z , (10)

where m is mass, the energy eigenvalues are

ε = ±γ
√
|k|2 +m2 . (11)

In Fig. 7(a), the energy spectrum of graphene is shown in the absence of
magnetic field.

Next let us turn our attention to the electronic states of graphene sheet
in a weak magnetic field, following McClure [31]. Here we take the Landau
gauge, i.e., A = (0, Bx, 0). Then, the k · p Hamiltonian reads as

Ĥ± =

(
0

√
2tL̂∓/l√

2tL̂∓/l 0

)
, (12)

L̂± =
l√
2

(
k̂x ± ik̂y

)
, (13)

where upper and lower signs correspond toK andK ′ points, respectively and
l =

√
c~/eB is magnetic length.

This Hamiltonian supports a Landau level with a vanishing energy eigen-
value, which is responsible for the large diamagnetism of graphene and it will
be discussed in the next section. Thus we have

ε2D = 0, ψK =
1√
Ly

exp (ikyy)

(
0
h0

)
for K−point, (14)

ε2D = 0, ψK′ =
1√
Ly

exp (ikyy)

(
h0

0

)
for K ′−point, (15)

where Ly and ky are the system size and the wave vector, respectively, in the y
direction. Other Landau levels and the eigenvalues for the K-point are given
by,

ε2D = ±
√

2t

√
n+ 1

l
, ψK =

1√
2Ly

exp (ikyy)

(
±hn
hn+1

)
, n = 0, 1, 2, · · · ,

(16)
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while those for the K ′-point are,

ε2D = ±
√

2t

√
n+ 1

l
, ψK′ =

1√
Ly

exp (ikyy)

(
±hn+1

hn

)
, n = 0, 1, 2, · · · ,

(17)
where upper and lower signs correspond to conduction and valence bands,
respectively, and hn represents the harmonic oscillator eigenfunctions

hn =
in√

2nn!
√
πl

exp

[
−1

2

(
x+ l2ky

l

)2
]
Hn

(
x+ l2ky

l

)
(18)

with Hn(x) being the Hermite polynomial. These eigenfunctions have the
properties:

L̂+L̂−hn = nhn, L̂+hn =
√
n+ 1hn+1, L̂−hn =

√
nhn−1 . (19)

The Landau levels at K and K ′-points are degenerate and so far difference
appears only in the wave functions.

In order to inspect closely the difference between K and K ′-points, let us
consider the role of the mass term. The Landau level with finite mass can also
be calculated in a similar manner. The energy eigenvalues for the K-point are

ε = −sgn (B)m, n = 0 (20)

ε = ±
√

(m/γ)2 + 2n/l2, n = 1, 2, · · · (21)

while those for the K ′-point are

ε = sgn (B)m, n = 0 (22)

ε = ±
√

(m/γ)2 + 2n/l2, n = 1, 2, · · · . (23)

Thus the lowest Landau level (LLL) at K-point shifts downward with the
inclusion of mass, while the LLL at K ′-point shifts upward. In Fig. 7(b), the
energy spectrum of graphene is shown in the presence of weak magnetic field.

It is now possible to explain the quantized Hall conductance of graphene.
Let us assume that the Fermi energy is on E = 0. The LLL at K-point is
occupied by electrons, but that for the K ′-point remain unoccupied. There-
fore, only the LLL with n = 0 is half-filled. Since each landau level can have
1/2πl2 electrons, the total number of electron at K-point is

nK
e =

∑

i=−1

ni + n0 =
N + 1

2πl2
, (24)

where ni is the number of electrons in i-th Landau level. Similarly, the number
of electrons at K ′-point is

nK′

e =
∑

i=−1

ni =
N

2πl2
. (25)
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Fig. 7. (a) The energy spectrum of a graphene for m = 0 (solid line) and m 6= 0
(dashed line). (b) The Landau levels of graphene for m 6= 0

Therefore, the total number of electrons of the system is

ne = nK
e + nK′

e =
2N + 1

2πl2
, (26)

and the quantized Hall conductivity is

σxy = (2N + 1)
e2

h
. (27)

2.2 Electronic States in a Magnetic Field

In this subsection we study the electronic states of nanographites in a magnetic
filed. The magnetic field B perpendicular to the graphite plane is incorpo-
rated within the transfer integral tij by means of the Peierls phase through

the transformation tij → tij exp
[
i2π(e/ch)

∫ j
i dl ·A

]
, where A is the vector

potential and the integral is along the hopping path. Let φ be the magnetic
flux passing through a single hexagonal ring of graphite sheet in the unit of
the quantum flux (φ0 = ch/e). Since the single hexagonal ring has an area
Shex = 3

√
3a2/2, where a = 1.42 Å is the lattice constant of graphite, we have

φ = BShex/φ0. Here B = |B| and for φ = 1 it corresponds to 7.9× 104 T. In
this article, we treat only the weak magnetic field limit. The cyclotron radius
(magnetic length), l, is given by l =

√
c~/eB. We use Landau gauge with

A = (0, Bx, 0), where we define the translational invariant direction of each
ribbon as the y-axis, and the x-axis lies perpendicular to y-axis.

In ribbon-shaped systems, the ratio between the width of a ribbon and
the cyclotron diameter effectively characterizes the electronic states of ribbon
in a magnetic field. Therefore, we define the ratio between the ribbon width
and the cyclotron diameter as the effective magnetic field B̃ for convenience,
which is given by B̃ = (W/d)

2
, where d = 2l. In the case of B̃ < 1, since the

cyclotron diameter is larger than the ribbon width, the cyclotron motion of
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electrons is impeded and the Landau levels are not formed. Secondly in the
case of B̃ > 1, since the cyclotron diameter is smaller than the ribbon width,
the cyclotron motion of electrons is not disturbed except in the vicinity of
the ribbon edges and the Landau levels appear. Finally in the case of B̃ � 1,
the cyclotron diameter is much smaller than the ribbon width and becomes
of the order of the lattice constant so that the topology of the lattice becomes
important.
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Fig. 8. The scaled energy band structures of zigzag ribbons near k = 2π/3 for
(a) B̃ = 0, (b) B̃ = 4 and (c) B̃ = 16. Bold lines are dispersions of zigzag ribbons.
Here k′ means the wave number measured from k = 2π/3. Dotted lines are the
corresponding Landau levels of graphite sheet for comparison

(a)

E 
W

k’ W

(c)

E 
W

k’ W

(b)

k’ W

E 
W

8

20

10 0 2 4 6 8 10

0

5

10

15

20

10

5

0

1086420

0

5

10

15

20

0 2 4 6

15

Fig. 9. The scaled energy band structures of armchair ribbons near k = 0 for
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ribbons (N = 3m − 1) and dashed lines are for semiconducting armchair ribbons
(N 6= 3m − 1). Dotted lines are the corresponding Landau levels of graphite sheet
for comparison
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Now we show that the band dispersions near E = 0 can be scaled by
the ribbon width W for sufficiently wide ribbons. In Fig. 8, the scaled band
structures are shown for (a) B̃ = 0, (b) B̃ = 4 and (c) B̃ = 16. Here the energy
and the wave number k′ are scaled by W , where k′ means the wave number
measured from k = 2π/3. In the figures, the bold lines are dispersions of zigzag
ribbons, and the dotted lines are the corresponding Landau levels of graphite
sheet. Similarly, the band dispersions of the armchair ribbons can be scaled
and in Fig. 9 the scaled band structures are shown for (a) B̃ = 0, (b) B̃ = 4
and (c) B̃ = 16. Bold lines are dispersions for the metallic armchair ribbons
(N = 3m − 1) and dashed lines are those for the semiconducting armchair
ribbons (N 6= 3m− 1). The dotted lines are the corresponding Landau levels
of graphite sheet.
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Fig. 10. Magnetic field dependence of the energy gap of armchair (zigzag) ribbons
at k = 0 (k = 2π/3), ∆a(B̃) (∆z(B̃)). The energy gaps are normalized by the energy
gap, ∆a(0) (∆z(0)), corresponding to B̃ = 0

In Fig. 10, the magnetic field dependence of the energy gap for armchair
and zigzag ribbons is shown. The energy gap of semiconducting armchair
ribbons becomes negligible when effective magnetic field B̃ is much larger
than 2. This condition is the same as that of an usual quantum wire. However,
we need stronger magnetic field to collapse the energy gap (at k = 2π/3) of
zigzag ribbons. This is due to the non-bonding character of the edge states.
In the zero-field limit, (1 − ∆a(z)(B̃)/∆a(z)(0)) depends on B̃4 for armchair

ribbons, and B̃2 for zigzag ribbons.

2.3 Bearded Edge

In this subsection, we discuss other important edge shapes having translational
symmetry of zigzag axis, e.g., the bearded edge. Although this edge look rather
artificial than the zigzag edge, they are interesting because they also show the
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structure of bearded ribbon for N = 10

non-bonding edge localization.
A bearded edge is a zigzag edge with additional π-electron hopping bonds

as shown in Fig. 11(a). This type of edge was first studied by Klein [35].
In Fig. 11(b), the band structure of a semi-infinite graphite sheet with a
bearded edge is shown. Interestingly, a partial flat band appears in the region
of |k| ≤ 2π/3, which is just the opposite condition corresponding to the semi-
infinite graphite sheet with a zigzag edge. The analytic form of this edge state
can be derived in a similar way as described in the previous subsection for the
derivation of the edge state of zigzag edges. If we consider the case of infinite
N (Fig. 11(a)), the analytic solution can be written as,

ΨnB = (1/Dk)
n and ΨnA = 0, (28)

where Dk = −2 cos(k/2). The convergence condition of the wave function,
|1/Dk| ≤ 1, defines the region |k| ≤ 2π/3 corresponding to the edge states.
Since the penetration depth of the edge states get longer toward k = ±2π/3,
we have small energy gaps near k = ±2π/3 in the case of finite width ribbons
due to bonding and anti-bonding interaction between the two edge states.

Next we consider the ribbons having zigzag and bearded edge as shown
in Fig. 12(a). Since in this ribbon |NA − NB| = 1, where NA(NB) means
the number of sites belonging to the A(B)-sublattice, there is a flat band at
E = 0 all over the 1st BZ as shown in Fig. 12(b). The analytic solution of this
flat band can be easily understood by the combination of two edge states for
the zigzag and bearded edges. In the region of |k| < 2π/3, the electrons are
localized at the bearded edge, and in the region of |k| > 2π/3, the electrons
are localized at the zigzag edge. At k = ±2π/3, the electrons are delocalized.
It should be noted that this ribbon is insulating because the flat band does
not carry current, and there are energy gaps between the flat band and the
next subbands.

The important conclusion in this subsection is that an edge which is not
parallel to an armchair axis provides edge states. Actually, graphite ribbons
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with mixed armchair edges and zigzag edges also show localized states [13].
Thus it is considered that the edges whose cutting direction is not parallel
to the armchair axis show edge localized states. The reason why an armchair
edge does not provide an edge state can be understood from a comparison
with the surface bound state of anisotropic superconductor, see [15, 18].

3 Magnetic Properties of Nanographites

In the following two subsections, the magnetic properties of nanographites are
discussed in the absence and also in the presence of electron-electron inter-
action. It is well-known that bulk graphite shows a large anisotropic diamag-
netic susceptibility, while aromatic molecules have only weak diamagnetism.
This means that the orbital diamagnetic susceptibility is sensitive to the size
of graphite fragments. On the other hand, the sharp peak in the density of
states due to the edge states gives rather strong Pauli paramagnetic response,
so that the competition between these two components occurs in nanographite
systems. Since the edge states also give the possibility of spin polarization at
low-temperature due to electron-electron interaction, we will discuss about
the possibility of appearance of localized spins at the edges.

3.1 Orbital Magnetization and Susceptibility

The observed magnetic susceptibility χ is the sum of four components:
(1) localized spin susceptibility χspin, (2) diamagnetic susceptibility due to the
core electrons χcore, (3) Pauli paramagnetic susceptibility χP and (4) orbital
diamagnetic susceptibility χorb due to the cyclotron motion of the itinerant
electrons. Since we neglect electron-electron interaction for the moment, χspin

can be neglected. Furthermore, χcore is unimportant for us, because it is small
and basically temperature independent. On the other hand, the Pauli param-
agnetic susceptibility is related to the DOS at the Fermi level, and becomes
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an important component in zigzag nanographite ribbons where an enhanced
density of states appears at the Fermi level. Note that χP is negligible in arm-
chair ribbons, aromatic molecules and graphite sheets, because their DOS are
suppressed at the Fermi level. We will see below that since the DOS intro-
duced by the edge states is sharply peaked at the Fermi energy, χP exhibits
a very pronounced temperature dependence which is nearly Curie-like. The
diamagnetic contribution to susceptibility is very familiar from the magnetic
properties of graphite sheets. It is due to the orbital cyclotron motion of elec-
trons in a field with a finite component perpendicular to the plane. Naturally,
this diamagnetic response is very anisotropic and only weakly temperature de-
pendent. From this we can conclude that in nanographite ribbons with zigzag
edges the susceptibility should consist mainly of these two competing con-
tributions, χP and χorb. Hence, a crossover occurs from a high-temperature
diamagnetic to a low-temperature paramagnetic regime, where the character-
istic temperature depends on the width of the ribbon and on the orientation
of the external field. It is worth noting that the field direction is an important
tool to distinguish the magnitude of the two components.

In this subsection, we briefly summarize the way how to calculate the
orbital diamagnetic susceptibility χorb of graphite ribbons. We use the tight-
binding Hamiltonian for the calculation of orbital diamagnetic susceptibility
χorb. The free energy F (H,T ) in the presence of magnetic field is given by,

F (H,T ) = µN − 1

βπ

∫

BZ

dk
∑

n

ln
(
1 + e−β(εk,n(H)−µ)

)
(29)

where β = 1/kBT , µ is the chemical potential and εk,n(H) (n is the band
index) is the tight-binding energy spectrum of the graphite ribbons in the
magnetic field. Then magnetic moment M(H) and magnetic susceptibility
χ(H) per site are given by the 1st and 2nd derivative of free energy with
respect to H , respectively. Thus we have

M(H) = − 1

Ne

∂F

∂H
, and χ(H) =

1

Ne

∂M

∂H
. (30)

Before showing the results for the graphite ribbons, let us first briefly
review the large orbital diamagnetism in graphite. It was first shown by Mc-
Clure [31] that the origin of large diamagnetism in graphite is due to the
appearance of the Landau level at E = 0. When the energy dispersion is lin-
ear in k near the K or K ′ points, the Landau levels En in the 1st BZ of the
graphite sheet can be expressed as,

En = ±
√

3

2
ta
√

2nS (n = 0, 1, 2, · · · ) , (31)

where n is an index of the Landau levels and S is given by S = eH/~c.
Here t is the nearest neighbor transfer integral, and considered to be about
3.0 eV. Each Landau level has a characteristic feature which is very different
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from the behavior of the Landau levels of ordinary 3D free electron gas (see
Fig. 13). It may be noted that the zero-th Landau level is always located in
the zero energy gap at the K point. The zero-th Landau level does not shift
by magnetic field. We can easily show that all the Landau levels with zero
and negative Landau indices which are occupied by the valence electrons are
responsible for the increase of free energy when we apply magnetic field and
thus the orbital diamagnetism appears. When the Fermi energy is located
in the zero energy gap, the oscillation of the free energy, which is known to
cause de Haas-van Alphen effect at low temperatures, has a cusp at EF = 0
and yields large orbital diamagnetism as shown in Fig. 14(a). In Fig. 14(b),
we plot free energy as a function of EF for the 3D electron gas. In this case
there are no sharp peaks in the oscillation in contrast to the results presented
in Fig. 14(a) for graphite sheet. The expression for orbital susceptibility of
graphite sheet at finite temperatures has been derived by McClure [31] based
on the k · p approximation and it is given by,

χMC = −0.044

(
4

πCL

)3/2

(ta)
2
( e

~c

)2

(kBTρ) sech2

(
µ

2kBT

)
, (32)

where µ is the Fermi energy and ρ is the density of carbon atoms in the
unit volume of graphite. The typical value of χMC for graphite sheet at room
temperature is 21.0× 10−6 emu/g.
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Fig. 13. (a) Landau levels of graphite sheet near K point (b) Landau levels of 3D
metal

The orbital magnetism is influenced by the system geometry and size.
Here we show the Fermi energy dependence of χorb. Actually in real graphite
materials, a small change in the carrier density from the half-filling is possible
and can even be controlled by the substrate properties. The calculated Fermi
energy dependence is shown in Fig. 15(a), where it is found that χorb/W is
a universal function of µW . We normalize χorb by dividing it by W , since it
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Fig. 14. (a) Oscillation of free energy of graphite sheet as a function of EF. When
the Fermi energy is located at zero, this oscillation has sharp peak, however (b) the
simple 3D metal does not show such sharp peaks. The existence of this peak is the
origin of large diamagnetism in graphites

is proportional to W . Furthermore we multiply EF by W , because the direct
gap is proportional to 1/W at k = 0 for armchair ribbons and at k = 2π/3
for zigzag ribbons with large W .
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Fig. 15. (a) The Fermi energy dependence of the orbital magnetic moments χorb

of graphite ribbons at T = 0. (b) The temperature dependence of χorb, where χorb

is scaled by 1/W and β is scaled by W

In Fig. 15(b), the temperature dependence of χorb is shown. It is important
from the viewpoint of experiments on nanographites. In all the cases magni-
tude of χorb decreases with increasing temperature. It is also found that the
temperature dependence of χorb/W scales as a function of βW , because the
energy gap is proportional to 1/W . Our calculation also demonstrates that
the edge effect becomes more significant at lower temperature. Similar scaling
properties can also be found in carbon nanotubes [36, 37].
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3.2 Pauli Paramagnetism

In the previous subsection, we have seen that the orbital diamagnetic sus-
ceptibility depends on the edge shape of nanographite ribbons. Here we dis-
cuss about another important component of magnetic susceptibility, the Pauli
paramagnetic susceptibility χP as the zigzag ribbons have a sharp peak in the
DOS at the Fermi level. The width of this peak is of the order of meV, which is
comparable to the temperature scale at room temperature. Therefore, we ex-
pect that the Pauli susceptibility of zigzag ribbons is sensitive to temperature,
although the Pauli susceptibility of usual metals is temperature independent.
On the other hand, since the DOS of armchair ribbons at ε = 0 is zero or very
tiny, we can neglect the effect of Pauli paramagnetism in armchair ribbons.

The magnetic moment due to the Zeeman effect is M = µB (n↑ − n↓) ,
where µB is the Bohr magneton and n↑ (n↓) denotes the electron density with
up-spin (down-spin). The electron density at arbitrary temperature for each
spin is given by

nσ =
1

π

∫

1stBZ

dk
∑

n

1

1 + eβ(εn,k−σµBH)
, (33)

where σ(=↑, ↓) denotes the spin index. Therefore, the Pauli susceptibility χP

per site is given by

χP = lim
T→0

∂M

∂H
=
βµ2

B

πNe

∑

n

∫
dk

1

cosh (βεn,k)
. (34)

We calculate numerically the finite temperature Pauli susceptibility of
graphite ribbons using this equation up to room temperature.
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Fig. 16. (a) The temperature dependence of χP for N = 10, 20, . . . , 50 up to room
temperature. (b) The temperature dependence of total susceptibility χ = χorb +χP

is shown for N = 10, 20, . . . , 50. The inset shows the width dependence of the
crossing temperature, T0, where χ = 0

It is possible to separate the contribution of the edge states to χP. As we
have seen in Sect. 2 of this article, the DOS due to the edge states is given
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by (5). After substitution of (5) into (34), we replace the k-integration by the
energy integration. Then we obtain the χP contribution due to the edge states
as,

χP =
1

NeNβα

∫
dx

xα

coshx+ 1
∼ 1

N
Tα , (35)

where x = βεk and α = 1/N − 1. Interestingly, χP has the Curie-like temper-
ature dependence. The exponent of χP depends on the ribbon width through
α. When N becomes infinite, the exponent α approaches−1 and χP shows the
Curie-law. However, in this limit, the contribution of χP is diminished by a
factor 1/N in (35). Numerical results for the Pauli susceptibility χP of zigzag
ribbons up to room temperature are shown in Fig. 16(a) for various values of
N . As expected, because of the edge states, χP shows Curie-like temperature
dependence.

The observed susceptibility χ is essentially the sum of the orbital dia-
magnetic susceptibility χorb and the Pauli susceptibility χP. The temperature
dependence of the total susceptibility χ is shown in Fig. 16(b). The total sus-
ceptibility χ shows the diamagnetic behavior in the high temperature regime
and paramagnetic behavior in the low temperature regime. In the inset, the
width dependence of the crossing temperature, i.e., where χ = 0, is plotted,
which is approximately proportional to 1/N .

Here we should remind that both aromatic molecules and bulk graphite
show diamagnetic behavior, however, nanographite with zigzag edges have a
remarkable paramagnetic behavior because of the edge states. If this param-
agnetic behavior is experimentally detected, it will be an indirect evidence of
the existence of the edge states.

3.3 Magnetic Instability

The presence of the sharp peak in the density of states should induce lattice
distortion due to electron-phonon interaction and/or magnetic polarization
due to electron-electron interaction. Because of the non-bonding character of
the edge states, the lattice distortion in the vicinity of zigzag edges is unlikely
with the realistic strength of the electron-phonon coupling [38]. The absence
of lattice distortion has also been confirmed in terms of the density functional
approach [39]. We examine the effect of electron-electron interaction by using
the Hubbard model with unrestricted Hartree-Fock approximation. We find
the possibility of a spontaneous magnetic ordering near the edge, peculiar to
the nanometer scale fragments of graphite.

In order to study the magnetic instability of nano-graphite ribbons, we
use Hubbard model in the unrestricted Hartree-Fock (HF) approximation.
The Hamiltonian is written as

HHF = −t
∑

〈i,j〉,s
c†i,scj,s + U

∑

i,s

(
〈ni,−s〉 −

1

2

)
ni,s , (36)
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where the operator c†i,s creates an electron with spin s on the site i and

ni,s = c†i,sci,s. The indices of the sites in graphite ribbons are shown in
Fig. 1(b) and Fig. 1(c). The parameters t and U are the nearest-neighbor
transfer integral and the on-site Coulomb repulsion, respectively. The sym-
bol 〈· · · 〉 denotes the expectation value in the HF state. We solve the unre-
stricted Hartree-Fock (HF) Hamiltonian with the self-consistence conditions,
i.e., mi =

∑
i,s s〈ni,s〉, where mi represents the magnetic moment at site i in

the unit of Bohr magneton.
In Fig. 17, the U dependence of magnetization m for the zigzag ribbons

with (a) N = 2, (b) N = 3 and (c) N = 10 are shown. The dashed lines are HF
solutions for a 2D graphite sheet. The results for the armchair ribbons with
(a) N = 3, (b) N = 4 and (c) N = 5 are shown in Fig. 18. A peculiar feature
has been observed in the zigzag ribbons, the appearance of large magnetic
moments on the edge carbons even for weak U . It can be explained as follows:
Since the 2D graphite is a zero-gap semiconductor whose DOS is zero at the
Fermi level, the broken line stands up at a finite value of U(=UC). This is
consistent with the fact that graphite is non-magnetic when U is much smaller
than t. On the other hand, the zigzag ribbon has a large density of states at
the Fermi level originating from the edge states. Thus, non-zero magnetic
solutions can emerge for infinitesimally small U as has been observed in the
present mean-field result. However, special emphasis should be put on the
behavior of the magnetization at the edge site 1A. As shown in Fig. 17, the
magnetization at the site 1A rapidly rises up and reaches about 0.2 even
at small U(≈ 0.1) when the width of ribbon is increased. We note that the
armchair ribbon does not show such singular magnetic behavior as shown in
Figs. 18(a)-(c).
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Fig. 17. The U dependence of the magnetization m for the zigzag ribbons of N =
(a) 2, (b) 3 and (c) 10. The dashed lines mean the mean-field solutions for the
graphite sheet

Next, we should also stress the local ferrimagnetic structure for the zigzag
ribbons. We exhibit the magnetic structure of the ribbon with N = 10 at
U/t = 0.1 in Fig. 19(a), where spin alignment is visible at both edge sites.
The origin of this structure can be explained from the nature of the edge
states, which are responsible for magnetization. Since the amplitude of the
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Fig. 18. The U dependence of the magnetization m for the the armchair ribbons
of N = (a) 3, (b) 4 and (c) 5. The dashed lines mean the mean-field solutions for
the graphite sheet
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Fig. 19. (a) The schematic magnetic structure for the zigzag ribbon of N = 10
at U/t = 0.1. (b) The ribbon width, N , dependence of the magnetization at the
most outer site (1A). The magnetization at site NB has same magnitude but with
opposite sign

edge state is non-zero only on one of the two sublattices at an edge and damps
inwards, the magnetic moments grows selectively on this sublattice forming
local ferrimagnetic spin configuration, and the amplitude of these moments
diminishes rapidly on the inner sites. As the sites on the opposite edges belong
to different sublattices, the total magnetization for the zigzag graphite ribbon
is zero, and this vanishing of total magnetic moment in the ground state is
consistent with the exact statement for the half-filled Hubbard model [40].
Figure 19(b) shows the ribbon width N dependence of magnetization of the
outer most site (1A or NB). The magnitude of magnetization increases rapidly
as we increase ribbon width and it saturates around N = 10.

The ferrimagnetic spin polarizations along the zigzag edges are interest-
ing in view of the magnetic properties of nanographites. Nevertheless, the
long-range order derived from the mean-field calculation is spurious, because
no finite-momentum long-range spin order is expected in an one-dimensional
system with full spin-rotation symmetry [41]. Even we may argue that quasi-
long-range order, similar to the spin-1/2 Heisenberg chain, is not possible in
zigzag ribbons of any finite width for the following reason: The unit cell of the
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ribbons contains an even number of sites such that Haldane’s conjecture ap-
plies, i.e., the system should exhibit a spin gap [42]. This is very analogous to
the case of the ladder systems with even number of legs, which display a res-
onating valence bond (RVB) ground state, i.e., a short-range correlated spin
liquid state. With increasing the ribbon width, however, the analysis by the
random phase approximation (RPA) shows that the spin gap ∆s decreases ex-
ponentially due to the diminishing overlap between two edge states [43]. This
fact means that the zigzag edges favor spin polarization with ferromagnetic
alignment. The systematic analysis of topological network in nanographites
gives a good indication for designing new magnetic carbon materials [44–47].

4 Electronic Transport Properties

In this section, we discuss the electron transport properties of nanographite
ribbon junctions, and show that the edge states play a very important role on
the electron transport of nanographite systems. Because of the non-bonding
character of edge states, a single edge state cannot contribute to the electron
transport. However, in zigzag ribbons, the edge states can provide a single-
channel for electron conduction in the low-energy region. This is due to the
bonding and anti-bonding interaction between the two edge states arising
from both the edges that overlap. In order to analyze the electronic transport
properties of the edge states, we consider the nanographite ribbon junction
systems which connect two zigzag ribbons of different or same width. The elec-
trical conductance of such junction is calculated using the Landauer-Büttiker
formula based on the simple tight-binding model, in which conductance is
written in terms of the transmission coefficient [1, 48–50]. We calculate the
transmission coefficients of the junctions by of the recursive Green’s func-
tion method which provides high efficiency and accuracy for the numerical
calculations [51, 52].

Conductance of a nanographite ribbon junction as a function of Fermi en-
ergy shows rich structures in the energy region corresponding to single-channel
transport [15–17]. The remarkable feature in the behavior of conductance is
the appearance of sharp zero-conductance dip structures corresponding to
total reflection resonances. These conductance zeros are associated with the
presence of resonant localized states within the junction which resemble “flux
states” in the sense that they show a strong current-current correlation with
a Kekulé-like vortex pattern. The resonant state is a standing wave resulting
from the superposition of the two flux states which are the time-reversed of
each other. We also show that zero-conductance dips can be well interpreted in
terms of the result of an asymmetric Aharonov-Bohm(AB) ring connected to
current leads. Since these resonances are intimately connected with the time-
reversal symmetry of the system, the application of a magnetic field removes
the conductance zeros, yielding a pronounced negative magnetoresistance. In
this article, we emphasize that the edge states in nanographite ribbons lead to
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electronic transport properties distinctively different from those of the usual
quantum wires or carbon nanotubes.

4.1 Landauer Formula

We use the multi-channel Landauer formula (MCLF) [48–50] in order to eval-
uate the conductance of nanographite junctions. This formula was originally
developed in the context of Anderson localization problem. Nowadays it is
widely used for studying mesoscopic and nanoscopic systems. The MCLF de-
rives conductance from the scattering matrix. Through the scattering matrix,
S, the amplitudes of the scattered waves b are related to the incident wave
amplitudes a: [

bL

bR

]
= S

[
aL

aR

]
=

[
r t′

t r′

] [
aL

aR

]
, (37)

where t, t′ are the transmission matrices, r, r′ are the reflection matrices and
subscripts L and R denote the left and right lead lines. Conductance per spin
is defined in units of e2/π~ by

g(E) = tr
(
t†t
)

=
∑

µ,ν

|tµν(E)|2 , (38)

where tµν(E) is the transmission coefficient from νth to µth channel at energy
E. The scattering matrix can be written in terms of the lattice Green function
(GF). The lattice Green functions and the transmission coefficients can be
calculated from the tight-binding model. In order to calculate the lattice Green
functions efficiently, we adopt the recursive Green function technique [51,52].

An example of the nanographite ribbon junctions is depicted in Fig. 20(a).
The shaded central region corresponds to the scattering region, and the zigzag
ribbons of the left and right parts correspond to the lead lines. We need to
know the Green function of zigzag ribbons in order to apply the recursive GF
method (see next subsection).

4.2 Zigzag Ribbon as a Lead Line

Let us consider a zigzag ribbon of width N . We define the translational in-
variant direction as the y-axis and, the x-axis lies perpendicular to y-axis as
shown in Fig. 20(b). In zigzag ribbons, there are two kinds of columns in a
unit cell, which we call the α- and β-column, respectively. The equations of
motion for the electrons on the zigzag ribbon in the j−th cell are given by

{
(EI−Hα

0 )Cα
j −V†Cβ

j −VCβ
j−1 = 0

(EI−Hβ
0 )Cβ

j −V†Cα
j+1 −VCα

j = 0
, (39)

where Cα
j ( Cβ

j ) is a vector (N×1 matrix) which describes the wave function

amplitudes of the α(β)-column of j-th layer and Hα
0 ( Hβ

0 ) denotes the col-
umn Hamiltonian of α (β)-column. The V (V†) represents the inter-column
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Fig. 20. (a) An example configuration of nanographite ribbon junctions. The
shaded central region is the scatter. Lead lines (zigzag ribbons) are attached on
the both sides of the scatter. (b) The structure of zigzag ribbon. We classify two
columns called α and β in the unit cell. The rectangle with dashed lines is the unit
cell

Hamiltonian (N ×N matrix) describing hopping. From these two equations,
we can obtain the following system of equations




EI−Hβ

0 , 0, −V†, 0, −V

0, EI−Hβ
0 , 0, −V, −V†

−V, −V† 0, 0, EI−Hα
0








Cβ
j

Cβ
j−1

Cα
j+1

Cα
j−1

Cα
j




= 0 . (40)

Using either numerical or analytical method, we eliminate the two variables
of the β-column, Cβ

j and Cβ
j−1, to obtain the following Harper’s equation,

Cα
j+1 + uCα

j−1 + vCα
j = 0 . (41)

Assuming the Bloch form,
Cα
j+1 = λCα

j , (42)

we obtain the following eigenvalue problem,

λ

(
Cα
j

Cα
j−1

)
=

(
−v −u

1 0

)(
Cα
j

Cβ
j−1

)
. (43)

This equation has 2N eigenvalues and 2N eigenvectors, which are classified
as N right- and N left-going waves. The N right-going solutions consist of
traveling waves having positive velocities along the y direction and evanescent
waves decaying exponentially in the positive y direction. Similarly, the N left-
going solutions consist of traveling waves having negative velocities in the
y direction and evanescent waves decaying exponentially in the negative y
direction.

Let u1(−), · · · ,uN (−) be the left-going solutions of Cα
0 corresponding to

λ1(−), · · · , λN (−) and u1(+), · · · ,uN (+) be the right-going solutions of Cα
0

corresponding to λ1(+), · · · , λN (+). We then define two kinds of matrices,
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U(±) = (u1(±), · · · ,uN (±)) (44)

and

Λ(±) =



λ1(±)

. . .

λN (±)


 . (45)

Any left- and right-going wave can be written, for example at j=0, as

Cα
0 (±) = U(±)Cα(±) , (46)

where C(±) is an appropriate vector consisting of the expansion coefficients.
For general j, we have

Cα
j (±) = U(±)Λ(±)jCα(±) , (47)

which leads to the relation

Cα
j (±) = F(±)j−j

′

Cα
j′(±) , (48)

with
F(±) = U(±)Λ(±)U−1(±) . (49)

Note that U(±) is not a unitary matrix in general.

4.3 Scattering Matrix

Now let us consider the scattering problem. We assume that the scattering
object has Ns columns as shown in Fig. 21, starting from column 1 to column
Ns. The 0-th column corresponds to the end of the left lead line, and the
Ns + 1 column corresponds to the beginning of the right lead line. Infinite
zigzag ribbons are attached to each side of this scattering object as the leads.
First, we separate the amplitude Cα

0 at cell 0 into the right-going (incident)
and left-going (reflected) solutions:

Cα
0 = Cα

0 (+) + Cα
0 (−) . (50)

By using (48), the Cα
−1 can be rewritten as follows,

Cα
−1 = Cα

−1(+) + Cα
−1(−)

= F−1(+)Cα
0 (+) + F−1(−)Cα

0 (−)

= F−1(−)Cα
0 +

{
F−1(+)− F−1(−)

}
Cα

0 (+) . (51)

Let us consider the case where a zigzag ribbon is attached to the scattering
object at 0-th column. In order to do this, we have to derive an equation which
relates Cα

0 to Cβ
0 and Cα

−1 in terms of the following equation,
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[
EI−Hβ

0 , −V, 0, −V†

−V†, EI−Hα
0 , −V, 0

]



Cβ
−1

Cα
0

Cβ
0

Cα
−1


 = 0 . (52)

The elimination of Cβ
−1 gives

(EI−HL)Cα
0 −VLC

β
0 −V†

LCα
−1 = 0 . (53)

Now we substitute (51) into the above equation in order to eliminate Cα
−1,

and obtain obtain

(EI−HL−V†
LF

−1(−))Cα
0 −VLC

β
0 = V†

L

(
F(+)−1 − F(−)−1

)
Cα

0 (+) . (54)

Defining H̃L as
H̃L = HL + V†

LF(−)−1 , (55)

we obtain

(H− H̃L)Cα
0 −VLC

β
0 = V†

L

(
F(+)−1 − F(−)−1

)
Cα

0 (+) . (56)

On the other hand, in Ns + 1-th cell, only right-going waves exist, i.e.,

Left 
lead line

Right
lead line

Scatter

j= 0 1 2 3 Ns+1

Fig. 21. The columns in the scattering region are denoted by j=0,1,2· · · ,Ns,Ns+1

Cα
Ns+2 = F(+)Cα

Ns+1 , (57)

and

[
EI−Hβ

0 , −V†, 0, −V
−V, EI−Hα

0 , −V†, 0

]



Cβ
Ns+1

Cα
Ns+1

Cβ
Ns

Cα
Ns+2


 = 0 . (58)
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Eliminating Cβ
Ns+1 we obtain

(EI−HR)Cα
Ns+1 −V†

RCβ
Ns
−VRCα

Ns+2 = 0 . (59)

Inserting (57) to eliminate Cα
Ns+1, we find

(EI− H̃R)Cα
Ns+1 −V†

RCβ
Ns

= 0 , (60)

where
H̃R = HR + VRF(+) . (61)

Thus, the Schrödinger equation for the scattering problem has the form

(EI− H̃)C = D , (62)

where C, D and H̃ are given by the following matrices,

C =




Cα
0

C1

C2

C3

...
CNs−1

CNs

Cα
Ns+1




, D =




V†
L(F(+)−1 − F(−)−1)Cα

0 (+)
...
...
0




(63)

and

H̃ =




H̃L VL

V1,0 H̃1 V1,2

V2,1 H̃2 V2,3

V3,2 H̃3 V3,4

V4,3 H̃4 V4,5

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

VNs,Ns−1 H̃Ns VNs,Ns+1

V†
R H̃R




(64)

respectively. Here Vj,j+1 is the inter-column matrix from (j+1)-th column to
j-th column.

Let us now define the Green function G as

G =
(
EI− H̃

)−1

. (65)
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Then we can derive the relations

Cα
Ns+1(+) = Cα

Ns+1 = (Ns + 1|G|0)V †
L(F(+)−1 − F(−)−1)Cα

0 (+)

and

Cα
0 (−) = Cα

0 −Cα
0 (+) = [(0|G|0)V†

L(F(+)−1 − F(−)−1)− 1]Cα
0 (+) . (66)

From these equations, we can obtain the transmission coefficient tµν for the
incident channel ν with velocity vν and out-going channel µ with velocity vµ
as

tµν =

[
vµ
vν

]1/2 {
U(+)−1(Ns + 1|G|0)V†

L(F(+)−1 − F(−)−1)U(+)
}

µν
(67)

and the reflection coefficient rµν for incident channel ν and out-going channel
µ as

rµν =

[
vµ
vν

]1/2 {
U(−)−1

{
(0|G|0)V†

L(F(+)−1 − F(−)−1)− 1
}

U(+)
}

µν
.(68)

Once we obtain the transmission coefficient tµν , we can evaluate conductance
by the Landauer formula,

G(E) =
e2

π~

∑

µ,ν

|tµν(E)|2 . (69)

Thus conductance can be calculated from the lattice GF.

4.4 Recursive Relation of the Green Function

In order to evaluate the transmission and reflection coefficients, we have to
calculate the Green functions. Most powerful strategy is the recursive Green
function method. Let us define the following four Green functions by,

(j|G|j) = [j|(EI−H(j))−1|j] (70)

(j|G|0) = [j|(EI−H(j))−1|0] (71)

(0|G|j) = [0|(EI−H(j))−1|j] (72)

(0|G|0) = [0|(EI−H(j))−1|0] (73)

where H(j) is the total Hamiltonian for the strip comprising the 0 to j cells ex-
cluding the intercell Hamiltonian H̃j,j+1 and H̃j+1,j . Then the Green function
for strips of any length can be obtained by a set of recursive formulas,

(j + 1|G(j+1)|j + 1)−1 = EI− H̃j+1 − H̃j+1,j(j|G(j)|j)H̃j,j+1

(j + 1|G(j+1)|l) = (j + 1|G(j+1)|j + 1)H̃j+1,j(j|G(j)|l)

(l|G(j+1)|j + 1) = (l|G(j)|j)H̃j,j+1(j + 1|G(j+1)|j + 1)

(l|G(j+1)|l) = (l|G(j)|l) + (l|G(j)|j)H̃j,j+1(j + 1|G(j+1)|l) ,
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where the suffix l must be less than j + 1. In actual numerical calculations,
we use the following Green function as a starting point for our recursive cal-
culations.

(0|G(0)|0) =
(
EI− H̃L

)−1

. (74)

In terms of the above set of recursive relations, we can also calculate the Green
function at arbitrary positions. By the analytic continuation, we can obtain
the (local or total) density of states in the scattering region in terms of the
following relation,

ρ(E) = − 1

π
=mG(E + iη) . (75)

In addition, we can also study the behavior of the incident wave and current
flow in the scattering region by this method.

4.5 Design of Single-Barrier Nanographite Ribbon Junctions

Before we discuss the design of the junctions and their conductance properties,
let us summarize a few important facts concerning the low-energy states for
zigzag and bearded ribbons.

∆b

k= 2π
3a

E

E=0

π
a

k= 2π
3a

∆z∆z E=0

E

k=

s

(a) (b)

Fig. 22. The band structure near E = 0 of (a) zigzag ribbons and (b) bearded
ribbons

Zigzag ribbon: The zigzag ribbons are metallic for arbitrary ribbon width
with an energy dispersion near E = 0 as shown in Fig. 22(a). The partly flat
band appears at E = 0 due to the edge states. Each edge state has a non-
vanishing amplitude only on one of the two sublattices, i.e., non-bonding in
character. However, in a zigzag ribbon of finite width, two edge states coming
from both sides have a finite overlap. Because they are located on different
sublattices, they mix into a bonding and anti-bonding configuration. In this
way the partly flat bands acquire a dispersion. Note that the overlap increases
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as k deviates from π/a, because then penetration depth of the edge states
increases and it diverges at k = 2π/3a. The dispersion depends on the ribbon
width N (number of zigzag lines from one side to the other), and has the
approximate form

Ek = ±2tNDN−1
k

[
1− cos

(
ka

2

)]
, (76)

where Dk = 2 cos (ka/2). Thus, although the edge states on each side sepa-
rately have non-bonding character, but taking together through their overlap
they provide one conducting channel except at exactly E = 0. The energy
region of single-channel transport is restricted by the energy gap ∆s

z (see
Fig. 22(a))

∆s
z = 4t cos

[
N − 1

2N + 1
π

]
. (77)

Note that ∆s
z is different from ∆z defined in Sect. 2, which is the direct gap

of zigzag ribbons at k = 2π/3.
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Fig. 23. The structure of junction (a) I, (b) II and (c) III

Bearded ribbon: The bearded ribbon has one zigzag edge and one edge
which has additional bonds (beard) to the zigzag edge. Here the edge states
of both edges exist on the same sublattice. Consequently, there is no mixing
between these edge states that would remove the non-bonding character, and
we obtain a completely flat band at E = 0 for any width N . The absence
of dispersion leads to the insulating behavior for the edge state channel. The
gap to the first conducting channel depends on N and is given by

∆b = 4t cos

[
N

2N + 2
π

]
. (78)

Now let us turn to the design of junctions. In this subsection we study
three types of junctions sandwiched by two zigzag ribbons denoted by L and
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R. The middle region will be denoted by M. The junction I is depicted in
Fig. 23(a). The M-region between the two zigzag ribbons of width N is a
bearded ribbon which has l attached bonds. This is an example to illustrate
the peculiar features of transport properties in zigzag ribbon junctions, re-
gardless of the question as to whether bearded ribbons could be realized in
nature. It should be noted that this model represents a metal-insulator-metal
junction. In Fig. 23(b) and Fig. 23(c), the junctions II and III are depicted.
These junctions connect zigzag ribbon leads of different width. The M-region
contains a tilted zigzag edge for junction II and a tilted armchair edge for junc-
tion III. These junctions are more realistic than junction I. In the junctions
II and III, the length of the M-region is proportional to NL −NR.

4.6 Fermi Energy Dependence of Conductance

We now discuss the energy dependence of conductance G(E) of the junctions
I - III. The energy may be considered as the chemical potential which could
be adjusted by a gate voltage. The energy E = 0 corresponds to the undoped
system which is half-filled.

Figure 24(a) shows the Fermi energy dependence of the ballistic conduc-
tance of junction I with N = 10 for the whole energy region, where the number
of the attached bonds is 0, 1 or 3. Since the system with l = 0 is a perfect
conductor, the ballistic conductance is proportional to the number of conduct-
ing channels at the Fermi energy, i.e., the number of subbands at the Fermi
energy. The conductance has a clear step-like feature as a function of Fermi
energy. With increasing number of attached bonds conductance decreases due
to backward scattering. In the multi-channel energy region the structure of the
function G(E) is rather smooth, but in the single-channel region near E = 0
conductance has strong features for l 6= 0. Since in realistic systems the low-
energy region close to E = 0 is most important, we shall focus our attention on
the behavior of conductance in the low-energy region. The G(E) of junction I
in the single-channel region, |E| < ∆b/2, is shown in Fig. 24(b) and Fig. 24(c)
as a function of Fermi energy. The characteristic feature is the appearance
of zero-conductance dips at the specific values of E where the system shows
complete back-scattering. The number of dips increases and the maximum
height of the conductance decreases as we increase the number of attached
bonds. Interestingly, even one-attached bond makes a zero-conductance dip.
We should note that near the bottom of the valence bands (the top of the
conduction bands), which is also a single-channel region, the dip structures
of zero-conductance does not appear. Since the bottom of the valence bands
(the top of the conduction bands) has the character of ordinary free electrons,
the appearance of the zero-conductance dips near E = 0 is related to the
topology of the lattice and the electron spectrum around E = 0. We should
remark that the conductance of the junctions connecting two nanotubes of
different circumference does not show this type of dip structures [53].
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In Fig. 25, the Fermi energy dependence of the conductance of junction
II for (a) the whole energy range, (b) the single conducting channel region
and (c) single conducting channel region with log-scale are displayed. Here we
define the single-channel region as |E| < ∆b(NL)/2, where both leads have a
single conducting channel (NL > NR implies ∆b(NL) < ∆b(NR)). Similarly,
Fig. 26 is for the junction III. For both the junctions, we fix the width of the
left zigzag ribbon at NL = 20, while the width of the right zigzag ribbon is
varied asNR = 16, 14, 10. Since the maximum number of conducting channels
is equal to the width of the lead lines, conductance decreases with the decrease
of width of the right zigzag ribbon in the multi-channel region. The behavior
of conductance of the junctions II and III are qualitatively same in the multi-
channel region. However, in the single-channel region near E = 0, the behavior
of conductance of the junctions II and III are quite different. The conductance
of junction III is smooth even in the single-channel region, but for junction II
dip structures appear analogous to those of junction I.
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Fig. 26. The Fermi energy dependence of the transmission probability of junction
III for (a) the whole energy region and (b) the single conducting channel energy
region

In junction II, with the increase of length of the M-region, the number of
the zero-conductance dips increases and conductance decreases in magnitude.
The tilted edge in junction II supports an edge state which, similar to the
bearded ribbon, lies on the same sublattice as the edge state on the other side
of the ribbon.
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4.7 Large Induced Current Vortex

The appearance of the zero-conductance resonances can be understood by
the formation of standing waves due to the interference effects between the
incident and scattered electron waves [15]. This interference effects produce
additional structures in the spatial distribution of electric currents over the
scattering region of nanographite ribbon junctions. In this subsection, we draw
attention on the spatial distribution of electric currents close to the energies of
the zero-conductance dips. For energies close to a zero-conductance resonance,
a Kekulé-like vortex pattern appears over the scattering region. The nearly
regular pattern reminds of a flux state. We will see that the resonant state
responsible for the zero-conductance dip may also be considered as a standing
wave due to the superposition of such a “flux state” and its time-reversed
state.

Fig. 27. The distribution of currents in the M-region of junction I with N = 20
and l = 6, at E = 0.049565t (immediately below E2 in the Fig. 28 )

In order to visualize the spatial distribution of electric currents, we study
here bond current distribution. The bond current flowing from site-j to site-i
is defined by

Ji,j = i
et

~

(
ei2πθi,j |i〉〈j|+ h.c

)
. (79)

In Fig. 27, we show the distribution of currents for junction I with N = 20
and l = 6, at E = 0.049565. This energy lies immediately below E2, a zero-
conductance resonance shown in Fig. 28(a). The overall current gives rise to a
clockwise vorticity. In the junction region we observe a clear triangular Kekulé
pattern of the current vortex. Interestingly, the center of the junction region
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supports large circulating currents while the net current passing through the
junction is rather small. We also see that the current pattern rapidly vanishes
when we leave the junction region. When we increase the energy slightly above
E2, we find a very similar current distribution pattern in the junction region.
While the net current is flowing in the same direction as in the previous case,
the vortex pattern shows opposite orientation and the overall vorticity is also
reversed.
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In order to analyze the features of this current vortex pattern in more
detail, we introduce the local vorticity which is defined on the dual (triangu-
lar) lattice as the clockwise sum of the currents flowing on the bonds of each
hexagonal ring. The local vorticity on the pth hexagonal ring is given by

Vp =

6∑

i=1

Ii,p , (80)

where Ii,p means the current on the ith bond of pth hexagonal ring. In order
to quantify the total of all circulating currents flowing in the junction, we take
an average of |Vp|. This quantity, V1, is given by

V1 = 〈|Vp|〉 =
∑
p |Vp|∑
p 1

. (81)

Similarly, we also define the total vorticity of the junction, V2, as

V2 = 〈Vp〉 =
∑
p Vp∑
p 1

. (82)

This represents the direction of the total circulating current component of
the junction. It should be noted that the summation over plaquettes is taken
over rings in the junction region M and slightly beyond including several
columns of rings in the leads because there is a proximity effect of the current
vortex pattern, i.e., the components of circulating currents penetrate into
both the left and the right lead lines. In Fig. 28, we show the Fermi energy
dependence of V1 and V2 for the junction I with N = 20 and l = 6 in the
single conducting channel region. Both V1 and V2 vanish at each energy of zero-
conductance, which means that not only the total vorticity V2 disappears, but
also no circular currents can be found in each individual plaquette (V1 = 0).
Moreover, the vorticity V2 changes its sign at each zero-conductance energy
point. Note that both V1 and V2 exhibit a linear (E − En) dependence close
to the zero-conductance point En. The fact that both vorticities go to zero at
each zero-conductance energy En verifies the claim that the resonant state in
the junction region may also be interpreted as a standing wave formed by the
superposition of two flux phase-like states that are connected with each other
by means of time-reversal operation. This also suggests that the resonance
should disappear once time-reversal symmetry is explicitly violated, as for
example, by an external field.

The study of Vp allows us also to observe the formation of the Kekulé-like
vortex pattern easily, if we transform Vp into momentum space,

F (k) =
∑

p

Vp cos(k · rp), (83)

where rp is the coordinate of the hexagonal ring center, and kx(ky) is the wave
number along (perpendicular to) zigzag lines in the junction. The sum runs
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again over all rings in the junction and a few columns beyond. In Fig. 29(a)
and Fig. 29(b), we show F (k) again for junction I with N = 20 and l = 6 close
to the zero-conductance point E2. We see the Bragg peaks at q1 = 2π

a ( 1√
3
, 1

3 )

(or q2 = 2π
a (0, 2

3 )) and q3 = 0, corresponding to a triangular correlation of
the flux state-like current vortex pattern depicted in Fig. 27. In Fig. 29(c), we
show the 3D-plot of the F (k), where the pronounced triangular symmetry can
be observed. We would like to mention here that we have observed analogous
current pattern and properties of V1 and V2 for junction II.

Finally we would like to draw attention to a remarkable property of the
vorticity V2 (and V1) close to each zero-conductance point. The net current
passing through the junction is defined as

Jnet = (1− |r|2)Jlead = |t|2Jlead , (84)

where Jlead is the incoming component of the current on the source lead line
from one of the reservoirs. Close to each zero-conductance point En we find
that Jnet ∝ (E − En)2, a quadratic dependence. With the linear dependence
of V2 ∝ (E−En), the total vorticity of the system considered as a “response”
to a current through the junction (Jnet) diverges as the energy approaches En,
i.e., V2(E)/Jnet(E) ∝ (E−En)−1. Consequently, for energies E close to a zero-
conductance point, even a small net current may generate a large vorticity,
within the linear response regime. This is not a real linear response, since the
external source corresponds to the lead current Jlead, and the actually mea-
sured current Jnet includes all the scattering renormalizations. Nevertheless,
the relation between vorticity and transmitted current may be experimentally
verified.

4.8 Connection with Asymmetric Aharonov-Bohm Ring

In this section we consider a simple model which has analogous electronic
transport properties as the nanographite ribbon junctions and we study it
on the basis of the scattering matrix theory developed by Büttiker and co-
workers [54]. The system that we study is the single-channel asymmetric
Aharonov-Bohm (AB) ring connected to current leads, as shown in Fig. 30.
We will adopt the notation of [54]. This system reproduces well the qualitative
properties of our ribbon junctions. If the two branches in the AB-ring have
different length or different transmission probabilities, zero-transmission reso-
nances appear as a function of energy. A current through the device generates
circulating currents in the ring which change sign at each zero-conductance
resonance. The application of an external field leading to a finite magnetic flux
through the ring yield a negative magnetoresistance at the zero-conductance
resonance. We also find that at the zero-conductance resonance, the two
branches of the ring possess electron wave functions of opposite parity. All
these features are common with the nanographite ribbon junctions.

Following the theory developed by Büttiker, we consider the single-channel
electron transport through the AB-ring as shown in Fig. 30, where the upper-
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and lower-branch have different lengths, L1 and L2, respectively. The circum-
ference is L = L1 +L2 = (1+R)L1. The notations for the amplitudes of wave
functions on each branch are given in Fig. 30. We assume that each branch
has only one conduction channel. The upper(lower) branch has a scatterer
expressed by the transfer matrix t1 (t2), which relates the amplitudes to the
left with the amplitudes to the right of the scatterer. These transfer matrices
are defined as,

[
β2

β′
2

]
= t1

[
β′

1

β1

]
=

[
1/t∗1 −r∗1/t∗1
−r1/t1 1/t1

][
β′

1

β1

]
, (85)

and
[
γ1

γ′1

]
= t2

[
γ′2
γ2

]
=

[
1/t∗2 −r∗2/t∗2
−r2/t2 1/t2

][
γ′2
γ2

]
, (86)

where ti = T
1/2
i eiφi (i = 1, 2) is the transmission amplitude of the scatterer,

Ti the transmission probability, and φi the phase shift of the transmitted wave
(i = 1 and 2 represents upper and lower branchs, respectively). Here ri ( r′i )
is the reflection amplitude. It is sufficient for our purpose to consider the case
where ri = 0, i.e., we have perfect transmission (Ti = 1).

Now let us consider the junction between lead and ring. The amplitudes
of the three outgoing waves are connected with the three incoming ones via a
3×3 scattering matrix (which depends on three parameters only [54]),



α′

β′

γ′


 = S



α
β
γ


 =



−(a+ b) ε1/2 ε1/2

ε1/2 a b

ε1/2 b a





α
β
γ


 , (87)
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where ε (0 ≤ ε ≤ 1/2) is the key parameter determining the coupling between
the ring and a lead. Note that the matrix S is unitary because of the cur-
rent conservation and symmetric because of the time-reversal invariance. The
probability (current) conservation requires that

(a+ b)2 + 2ε = 1 , (88)

a2 + b2 + ε = 1 . (89)

Thus we can rewrite a and b as the functions of ε: a± = ± 1
2

(√
1− 2ε− 1

)

and b± = ± 1
2

(√
1− 2ε+ 1

)
.

Now we determine the transmission amplitude and the circulating currents
in this system for some arbitrary value of ε. The boundary conditions are α1 =
1 and α2 = 0, i.e., an incident wave from the left lead line. It is straightforward
to calculate the amplitude of the transmitted wave:

α′
2 = −e−iθ1

εh

b2 det(Π)
, (90)

where

h = det(Π)[b− a, 1]t1Π
−1

[
b− a
−1

]
, (91)

with Π = tle
−iθ2t′2tle

−iθ1t1− 1. We have generalized the problem here includ-
ing magnetic flux φ through the loop with θ = θ1 + θ2 = 2πφ/φ0. The phase
shifts due to the gauge field in the upper and lower branch are θ1 = θ/(1+R)
and θ2 = Rθ/(1+R), respectively. The link matrix tl entering in Π is defined
as [

γ′2
γ2

]
= tl

[
β2

β′
2

]
=

1

b

[
b2 − a2 a
−a 1

] [
β2

β′
2

]
. (92)

It is also straightforward to obtain the amplitudes in the two branches as
follows, [

β′
1

β1

]
= −
√
ε

b
Π−1

[
b− a
−1

]
, (93)

[
γ1

γ′1

]
=

√
ε

b
Π̃−1t−1

l

[
b− a
−1

]
, (94)

with Π̃ = t−1
l eiθ1t−1

1 t−1
l eiθ2t′−1

2 − 1.
We can then express the transmission amplitude including magnetic flux

as

α′
2(φ, ε) =

iε(sinφ1 + eiθ sinφ2)

a2 cos γφ+ b2 cos θ − (1− ε) cosφ+ iε sinφ
, (95)

where φ = φ1 + φ2 and γ = (1−R)/(1 +R). It should be noted that φ1 and
φ2 can be written as
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φ1 =
1

1 +R
φ and φ2 =

R

1 +R
φ . (96)

The transmission probability T (φ, ε) = |α′
2(φ, ε)|2, proportional to the con-

ductance, now shows zero-conductance dips in the absence of magnetic flux
(θ = 0). The transmission zeros appear for φ = φ0 given by

φ0,1 = 2mπ or φ0,1 = (2m+ 1)π/γ, (97)

where m is an integer.
The resonant behavior of transmission probability is determined by the

poles of the transmission amplitude (95). In order to determine the poles of
(95), we rewrite φ as φ = φr + iφi. The real and imaginary parts of the phase
φ are determined by the following two equations,

2 sin γφr sinh γφi − sinφr(e
φi − (1− 2ε)e−φi) = 0 , (98)

a2 cos γφr cosh γφi + b2 cos θ − 1

2
cosφr(e

φi + (1− 2ε)e−φi) = 0 . (99)

We find that a resonance solution is associated with two poles in complex
φ-plane.
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Fig. 31. Numerical results for junction I with N = 20 and l = 6: (a) The contour
plot of the absolute value of the transmission amplitude in the complex energy
plane. The zero-pole pairs appear at each zero-transmission energy. (b) The energy
dependence of the phase of transmission

In the asymmetric case, i.e., γ 6= 0 (R 6= 1), it is not easy to deal with (98)
and (99) in a simple analytic way. The numerical analysis shows two types of
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solutions of zero-transmission, φ0,1 and φ0,2, which have the following different
characteristic features.
i) φ = φ0,1 solution: This solution satisfies (95) for arbitrary γ, and gives a
zero-transmission resonance with in general one zero point and two poles in
complex φ-plane. In the strong coupling limit of ε = 1/2 with γ 6= 1, one
of the two poles goes to infinity, so that the resonance can be characterized
by a zero-pole pair in the complex φ-plane, resulting in the zero-conductance
resonance. On the other hand, when the ring is symmetric, i.e., γ = 0 (R = 1)
for arbitrary coupling, the zero point and one of two poles are canceled so that
only one pole is left on the complex φ-plane. Then the feature of the resonance
is usual resonant transmission due to one pole. Thus the φ0,1 solution gives
the condition of anti-resonance for the asymmetric AB-ring system.
ii) φ = φ0,2 solution: This solution appears when the ring is asymmetric, i.e.,
γ 6= 0. Although this solution also gives a zero point and poles, the zero point
and poles are always degenerate on the real axis for arbitrary γ. Therefore
the zero-transmission resonance of this solution has different character than
that of the φ0,1 solution. The degeneracy of poles and zero point is not lifted
by the variation of the coupling parameter ε.

In Fig. 31(a), we show the contour plot of the absolute value of trans-
mission amplitude in the complex energy plane for junction I with N = 20
and l = 6. We clearly see the zero-pole pair at each zero-conductance energy
points. Thus we can consider that the nanographite ribbon junction systems
correspond to the asymmetric AB-ring systems in the strong coupling limit
(ε→ 1/2). In the strong coupling limit, we can rewrite the transmission prob-
ability as

T = |α′
2(ε→

1

2
)|2 =

4| sinφ1 + eiθ sinφ2|2
(cos γφ+ cos θ − 2 cosφ)2 + 4 sinφ

. (100)

Since the zero-conductance resonances can be characterized by the zero-
pole pair on the complex energy plane, one zero-conductance resonance be-
havior can be written by the following Brite-Wigner form,

tBW(E) = t̃(E)
E −E0

E − (Ep − iΓ )
(101)

where Γ is the width of the resonance. Here E0 and Ep respectively gives the
position of the zero and the pole. In general, E0 is not equal to Ep. When
E0 = Ep, the resonance have the symmetric Lorentzian form. It is instructive
to consider the behavior of the phase θBW of transmission coefficient when
|tBW|2 passes through zero. The phase is defined as

θBW = tan−1

[=m(tBW)

<e(tBW)

]
. (102)

It is easy to confirm that the phase of the transmission amplitude with the
form of (101) jumps at E = E0 (not at E = Ep) by π.
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In Fig. 31(b), the phase of the transmission is depicted, where clear π
phase jumps are observed at each zero-conductance energy points. It should
be noted that recently the behavior of the phase of transmission coefficient has
attracted much interests [55–58] in the context of the experiments of Yacoby
et al. [59] and Schuster et al. [60]. It may be mentioned that the appearance
of zero-transmission resonances accompanied with the zero-pole pair can be
seen not only in the asymmetric AB-ring system, but also in the quantum wire
system with an attached resonator [61–68]. Thus electron transport through
the nanographite ribbon junctions is deeply connected to both of them.

Next we study the circulating current that flows in the AB-ring. The
electric current in the upper(lower) branch J1 (J2) is given by |β1|2 − |β′

1|2
(|γ′1|2−|γ1|2), so that we define the vorticity (VAB) of electric currents through
the AB-ring as J1 + J2. After some simple mathematical manipulations, we
obtain the vorticity VAB as

VAB = J1 + J2 =
2εb sinφ[sin γφ+ (a+ b) sin θ]

[a2 cos γφ+ b2 cos θ − (1− ε) cosφ]
2

+ ε2 sin2 φ
. (103)

In the strong coupling limit (ε→ 1/2), we can rewrite the above equation as
follows,

VAB

(
ε→ 1

2

)
=

8 sinφ sin γφ

[cos γφ+ cos θ − 2 cosφ]
2
+ 4 sin2 φ

. (104)

We find that the vorticity VAB changes its sign at the energies of zero-
transmission resonances, i.e., at φ = φ0. At the energies of zero-transmission,
the vorticity VAB becomes zero as no circulating currents can flow in the sys-
tem. Since the expression for vorticity VAB also has the resonance features,
the vorticity becomes stronger around the energies of zero-transmission res-
onances. These behaviors of vorticity are consistent with the results of our
numerical calculations on the nanographite junction systems.

The zero-conductance resonance is a consequence of the destructive time-
reversal interference. The application of magnetic field can destroy these zero-
transmission resonances, resulting in the negative magnetoresistances. In the
weak magnetic field limits (θ � 1), we can easily derive the magnetic field
dependence of the transmission probability as follows.

T (θ) =

[
sin(mγπ)

a2 cos(2mγπ) + b2 + ε− 1

]
θ2 +O(θ3) at φ0 = 2mπ , (105)

T (θ) =

[
cos2((2m+ 1)π/2γ)

[a2 + b2 − (1− ε) cos((2m+ 1)π/γ)]2 + ε2 sin2((2m+ 1)π/γ)

]
θ2

+O(θ3) at φ0 = (2m+ 1)π/γ . (106)

In both the cases, the zero-transmission gets removed in the form of θ2.
In the summary of this section, we have established a connection between

electron transport through nanographite ribbons and electron transmission
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through the asymmetric Aharonov-Bohm ring. We observe that the zero-
conductance resonances are the interference effect of two transmission paths
that split in the scattering region of the nanographite ribbon junctions. The
interference effects can be visualized by the formation of the standing waves
whose parity is different on the two edges of the junctions, and also by the
formation of circulating currents with Kékule-like vortex pattern. Recently,
we have also studied the effect of the Rashba spin-orbit coupling on the zero-
conductance resonances within the framework of the scattering matrix theory,
where the lifting of conductance zeros due to spin-orbit coupling is related to
the breaking of the spin reversal symmetry [69].

4.9 Summary

In this article, we have investigated the electronic, magnetic and transport
properties of nanographite systems. It is found that the electronic states are
strongly influenced by the existence of the graphite edges and also by their
shapes. Zigzag edges produce localized edge states, which give a sharp peak
in the density of states at the Fermi level.

The orbital magnetic susceptibility χorb of nanographites has the interme-
diate values between those of aromatic molecules and bulk graphites. The χorb

can be scaled as a function of Fermi energy, temperature and ribbon width.
Zigzag ribbons show large Pauli paramagnetic response at low-temperature
due to the existence of sharp peak in the density of states at the Fermi level,
while in the armchair ribbons Pauli paramagnetic susceptibility χP is negli-
gible. Since the width of the peak is of the order of meV, the paramagnetic
susceptibility χP is sensitive to temperature resulting the Curie-like behav-
ior. In nanographite systems, this paramagnetic response competes with the
diamagnetic responses, and we have crossover from high-temperature diamag-
netic response to low-temperature paramagnetic response.

The edge states are not stable even for small onsite Coulomb interaction,
and it yields localized spins of about 0.2 µB at the edge sites. In the zigzag
ribbons spins align ferrimagnetically due to the non-bonding nature of the
edge states. The two magnetic states which are polarized at the zigzag edges
couple antiferromagnetically resulting in zero total magnetization and this
result is consistent with the Lieb’s argument. Since the zigzag ribbons have
even sites in the unit cell, the ground state of the system can be considered as
a resonating valence bond state, which induce a gap for the spin excitation.
However, since the coupling between two edges decreases rapidly with the
increase of width, the spin gap is negligibly small when the ribbon width has
a nanometer-scale.

The methods that we discuss here are also applicable to other edge shapes
that support non-bonding edge states (e.g., the bearded and cove edges). On
the basis of our analysis in the previous sections, the non-bonding edge states
are expected at the edges which are not parallel to the armchair edge. Thus,
there is a class of nanographites that show a crossover from the paramagnetic
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phase at low temperature to the diamagnetic phase at high temperature,
which can be assigned as the characteristic feature of this class of nanographite
systems.

In the activated carbon fiber (ACF) and graphitized nanodiamonds, the
dangling bonds are terminated by other elements. Nevertheless, their magnetic
susceptibility shows the Curie-Weiss behavior originating from the existence
of localized spins [20, 21]. Since in the ACF and graphitized nanodiamond
systems dangling bonds are terminated, the presence of the dangling bond
spins are ruled out. Our results show that the non-bonding edge states give
strong Pauli paramagnetic response even in the absence of electron-electron
interaction. Thus, we conclude that the localized spin originating from the
non-bonding edge states is one of the strong candidates to explain the behavior
of magnetic response of nanographite systems.

In general on observes that the graphite-related materials are quite silent
in respect of their magnetic response. However, our results suggest that in
nanographite systems paramagnetic response due to the non-bonding edge
states are very important, and the nanographites are quite different from the
bulk graphites and aromatic molecules from the viewpoint of their magnetic
properties.

We have also studied the electronic transport properties of nanographite
ribbons by the Landauer-Büttiker approach within the tight-binding frame-
work, sandwiching the sample between two zigzag ribbons of same or different
widths. The zigzag shape of a graphite edge provides a non-bonding edge local-
ized state at E = 0. A single edge state cannot contribute to electron transport
due to this non-bonding character, however, in the zigzag ribbons the bonding
and anti-bonding configuration between two edge states can provide a single
conducting channel. Our numerical study shows that the electrical conduc-
tance of nanographite ribbon junctions crucially depends on the morphology
of the edge shapes.

In the single-channel conducting region, the Fermi energy dependence of
electrical conductance of nanographite ribbon junctions exhibit rich struc-
tures with sharp zero-conductance dips. We have analyzed the origin of the
zero-conductance dips from the behavior of the electronic wave functions and
electric currents. Each zero-conductance resonance can be associated with a
quasi-bound state in the scattering region of the junctions with the formation
of standing waves. It is also found that in the scattering region electron waves
split into two edge localized electron waves which have opposite parity.

Furthermore, when the energies of the incident electron waves are close to
the energy of zero-conductance resonances, the electric currents form circu-
lating currents with Kekulé-like vortex pattern in the scattering region. This
behavior of electric current resembles the flux states in the sense that they
have strong current-current correlation. The flux states that appear in the
scattering region decrease rapidly outside this region. This circulating cur-
rents change their directions as we cross the energies of the zero-conductance
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dips. Therefore, the zero-conductances are caused by the superposition of two
flux states with opposite chirality, resulting in the formation of standing waves.

We have presented not only the numerical analysis, but also the phe-
nomenological theory for the zero-conductance resonances associated with
the electric current vortex. It has been pointed out that the single-channel
transport through the nanographite ribbon junctions can be connected to the
physics of the asymmetric Aharonov-Bohm ring system. The zero-conductance
resonance is a consequence of the destructive interference effects between two
conducting-channels states in the scattering region which arise from the split-
ting of the single-channel conducting edge states. The analysis in the complex
energy plane shows the Brite-Wigner form of (101). This means that the zero-
conductance resonance can be viewed as the so-called Fano resonances [70],
which are known to occur when two scattering channels are available, one cor-
responding to a continuum of states and the other to a discrete quasi-bound
state. It is also known that the Fano resonances can occur in quantum wire
with a t-stub resonator [63, 64]. Thus, the single-channel electron transport
through nanographite ribbon junctions has the similarities not only with the
asymmetric Aharonov-Bohm ring, but also with the quantum wire with a
t-stub resonator.

The zero-conductance resonances are the consequence of the time-reversal
symmetry of the system. The application of a magnetic field removes these
zero-conductance dips yielding a pronounced negative magnetoresistance.
Since carbon nanotubes show large positive magnetoresistance, the negative
magnetoresistance in nanographite systems is in sharp contrast.
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6. L. G. Cançado, M. A. Pimenta, B. R. A. Neves, G. Medeiros-Ribeiro, T. Enoki,

Y. Kobayashi, K. Takai, K. Fukui, M. S. Dresselhaus, R. Saito, A. Jorio: Phys.
Rev. Lett. 93, 047403 (2004)

7. E. Dujardin, T. Thio, H. Lezec, T. Ebbesen: Appl Phys. Lett. 79, 2474 (2001)
8. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Appl. Phys. Lett. 60,

2204 (1992)
9. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 46, 1804

(1992)
10. N. Hamada, S. Sawada, A. Oshiyama: Phys. Rev. Lett. 68, 1579 (1992)



148 Katsunori Wakabayashi

11. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker:
Nature 391, 59 (1998)

12. T. W. Odom, J. Huang, P. Kim, C. M. Lieber: Nature 391, 62 (1998)
13. K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 54,

17954 (1996)
14. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist: Phys. Rev. B 59, 8271 (1999)
15. K. Wakabayashi: Ph.D Thesis, Tsukuba University (2000)
16. K. Wakabayashi, M. Sigrist: Phys. Rev. Lett. 84, 3390 (2000)
17. K. Wakabayashi: Phys. Rev. B 64, 125428 (2001)
18. K. Wakabayashi: Electronic and Magnetic Properties of Nanographite. In:

Carbon-based Magnetism—An Overview of the Magnetism of Metal Free

Carbon-based Compounds and Materials, ed by T. Makarova, F. Palacio (Else-
vier 2006) pp 279–304

19. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama:
cond-mat/0404069 (2004)

20. Y. Shibayama, H. Sato, T. Enoki, M. Endo: Phys. Rev. Lett. 84, 1744 (2000)
21. O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y.

Kaburagi, M. Yoshikawa, S. Bandow: Phys. Rev. B 58, 16387 (1998)
22. K. Han, D. Spemann, P. Esquinazi, R. Höhne, V. Riede, T. Butz: Adv. Mater.
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1 Introduction

The simplest thermoelectric system is a closed loop made with two different
metals connected in the form of junctions at both ends. In 1822–1823 Seebeck
discovered an electric current flowing through the loop when the junctions
are kept at different temperatures, the so-called Seebeck effect. This system
then works as a thermoelectric power generator. Since the electric current
flows through both metals of the closed loop system, in each metallic branch
there exists a voltage difference V between its two ends. Let us consider the
simpler case of one conductor in which a relevant electric field E associated
to V is created by a gradient ∇T of the temperature T . The above mentioned
experiment suggests a relation

E = S∇T , (1)

where S is the Seebeck coefficient or the thermopower.
Twelve years later, in 1834 Peltier observed the temperature change

around a junction between two different metals when an electric current passed
through, which is now called Peltier effect. This observation must be related
to the heat absorbed or released at the junction, depending on the direction of
the electric current j. One can simply imagine that when the electric current
flows in each metallic branch, an amount of heat Q is generated, which is
connected to the current j as

Q = Π j (2)

by the Peltier coefficient Π . The Peltier effect is closely related to the Seebeck
effect. We will show later that Π=ST .

Soon after the discovery of Peltier effect, in 1838 Heinreich Lenz per-
formed a simple experiment with enormous impact to the development of
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thermoelectricity. Lenz put a water droplet at each of the two junctions of a
bismuth-antimony closed loop and derived an electric current through the sys-
tem. One water droplet then freezes into ice while the other droplet remains
in the form of water. By reversing the direction of the electric current, the ice
at one junction melts into a water, but the water droplet at the other junction
freezes into ice. This is a clear indication that at one junction the external
electric current supplies heat to the loop system, and at the other junction the
electric current extracts heat from the loop system. Consequently, not only
thermoelectric power generator can work as a thermoelectric refrigerator, one
can also control the thermodynamic phenomenon at the junction of two differ-
ent conductors as power generation or refrigeration with an external voltage
source.

Thermoelectricity is a typical problem of energy conversion. The devel-
opment of thermodynamics in the next thirty years after Seebeck’s discovery
brought all types of energy conversion to the interest of physicists. When an
electric current j flows through a homogeneous conductor in which there is a
temperature gradient ∂T/∂x, say along the x-axis, Thomson discovered that
an amount of heat

Q = Γj
∂T

∂x
(3)

is generated or absorbed, where Γ is the Thomson coefficient. Γ is again
related to both S and Π .

For a long time the practical use of thermoelectricity is measuring temper-
ature with thermocouples. Its use in power application emerged much later,
and now has become one important approach to solve the energy problem.
However, the efficiency of thermoelectric generator and refrigerator was in-
vestigated in 1885 by Rayleigh, and was correctly calculated by Altenkirch
in 1909. Since the efficiency is the most important problem in power appli-
cation, we will present its complete derivation in Sect. 2. Only after going
through this derivation, we can understand the physical significance of the
fundamental thermoelectric quantity Figure of Merit.

The Figure of Merit of a thermoelectric material is defined as [1] ZT with
Z≡S2σ/κ, where κ is the (combined electron and phonon) thermal conductiv-
ity, σ the electric conductivity, and the temperature T is measured in Kelvin.
For technological applications one would like to have a bulk thermoelectric
material with its ZT value as high as possible. We will show in Sect. 2 that if
ZT>1 the efficiency of thermoelectric power generation becomes larger than
20% of the Carnot engine efficiency.

Before the wide use of semiconductors in modern industries, metals were
the only conductors technically known. For all metals the values of ZT are
much less than unity at all temperatures. Using the free electron gas as a model
system, for which the electron density n is the only varying parameter, Ioffe
has calculated Z and found [2] a broad maximum in the curve Z vs n around
the electron density 1019 cm−3. Since this range of n can be easily reached by
doping semiconductors with impurities, bulk semiconductors are among the
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best thermoelectric materials and have been much studied. Although many
thermoelectric materials with ZT'1 were discovered in the past, they are still
not good enough to meet the requirement for commercial power generator
and/or refrigerator.

Looking for new thermoelectric material systems often requires the guid-
ance of fundamental theoretical analysis. The semiclassical theory for ther-
moelectricity is based on the Boltzmann transport equation, the accurate so-
lutions of which can only be obtained numerically such as through the Monte
Carlo method. The commonly accepted analytical solutions are within the
scope of relaxation time approximation. Within this approximation the fun-
damental thermoelectric theory will be summarized in Sect. 3. Since the dom-
inating physical process in Boltzmann equation is scattering, the resulting
diffusive transport is rather slow and therefore cannot produce high value of
ZT . To overcome this problem one needs to find new thermoelectric mech-
anisms. One favorable process which is much studied in recent year is the
thermionic transport.

Thermionic emission of electrons from a hot surface is a well-studied phys-
ical process. If the surface is used as a cathode, and if all emitted electrons are
collected, the emitted current density is called the Richardson current which
depends on the cathode temperature T and the cathode work function. The
simplest thermionic device, the so-called electron engine, consists of two par-
allel metal plates separated by a very narrow vacuum gap. Keeping the two
metal plates at different temperatures, there is a net thermally emitted elec-
tron current from the hot plate to the cold plate. In principle, large thermionic
current can be achieved if one can reduce the work function to sufficiently low
and the vacuum gap sufficiently narrow. With the advancement of material
fabrication technology to produce high quality layer materials, there has been
much progress in thermionics. In Sect. 4 we will discuss this new research
field.

The modern material fabrication technology can also produce one-
dimensional systems such as quantum wires. Using the formula given in
Sect. 3, it is easy to calculate the figure of merit of quantum wires, and the
calculated values of ZT can be very high. However, for power applications,
we will show in Sect. 5 that quantum wires are not good candidates.

Regardless the transport mechanism, the definition of ZT suggests that
in the desired systems σ and S should be enhanced, but κ suppressed. The
thermal conductivity κ consists of an electronic part κel and a phonon part
κph. While it is relatively easy to control κel by quantum confinement, to
manipulate κph and to confine phonons spatially is a difficult task [3]. The
phonon heat flow from the hot electrode to the cold electrode will reduce the
temperature gradient, and thus becomes an increasingly important problem
in the nano-scale devices that already have important commercial applica-
tions. There have been much studies on κph in terms of the particle motion
of phonons, but not in terms of their wave motion. The wave motion picture
of phonon heat transfer will be analyzed in Sect. 6.
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It is well-known that quantum effects become increasingly important when
the sample size decreases. Concerning transport properties, the two most im-
portant processes are ballistic transport and tunneling transport. While bal-
listic transport is connected to the over-the-barrier emission in thermionics,
resonant tunneling usually occurs within a small energy window. This window
can be used as a filter to select electrons with specific energy, for example,
cold electrons with low kinetic energy. In this respect, the tunneling related
thermoelectric phenomena will be studied in Sect. 7.

The recent advancement of materials sciences and manipulation techniques
on nanometer scale have doubtlessly great impact on thermoelectricity. Along
with this advancement, novel ideas also appear from time to time. Some of
these ideas have found their applications in thermionics. In Sect. 8 we will
outline the consequence of some new concepts.

In the area of thermoelectricity, it happens often that new technologies
revives old research topics. In the final Sect. 9 we will give one such example
where the modern nanotechnology revives the old research work on electron
engine.

2 Thermodynamic Efficiency

We will use thermodynamic laws to derive the thermoelectric efficiency of
power generation and refrigeration. With the electric current j in the proper
direction, the system is schematically shown in Fig. 1 for a power generator.
There are two heat reservoirs, one with a hot temperature Th and the other
with a cold temperature Tc. The reservoirs are connected by a thermoelectric
conductor. To avoid the unnecessary complication in mathematical expres-
sions, we assume that the thermoelectric conductor has a unit length and a
unit cross-section area. Since our results are consequence of the thermody-
namic laws, they are valid for any material systems.

2.1 Thermoelectric Power Generation

As we have discussed in the previous section, a voltage V will be built up
between the two ends of the thermoelectric conductor. Now, we will connect
these two ends to an external load via two metallic wires, which are extremely
short and have extremely low thermal conductivity. Hence, we only have to
consider electric current j but not heat current flowing through the external
part of the closed circuit. Let R be the resistance of the external load. Then,
the amount of work that can be done by this thermoelectric power generator
is

W = jV = V 2/R . (4)

This thermoelectric power generator is schematically shown in Fig. 1.
Using (2) with Π=ST , the heat current flowing from the hot reservoir into

the thermoelectric conductor is
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Th Tc
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Work = Rj2
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j j

Thermoelectric Conductor

External Load

Fig. 1. Schematic description of a thermoelectric power generator

jqh = SThj + κ(Th − Tc) , (5)

where κ=κel+κph is the total thermal conductivity. Similarly, the heat current
flowing from the thermoelectric conductor into the cold reservoir is

jqc = STcj + κ(Th − Tc) . (6)

When the electric current j flows through the thermoelectric conductor with
an electric resistivity ρ, a Joule heat

jqjoule = j2ρ (7)

is generated. Half of this heat, j2ρ/2 moves into the hot reservoir and the
other half into the cold reservoir.

The efficiency of the generator, η(R) is the ratio of the useful work W to
the net heat extracted from the hot reservoir:

η(R) =
W

jqh − j
q
joule/2

=
V 2R

SThV R+ κ(Th − Tc)R2 − V 2ρ/2
. (8)

For a given structure of the thermoelectric power generator, this efficiency
is a function of the load resistance R. To determine the maximum efficiency
η(R0) for the optimum load resistance R0, we solve the equation

∂η(R)

∂R

∣∣∣∣
R=R0

= 0 (9)

to obtain

R0 = ρ

√

1 +

(
S2

ρκ

)(
Th + Tc

2

)
. (10)

It is more convenient to introduce the dimensionless quantity r=R0/ρ. If we
define a mean temperature Tm=(Th+Tc)/2 and the thermoelectric parameter
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Z = S2/ρκ > 0 , (11)

so that we can rewrite
r =

√
1 + ZTm > 1 (12)

to obtain the final form

ηmax ≡ η(R0) =

(
Th − Tc

Th

)(
r − 1

r + Tc/Th

)
. (13)

The parameter ZTm is called the figure of merit as we introduced previ-
ously, which plays a crucial role in the field of thermoelectricity. It depends
on both the mean temperature Tm and the transport features of the thermo-
electric conductor. In (13), on the right hand side, the first ratio (Th–Tc)/Th

is the Carnot efficiency for a reversible heat engine. Hence, by increasing the
value of r (or the figure of merit ZTm), the efficiency of the thermoelectric
power generator approaches the ideal Carnot efficiency. The efficiency ηmax

can also be increased with higher value of Th as expected, which enhances
both factors on the right hand side of (13).

2.2 Thermoelectric Refrigeration

The processes in a thermoelectric refrigeration are shown in Fig. 2, where
an external power is supplied to drive the electric current j in the reversed
direction. We see from (5) and (6) that in a thermoelectric generator, there
is a net heat flow

∆jq = jqh − jqc = S(Th − Tc)j (14)

from the hot reservoir to the cold reservoir. This continuous heat flow will
eventually remove the temperature difference Th − Tc. To maintain the cold
reservoir to be cold, it is necessary to balance this heat flow ∆jq . Besides, we
also need to compensate the Joule heating in the thermoelectric conductor.
This is the reason that we must supply an external power to keep the reservoir
temperatures at Th and Tc. The amount power supplied from a power source
with a voltage output V is

P (V ) = jqjoule +∆jq = jV + S(Th − Tc)j . (15)

It is clear that the operating process of thermoelectric refrigeration is opposite
to that of thermoelectric power generation.

The efficiency of thermoelectric refrigeration is measured by the coefficient
of performance K(V ), which is defined as the ratio of the heat extracted from
the cold reservoir, jqc − jqjoule/2, to the external power supplied P (V ):

K(V ) =
jqc − jqjoule/2

P (V )
=
STcj − jV/2− κ(Th − Tc)

jV + S(Th − Tc)j
. (16)

Using the relation V=jρ the above equation reads as
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Th Tc

jqjoule/2jqh jqc
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j jPower Supply
P = jV

Fig. 2. Schematic description of a thermoelectric refrigerator

K(V ) =
STcV − V 2/2− κ(Th − Tc)ρ

V 2 + S(Th − Tc)V
, (17)

and from the condition
∂K(V )

∂V

∣∣∣∣
V=V0

= 0 (18)

we derive the maximal value of the coefficient of performance

Kmax ≡ K(V0) =

(
Tc

Th − Tc

)(
r − Th/Tc

r + 1

)
, (19)

where r is given by (12). As in the case for thermoelectric power generation, a
high value of figure of merit also yields a high value of the coefficient of perfor-
mance. This is not a surprising conclusion, since thermoelectric refrigeration
is just the reversal of thermoelectric power generation.

It is instructive to give some measured values of the figure of merit, from
which we can estimate the efficiency of the corresponding thermoelectric de-
vices. Here we will follow the convention to express the figure of merit as ZT
instead of ZTm. So far the bulk material, crystals or alloys, with the highest
figure of merit at room temperature is Bi2Te3, as shown in Fig. 3. Using such
good thermoelectric materials to make devices, the highest efficiency is about
20% of the Carnot efficiency. Lately the main focus of device research has
shifted from traditional bulk compounds to layer materials. We will return to
this topic in the later sections.

3 Fundamental Thermoelectricity

We need to understand thoroughly the electric conductivity σ, the thermal
conductivities κel and κph, as well as the thermopower S in order to be able
to fully analyze the figure of merit. A more general aspect of the problem
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Fig. 3. Measured ZT of several good bulk thermoelectric materials

is carrier and heat transport under the influence of an external electric field
and a temperature gradient. The starting point is the Boltzmann transport
equation, the accurate solution of which can be obtained numerically only
in almost all cases. The most commonly used analytical approach is semi-
classical and is based on the relaxation time approximation, which we will
follow here.

3.1 Relaxation Time Approximation

When an electron moves through a material it experiences various types of
collisions, and stronger collisions result in higher resistance. An electron can
be scattered by lattice ions (or phonons), other electrons, impurities, defects,
surfaces and interfaces, etc. When electrons collide with lattice ions, their
kinetic energy can be transferred to the lattice system and it heat up the
material. This is known as Joule heating. When a current j passes through a
conductor of resistance R, in a time interval t, the amount of heat dissipated
in the conductor is

Q = j2R t , (20)

which is known as Joule’s law.
Electronic conduction in conductors has been well-studied with the re-

laxation time approximation using a non-equilibrium distribution function
g(r, k, t), where r is the position of the carrier and k is its wave vector. This
distribution function is so defined that at the time t the number of electrons
in the volume drdk in phase space is g(r, k, t)drdk/4π3. When the system is
under equilibrium, the distribution function reduces to the Fermi function
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g0(r, k, t) = f [ε(k)] =
1

e[ε(k)−µ]/kBT + 1
, (21)

where ε(k) is the energy of the electron and µ the chemical potential.
In the presence of an uniform external electric field E and a homogeneous

temperature gradient ∇T , using the semiclassical equations of motion

v(k) =
∂r

∂t
=

1

~

∂ε(k)

∂k
, (22)

~
∂k

∂t
= −eE , (23)

the distribution function is spatially independent and steady in time, and can
be written as [4]

g(k) = f [ε(k)] + τ [ε(k)]
(
− ∂f(ε)

∂ε

)
v(k)

[
− eE +

ε(k)− µ
T

(−∇T )

]
, (24)

where −e is the electron charge. The relaxation time τ [ε(k)] is the average
time between two collisions of an electron. In the above equation we have
neglected the change of chemical potential with temperature, which is of the
order of (kBT )2/εF and is small with respect to the Fermi energy εF .

When electrons flow through a conductor, they generate both an electric
current density j and a heat current density jq . These current densities can
be calculated from

j = −e
∫

dk

4π3
v(k)g(k) , (25)

jq =

∫
dk

4π3
(ε(k)− µ)v(k)g(k) . (26)

We should mention that equation (26) does not include the Joule heat j2R
which is generated in the conductor due to electron-phonon collisions. This
Joule heating is a second order effect in applied electric field, and is therefore
much smaller than the heat current defined in (26). Nevertheless, Joule heating
is still important since it is an energy dissipation process. Since it has the form
j2R, Joule heat dissipation has no specific direction. When a large current is
passed through an electric circuit, if the removal of Joule heat is not sufficiently
fast, the electric circuit can break down. This is an important aspect to be
considered in nano-electronics.

3.2 Thermoelectric Coefficients

Using the distribution function given by (24), we can rewrite the equations
(25) and (26) as

j = L11E + L12(−∇T ) , (27)

jq = L21E + L22(−∇T ) , (28)
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where Lij are known as thermoelectric coefficients. In terms of the compact
expression

Lα = e2
∫

dk

4π3

(
− ∂f(ε)

∂ε

)
τ [ε(k)]v(k)v(k)[ε(k)− µ]α , (29)

the four thermoelectric coefficients Lij are defined as

L11 = L0 , (30)

L21 = TL12 = −1

e
L1 , (31)

L22 =
1

e2T
L2 . (32)

In the absence of a temperature gradient, equation (27) reduces to the Ohm’s
law j=σE. Hence the electric conductivity is identified as

σ = L11 . (33)

The electronic part of the thermal conductivity is defined as
κel=j

q/(−∇T ) when there is no electric current flowing through the system.
Setting j=0 in (27), from (28) we obtain

κel = L22 − L21L12

L11
. (34)

By introducing the Seebeck coefficient

S =
L12

L11
, (35)

we can thus rewrite (27) and (28) as

j = σ [E + S(−∇T ) ] , (36)

jq = S T j + κel (−∇T ) , (37)

which are the commonly used forms in literatures.
For metals, the second term in (30) is smaller than the first term by a

factor of the order of (kBT/εF )2, and can be neglected. Furthermore, L22 has
the explicit expression

L22 =
π2

3

k2
BT

e2
σ +O((kBT/εF )2) . (38)

Inserting this in (34) and neglecting the terms of order (εF /kBT )2, we obtain
the relation

κel =
π2

3

k2
B

e2
Tσ = LTσ , (39)
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which is the Wiedemann-Franz law, and L=π2k2
B/(3e

2) is called the Lorentz
number.

Besides the heat transport by electrons and the Joule heating due to
electron-phonon collisions, heat can also be transported by phonons. This
heat conduction is proportional to the temperature gradient in the material:

j
q
ph = −κph∇T . (40)

Since phonons are neutral quasi-particles, the phonon heat conduction will
not be affected by an electric field.

3.3 Seebeck Effect and Peltier Effect

We have introduced in Sect. 1 the Seebeck effect and the Peltier effect, which
have been known and been measured for more than 160 years. Here we will
explain these two observed phenomena with the semi-classical theory.

It was observed by Thomas Seebeck in 1823 that when a metallic rod is
heated up at one end, an electric field in the material is established, which is
proportional to the temperature gradient in the rod:

E = S∇T . (41)

This field stops the electron motion driven by the temperature gradient, re-
sulting in no net electron flow in the rod. The Seebeck coefficient S is also
called the thermopower. The above relation is a direct consequence of (36)
with j = 0, since the metallic rod is an open circuit in which no electric
current can flow.

Measuring of the Seebeck coefficient is not as straightforward as connect-
ing a voltmeter between the ends of the metallic rod, because such a connec-
tion introduces a temperature gradient in the voltmeter as well. Therefore, the
thermopower of the voltmeter contributes to the measured Seebeck coefficient.
If one cannot reduce this influence to a required accuracy, only relative See-
beck coefficients between two thermoelectric materials can be obtained. The
experimental setup is to keep one end of each rod at the same temperature,
and then to connect the other end of each rod across a voltmeter. Since the
voltmeter is under constant temperature, it measures the difference between
the thermopowers of the two materials.

When an electric current j flows through a metallic rod which is kept at
uniform temperature, there will be an accompanying heat current jq . The two
currents are proportional to each other as

jq = Π j . (42)

This is the Peltier effect and Π is the Peltier coefficient. From (31), (35) and
(37), we obtain

Π = TS =
L21

L11
. (43)
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It is important to note that when passing a current through a metallic rod,
a Joule heat jqjoule will be produced according to the Joule’s law. This heat

transports uniformly in all directions, and in a metallic rod half of jqjoule goes
along one direction of the rod and the other half in the opposite direction.
However, this is a second order effect, and to a first order approximation the
heat current through the rod is given by (42).

4 Thermionics

Although the analysis of thermoelectric processes based on the relaxation time
approximation is not accurate quantitatively in some cases, the scattering
of carriers is the most important feature of the entire problem. It make the
carrier transport diffusive, and therefore can hardly yield high values of ZT . To
increase the value of ZT , one needs to find new transport mechanisms and/or
new sample structures. To minimize the scattering effect, thermionic transport
has been extensively studied in recent years. We will first describe the basic
theoretical aspects of thermionics and then use the so-derived knowledge to
investigate the thermoelectric phenomena in semiconductor superlattices.

4.1 Classical Theory

Thermal emission of electrons from a metal surface into vacuum is a well-
known phenomenon and has found its use in old-fashion electronic devices
such as vacuum tubes. Let eφ be the work function of the metal emitter.
In classical description, as soon as an electron inside the metal is thermally
excited above the work function level (the top of the potential barrier), it
escapes from the metal surface and contributes to the thermionic current. At
temperature T , the thermionic current density emitted from a metal surface
is given by the Richardson’s equation

J(φ, T ) =
emk2

BT
2

2π2~3
e−eφ/kBT . (44)

It should be noticed that while the exponential part of J(φ, T ) is independent
of the dimensionality of the electronic system, the power of T in the prefactor
of J(φ, T ) does depend on the system dimensionality. One has to be careful
when calculating the Richardson current in one-dimensional quantum wires.

To demonstrate the thermionic power generation and refrigeration, we
will consider a simple 3-layers metal-insulator-metal structure, the potential
profile of which is illustrated in Fig. 4. We assume that the two metal plates
are identical with the same work function eφ, but have different temperatures
TL and TR. Our theoretical analysis also remains valid if the two metal plates
are different. With an applied bias V to raise the Fermi energy εf of the
metal at the left with respect to that of the metal at the right, as shown in
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Fig. 4, the effective potential barrier for the electrons to be thermally excited
from the right to the left is increased from the work function eφ to eφ+eV .
The thermionic current across the potential barrier is the sum of two Richard
currents

J(φ, TL, TR, V ) =
emk2

B

2π2~3

[
T 2

Le−eφ/kBTL − T 2
Re−e(φ+V )/kBTR

]
. (45)

Let us assume that TR>TL. At zero bias V=0, the thermionic current is neg-
ative (from right to left against the arrow shown in Fig. 4) with a net electron
flow from the high temperature metal to the low temperature metal. This
system is a power generator. With increasing bias V , the thermionic current
will decrease to zero, and then reverse its direction. Then the thermionic cur-
rent flows from the cold metal with temperature TL to the hot metal with
temperature TR. In this case the system is a refrigerator.

εf
εf

TL TR

Metal
Metal Insulator

eV

J

φ

φ

e

e
d

Fig. 4. A simple 3-layers metal-insulator-metal thermionic system

Form (45) it is clear that a low work function is required for generating
a large thermionic current, but ordinary metals have rather large work func-
tions. Even for metals with work function eφ ' 1 eV, the practical operating
temperature for such a device is in the range from 600 K to 1000 K, far above
the room temperature. Equation (45) does not take into account the effect
of image force which reduces the potential barrier height from the ideal work
function. This image force is important if the separation d of the metallic lay-
ers becomes less than 1 µm. It has been reported that a separation of d = 60 Å
can reduce the potential barrier height by 63% for Ag-O-Cs system [5]. How-
ever constructing and maintaining this small separation in a real device can
be a major problem.

Another important aspect which is ignored in the above analysis is the
space charge accumulated in the vacuum between the two metal plates. This
space charge can change drastically the simple potential profile shown in
Fig. 4. We will return to this topic after we present the quantum mechan-
ical description of thermionics.
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4.2 Quantum Theory

One would like to have a weak potential barrier in Fig. 4 in order to produce
large thermionic current. It is well-known that in this case quantum mechan-
ical tunneling through the barrier becomes important if the kinetic energy of
an electron lies in certain energy range. When this occurs, the Richardson
formula (44) is no longer valid. To analyze the quantum processes, we will
follow the concept conductance from transmission [6] of Landauer. Instead of
Fig. 4, we will describe the system and the relevant physical processes with
the help of Fig. 5. The two metal plates in Fig. 4 are replaced by two per-
fect conducting leads at the left (labeled by L) and at the right (labeled by
R), which have different temperatures (TL and TR) and different chemical
potentials (µL and µR). These two leads serve as two electron reservoirs, and
therefore their chemical potentials are not affected by the flowing current.
The region of potential barrier in Fig. 4 is replaced by a ballistic conductor
because scattering plays no role in the calculation of tunneling probability.

µ µ
L−Lead R−Lead

V

x=0 x=L

Ballistic
ConductorL RTL TR

Fig. 5. A model system for the quantum description of thermionics

To simplify the writing of mathematical formula, let us consider a poten-
tial energy U(x) which depends on x only. This is indeed realistic when we
come to treat the thermionic processes in semiconductor superlattices. Let us
first consider the dynamics of electron in the x-direction. Ignoring the kinetic
energy of the electron in the yz-plane, the electron energy then has the simple
form

ε(k) =
~2k2

2m∗(x)
+ U(x) , (46)

where m∗(x) is the effective mass of the electron. The electrons in each reser-
voir are under equilibrium obeying the Fermi distribution

fL,R(ε) =
(
e[ε−µL,R−U(x)]/kBTL,R + 1

)−1
. (47)

Since the conductor is ballistic, electrons with k>0 in the conductor must
have originated from the left lead, while electrons with k<0 must have come
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from the right lead. Let T (ε) be the energy-dependent transmission coefficient
through the conductor. Then, all electrons in k>0 states contribute a current

j+ =
−e
L

∑

k

1

~

∂ε

∂k
fL(ε) [1− fR(ε)]T (ε) (48)

=
−e
π~

∫ ∞

0

dε fL(ε) [1− fR(ε)]T (ε) .

Assuming that the transmission function is the same for both the k>0 and
the k<0 states, the current produced by all electrons in k < 0 states has the
similar form

j− =
e

L

∑

k

1

~

∂ε

∂k
fR(ε) [1− fL(ε)]T (ε) (49)

=
e

π~

∫ ∞

0

dε fR(ε) [1− fL(ε)]T (ε) .

The net current flowing through the conductor is then

j = j+ − j− =
−e
π~

∫ ∞

0

dε T (ε) [fL(ε)− fR(ε)] . (50)

For two identical leads, the net current is zero if there is no temperature
gradient (TL=TR) and no bias (V=0). At zero temperature TL=TR=0, for
two identical leads with a finite bias V=[U(0)–U(L)]/e, the current

j =
e2V

π~
(51)

is linear in applied bias. This means that the conductance

G =
j

V
=

e2

π~
(52)

is a constant.
For a semiconductor superlattice grown along the x–axis, each (ky,kz) state

is treated as an independent conducting channel. Hence, the total current is
simply proportional to the cross-section area A of the yz–plane. When A
becomes sufficiently small such that quantum confinement occurs, the eigen-
energies of these conducting channels, εm,n with integer quantum numbers m
and n, become discrete. This is the case of quantum wires and the electron
energy is then modified as

εn(k) = εm,n +
~2k2

2m∗(x)
+ U(x) . (53)

An electron with energy ε can propagate in the εm,n channel as long
as εm,n≤ε. Let M be the total number of channels in the energy range
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U(x=L)<ε<U(x=0). Then, at zero temperature the current j and the con-
ductance G are scaled as j=M(e2V/π~) and G=M(e2/π~). With a split-gate
technique, one can change the value of M one by one. Whenever a channel
is opened or closed, the conductance makes a discrete jump of e2/π~. This
conductance quantization was observed experimentally [7, 8]. Further details
can be found in the book by Datta [9].

The heat current is derived in the same manner as the electric current:

jq =
1

π~

∫ ∞

0

dε (ε− µ)T (ε)
[
fL(ε)− fR(ε)

]
. (54)

Using the total current given by (50), the Joule heat can be calculated as

jqjoule = j V = j
U(0)− U(L)

e
(55)

=
U(0)− U(L)

π~

∫ ∞

0

dε T (ε)
[
fL(ε)− fR(ε)

]
.

In terms of these jq and jqjoule, for the case that µ(L)'µ(R), the coefficient of
performance of a thermionic refrigerator can be calculated from

K =
jq − jqjoule/2

jqjoule

. (56)

Clearly, one should reduce the Joule heating in order to achieve a higher
coefficient of performance.

Assuming a small temperature difference ∆T between the two leads, and
a weak applied bias ∆U/e=[U(0)–U(L)]/e, we can expand the integrand of
(50) in terms of ∆T and ∆U/e. Keeping only terms linear in ∆T and ∆U we
arrive at

I =
−e2
π~

∫ ∞

0

dε T (ε)
df(ε)

dε

[ε− µ
T

∆T +∆U
]
. (57)

From this expression we can calculate the Seebeck coefficient

S = − ∆U

e∆T
. (58)

This expression of Seebeck coefficient was used in the study of a quantum
point contact [10].

4.3 Semiconductor Superlattices

In 1958 Hatsopoulos and Kaye of the Department of Mechanical Engineering,
Massachusetts Institute of Technology, reported at a conference: The literature
on thermionic devices contains suggestions that a fairly simple tube, the diode,
might be used to convert heat directly into useful electrical work. On the basis
of a research program started four years ago in the Research Laboratory of
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Heat Transfer in Electronics at M.I.T., we have succeeded in obtaining both
an efficient and a practical engineering method to convert heat directly into
electricity, with no moving parts. The configuration of this thermo-electron
engine diode consists two parallel metal plates separated by a narrow vacuum
gap. However, this engine operates well only if the temperature of the hot
plate reaches as high as 1100oC. To improve the efficiency of such an electron
engine, one needs to reduce the work function of the electrode.

Many experiments were carried out using electrodes made from low work
function materials. However, accumulated data indicated that efficiency of
such type of device depends on the temperatures and the width of the vac-
uum gap, but not on specific electrode material. In other words, referring
to Fig. 4, there is an effective potential barrier regardless what material is
used for the electrodes. In fact, the problem of this effective potential bar-
rier for thermal emission of electrons was studied in 1923 by Langmuir [11].
When the thermally emitted electrons move from the cathode to the anode,
a space charge builds up in the vacuum gap. The problem has to be solved
self-consistently with the Poisson equation taken into account. The result is
that the space charge in the vacuum region creates an additional repulsive
potential which depends on the gap width. Mahan has performed a detailed
numerical analysis [12] to confirm the theoretical prediction of Langmuir, and
suggested a metal-semiconductor multi-layer structure, in which there is no
vacuum gap and therefore the space charge will be removed.

The characteristic feature of thermionics is Richardson current over po-
tential barrier. Therefore, a variety of systems such as single-barrier, multiple-
barriers, and superlattice have been investigated by many authors both ex-
perimentally and theoretically. Here we will not discuss individual works even
selectively. Instead, we will outline only the key issues of this physics.

It is easy to show that room-temperature refrigeration is efficient if the
potential barrier height in Fig. 4 is lower than 0.3 eV. Such a low potential
barrier can be achieved in semiconductor superlattices with doped wells. In
semiconductor superlattices the well width LW, the barrier width LB, the bar-
rier height, and the Fermi level can be tailor made. In such heterostructures
the doped wells are considered as metallic so that the carriers relax very fast.
Therefore, local thermal equilibrium is assumed in every well. Such assump-
tion implies a carrier mean free path l shorter than the superlattice constant
L=LW+LB. When a carrier in one well is thermally excited over the barrier,
it cannot move beyond the adjacent well in either direction perpendicular to
interfaces.

However, in many semiconductors with normal doping level, l is of the
order of several hundred Å at room temperature. For high mobility semicon-
ductors such as GaAs or Ge, l is about 1000 Å at room temperature, and much
longer at lower temperatures. On the other hand, the typical lattice constant
in practical superlattices, which are used for thermoelectric measurements, is
about 100 Å. Hence, there is a large probability for a thermally excited carrier
to pass over several barriers before it emits phonons and relaxes in a well. As
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a consequence of such multi-barrier hopping, in each quantum well the car-
rier distribution is perturbed from equilibrium when non-thermalized carriers
arrive from other wells.

This problem was overcome conceptually and a way was found to solve
it [13]. To clarify the important role of multi-barrier hopping when l is longer
than L, let us rewrite (29) in a more suitable form:

Lij = (−e)2−i−j
∫

dε(ε− µ)i+j−2G(ε)

[
− d

dε
f(ε)

]
. (59)

Then, the linear response transport parameters electric conductivity σ, ther-
mopower S, and electron thermal conductivity κel can be expressed as

σ = L11 , (60)

S =
L12

TL11
, (61)

κel =
(L11L22 −L21L12)

TL11
. (62)

For a homogeneous bulk material, in relaxation time approximation, G(ε) can
be calculated as [4]

G(ε) =
2

3
e2N(ε) vl , (63)

where N(ε) is the carrier density of states, and v the carrier velocity.
One can express σ, S, and κ in terms of Lij , as given above, not only

for homogeneous bulk systems, but also for systems in which the electric
field and the temperature gradient vary slowly in space. The key issue is to
find a correct G(ε). We will demonstrate this feature for a semiconductor
superlattice. It has been shown in [14] that if the voltage and the temperature
variation across L are small, its transport parameters can be expressed in
terms of certain effective bulk thermoelectric parameters which are derived as
averaged thermionic transport processes over the barriers of a semiconductor
superlattice. For the Richardson current J(φ, T ) given by (44), if LB�LW,
these effective bulk parameters are [14]

σ = (eJ/kBT )LB , (64)

κel = 2(kB/e) J(φ, T )LB , (65)

S = (kB/e)[ (eφ/kBT ) + 2 ] . (66)

It is easy to show that, when the electron distribution in the energy region
above the barrier follows the Boltzmann statistics, the above expressions for
σ, S, and κel can be reproduced from (59)–(62) with

G(ε) = (1/2)e2N(ε)vLB . (67)

From (59) and (67), we conclude that thermoelectric transport in a semicon-
ductor superlattice is equivalent to that in a homogeneous bulk semiconductor
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in which the carrier mean free path is 3LB/4 and the chemical potential is
eφ below the band edge. The fact that LB plays the role of the carrier mean
free path can be easily understood because in [14] carrier transport over a
barrier is ballistic, followed with an immediate thermalization upon entering
the adjacent well.

It is important to point out that although the potential barrier is made
of undoped semiconductor but not vacuum, charge still accumulates in the
barrier regions. Based on theoretical understanding given above, thermionic
transport phenomena in semiconductor superlattice have been studied taking
into account both the charge accumulation in the barrier region and the multi-
barrier hopping [13]. The key work in [13] is to construct a correct effective
G(ε). One interesting outcome from this study is that most efficient thermionic
transport is achieved if the energy difference between the top of the effective
barrier and the chemical potential is 1–2 times of the thermal energy kBT . The
condition is satisfied in the experiment [15], and a very high value ZT=2,4 is
obtained in p-type Bi2Te3/Sb2Te3 superlattice.

While almost all works on thermionics in semiconductor superlattices
study transport perpendicular to interfaces because of the use of Richard-
son current, we should mention that the transport parallel to interfaces was
investigated for both heat current and electric current [16, 17].

5 One-Dimensional Systems

The definition of the figure of merit suggests that the desired sample structures
should enhance σ and S, but suppress κ, regardless what mechanism controls
the transport processes in the sample. Before various samples are made and
characterized experimentally, some relevant theoretical information is often
useful. Since the control of the phonon part κph of thermal conductivity κ is
a difficult task [3], it is relatively easy to calculate the transport properties
of the electron subsystem, especially for the one-dimensional (1D) conductor
using the independent particle model with an effective mass m∗.

Using the semi-classical approach with the relaxation time approximation
given in Sect. 3, for a wire with a cross-section a2, the electric conductivity
σ, the thermopower S, and the electron thermal conductivity κel have been
calculated as [18]

σ =
eµl
πa2

√
2m∗kBT/~2 F−1/2 , (68)

S = −kB

e

( 3F1/2

F−1/2
− µ

kBT

)
, (69)

κel =
2kBTτ

πa2

√
2kBT/~2m∗

(5

2
F3/2 −

9F 2
1/2

2F−1/2

)
, (70)

where µ is the chemical potential and µl the mobility along the wire. The
function Fn is defined as
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Fn =

∫ ∞

0

dxxn[ exp (x− µ/kBT ) + 1 ]−1 . (71)

Assuming 1D phonon transport and using the typical values of the mate-
rial parameters of semiconductor heterostructures, at room temperature a
large value of ZT higher than 5 was obtained if the cross-section is reduced
to a < 1 nm. Recently a detail numerical study was carried to investigate
the thermoelectric properties of superlattice nanowires made of various lead
salts [19]. It was again predicted that at the temperature 77 K, the figure of
merit is higher than 5 if the wire diameter becomes less than 5 nm.

Experiments on various types of 1D materials have been performed in
the last few years to measure their relevant thermoelectric properties. Ther-
mopower of conducting polymers [20], organic conductors [21], and individ-
ual carbon nanotubes [22,23] were systematically studied. The thermoelectric
properties were investigated for several whiskers systems such as Pb- and Ca-
doped (Bi2Sr2O4)xCoO2 [24], Bi2Sr2Co2O9 [25], and NaxCo2 [26]. The figure
of merit of Bi2Sr2Co2Oy whiskers was found [27] to be 1.1 at 973 K, and the
corresponding conversion efficiency is about 10%. The very best measurements
on an individual carbon nanowire [28] show a small value of its thermopower.

While it is important to understand the thermoelectric physics in 1D ma-
terials, the raise in the value of ZT alone does not mean that 1D materialis
are useful in relevant technology. The most important application of thermo-
electric materials is in power generation and refrigeration. Besides knowing
the value ZT of a thermoelectric material, it is important to know the energy
efficiency of the devices made from this thermoelectric material. To illustrate
this point, we will refer to Fig. 1 and Fig. 2 in Sect. 2, and let A be the lateral
cross-section of the thermoelectric conductor. The various types of energies
appeared in the following discussion are then normalized by A into energy
densities.

We will first consider the thermoelectric power generation. Let Wout(Z)A
be the output of useful work and Qh(Z)A the net heat extracted from the hot
reservoir. For the convenience of our analysis, we rewrite (13) as

η(Z) ≡ Wout(Z)A

Qh(Z)A
= ηr × Fη(Z) , (72)

where ηr=(Th–Tc)/Th is the Carnot efficiency of a reversible heat engine, and

Fη(Z) =
r(Z)− 1

r(Z) + Tc/Th
(73)

is called a fraction factor. Using the room temperature 300 K for Th, the
calculated Fη(Z) is plotted in Fig. 6 as solid curves for Tc/Th=0.9, 0.7, and
0.5.

Similarly, we let Qc(Z)A be the heat extracted from the cold reservoir
and Win(Z)A the work supplied externally. We then rewrite the coefficient of
performance of a thermoelectric refrigerator given by (17) as
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Fig. 6. The fraction factors as functions of the figure of merit ZTm for the power
generation efficiency Fη (solid curves) and for the refrigeration coefficient of perfor-
mance FK (dashed curves), calculated with Th = 300 K. The value of Tc/Th used to
calculate each curve is marked correspondingly. For other features, see the text

K(Z) ≡ Qc(Z)A

Win(Z)A
= Kr × FK(Z) , (74)

where Kr = Tc/(Th − Tc) is the Carnot coefficient of performance, and the
corresponding fraction factor FK is

FK(Z) =
r(Z)− Th/Tc

r(Z) + 1
. (75)

The calculated FK(Z) is also shown in Fig. 6 as the dashed curves. We notice
that with increasing ZTm each curve in Fig. 6 exhibits a rapid initial increase
and then levels off, approaching 1 as ZTm approaching infinity. Under prac-
tical working condition, the value of Tc/Th is between 0.7 and 0.5 for power
generation, and is around 0.9 for refrigeration.

Let us express Z3dT for the figure of merit of a bulk thermoelectric material
(3D-TEM) with a macro-size cross-section A. Using as a power generator,
W 3d

out(Z3d)A = Qhη(Z3d)A = QhηrAFη(Z3d) is the output of work. Under the
same working conditions, if we shrink A to a nano-size area S such that the
quantum confinement changes the 3D-TEM into a 1D thermoelectric material
(1D-TEM), the figure of merit is also modified from Z3dT into Z1dT . The
output of power is then reduced drastically to W 1d

out(Z1d)S = QhηrSFη(Z1d).
We can pack N of such 1D-TEM parallel to each other to form a macro-size
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cable with the same cross-section A. The power output of this cable becomes
WC

out(Z1d, N)S = NW 1d
out(Z1d)S = QhηrAγFη(Z1d), where γ=NS/A. In order

to maintain their 1D properties, within the cable every 1D-TEM must be
separated from all other 1D-TEMs both electrically and thermally. Therefore,
NS is less than A and so γ is less than 1. It is reasonable to expect that within
the cable the distance between the nearest surfaces of two adjacent 1D-TEM
is about equal to or a little less than

√
S. Hence, γ is about 1/4 to 1/3.

For a given 1D-TEM with Z1dT , there is a corresponding 3D-TEM
with Z3dT such that W 3d

out(Z3d)A=WC
out(Z1d, N)S. That is, under the same

operation condition, the 3D-TEM system and the 1D-TEM system have
the same amount of power output. The above equality reduces simply to
Fη(Z3d)=γFη(Z1d). Since γ<1 and Fη(Z) is a monotonic function of Z, we
have Z3d<Z1d. Consequently, for thermoelectric power generation, one can
use a 3D-TEM of lower figure of merit to produce the same total power out-
put as that from an equivalent-size cable of 1D-TEM of higher figure of merit.
The same conclusion can be reached for thermoelectric refrigeration because
(72)–(73) and (74)–(75) have similar mathematical structure.

To illustrate this important conclusion, we set γ=1/3 and Th = 300 K
to find out the pair (Z1d;Z3d) such that the condition Fη(Z3d)=Fη(Z1d)/3
is satisfied for power generation or FK(Z3d)=FK(Z1d)/3 is satisfied for re-
frigeration. One example of calculated result is shown in Fig. 6 as the two
dotted lines: the upper dotted line marks the regime of the values of Z1d

for Fη(Z1d)=FK(Z1d)=0.6, while the lower dotted line with circles marks the
corresponding region of the values of Z3d for Fη(Z3d)=FK(Z3d)=0.2. More ex-
plicitly, for power generation, a 3D-TEM with Z3d'1 has the same efficiency
as a 1D-TEM with Z1d'10. Furthermore, for a 1D-TEM with Z1d→∞, the
corresponding values of Z3d remain in the region around the solid dot at
Z3d'2 for power generation, and in the region around the solid dot at Z3d'4
for refrigeration.

We have already discussed in Sect. 4 that semiconductor superlattices and
alloys, which are 3D-TEMs, have been extensively studied both theoretically
and experimentally. Figure of merit higher than one at room temperature
have been found in many of such 3D-TEMs. In particular, a very large value
of ZT'2.4 was discovered [15] in p-type Bi2Te3/Sb2Te3 superlattice devices.
Judging from our numerical results shown in Fig. 6, it would be extremely
difficult to find a corresponding 1D-TEM which can have better performance
in power generation and/or refrigeration. We should mention that the numer-
ical study on GaAs and PbTc quantum well and wire superlattice systems
also indicates that 1D-TEM is not good for power applications [17]. But it is
important to notice that here our proof is based on the fundamental thermo-
dynamics which is independent of material systems.
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6 Heat Transport by Phonon Wave Motion

Although the phonon thermal conductivity κph appears in the expression of
the figure of merit, so far we have not touched this important problem yet.
Joule heating and thermal insulation are among the most crucial issues in
modern electronic and optoelectronic devices. Following the advancement of
nanotechnology, to understand the thermal transport in semiconductor nanos-
tructures has emerged as an urgent task. In some devices which generate heat,
such as integrated circuits and semiconductor lasers, one needs materials of
high thermal conductivity to remove the excess heat as fast as possible. On
the other hand, to operate a thermoelectric cooler efficiently, one needs mate-
rials of low thermal conductivity to be used as thermal insulating walls. This
is not only a problem for technology, but also a challenge for fundamental
science.

Traditionally phonon transport has been treated in terms of diffusive
process, and heat conduction is governed by the corresponding Fourier’s
Law. Most theoretical analysis were based on the Boltzmann transport equa-
tion [29,30], treating phonons as particles and ignoring their wave-like proper-
ties. The key quantity in this equation, the scattering mechanism varies from
system to system. One important scattering process which appears in almost
all systems is the scattering of phonons by interfaces between different materi-
als, since an interface breaks the regular lattice structure. This phenomena is
referred to as Kapitza resistance after his first experimental observation [31].
The first theory to explain the interface resistance is the acoustic-mismatch
model [32], in which the phonon transmission amplitude is expressed in terms
of the acoustic impedances of the materials at opposite sides of the interface.
Later the interface resistance was also investigated with the diffusive mis-
match model [33] and the molecular-dynamics simulation method [34]. With
these methods the scattering terms in the Boltzmann equation are determined
within the framework of particle motion.

While nano-scale thermal transport has been reviewed recently [35], the
corresponding theory remains to be established. Since the typical length scale
in a nanostructure is of the order of phonons mean free path, the particle-
type diffusive description of thermal transport is no longer appropriate. In a
semiconductor superlattice, the relevant length scale is the superlattice pe-
riod. Whether the thermal transport is dominated by the particle motion or
of the wave propagation depends on the ratio of the superlattice period to
the phonon mean free path. The crossover between these two characteristic
regimes was studied recently in terms of a simple model [3].

Instead of using the Boltzmann transport approach to investigate the par-
ticle nature of phonon diffusive motion, we will study the thermal transport
in the framework of phonon wave propagation. To discuss the phonon heat
transport in thermoelectric systems, we will focus our attention on semicon-
ductor superlattices, since proper samples can be fabricated to ensure that
phonon wave propagation is the dominating process of thermal transport.
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In this respect, we will mention briefly the interesting relevant experimen-
tal observations. The lattice thermal conductivity of Si/Ge superlattice was
found [36] increasing with temperature but decreasing with the lattice period.
In a GaAs/AlAs superlattice the thermal conductivity along the growth di-
rection is three to ten times smaller than that in a GaAlAs alloy with the
same mass ratio [37]. The characteristic feature of phonon dispersion curve in
a superlattice, namely, the formation of mini-gaps due to the zone folding ef-
fect, was detected in a selective phonons transmission measurement [38]. This
experiment proved unambiguously the interference of phonon wave motion
in a GaAs/Ga0.5Al0.5As superlattice. It was conjectured that the formation
of mini-gaps is the origin of the large reduction of thermal conductivity in
semiconductor superlattices.

If a sample is not perfectly ordered, such as most semiconductor super-
lattices containing repeated parts of random alloys, the phonon wave will
be scattered when propagating in the sample. If one neglects the phonon-
phonon scattering, the phonon propagation can be studied conveniently with
the transfer matrix approach. While this method is very general and has been
much used to study the electron transport in disordered systems, to present
the key results here with simple mathematical analysis, we will consider the
GaAs/Ga1−xAlxAs superlattice grown along the [001] direction.

Let us start with the propagation of a lattice wave along the [001] direc-
tion of a bulk III-V semiconductor crystal. It has been shown [39] that the
transverse vibrations and the longitudinal vibrations belong to different sym-
metry representations and therefore are decoupled. For a longitudinal mode
all atoms in a given (001) plane vibrate as a whole. By projecting the positions
of all atoms in the (001) plane on the [001] axis, we obtain an equivalent one-
dimensional model to investigate the longitudinal acoustic branch propagating
along the [001] direction. This 1D model is valid also for III-V semiconduc-
tor heterostructures, such as GaAs/AlAs superlattices. However, this theory
is not correct for heterostructures containing alloys which destroy the crys-
tal symmetry, for example, GaAs/Ga1−xAlxAs superlattices. Nevertheless, if
the distribution of aluminum atoms in Ga1−xAlxAs layers is sufficiently uni-
form, the complete decouple of the longitudinal and the transverse modes for
phonons propagating in [001] direction remains a good approximation, which
will be adopted in our following discussion.

The eigen-modes of this one-dimensional model have been used to calculate
relevant physical properties, for example, the Raman spectrum [40]. Here we
will use this one-dimensional model to study the transmission coefficients of
longitudinal acoustic phonons and the related phonon heat transport. The
one-dimensional samples are generated with a computer. We define the z-axis
along the [001] direction, and a the width of one monolayer (the distance
between two nearest As atoms) in the 1D system. At every position z=na
with integer n, there is an As atom. To create the alloy Ga1−xAlxAs, with
a probability according to the value of x, the random number generated by
a computer will determine whether a Ga atom or an Al atom to be placed



Thermoelectric Phenomena from Macro to Nano 175

between two adjacent As atoms. The crystals GaAs and AlAs are special cases
with x=0 and x=1, respectively.

Let Ui be the displacement of the atom at position ia, and Ki,i+ 1
2

the

force constant between the two adjacent atoms at ia and (i+ 1
2 )a, where i is

an integer or a half-integer. Then, within the harmonic approximation, the
equation of motion for the atom at position ia is

mi
d2Ui
dt2

= −Ki− 1
2 ,i

(Ui − Ui− 1
2
)−Ki,i+ 1

2
(Ui − Ui+ 1

2
) , (76)

where the mass mi can be either mGa for a Ga atom, mAs for an As atom,
or mAl for an Al atom. Since GaAs and AlAs have almost the same values of
elastic moduli, it is reasonable to use one value K for both the Ga–As pair
and the Al–As pair.

For pure systems GaAs and AlAs, the solutions of (76) give the phonon
dispersions and the corresponding eigen-modes. For a given frequency ω, the
propagating wave vector is

kγ(ω) =
2

a
sin−1

√
mGa +mAs

2K
ω2 − mGamAs

4K2
ω4 (77)

in GaAs, and is

kα(ω) =
2

a
sin−1

√
mAl +mAs

2K
ω2 − mAlmAs

4K2
ω4 (78)

in AlAs. For a GaAs/AlAs heterostructure separated by a perfect interface,
we can solve (76) to derive the transmission and reflection amplitudes of a
propagating phonon, which has the form eikz+re−ikz at the incident side of
the interface and teikx at the transmitted side.

In a one-dimensional sample there are many interfaces. We will then use
the general transfer-matrix technique to calculate the resulting transmission
amplitude T (ω) of a propagating mode with frequency ω. Using the matching
conditions that the amplitude and the phase of the atomic displacement at an
interface remain the same when calculated from either side of the interface,
the 2×2 scattering-matrix T (l;ω) for the l-th interface in our one-dimensional
model can be easily derived with the matrix elements as

T (l;ω)11 = T (l;ω)22 =
k2(l;ω) + k1(l;ω)

2k2(l;ω)
,

T (l;ω)12 = T (l;ω)21 =
k2(l;ω)− k1(l;ω)

2k2(l;ω)
. (79)

Depending on the materials at each side of the l-th interface, k1(l;ω) and
k1(l;ω) can be either kγ(ω) or kα(ω) given by (77) and (78). The total
scattering-matrix of the entire one-dimensional sample is then



176 K. A. Chao and Magnus Larsson

T (ω) =

N∏

l=1

T (l;ω) , (80)

where N is the total number of interfaces. From this we obtain the transmis-
sion spectrum of the one-dimensional sample

T (ω) =

∣∣∣∣
1

T (ω)22

∣∣∣∣
2

. (81)

Using the transmission coefficients to calculate the phonon heat conduc-
tion, we connect the sample to a phonon injector at z=0 with temperature
θI and a phonon collector at z=Na with temperature θC. Let n(ω, θ) be the
Bose-Einstein distribution function, and v(k) the phonon group velocity. The
thermal current density flowing through the sample from the injector to the
collector can be expressed in a Landuaer-type formula

Jz =
∑

λ

∫
dk

(2π)3
~ωλ(k)vλ,z(k) [n(ωλ, θI)− n(ωλ, θC) ]Tλ(ωλ; kz) , (82)

with λ is the phonon branch index. Here we have expressed the transmission
coefficient as Tλ(ωλ; kz) to emphasize explicitly that it does not depend on
the component of k parallel to interfaces.

The total thermal energy moving into the sample from either the injector
or the collector is

Eλ(kz , θν) =

∫
dkx dky
(2π)2

~ωλ(k)vλ,z(k)n(ωλ, θν) , (83)

where ν = I for injector and ν = C for collector. In terms of these thermal
energy flows, we can rewrite (82) as

Jz =
∑

λ

∫ ∞

0

dkx
2π

[Eλ(kz, θI)−Eλ(kz , θC) ]Tλ(kz) . (84)

Equation (84) is very similar to the one-dimensional formula used to ana-
lyze the quantization of thermal conductance in suspended insulating nano-
wires [41]

Jth =
∑

λ

∫ ∞

0

dk

2π
[ Eλ(kz , θI)− Eλ(kz , θC) ]Tλ(kz) , (85)

where the thermal energy flows into the one-dimensional sample are

Eλ(kz , θν) = ~ωλ(kx)vλ,z(kz)n(ωλ, θν) . (86)

By comparing (83)–(84) and (85)–(86), it is reasonable to expect that the
thermal transport by phonon wave motion along the [001] growth direction
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of a GaAs/Ga1−xAlxAs superlattice can be understood qualitatively in terms
of our simple one-dimensional model. This conjecture is consistent with the
detailed study [3] of phonon thermal transport perpendicular to the interfaces
of a multilayer system, which shows the same qualitative features in one-, two-
and three-dimensional calculations.

Within the framework of the one-dimensional model, in the limit of
|θI − θC| � θI, the one-dimensional longitudinal acoustic phonon thermal
conductance

Gth(θI) =
Jth(θI)

|θI − θC|
(87)

can be easily derived as

Gth(θ) =
k2
Bθ

h

∫ ∞

0

dν
ν2eν

(eν − 1)2
T (
νkBT

~
) , (88)

where kB is the Boltzmann constant. In a pure GaAs or AlAs sample, the
transmission coefficient T (ω)=1 for all allowed phonon frequency. In this case
we obtain the quantum of thermal conductance g

0
(θ):

Gth(θ) =
π2k2

B

3h
θ ≡ g0(θ) . (89)

Using the above analytical expressions, a detailed numerical calculation
was performed [42] to prove definitely that the formation of mini-gaps is not
the origin of the large reduction of thermal conductivity in semiconductor
superlattices. This calculation also suggests that within the harmonic approx-
imation without taking into account of the phonon-phonon scattering, the
phonon wave motion cannot explain the experimental observation that the
heat conductivity in a superlattice is substantially lower than that in an alloy
of same mass ratio. For an improvement, one must include in the model the
anharmonic terms.

7 Tunneling Thermoelectricity in Nano-Systems

The physical quantity temperature is well-defined in a macroscopic system
under thermodynamic equilibrium. The system reaches equilibrium through
the dynamic motion of the ions, either arranged in lattice structure or in
random positions. Such a dynamic motion has a characteristic length, for
example, the phonon mean free path in a crystal. Our concept of temperature
becomes unclear when the sample dimension decreases to a scale comparable
to this characteristic length. This is a fundamental problem in nano-systems,
which so far has not been explored at all, and is too difficult to be discussed
here.

The other well-known phenomenon is the emergence of quantum effect
when the sample dimension is reduced. The quantum process which is relevant
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to our study is tunneling through potential barriers. The thermionic process
drives a carrier out of a system only if the energy of the carrier is higher than
the highest potential barrier. That is, the thermionic process removes hot
electrons from the system. If there is another process which efficiently moves
cold electrons into the system, then the system works as a refrigerator. The
colder the incoming electrons, the higher the cooling efficiency. The tunneling
process can serve as the required second process, and will be discussed here.
We will first mention a very interesting fundamental phenomenon current
reversal, and then introduce a cooler based on quantum mechanical tunneling.

7.1 Electric Current Reversal

When a temperature gradient is applied to a sample, in semi-classical the-
ory where electrons move diffusively, the thermoelectric carrier current flows
through the sample from the hot reservoir to the cold reservoir. However,
with quantum mechanical tunneling transport, this current can reverse its
direction [43].

To demonstrate the physical picture with a simple one-dimensional elec-
tron transport along the x-axis, we consider a sample of finite width between
x=0 and x=d, attaching to two conducting leads at x=0 with a hot tempera-
ture Th, and at x=d with a cold temperature Tc. In the yz plane the potential
is constant which we set to zero, and k‖ labels the electron wave vector for
its motion in the yz plane. Along the x-axis the potential V (x) is zero in the
two conducting leads x<0 and x>d, but can be any function of finite value
within the sample region 0<x<d.

Let µh be the chemical potential in the hot reservoir at the left side, and
µc be the chemical potential in the cold reservoir at the right side. Consider
an electron coming in from the left lead with the kinetic energy ε⊥ along the
x-axis and the parallel wave vector k‖ in the yz plane. Let T (ε⊥) be the trans-
mission probability through the sample, and fh(k‖ε⊥, Th) [or fc(k‖ε⊥, Tc)] the
electron distribution function in the left [or right] lead. Then the thermoelec-
tric current density flowing through the sample from the hot lead to the cold
lead is given by

j =
e

π~

∑

k‖

∞∫

0

dε⊥ T (ε⊥)
[
fh(k‖ε⊥, Th)− fc(k‖ε⊥, Tc)

]
. (90)

Let us assume that in a specific sample the energy dependent transmission
probability T (ε⊥) is zero except for a small energy region ε–Γ<ε⊥<ε+Γ in
which T (ε⊥)'1. In this case the current density simplifies to

j

2eΓ
∝ Th ln(1 + e(µh−ε)/kBTh)− Tc ln(1 + e(µc−ε)/kBTc) . (91)

Since the chemical potential decreases monotonically with increasing temper-
ature, we have µc>µh.
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We will consider the case that the energy window around ε for T (ε⊥)'1 is
so located that both conditions |µh–ε|�kBTh and |µc−ε|�kBTc are satisfied.
Then, if µh<ε and µc<ε, equation (91) reduces to

j

2eΓ
∝ Th e(µh−ε)/kBTh − Tc e(µc−ε)/kBTc > 0 , (92)

which is the normal thermoelectric current direction. On the other hand, if
µh>ε and µc>ε, from (91) we have

j

2eΓ
∝ µh − µc < 0 , (93)

which exhibits a thermoelectric current reversal, implying a thermopower
anomaly. A numerical analysis based on (90) with small Γ confirms this con-
clusion.

An energy window with T (ε⊥)'1 can be realized in double-barrier (or
multiple-barrier) tunneling structures, which has been extensively studied
both theoretically and experimentally [44]. The energy position and the width
of this window are controlled by the chemical composition and the geometrical
structure of the tunneling system, and the chemical potential µc (or µh) can
be adjusted by varying the impurity concentration in cold (or hot) reservoir.
A detailed numerical study can be found in [43]. It is important to point out
that this thermoelectric current reversal does not violate the thermodynamic
law with respect to the heat current. The heat current in the system is al-
ways directed from the hot reservoir to the cold reservoir. It can be calculated
from (90) with the electron charge e replaced by εtot–µh,c, where εtot is the
total electron energy. When the electric current changes sign, both the factor
fh(εtot, Th)–fc(εtot, Tc) and the factor εtot–µh,c change sign, which implies the
correct phenomenon that the heat current always flows from the hot to the
cold reservoir. It is easy to show that the energy flow is connected to the Joule
heating power [45] jVth, where Vth is the thermoelectric voltage.

Here we have used the temperature difference Th–Tc to control the differ-
ence µc–µh of chemical potentials, which can also be controlled with an applied
bias. It is interesting to investigate the combined influence of the temperature
and the bias on thermopower anomaly. This problem will be more relevant to
the device applications.

7.2 Tunneling Thermionic Refrigeration

We have demonstrated in the previous subsection that via the use of tunneling
channel, we can inject electrons into a system with selected energy, especially
low energy or cold electrons. Incorporating this process with the thermionic
emission of hot electrons from the same system, a novel solid state cooler can
be fabricated to work at room temperature.

We will use AlGaAs heterostructure to construct such tunneling-
thermionic refrigeration (TTR). It is well-known that AlGaAs heterostruc-
tures are not good thermoelectric materials. However, these heterostructures
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have been thoroughly studied and their material parameters were determined
rather accurately. Hence, using AlGaAs heterostructures as an example to il-
lustrate the room temperature TTR, the results can be presented with quan-
titative accuracy. Since room temperature TTRs can be made even with the
bad thermoelectric material AlGaAs heterostructures, it is optimistic to ex-
pect that higher efficiency TTRs can be realized with better thermoelectric
materials.

LWLWLC LC

ε
ε

εεε
GaAs GaAs

1−
y

G
a

A
l y

A
s

1−
y

G
a

A
l y

A
s

1−xAsGaxAl 1−xAsGaxAl

LBLB
∆TT

f
f

fV V

n−GaAs

V

Resonant Resonant
Tunneling Tunneling

Single Barrier TunnelingSingle Barrier Tunneling Process
Over Barrier

n−GaAsn−GaAs W W

ThermionicThermionic
ProcessProcess

TT

Fig. 7. The schematic illustration of a tunneling-thermionic refrigerator and the
corresponding potential profile under a bias voltage V . When a current flows under
a bias voltage V , the temperature in the region between the two thick AlxGa1−xAs
alloy layers is lowered by an amount ∆T

Figure 7 shows the TTR structure and the corresponding potential profile
under a bias voltage V . In the center of the TTR, sandwiched between two
thin AlyGa1−yAs alloys which work as potential barriers, is an n-type GaAs.
The materials beyond the potential barriers are thin layers of undoped GaAs,
thick AlxGa1−xAs alloy layers, and n-type GaAs. Each undoped GaAs layer
is a quantum well in which there is only one quasi-bound state with energy
ε. The AlxGa1−xAs alloy layer is very thick such that when a bias voltage
V is applied as shown in Fig. 7, the carriers which tunnel from the n-GaAs
into the quantum well cannot tunnel through the AlxGa1−xAs layer. The Al
concentration in AlyGa1−yAs is higher than that in AlxGa1−xAs (y>x). The
sample structure can be asymmetric with respect to the central n-type GaAs
region. However, for the convenience of drawing, here we have assumed a
symmetric TTR structure.

Since the structure of the TTR is symmetric with respect to the center n-
type GaAs, the physical processes in the right half of the system are the same
as those in the left half of the system. Therefore, we only need to illustrate
the three carrier transport processes in the right half of the device. In the
n-doped GaAs, the Fermi energy is marked as εf . The over-barrier process
has no thermoelectric effect. The single-barrier-tunneling process has a weak
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refrigeration effect [46,47]. The third transport process, the main cooling pro-
cess, is the resonant tunneling from the middle n-GaAs into the quasi-bound
level ε of the GaAs quantum wells, followed by the thermionic escape over the
thick AlxGa1−xAs barriers. In this process, each carrier removes an amount
of thermal energy W from the lattice. Therefore, if the device is surrounded
by an environment of temperature T , the temperature of the inner part (be-
tween the two AlxGa1−xAs alloy layers) will be lowered to T–∆T . ∆T can be
increased by reducing the heat back-flow through the two thick AlxGa1−xAs
alloy layers, which have very low phonon thermoconductivity as discussed in
Sect. 6. However, the alloy layer thickness LC must be less than the carrier
mean free path in order to maintain the ballistic transport of the thermionic
process.

The amount of heat removed by the electric current J from the inner part
to the outer environment has two contributions: Qs due to the single-barrier
tunneling process and Qrt due to the resonant-tunneling-thermionic process.
Let Qph be the heat back-flow through the two AlxGa1−xAs alloy layers due
to the phonon heat conduction. Then, the coefficient of performance (COP)
of the TTR is defined as

K =
Qs +Qrt −Qph

JV
. (94)

To operate the TTR,K must be positive. When K is positive, the inner part of
the system will cool down to the temperature T–∆T when the temperature of
the outer environment is T . The TTR has been analyzed in details together
with extensive numerical calculation [48]. Even for the bad thermoelectric
material AlGaAs, the numerical results show that at room temperature the
TTR can easily lower the temperature by 5-7 degrees. Such devices can be
fabricated with the present semiconductor technology. Besides its use as a
kitchen refrigerator, the TTR can efficiently cool micro-electronic devices.

8 New Concepts in Thermionic Applications

Thermoelectricity in bulk materials has been an old topic, and its applications
have been limited by the lack of materials with high value of figure of merit.
The modern trend towards miniaturization of electronic and optoelectronic de-
vices has brought in another problem: to integrate bulk thermoelectric cooling
with micro-electronics and future nano-electronics. Benefited by the develop-
ment of thin film technology in the past, micro-thermoelectrics has emerged
as the present focus of thermoelectric devices research. While we will discuss
in the following two new concepts for future solid state coolers, the reader is
referred to [49] for micro-thermoelectric applications.
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8.1 Opto-Thermionic Refrigeration with Energy Recycle

We have introduced in previous sections the modulation doped semiconduc-
tor superlattices as potential candidate for thermionic devices. However, using
the results in [14] and [50], for a typical value of semiconductor thermal con-
ductivity, it is easy to see that the refrigeration efficiency is very low with a
very small value of figure of merit. Only when the thermal conductivity in the
barriers becomes as low as that of glasses, the thermoelectric figure of merit
approaches the value of unity. One way to suppress the unwanted opposite
heat flow is to increase the barrier width. Nevertheless, this may also lower
the thermionic efficiency, and hence reduces the required in-flow of cold elec-
trons over the barriers from the cold side to the hot side. This is an intrinsic
dilemma.
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Fig. 8. The schematic illustration of the energy levels in a p-AlGaAs/GaAs/n-
AlGaAs junction under a bias voltage Vb. Shaded areas are p-doped and n-doped
regions

An entirely new approach of heat pumping, the so-called opto-thermionic
refrigeration cooling process, was proposed [51] to overcome this problem.
The system under an applied bias Vb, schematically illustrated by Fig. 8,
is a modified pn-junction with a wide undoped quantum well embedded at
the center part. The carriers in the thermionic processes are both electrons
(solid circles in Fig. 8) in the n-doped semiconductor at one side and holes
(open circles in Fig. 8) in the p-doped semiconductor at the other side. When
thermally excited electrons and holes are driven into the quantum well by the
applied bias voltage Vb, they recombine. The energy supplied to an electron-
hole pair by the applied bias is eVb, and if an electron-hole pair recombines
radiatively, the so-created photon carries an amount energy Eg out of the
system. If eVb is less than Eg , then an amount of heat Eg-eVb is released
from the system by photon emission. If the recombination is non-radiative,
the system will be heated up.
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In many semiconductors the dominant non-radiative recombination chan-
nel is the Auger scattering, which can be largely suppressed in high-quality
samples. Based on the theoretical analysis and prediction in [51], a detailed
numerical calculation was performed [52] very recently on GaAlAs systems
with impurity concentration and quantum well width as varying parameters.
The numerical results show that the opto-thermionic cooler can extract an
amount of thermal energy from the sample as much as 10 watts/cm

2
. Since

the fabrication and measurement technologies for GaAlAs heterostructures
are well-developed, experimental works on opto-thermionic refrigeration are
expected to be reported in the near future.

When using opto-thermionic process to cool portable elec-
tronic/optoelectronic equipments, an energy related problem arises because
the refrigeration part also draw energy from battery. One can make a
photo-cell with the same material as the material of the quantum well in the
opto-thermionic cooler, and incorporate them together. Then, a large part of
the photons emitted from the opto-thermionic refrigerator will be reabsorbed
by the photo-cell to extend the life time of the battery.

8.2 Thermionic Couple

One very important application of the conventional thermoelectric materials
is to measure temperature with thermocouple made from two metals. Al-
though micro-thermocouple is used to map the temperature distribution in
micro-scale, to reduce its size further to nano-thermocouple remains a difficult
problem. A breakthrough in concept is need in order to establish a working
theory.

V
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T1 T2

εfεf
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x x1 2
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Fig. 9. A proposed thermionic couple with a conductor marked by c connected
at both ends (positions x1 and x2) with an insulator marked by b. The two local
phonon sources of narrow width Lph are set at the junction positions x1 and x2 with
respective temperatures T1 and T2. The potential profile around the ring is shown
by the outer loop with the Fermi energy εF
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Thermionic processes occur in nano-scale systems, and a nano-scale
thermionic couple can be constructed accordingly [53] at least in principle.
A proposed thermionic couple is shown in Fig. 9, with the inner part for the
geometric structure of the system and the outer part for the corresponding
potential profile. The system is a close loop, and the x-axis is defined as along
the loop in clockwise direction. The loop system consists of a conducting wire
(light shaded region marked with c) and an insulating wire (dark shaded re-
gion marked with b). The length of the conducting wire, L is shorter than the
carrier mean free path, and the carrier transport in the wire is ballistic. The
single-barrier potential profile around the loop is plotted as the outer part in
Fig. 9, with the Fermi energy marked as εF . Around positions x1 and x2 we
introduce two very narrow regions of width Lph for local heating. In these
two narrow regions of phonon sources, the phonon temperatures T1 and T2

are well-defined. The electron-phonon interaction is then restricted to these
two point contacts at x1 and x2, which can be considered as heat reservoirs.
There are several existing techniques [54–59] which may be used here for local
heating, but it is not sure which one works best.

Since the system is not connected to any particle reservoir, in [53] the non-
equilibrium electron distribution function was solved using the Boltzmann
equation approach with electron-phonon interaction at the two junctions. It
was found that there is always a heat current flowing from the hot junc-
tion to the cold one. The electric current over the potential barrier increases
monotonically as the Fermi energy in the metallic wire approaches the po-
tential barrier height from below. Using a modulation doped semiconductor
ring for numerical calculation, the thermionic current was found to be almost
linear with respect to the temperature difference between the two junctions.
This discovery provides the first theoretical guideline for the fabrication of
nanometer scale thermionic couple.

9 A Remark

Thermionics has been developed rapidly in the last 15 years as a result of close
joint research efforts by theory, experiments, materials fabrications, and device
designs. The very original idea of electron engine, using two parallel metallic
plates, did not work practically at room temperatures because of the space-
charge-induced additional potential barrier in the vacuum gap between the two
metallic plates. In the very original studies on this topic, the image potential
was ignored because the vacuum gap is not sufficiently narrow. The width of
this vacuum gap can be reduced significantly due to the recent advancement of
technologies. When the image potential is taken into account in a sufficiently
narrow vacuum gap, the resultant potential barrier is lowered to the extent
that very large thermionic current can be achieved. The remaining problem
is to maintain a steady narrow gap in vacuum, which is essential to stop heat
back-flow from the cold metal plate to the hot metal plate. For the details of
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new development in this area, the reader is referred to one of the co-authors
(M.L), who is one of the leading researchers in this field.
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1 Introduction : Phase Coherence and Disorder

Although this volume mainly concerns nanoscopic systems, this article is de-
voted to an intermediate range, between the nanoscopic and macroscopic
scales, the so-called mesoscopic regime [1]. In this regime, the system to be
considered may be large compared to the mean free path of the electrons. Dis-
order plays then a very important role and, in the so-called diffusive regime,
the interplay between disorder and quantum interference effects is crucial. This
is the main subject of this review article. Here, electronic interactions will be
treated as a perturbation, in contrast with the topics discussed in the other
chapters where the electronic correlations may play the most important role.
I will try to present some personal points of view in order to describe these
well-known signatures of phase coherence like weak localization or universal
conductance fluctuations. The goal here is to avoid technicalities as most as
possible. The last part concerns the effect of electron-electron interactions.

To describe interference effects in electronics, it is useful to compare with
simple facts known in optics. The simplest experiment with light is the two-
slit Young experiment and phase coherent effects considered in electronics are
nothing but some more sophisticated versions of the Young experiment. This
two-slit experiment can be also performed with electrons in vacuum [2] but
here we shall consider metallic wires, that are complex disordered media.

In vacuum, an electron beam is split in two parts and the intensity is
measured on a screen. The topological equivalent in a metal consists in a loop
pierced by a magnetic flux and we measure the current resulting from the
interferences between the two paths, see Fig. 1. In optics the way to probe
the interference pattern on the screen is to change the optical path between
the two trajectories, by changing the nature of the medium, that is its optical
index. For electrons, the charge is coupled to the vector potential A and these
interference pattern can be modified with a magnetic field.
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Fig. 1. Left : schematic representation of the Aharonov-Bohm effect. A flux tube of
flux φ is placed behind the two slits. Center : Schematic equivalent of the Aharonov-
Bohm experiment in a metallic ring. Right : Magnetoresistance oscillations of a Au
ring and its Fourier transform [3]

If we try to transpose what is known from optics to electronics, we measure
a current intensity which is proportional to the probability for the electrons
to traverse the loop. To calculate this probability in quantum mechanics, we
have to add the contributions of two quantum amplitudes corresponding to
the two sides of the loop, and the current (a probability) is proportional to the
square of this quantum amplitude. Each quantum amplitude ψi has a phase
ϕi :

ψ1 = ψ eiϕ1 , ψ2 = ψ eiϕ2 . (1)

We have to sum the amplitudes and take the modulus square. For the current,
we get a classical term plus an interference term :

I ∝ |ψ1 + ψ2|2 = 2ψ2 [1 + cos(ϕ1 − ϕ2)] . (2)

Classically, the current should be the sum of the two currents, this corresponds
to Ohm’s law, but quantum mechanically there is some additional phase effect.
And if we apply a magnetic field (this is the well-known Aharonov-Bohm
effect [5]), there is an additional phase along each of the two trajectories

δϕ1 =
e

~

∫

1

A · dl , δϕ2 =
e

~

∫

2

A · dl , (3)

so that the phase difference is modulated by the circulation of the vector
potential along the closed loop formed by the two trajectories,

∆ϕ = δϕ1 − δϕ2 =
e

~

∮
A · dl = 2π

φ

φ0
, (4)

and is proportional to the magnetic flux φ through the loop. Here φ0 = h/e
is the flux quantum. This tells us that the wave functions, the energy levels,
thermodynamic and transport properties must be function of this flux with
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period φ0. Of course this does not tell us anything about the amplitude of these
oscillations. Unlike the case of the Young experiment with light or for electrons
in vacuum, the problem here is much more complicated due to disorder. The
question now is : do interference effect survive in the presence of disorder? Do
oscillations persist?

Indeed, some oscillations remain in the presence of disorder. The pioneer
experiment founding the field of mesoscopic physics was performed by Webb
et al. in 1985 [3]. They measured the resistance of a ring of micronic size,
in the presence of a magnetic field (Fig. 1). They found that the resistance
oscillates with the field, proving the existence of an interference effect, even in
the presence of disorder. Two interesting features must be noted : firstly, the
period of the oscillations is the flux quantum φ0 as expected. Secondly, the
typical amplitude of the oscillations of the conductance is ∆G = ∆R/R2 '
e2/h.

The necessary condition for these oscillations to exist is that phase coher-
ence is preserved, a condition which is obeyed in vacuum. But in a metal,
this phase coherence is broken because electrons interact with other degrees
of freedom (e.g., phonons, other electrons, magnetic impurities). Because of
this coupling, each electron can lose the memory of its phase. This happens
on a typical length, called the phase coherence length, denoted by Lφ, which
depends on the coupling to these degrees of freedom. Typically at 1 K, it
is of order of 1 µ. This is the mesoscopic range. Of course, such oscillations
do not exist for a macroscopic ring, because phase coherence is lost at the
macroscopic level.

There is another important scale, due to static disorder, over which elec-
trons experience collisions with the impurities. This scale le is named the
elastic mean free path. It is much smaller than the phase coherence length.
Since elastic collisions do not break phase coherence, electrons may experi-
ence many collisions without losing the memory of their phase. Each electron
keeps the memory of its phase typically on a scale Lφ � le. The physics we
are going to discuss corresponds to length scales which are much larger than
the elastic mean free path le, but smaller than Lφ, so that the sample can
be considered as quantum mechanically coherent. This regime is called the
mesoscopic regime.

We want to construct a theory for these oscillations. How to explain their
amplitude? How can they survive disorder? Another important key experi-
ment was performed by Sharvin and Sharvin on a cylinder [4], before the
Webb’s experiment on a single ring. In this case, there are also oscillations,
but instead of being φ0-periodic, they have a period φ0/2. The fundamen-
tal φ0 disappears and the experiment reveals the second harmonics of these
oscillations.

There is a simple way to understand this frequency doubling : assume
that the cylinder can be viewed as a pile of independent rings, it realizes
an average of the oscillations of several independent rings (similar effect for a
network of rings [6]). For a given ring, the oscillations have a given phase which
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depends on the disorder configuration (This phase is 0 or π for a two-terminal
geometry [7]). For another ring, the oscillations have a different phase. When
averaging over several rings (as is done in a cylinder), because of this random
phase, the oscillations vanish.

So, disorder is destructive for quantum interferences. However this simple
argument would tell us that no oscillations should survive disorder averaging.
This is not the case since the cylinder experiment shows oscillations with
period φ0/2. In average, there are still oscillations, but with period h/2e.
This simple and very important fact tells us that some contributions survive
disorder averaging. So the question is : how is it possible that some robust
contribution survive disorder averaging ?

Webb et al. experiment

⇓

Even in the presence of disor-
der, phase coherence is preserved
on distances much larger than le
−→ sample specific interference
effects, period φ0.

Sharvin-Sharvin experiment

⇓

Some interference effects survive
disorder averaging, period φ0/2
−→ pairing of trajectories.

Fig. 2. Conclusions that can be drawn from the two pioneering experiments in
mesoscopic physics

2 Important Scales

We shall consider weakly disordered metals, such that the average distance
between two collision events is much larger than the Fermi wave length : le �
λF. This condition allows for a semiclassical description of electronic waves.
Moreover we assume that the typical size L of the system is much larger than
the mean free path le so that the electronic motion in the sample is diffusive :
electrons collide elastically many times while traversing the system. Finally
we assume that the system is completely phase coherent, that is L� Lφ. To
summarize, the system is weakly disordered, diffusive and mesoscopic :

λF � le � L� Lφ . (5)

We shall see that phase coherent effects may not disappear but are simply
reduced in the macroscopic limit Lφ < L, so that we shall also consider the
case :
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λF � le � Lφ � L . (6)

In strong disorder, when the mean free path becomes of order of the Fermi
wave length kFle ' 1, interference effects are strong and lead to localization
of the electronic waves. This is the domain where the electronic states are
exponentially localized in space, with Anderson localization from extended to
localized waves. This topic will not be covered here. In the opposite regime of
very weak disorder, the mean free path becomes so large (or the system is so
small) that the mean free path becomes larger than the system size. Collisions
with impurities are rare, and occur mainly on the boundaries of the system.
This the so-called ballistic regime, where the physics is mainly driven by the
structure of the boundaries, i.e., the shape of the system. For most shapes, the
trajectories are chaotic. A common method to describe this regime is the so-
called Random Matrix Theory also used in other fields of physics like nuclear
physics. There are quite interesting common features between some aspects
of transport in chaotic dots and nuclear physics. Let us also emphasize that
the Random Matrix Theory of scattering or transmission matrices can also
be used to describe diffusive systems [8].

Since the typical size L of the system is much larger than the mean free
path, the electronic motion is diffusive. The average distance between collision
events, the mean free path is related to the collision time τe, le = vFτe, vF
being the Fermi velocity, since the electronic motion between two collisions
is ballistic. For times much longer than the collision time τe, the motion is
diffusive and the typical distance an electron can reach after a time t scales
like

r2 = Dt , (7)

where D is the diffusion coefficient given by D = vFle/d, d being the space
dimensionality. This relation tells us that for a finite system of size L, a very
important scale appears : this is the time for which an electron typically sees
the boundaries of the system. It is called the traversal time, or Thouless time.
It is the time for an electron to “realize” that the system is finite. It is given
by

τD =
L2

D
. (8)

To this characteristic time, is associated a characteristic energy, the Thouless
energy Ec :

Ec =
~

τD
=

~D

L2
. (9)

This energy scale plays a major role in the description of thermodynamic and
transport properties of mesoscopic diffusive systems. For time scales smaller
than τD, the electron propagates like in infinite space. The diffusive motion
depends on the space dimensionality of the system. On the other hand, in the
long time scale, the electronic motion explores the entire system, this is the
so-called ergodic regime.
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Using (7), we can associate to the phase coherence length Lφ a character-
istic time, the phase coherence time τφ :

τφ =
L2
φ

D
. (10)

This is the time during which an electron keeps the memory of its phase.

Fig. 3. Characteristic energy scales defining the different regimes studied in coherent
multiple scattering. Explanations are given in the text

Figure 3 presents a scale of characteristic energies (or inverse characteristic
times). At short time scales, the motion is ballistic. For times larger than τe,
the motion is diffusive in free space. Above τD , the motion is bounded, this is
the ergodic regime. Then τφ separates the mesoscopic regime and the classical
regime. If τφ > τD (Lφ > L), the system is mesoscopic.

In the diffusive regime, the space dimensionality d plays an important role.
Moreover, the one-dimensional case is somehow special. In strictly one dimen-
sion, it is known that there is no diffusive regime since, in the presence of
disorder, all states are exponentially localized. So we shall not consider this
case but rather quasi-one-dimensional systems, with a transverse width a, so
that the real motion is three-dimensional (the proper Schrödinger equation to
be solved would be three-dimensional with a quantization of the transverse
component of the wave vector), but the diffusion is one-dimensional. Instead
of having one transverse propagation channel, there are many transverse chan-
nels (the transverse size is much larger than λF). At short time (smaller than
a “transverse” Thouless time a2/D), diffusion is three-dimensional, but at
larger times, there is a one-dimensional propagation of the diffusion cloud.
When considering the transport through a wire (L � a), we shall be inter-
ested in time scales necessary to traverse the wire, that is times of order of
τD , which is much larger than the transverse time, so that we can consider
that at this time scale the diffusion is one-dimensional.

3 Classical Probability and Diffusion Equation

The aim of this article is to propose a qualitative description of physical
phenomena, trying to avoid sophisticated tools and keeping in mind that we
are essentially concerned by the calculation of disordered averaged quantities.
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An average quantity like the conductance basically measures the probabil-
ity for electrons to cross the system. What is the nature of this probability?
Let us first spend some time to describe the probability P (r, r′) which de-
scribes the propagation of a particle from a point r to a point r′. In quantum
mechanics, this propagation is described by a probability amplitude. This am-
plitude is called a Green’s function G(r, r′). We do not aim to develop the
theory of Green’s functions. For our purpose here, it is sufficient to note that
there are many possible scattering trajectories from r to r′. Thus a Green’s
function has the following structure : it is the sum of all the probability am-
plitudes corresponding to various multiple scattering trajectories from r to r′,
each trajectory being characterized by an amplitude and a phase proportional
to its action, that is its length [9] :

G(r, r′) =
∑

j

Aj(r, r
′) . (11)

Now, we want to know the probability to find a particle at point r′ if it has
been injected at point r. The probability to go from r to r′ is the modu-
lus square of the amplitude. From (11), we see that this probability is the
sum of amplitude squared terms, plus interference terms which pair different
trajectories j and j ′ :

|G(r, r′)|2 =
∑

j,j′

Aj(r, r
′)A∗

j′ (r, r
′) =

∑

j

|Aj(r, r′)|2 +
∑

j′ 6=j
Aj(r, r

′)A∗
j′ (r, r

′)

(12)
which an obvious generalization of (2) for the two-slit configuration. Since
we know that, in quantum mechanics, one must add amplitudes instead of
intensities, the interference term (the second term in (12)) cannot be a priori
neglected. This second term describes interferences between different trajecto-
ries j and j′. Each contribution in this sum has a random phase which depends
on the detail of the impurity configuration. Since the phases are uncorrelated,
at the first level of approximation, we may expect that the contribution of the
interference term cancels upon disorder averaging. So quantum effects seem
not to be so important because of the vanishing of this contribution. We shall
see however that this is not exactly the case. Within this approximation, the
second term cancels and the probability is essentially given by the sum of
intensities :

|G(r, r′)|2 =
∑

j

|Aj(r, r′)|2 . (13)

We see that the phases have disappeared. So the remaining term is completely
classical. Indeed, let us assume that some event changes the phase of the
amplitude Aj . The complex amplitude A∗

j gets the opposite phase, leaving
the probability unchanged.

To have a simple picture of (13), we represent on Fig. 4 a quantum am-
plitude as a line (it is rather a sort of Brownian trajectory). Its complex
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Fig. 4. Schematic representations of a Green’s function G(r, r′) and of the classical
probability Pcl(r, r

′) ∝ P

j |Aj(r, r′)|2. The upper diagrams exhibit a few collision
events, which are not represented on the lower diagrams

conjugate is represented as a dashed line. The first term in (13) corresponds
to the pairing of a trajectory with its complex conjugate, and we see imme-
diately why the phase disappears. The quantity

∑
j |Aj(r, r′)|2 resembles the

classical probability. We call it a “Diffuson”. To be more precise, but without
any proof, we define the probability P (r, r′, ω) as

P (r, r′, ω) =
1

2πρ0
Gε(r, r′)G∗

ε−ω(r′, r) . (14)

The Green’s function and its complex conjugate are taken at different en-
ergies (or frequencies) ε and ε − ω. One can check that this probability is
correctly normalized, that is

∫∞
0 P (r, r′, t)dr′ = 1, where P (r, r′, t) is the

Fourier transform of P (r, r′, ω). Starting from the Schrödinger equation in a
random potential and after disorder averaging, it is possible to show that in
the limit kFle � 1, the probability P (r, r′, ω) defined by (14) reduces to the
Diffuson Pcl(r, r

′) ∝∑j |Aj(r, r′)|2. For slow spatial variations, Pcl(r, r
′, ω)

is the solution of a classical diffusion equation :

(−iω −D∆)Pcl(r, r
′, ω) = δ(r − r′) , (15)

where D is the diffusion coefficient. Doing this, we have only considered clas-
sical contributions to the average (14). We shall study later the corrections to
this classical probability.

Among the solutions of this diffusion equation, one very important is the
return probability which enters in many physical quantities. It is the proba-
bility P (r, r, t) for an electron to return to its original position after time t. I
will also consider the space integrated return probability :

P (t) =

∫
P (r, r, t) dr . (16)

In free space, the solutions of (15) are simply obtained from the Fourier trans-
form (

∂

∂t
+Dq2

)
P (q, t) = δ(t) (17)

whose solution P (q, t) is simply
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P (q, t) = e−Dq
2t . (18)

Fourier transforming back, we find easily

P (r, r′, t) =
1

(4πDt)d/2
e−|r−r′|2/4Dt , (19)

so that the return probability is given by

P (r, r, t) =
1

(4πDt)d/2
and P (t) =

Ω

(4πDt)d/2
, (20)

where Ω is the volume of the system. The dependence on the dimensionality
d of the return probability is crucial since it will explain why dimensionality
plays a so important role in mesoscopic physics of diffusive systems.

4 Conductance

Now I wish to come to very simple and qualitative considerations about the
conductance of a disordered system, which will be useful in the rest of this
chapter.

4.1 Classical Conductance as the Ratio of Two Volumes

Consider the conductance G. Since it has the dimensions of e2/h, we can
introduce a dimensionless conductance g as

g = G/(se2/h) . (21)

Since this quantity is dimensionless, it may be written as the ratio of two
physical quantities. For example, by simple manipulations, it can be written
as the ratio of two energies : g ∝ Ec/∆, the Thouless energy Ec and the
average level spacing ∆. Here I would like to write it as the ratio of two
volumes. Let us start with the classical Drude conductivity σ0. From Einstein
relation, it is given by

σ0 = se2Dρ0 , (22)

where D is the diffusion coefficient and ρ0 is the density of states at the Fermi
level for one spin direction. The factor s = 2 accounts for spin degeneracy.
By Ohm’s law, the conductance G for a three-dimensional system is given
by G = σ0S/L, S being the section and L the length of the sample. More
generally for a hypercube of typical size L in d dimensions, it is given by
G = σ0L

d−2. Introducing the Thouless time τD defined by (8), let us rewrite
the conductance as

G = se2ρ0L
d/τD . (23)
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Density of states at the Fermi level ρ0 can be written as ρ0 = dAd/2πλ
d−1
F ~vF,

where λF is the Fermi wavelength, vF is the Fermi velocity, and Ad is the vol-
ume of the unit sphere (A3 = 4π/3, A2 = π, A1 = 2). An easy way to
recover immediately this result is to say that the total number of states is
(kFL)d, so that by derivation with respect to the energy, we have necessar-
ily ρ0 ∝ kdF/εF ' kd−1

F /~vF ∝ 1/~vFλ
d−1
F . As a result, the dimensionless

conductance g can be written as

g = dAd
Ω

λd−1
F vFτD

, (24)

where Ω = Ld is the volume of the system. The dimensionless conductance
quantity appears as the ratio of two volumes, the volume Ω of the system
and the volume of a tube of length vFτD and of section λd−1

F . We shall see
later that this formulation will be quite useful to measure the importance of
interference effects.

4.2 Conductance and Transmission

Our starting point to describe electric transport is the Landauer formalism.
Even staying at a very qualitative level, this formalism is quite natural since it
expresses the conductance as a transmission coefficient through the disordered
sample.

Fig. 5. In the Landauer formalism, the conductance is related to the transmission
coefficient between different incoming and outgoing channels

Consider a disordered conductor of length L and section S = W d−1. It
is connected to perfect conductors (Fig. 5) which can be considered as wave
guides where free electronic waves propagate. In this geometry, the transverse
wave vectors of the eigenmodes (also called channels) are quantized by trans-
verse boundary conditions. One can define a transmission coefficient Tab from
an incoming channel a (ingoing wave vector ka) to an outgoing channel b
(outgoing wave vector kb). The Landauer formula reads :

G = s
e2

h

∑

a,b

Tab . (25)
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To calculate the number of transverse channels, one considers that electrons
are injected at the Fermi energy, i.e., such that |ka| = |kb| = kF. The trans-
verse component is quantized in units of 2π/W . This quantization imposes
the number of channels. In d = 2 and d = 3, their number is

M2 =
2πkF

2π/W
= kFW , M3 =

πk2
F

4π2/W 2
=
k2
FS

4π
. (26)

Let us consider now the structure of the transmission coefficient Tab. It
is the square of an amplitude and it has, with minor differences, the same
structure as the probability P (r, r′, ω). The main difference is the following :
instead of injecting a particle at a point r inside the sample, we inject a plane
wave ka from outside the sample. In particular, the boundary conditions have
to be treated properly. But, without entering into details, we may easily under-
stand that, after disorder averaging, the average transmission coefficient and
consequently the conductance can be related to the probability to cross the
sample. More precisely for a 3d sample, one can show that the dimensionless
conductance is [1]

g =
4

9
MvFP (0, L) (27)

where P (0, L) is the solution of the diffusion equation (15) with appropriate
boundary conditions. It is given by P (0, L) = l2e/DL so that

g =
4

3
M
le
L
. (28)

To obtain these results quantitatively, there are some technicalities that we do
not describe here [1]. What should be remembered is the message of Fig. 6 : the
conductance is proportional to the classical probability to cross the sample.
This statement is sufficient to understand how coherence effects appear.

Fig. 6. The conductance is proportional to the classical probability to transmit
channel a to channel b (summed over channels). The object which represents this
probability is the sum of contributions of paired trajectories as introduced in Fig. 4.
We call it a “Diffuson”

5 Quantum Corrections and Quantum Crossings

The Diffuson is a classical object. It does not depend on the phases of the
complex amplitudes. In the diffusive regime, it is solution of a diffusion equa-
tion. However, we may have to check whether we have not left aside additional
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effects when throwing out all the interference terms in relation (12). It turns
out that some of these terms have quite interesting consequences.

Fig. 7. (a) Crossing of two Diffusons. (b) Detail : the volume of the intersection
region is proportional to λd−1

F le

Indeed, quantum effects can appear when two Diffusons cross, or when
a Diffuson crosses with itself. The notion of quantum crossing is extremely
important because it is the source of quantum effects. The Diffuson being a
classical object, coherence effects can only appear because of these quantum
crossings. They are at the origin of the weak localization correction and of
universal conductance fluctuations. Let us try to get some intuition about
these crossing events.

Figure 7a shows that a crossing mixes four complex amplitudes which
belong to two incoming Diffusons and pair them differently. The two emerging
Diffusons are built with amplitudes Aj and Aj′ coming respectively from each
of the incoming Diffusons. They have the same phase since they follow the
same path. The quantum crossing, also often called a Hikami box in a more
technical context, is thus an object whose role is to permute the quantum
amplitudes. It is necessarily short-ranged, because trajectories have to be as
close as possible to each other to avoid dephasing (Fig. 7b). Since it appears
between two successive collisions on impurities, and since the phase mismatch
between trajectories has to be smaller that 2π, one sees that the volume of
this object is of order λd−1

F le.
It is important to evaluate the probability of occurrence of such quan-

tum crossings because it will be shown to be a measure of the importance of
quantum effects. Since the volume of a quantum crossing is of order λd−1

F le,
a Diffuson propagating during a time t can be seen as an effective object of
length L = vFt and of cross-section λd−1

F . Thus, it has a finite volume vFλ
d−1
F t.

The probability dp×(t) of crossing of two Diffusons after a time dt in a volume
Ω = Ld is thus proportional to the ratio between the volume of a Diffuson
and the volume of the system :

dp×(t) =
λd−1

F vFdt

Ω
∝ 1

g

dt

τD
(29)

where we have used (24) to introduce the dimensionless conductance g. Con-
sider now an open system coupled to reservoirs. The time needed to travel
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throughout the sample is the Thouless time τD = L2/D. The probability of
quantum crossing during this time is given by

p×(τD) =

∫ τD

0

dp×(t) =
λd−1

F vFτD
Ω

' 1

g
. (30)

This is exactly the inverse conductance ! I believe that this is the most im-
portant message to understand phase coherence effects in disordered systems.
All these effects can be simply understood in terms of quantum crossings and
the probability of such crossings which measures the importance of quantum
mechanical effects is simply given by the inverse of the dimensionless conduc-
tance g.

In a good metal, the conductance g is large, the volume of the tube is
small, electrons do not spend much time in the system and quantum effects
are very small. In the opposite limit, when g becomes of order 1, the volume
of this tube is of the order of the volume of the system. It is so big that
the probability of quantum crossing is of order 1. This corresponds to the
Anderson regime where electronic waves are localized by strong disorder. Here
we shall not consider this regime but only the small disorder regime where
quantum effects remain small. The approach to Anderson localization can be
viewed as the proliferation of quantum crossings.

As a first qualitative but important conclusion of our discussion, we see
that classical transport is described by a conductance G = sge2/h. Quan-
tum corrections are smaller than classical terms by a ratio 1/g. This tells us
immediately that the quantum corrections are of order G/g, that is e2/h !

6 Weak Localization

6.1 Weak Localization and Quantum Crossings

We have seen that the classical probability and the conductance can be ex-
pressed as a sum of contributions of pairs of complex conjugated trajectories.
Since trajectories can have quantum crossings, they can form closed loops
(Fig. 8). It turns out that in such a loop (whose contribution is not included
in (13)), the trajectories are time-reversed. One trajectory j and its time-
reversed jT go in opposite directions. If there is time-reversal symmetry, they
have the same action and thus they have exactly the same phase. This phase
can be quite complicated because it depends on the disorder configuration but
it is the same for both trajectories. So the contribution of these loops does not
cancel on average. If the end points are far away like in Fig. 8, the contribution
of these new trajectories is small, of order 1/g, but it leads to an experimen-
tally observable effect : the weak localization correction to the conductance.
This is a phase coherent effect because only trajectories of size smaller than
the phase coherence length Lφ contribute to this additional contribution.
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At this point, I want to stress that many presentations of weak localization
correction emphasize the existence of a loop of opposite trajectories, but do not
insist on the structure of the quantum crossing. This is rather quite important,
because this is what explains the amplitude 1/g of the correction. This is where
phase coherence is lost.

Fig. 8. Trajectory with a quantum crossing and a loop. In the loop, the two prop-
agations are time-reversed

Using the same type of argument as in the previous section, let us evaluate
the probability to have a loop for a trajectory which travels through the sam-
ple. Since there is a quantum crossing, the probability is small, of order 1/g.
Moreover, it depends on the distribution of loops in the disordered system.
Let us call it Pint(t). For the probability of traversing the sample with a loop,
we have :

po(τD) =

∫ τD

0

Pint(t) dp×(t) =
1

g

∫ τD

0

Pint(t)
dt

τD
. (31)

We have also to remember that, because of decoherence in the loops, only
those with time t smaller than τφ contribute. The resulting probability to
have trajectories with loops of time smaller than τφ is :

po(τφ) =

∫ min(τD,τφ)

0

Pint(t) dp×(t) =
1

g

∫ min(τD,τφ)

0

Pint(t)
dt

τD
(32)

where Pint(t) is the probability to have loops of time t. This leads to a relative
correction to the conductivity (or to the conductance) given by

∆σ

σ0
=
∆G

G0
= −po(τφ) . (33)

The sign of the correction is negative because the trajectories j and jT have
opposite momenta. This quantum correction to the classical Drude conduc-
tivity is called the weak localization correction [10–12]. The phase coherence
is broken by the coupling of the electrons to other degrees of freedom or due
to electron-electron interactions. Such coherence breakdown is temperature
dependent and can be phenomenologically described by a temperature depen-
dent phase coherence length Lφ(T ) =

√
Dτφ(T ) : trajectories larger than Lφ

do not contribute to the weak localization correction.
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As we have seen above, the amplitude of the correction is proportional to
Pint(t), the distribution of loops. This quantity is nothing but the return prob-
ability after a time t. It is not exactly the classical return probability, which
is the product of an amplitude with its complex conjugate (Diffuson). Here
it corresponds to the product of an amplitude with the complex conjugate
time-reversed amplitude. This object is named a “Cooperon”. For closed tra-
jectories, and with time-reversal symmetry, the two contributions, Cooperon
and Diffuson, are equal. The return probability is thus doubled due to quan-
tum coherence.

Equations (32) and (33) have a meaning only in the diffusive regime for
which t > τe (otherwise a loop cannot be formed). The contribution of the
return probability has thus to be integrated between τe, the smallest time for
diffusion, and the phase coherence time τφ. Replacing the bounds by expo-
nential cutoffs, the weak localization correction can be cast in the form [13] :

∆G = −2s
e2

h

∫ ∞

0

Pint(t) (e−t/τφ − e−t/τe)
dt

τD
. (34)

In order to evaluate ∆G in various situations, we now study the diffusion
equation and its solutions.

6.2 How to Solve the Diffusion Equation

In order to perform practical calculations, we have to calculate this distribu-
tion of closed trajectories, that is, the return probability. We have to solve a
diffusion equation for this interference part. It looks very much like a classical
diffusion equation (15), but there is an important difference. To account for
magnetic field effects, it should be replaced by (in time representation) :

[
∂

∂t
−D

(
∇+

2ieA

~c

)2
]
P (r, r′, t) = δ(r − r′)δ(t) . (35)

The effect of the field is described by a covariant derivative (like in a
Schrödinger equation) with an effective charge 2e to account for the pairing
of trajectories.

To solve this equation (35), let us notice that it is a Green’s equation,
whose solutions are

P (r, r′, t) = θ(t)
∑

n

ψ∗
n(r)ψn(r

′)e−Ent , (36)

where θ(t) is the step function and {En, ψn} are the eigenvalues and eigen-
functions of the eigenvalue equation associated to (35) :

−D
(
∇r +

2ieA

~c

)2

ψn(r) = Enψn(r) . (37)
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From (36), we find that the integrated probability P (t) has the simple form :

P (t) = θ(t)
∑

n

e−Ent . (38)

This important result tells us that in order to evaluate the weak localization
correction in any geometry, we simply need the eigenvalues of the diffusion
equation in the corresponding geometry. We consider now a few examples.

6.3 Dimension Dependence of the Weak Localization Correction

Consider an infinite system, or with size L� Lφ. For free diffusion in infinite
space, the eigenvalues En of the diffusion equation are Dq2 and the return
probability P (t) is given by (20). Since P (t) is dimension dependent, we see
that this weak localization correction depends dramatically on the space di-
mensionality. Inserting (20) in (34), and writing τφ = L2

φ/D, we obtain the
well-known results :

∆g =





−Lφ
L

quasi− 1d

− 1

π
ln
Lφ
le

d = 2

− 1

2π

(
L

le
− L

Lφ

)
d = 3

(39)

Since Lφ(T ) varies as a power-law with temperature, we obtain in particular
the famous lnT dependence of the weak localization correction in 2d.

It should be noticed that these results are meaningful if the correction
stays smaller than the classical conductance (which can be written in the
general form g = Ad(kFL/2π)d−1 le/L). This defines a characteristic length ξ
given by ∆g(ξ) ' g, for which the weak-disorder perturbative regime breaks
down. In 1d and 2d, it is given by

ξ1d = 2le , ξ2d = lee
πkFle/2 , (40)

and for a quasi-1d system ξq1d ' Mle where M is the number of channels. ξ
is the localization length. For a review on the strong localization regime, see
for example [14].

6.4 Finite Systems, Boundary Conditions

In a mesoscopic system, the cutoff time in (32) is provided by τD . In other
words, the cutoff length in (39) is now the size L of the system instead of Lφ.
Therefore, from (39), we see that in quasi-1d, the weak localization correction
is universal in the sense that it is a number, independent of disorder strength
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(le). In 2d and 3d, the integral (34) diverges at small time and is cut off by
τe, so that the correction cannot be universal [1].

In order to calculate quantitatively the weak localization correction and the
return probability in a finite system, one must be careful to account properly
for correct boundary conditions.

If the system is closed, electrons stay inside the system, so that P (t) −→
t→∞

1.

The correct boundary condition is that the probability current vanishes at the
boundary (Neumann condition). Therefore q = nπ/L with n = 0, 1, 2, 3, · · · .
For t→∞, the contribution of the zero mode in equation (38) gives correctly
P (t)→ 1.

If the sample is perfectly connected to leads, electrons can leave the sample
and P (t) −→

t→∞
0. The probability at the boundary has to vanish (Dirichlet

boundary condition), because if it goes in the leads it never comes back in the
same state. The zero mode is now excluded, q = nπ/L with n = 1, 2, 3, · · · .
P (t)→ 0 when t→∞ since the particle leaves the box at large time. Inserting
the expression (38) of the return probability with En = n2Ec into (34) gives
immediately, in the limit Lφ →∞ :

∆g = −2
∑

n6=0

1

π2n2
= −1

3
. (41)

This result is proper to the perfectly connected wire.

6.5 Magnetic Field Effects

Ring or Cylinder Geometry : Sharvin-Sharvin Oscillations

Consider first the geometry of a ring pierced by a Aharonov-Bohm flux. In
the presence of the flux, each closed trajectory accumulates an Aharonov-
Bohm phase 2πφ/φ0, where φ is the flux through the ring. The time-reversed
trajectory accumulates an opposite phase −2πφ/φ0, so that the relative phase
shift between the two trajectories is 4πφ/φ0, The fact that this relative phase
between the two time-reversed trajectories is twice the phase enclosed by one
trajectory is the reason why average quantities oscillate with period φ0/2 =
h/2e.

We need to calculate the return probability in this geometry. This can
be done directly by solving (35). Here let us proceed by simple arguments.
Remember that in a 1d infinite space, the probability to go from r to r′

is given by (19) with d = 1. The return probability is obtained by writing
r = r′. On a ring, this would be the return probability without making a
loop, 1/

√
4πDt. The return probability after one loop of perimeter L neces-

sarily contains a term e−L
2/4Dt. The accumulated phase is 4πφ/φ0 so that the

flux dependent contribution of trajectories making one loop is modulated by
cos 4πφ/φ0. Adding together the contributions of m loops, we get simply the
Fourier expansion of the flux dependent return probability :
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Pint(t, φ) =
L√

4πDt

+∞∑

m=−∞
e−m

2L2/4Dt cos 4πmφ/φ0 . (42)

Each harmonics of this expansion represents the return probability after m
loops around the ring. Inserting this expression into (34) and after time inte-
gration, we obtain easily

∆G(φ) = −se
2

h

Lφ
L

(
1 + 2

+∞∑

m=1

e−mL/Lφ cos 4πmφ/φ0

)
(43)

which can be resumed to obtain

∆G(φ) = −se
2

h

Lφ
L

sinhL/Lφ
coshL/Lφ − cos 4πφ/φ0

. (44)

The harmonics decay exponentially with their order, since they correspond to
longer and longer diffusive trajectories.

For a cylinder, there is a possibility for the electrons to diffuse along the z
axis of the cylinder, so that (42) is simply multiplied by Lz/

√
4πDt. Inserting

this new probability into (34), we obtain

∆G(φ) = −s e
2

πh

L

Lz

[
ln
Lφ
le

+ 2

+∞∑

m=1

K0(mL/Lφ) cos 4πmφ/φ0

]
(45)

where K0 is a modified Bessel function [15]. The m = 0 term is the usual
2d result (39). The contributions of the harmonics decay as e−L/Lφ . These
oscillations, predicted by Altshuler, Aronov and Spivak, where observed by
Sharvin and Sharvin in 1981 [4, 16].

2d Gas in a Magnetic Field

In the ring geometry, all pairs of diffusive trajectories would pick the same
phase 4πφ/φ0. In a uniform magnetic field, small and large trajectories accu-
mulate different fluxes φ(A) = BA depending on their area A. So the return
probability is balanced by the average 〈cos 4πφ(A)/φ0〉A on the distribution
of areas A formed by the time-reversed diffusive trajectories.

Let us start with a qualitative evaluation. Short trajectories accumulate a
flux smaller than the flux quantum and their contribution survives. Large tra-
jectories accumulate flux larger than φ0 and their contribution vanishes. When
the magnetic field increases, the contribution of smaller and smaller trajecto-
ries is progressively suppressed. Trajectories smaller than some field dependent
characteristic length LB corresponding to BL2

B ' φ0 will not contribute. To
this length LB corresponds a characteristic time τB = L2

B/D ' φ0/BD, so
that we can expect

〈cos 4πφ/φ0〉A ' e−t/τB . (46)
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Trajectories which enclose more than one flux quantum do not contribute to
the return probability. Because of this new cutoff time, we can expect a field
dependence of the weak localization of the form

∆g = − 1

π
ln

min(Lφ, LB)

le
(47)

instead of (39).
The exact calculation is straightforward starting from equation (38). The

eigenvalues En are solutions of an effective Schrödinger equation for a free
particle of mass m = ~/2D and charge −2e in a uniform field B. They are
precisely the Landau levels, namely

En =

(
n+

1

2

)
4eDB

~
, (48)

where n is an integer. The degeneracy of these levels for an area S is
gn = 2eB

h S. The integrated return probability Pint(t) is just given by the
sum

∑
n gne

−Ent, that is :

Pint(t, B) =
BS/φ0

sinh(4πBDt/φ0)
(49)

where φ0 = h/e is the flux quantum. This expression is nothing but the parti-
tion function of the harmonic oscillator. In the limit B → 0, one recovers the
result for free diffusion : S/(4πDt). For large times, Pint(t, B) decreases expo-
nentially with the characteristic time τB = φ0/4πBD introduced qualitatively
in (46). It describes the dephasing of time-reversed trajectories. Inserting (49)
in (34), and performing the integral, we get :

∆g(B) = − 1

2π

[
Ψ

(
1

2
+

~

4eDBτe

)
− Ψ

(
1

2
+

~

4eDBτφ

)]
(50)

where Ψ is the digamma function. This expression corresponds to the approx-
imation (47). The weak localization correction is negative and cancelled by
the magnetic field. As a result, a negative magnetoresistance is a well-known
signature of weak localization (Fig. 9). A magnetoresistance measurement
is a very interesting and useful tool to estimate τφ. The correction cancels
when τB ' τφ, that is for a field Bφ corresponding to a flux quantum through
an area BφL

2
φ. Doing the same measurement at different temperatures is the

usual method to extract τφ(T ).

7 Conductance Fluctuations

7.1 Universality as a Signature of Quantum Coherence

At a scale L < Lφ, a conductor is a quantum object. Its conductance depends
on the interference pattern between all diffusive trajectories. This interfer-
ence pattern can be modulated by external parameters, like a magnetic field
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Fig. 9. Magnetic field dependence of the magnetoresistance of a Mg film, for different
temperatures. The points are experimental results and the solid curves correspond
to (50). The time τφ(T ) is a fitting parameter [11]

or a gate voltage. For example, Fig. 10a represents the variation of the conduc-
tance with the magnetic field, performed for 46 different samples (actually the
same sample which has been annealed several times, so that the impurity con-
figuration has changed and the interference pattern is different). It exhibits
“fluctuations” which are reproducible for a given configuration of disorder.
They are a “fingerprint” of this configuration. Figure 10b displays the aver-
age conductance, obtained by an average over the 46 samples. One clearly
sees the weak localization correction, which is destroyed around some charac-
teristic field Bφ. Interestingly, for the same characteristic field, the variance
of the fluctuations, displayed on Fig. 10c is reduced by a factor 2.

Universality of the conductance fluctuations is a signature of quantum
transport. Classically, one would expect the system to be considered as an
addition of large number of incoherent elements. This number is of order
N = (L/Lc)

d, where Lc would be a correlation length, of the order of the mean
free path. Then one would expect relative fluctuations of the conductance G
of order of

δG

G
' 1√

N
=

(
Lc
L

)d/2
(51)
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Fig. 10. Reproducible fluctuations of the
magnetoconductance in units of e2/h, at
T = 45 mK for Si doped GaAs. (a) Shows
46 plots as function of the magnetic field,
for the same sample after successive an-
nealing. Each plot corresponds to a dis-
order configuration and is called a mag-

netofingerprint. The amplitude of the fluc-
tuations is smaller than e2/h because L >
Lφ (see (66)). (b) Presents the average
conductance versus field. The weak lo-
calization correction disappears beyond a
characteristic field. (c) Displays above the
same field, the variance of the fluctuations
divided by a factor 2, corresponding to the
destruction of the Cooperon [17]

so that, since G varies as Ld−2 :

δG ∝ L d−4
2 , (52)

and vanishes for large L. The system is said to be self-averaging. But the fact
that the fluctuation δG stays actually finite means that there are strong cor-
relations due to quantum coherence. Moreover, if one considers fully coherent
(L < Lφ) systems with quite different conductances, a good metal, a bad
metal, or a semiconductor, one finds that the amplitude of the “oscillations”
is always the same : it does not depend on the disorder. It is universal, of order
e2/h. A priori, we are not so surprised that these fluctuations are universal
since our simple argument of Sect. 5 showed that all quantum effects have to
be of order e2/h.

7.2 Conductance Fluctuations and Speckle Correlations in Optics

Here it is quite useful to compare the physics of electronic transport with
similar physics in optics where one measures the fluctuations of a transmission
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Fig. 11. A typical speckle pattern. The white and noisy curve represents the angular
dependence of the light intensity along the cut represented by the dashed line. The
relative fluctuations are of order unity (courtesy of G. Maret)

coefficient. In optics the light scattered by a diffusing medium forms a speckle
pattern on a screen, and we want to describe the speckle fluctuations (This is
exactly a generalization of Young experiments. Two slits produce well-defined
fringes. Here the diffusing medium, like e.g. colloidal suspension, produces
a complicated pattern called a speckle). A laser beam is sent on a diffusing
medium along an incident direction a and the diffused intensity is measured
along a direction b. The speckle pattern displayed on Fig. 11 represents the
intensity measured along a direction b for a fixed incident direction a. So a
given intensity on the screen represents the transmission coefficient Tab from
an incident direction a to an emergent direction b. We notice immediately that
there are black spots, meaning that the relative fluctuations of this coefficient
are of order 1. This is the Rayleigh law :

δT 2
ab = Tab

2 . (53)

In electronics however, relative fluctuations of the conductance are very small,
of order 1/g2. Here we want to understand why fluctuations are large in optics
and small in electronics, namely to compare conductance fluctuations and
fluctuations of transmission coefficient.
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A very convenient way to link the two fields of optics and electronics is to
use the Landauer formalism, which explicitly expresses the conductance as a
transmission coefficient. This is formalized by Landauer formula g =

∑
ab Tab

(25). The main difference between optics and electronics is that in optics, it
is possible to measure each transmission coefficient Tab while in electronics
the conductance is related by (25) to a sum over all incoming and outgoing
channels.

The average transmission is a probability. It is a sum of contributions of
paired trajectories. Assuming that the angular (or channel) dependence of Tab
is negligible, all the channels contribute equally to the conductance, so that,
from (25) :

G =
e2

h
M2 Tab (54)

and the average transmission coefficient is thus equal to

Tab =
g

M2
. (55)

Now we want to calculate the correlation between two transmission co-
efficients, that is the function TabTa′b′ . This quantity is the product of two
average transmission coefficients plus a correlation term :

TabTa′b′ = Tab Ta′b′ + δTab δTa′b′ . (56)

The correlation term is constructed by pairing of trajectories corresponding
to different transmission coefficients (Fig. 12).

a
a

a'
a'

b
b

b'(a)
b'

b'
b

a

a

a'

a'

(b)

b

b'

Fig. 12. Schematic representation of the two contributions to the product TabTa′b′ .
The first (a) corresponds to the product Tab Ta′b′ . The second (b) gives a contribu-

tion to the correlation function that we shall denote by δTab δTa′b′
C1

One sees that there is no dephasing between the diffusive paired trajec-
tories, expect outside the sample since a and a′ (b and b′) may correspond
to different incoming (outgoing) channels. The second term is therefore of
the form Tab

2 f(a, a′, b, b′) where f is a short-range function which vanishes
rapidly as soon as a 6= a′ or b 6= b′. If a and b are angular directions, f is
a rapidly decreasing function of the angles. In a wave guide geometry, where
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the modes are quantized, f = δaa′δbb′ . This contribution to the correlation
function δTab δTa′b′ is called C1 :

δTab δTa′b′
C1

= Tab
2 δaa′δbb′ . (57)

For a = a′ and b = b′, we obtain the Rayleigh law (53), that is

δT 2
ab = 2 Tab

2 . (58)

The amplitude of the fluctuations is of the order of the average. This explains
why there are black spots on Fig. 11.

In order to calculate the conductance fluctuations, we have to sum over
all incoming and outgoing channels :

δg2 =
∑

aa′bb′

δTabδTa′b′ =
∑

aa′bb′

Tab
2 δaa′δbb′ = M2 Tab

2 =
g2

M2
� 1 . (59)

The sum is small since most of the terms are negligible. So our picture explains
the important fluctuations of Tab but not the amplitude of the conductance
fluctuations. This means that additional contributions to the correlation func-
tion δTab δTa′b′ may have been forgotten.

A next contribution is obtained by pairing trajectories in a different way.
One possibility is to exchange the quantum amplitudes, and to have one cross-
ing as shown in Fig. 13a. This contribution is smaller by a factor 1/g , so that
its contribution to the correlation function δTabδTa′b′ is small. But it has an
angular dependence different from the previous contribution. Figure 13a shows
that there is a phase factor either for the incoming or the outgoing beam, so
that instead of (57), we have for this second contribution, usually called C2,

δTabδTa′b′
C2

=
2

3g
Tab

2 (δaa′ + δbb′) . (60)

The factor 2/3 results from an integration over the position of the quantum
crossing [1]. A sum over all incoming and outgoing channels gives for this
contribution :

δg2 =
∑

aa′bb′

2

3g
Tab

2 (δaa′ + δbb′) =
4g

3M
� 1 . (61)

Still this contribution cannot explain the amplitude of the observed conduc-
tance fluctuations, since it vanishes in the large M limit. Let us consider the
next contribution shown on Fig. 13b, with two quantum crossings. We see
that this so-called C3 contribution is smaller than the first one by a factor
1/g2 :

δTabδTa′b′
C3

=
2

15g2
Tab

2 . (62)
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Fig. 13. Schematic representation of the C2 and C3 contributions to the correlation
function δTabδTa′b′ . κd

1 and κd
3 are Diffuson contributions. κc

2 and κc
3 are Cooperon

contributions

The 2/15 factor comes from the integration over the positions of the two
quantum crossings [1] (see next section). This term has no angular depen-
dence, so that the summation over channels contains now M 4 terms and the
contribution to the conductance fluctuations is

δg2 =
2

15
. (63)

The fluctuations are universal, independent on the strength of disorder. In
summary, they are universal since the corresponding correlation function
is constructed with two conductances and two quantum crossings, giving
g2 × 1/g2 ' 1. The contributions with no crossing or one crossing cancel
because of angular dependences. The next terms with n crossings are negli-
gible, of order 1/gn−2. In optics when one considers a speckle pattern, the
first contribution is the most important, and the one crossing and two cross-
ings contributions are very difficult to observe (They can be observed since,
although very small, they have a different angular dependence, and also dif-
ferent temporal or frequency dependences [1]). In electronics, only the third
contribution with two crossings is important after summation over incoming
and outgoing channels. In summary,

∑
ab Tab has much smaller fluctuations

than Tab. We have now a simple recipe to evaluate average quantities or cor-
relations functions : each quantum crossing gives a factor 1/g.
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7.3 Amplitude of the Conductance Fluctuations

In order to calculate quantitatively the conductance fluctuations, their depen-
dence on geometry or external parameters, we must analyze more precisely the
structure of the paired trajectories in Fig. 13b. In addition to the crossings,
there is a loop. And we have to integrate on the distribution of loops, like for
the weak localization correction. In contrast with the weak localization cor-
rection, this loop is formed by two crossings instead of one. So here for a given
position of one crossing, we have to integrate on the position of the second
crossing. Since this second crossing is necessarily along the loop formed by the
two crossings, the integration over the position of the second crossing gives
a volume element proportional to the length of the loop. For a trajectory of
length vFt, the volume is vFtλ

d−1
F . Moreover, P (t) contains two-Diffusons and

two-Cooperons contributions. A careful examination of the possible crossing
and trajectories shows the only possible diagrams shown on Fig. 13. Taking
into account their degeneracy [1], we obtain an expression which is as simple
as the weak localization correction :

δG2 = 6s2
(
e2

h

)2 ∫ ∞

0

t [Pcl(t) + Pint(t)]e
−t/τφ

dt

τ2
D

. (64)

There is an equal contribution of loops with Diffusons or Cooperons. In a
magnetic field, the Cooperon contribution is suppressed so that the variance
is reduced by a factor 2, as seen on Fig. 10c. This happens for the same
magnetic field Bφ as the destruction of the weak localization correction, that
is for a flux quantum through the system or through L2

φ.
Incoherent processes not only destroy the Cooperon contribution but also

the Diffuson contribution. This could appear surprising since we have seen
that this Diffuson contribution corresponds to classical diffusion, and there-
fore should not be phase sensitive. However, this Diffuson contribution is not
really the classical contribution, since it is constructed by pairing trajecto-
ries corresponding to different realizations of the system. If there is a phase
breaking event, it affects equally one amplitude and its complex conjugate.
But here, the phase breaking event may affect differently the two amplitudes
since they correspond to different systems.

Like we have done above for the weak localization correction (34), we can
now evaluate quite easily δG2 given by (64) for different geometries from the
corresponding expression of the return probability P (t). Let us do it for a
quasi-1d mesoscopic wire. P (t) is given by

P (q, t) =
∑

e−Dq
2t

where q = nπ/L is quantized by the Dirichlet boundary conditions corre-
sponding to a perfectly connected wire (no zero mode, see Sect. 6.4). Inserting
P (t) in (64), we get
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δg2 = 6
∑

n>0

1

π4n4
=

2

15
. (65)

Let us remark that the choice of the boundary conditions is very important.
If the system were closed or poorly connected, corresponding to Neumann
boundary conditions, then the contribution of the zero mode would lead to a
divergence, or at least non-universality of the fluctuations.

In the macroscopic limit, when Lφ � L, we can treat the system as infinite,
replace P (t) by its dependence (20) for an infinite system (τD/4πt)

d/2 and
multiply by the exponential decay e−t/τφ in the integral. Then we obtain :

δg2 ∝
(
Lφ
L

) 4−d
2

. (66)

We are not surprised by this result. It is exactly the one anticipated from our
simple argument (51) treating the fluctuations as due to incoherent contribu-
tions of correlated regions of size Lφ.

Finally, it is quite easy to notice, that correlations functions of n conduc-
tances imply 2n−2 crossings. Therefore the nth cumulant of the conductance
distribution is of order gn/g2n−2 ∝ 1/gn−2. It vanishes for n > 2 in the metal-
lic limit g →∞, so that the conductance distribution is indeed Gaussian.

8 Diffusion on Graphs and Spectral Determinant

The calculation of the weak localization correction or of the conductance fluc-
tuations, as well as of other thermodynamical quantities like orbital magnetic
susceptibility [1, 18] can be extended to the case of any structure – called a
network – made of quasi-one-dimensional diffusive wires. First, we note that
the quantities of interest, like the weak localization correction (34) or the
conductance fluctuations (64), have the same structure :

∫
tαP (t)e−γtdt , (67)

where γ = 1/τφ. From (38), the time integral of P (t) can be straightforwardly
written in terms of a quantity called the spectral determinant S(γ) :

∫ ∞

0

dtP (t)e−γt =
∑

n

1

En + γ
=

∂

∂γ
lnS(γ) , (68)

where S(γ) is, within a multiplicative constant independent of γ :

S(γ) =
∏

n

(γ +En) , (69)

En being the eigenvalues of the diffusion equation (37). Using standard prop-
erties of Laplace transforms, the above time integrals can be rewritten in
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terms of the spectral determinant, so that the weak localization corrections
to the conductivity and the conductivity fluctuations respectively read :

∆σ = − 2s
e2

h

D

Ω

∂

∂γ
lnSint(γ) , (70)

〈δσ2〉 = − 6s2
e4

h2

D2

Ω2

∂2

∂γ2
[lnScl(γ) + lnSint(γ)] , (71)

where Scl and Sint are the spectral determinants associated respectively to
the diffusion equation for the Diffuson and the Cooperon. Here Ω is the total
volume of the system. These expressions are quite general, strictly equivalent
to expressions (34) and (64). Their interest is that, on a network, the spectral
determinant takes a very simple form. By solving the diffusion equation (35)
on each link, and then imposing Kirchoff type conditions on the nodes of the
graph with N nodes, the problem can be reduced to the solution of a system of
N linear equations relating the eigenvalues at the N nodes. Let us introduce
the N ×N matrix M :

Mαα =
∑

β

coth(ηαβ) , Mαβ = − eiθαβ

sinh ηαβ
. (72)

The sum
∑
β extends to all the nodes β connected to the node α, lαβ is

the length of the link between α and β, and ηαβ = lαβ/Lφ. The off-diagonal
coefficientMαβ is non-zero only if there is a link connecting the nodes α and β.

Here θαβ = (4π/φ0)
∫ β
α
A.dl is the circulation of the vector potential between

α and β. It can then be shown that the spectral determinant takes the very
convenient form [1,18] :

S =

(
Lφ
L0

)NB−N ∏

(αβ)

sinh ηαβ detM , (73)

where L0 is an arbitrary length independent of γ (or Lφ) andNB is the number
of links in the graph. We have thus transformed the spectral determinant
which is an infinite product in a finite product related to detM . Using (73),
mesoscopic quantities (70–71) can be easily predicted for any geometry of
diffusive networks [1, 18].

9 Interaction Effects

Until now we have not considered the role of electron-electron interactions.
They turn out to give small corrections to transport quantities like the average
conductivity, but they play an important role to understand thermodynamic
properties like persistent currents [1]. Moreover, until now we have introduced
by hand a phase coherence time τφ (or length Lφ). We wish now to understand
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the microscopic origin for the loss of quantum coherence. This phase coherence
is limited by the interactions with other degrees of freedom, in particular other
electrons through their mutual interaction. We want to discuss now how e-e
interactions break phase coherence.

On one hand, interaction effects can be considered as negligible. We know
from Landau theory of Fermi liquids that in an interacting electron gas, free
particles have simply to be replaced by quasi-particles which are dressed ob-
jects, screened by the cloud of other electrons. These quasi-particles have a
long lifetime which diverges when approaching the Fermi level. From Landau,
we know that

1

τee(ε)
∝ ε2 (74)

where ε = E−EF is the energy of the quasi-particle measured from the Fermi
level. On the other hand, in a disordered metal, electrons move diffusively, that
is very slowly. They spend long time close to each other. Qualitatively, we can
expect that diffusion somehow enhance the effect of interactions. We may ask
if and how expression (74) is changed because of the diffusion. Moreover, since
the diffusive motion is dimensionality dependent, the modified lifetime should
also depend on this dimensionality.

Interaction between electrons is expected to have two major effects :

• First, each electron is not only sensitive to the disordered potential but
also to the fluctuations of the electronic density due to other electrons.
This additional fluctuating potential modifies the position of the energy
levels, especially near the Fermi level. So we may expect a modification in
the repartition of the energy levels, that is a change of the density of states
near the Fermi level. We shall show that the density of states exhibits a
decrease, the so-called “Altshuler-Aronov” anomaly. This reduction of the
density of states is accompanied by a reduction of the conductivity.

• Since the e-e interaction is a inelastic process, each quasi-particle has a fi-
nite lifetime which limits the phase coherent properties like weak localiza-
tion, since the coherence between time-reversed trajectories are necessarily
limited by this lifetime.

9.1 Screening

In order to describe interaction effects, let us start with a few reminders
about the screening of interaction. The bare Coulomb interaction potential
is U0(R) = e2/R, that is in 3d, U0(q) = 4πe2/q2. The screened Coulomb
interaction U(q) is given by

U(q) =
U0(q)

1 + χ0(q)U0(q)
(75)

where, in the small q limit (we are interested in the diffusive regime where
qle � 1), the susceptibility χ0(q) is the Pauli susceptibility, that is the density
of states 2ρ0. Therefore, the screened interaction is given by
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U(q) =
4πe2

q2 + κ2
, U(R) =

e2

R
e−κR , (76)

where the Thomas-Fermi vector κ (inverse screening length) is

κ2 = 8πe2ρ0 . (77)

In the diffusive limit qle � 1, the screened interaction can by approximated
by

U(q) =
4πe2

κ2
=

1

χ0
=

1

2ρ0
, U(R) =

1

2ρ0
δ(R) . (78)

On the scale of diffusion, the screened interaction can be considered as a local
interaction.

However, it turns out that screening is not instantaneous since electrons
have to diffuse to screen a local charge. Therefore the interaction is actually
frequency dependent. This dynamical screening is described by the frequency
dependent susceptibility χ0(q, ω) which accounts for the dynamical charge
reorganization :

χ0(q, ω) = 2ρ0
Dq2

−iω +Dq2
. (79)

Therefore equation (78) becomes

U(q, ω) =
1

χ0
=

1

2ρ0

−iω +Dq2

Dq2
. (80)

9.2 Density of States Anomaly

As we have done above, we shall avoid technicalities of diagrammatic theory,
and try to get the important results from qualitative arguments. Although we
have not elaborated on the theory of Green’s functions, let me remind you at
least that the Green’s function is related to the density of states by

ρ(ε) = − 1

πΩ

∫
ImGε(r0, r0)dr0 . (81)

As we have seen in Sect. 3, G(r0, r0) is the sum of contributions from all
closed trajectories from r0 to r0 (Fig. 14a). All these amplitudes have different
and random phases and their contribution cancels in average. What remains
is the contribution of short trajectories, giving an average density of states
ρ(ε) = 2ρ0.

How can the effects of diffusion + interactions appear on the density of
states? The non-interacting density of states (or Green’s function) is a single
electron property, and therefore involve single trajectories. In the presence
of electron-electron interaction, each electron trajectory can be paired with
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the trajectory of a second electron, with which it interacts. Then by pairing
these two trajectories, we can construct a Diffuson. More precisely, we pair
an amplitude corresponding to one electron to the conjugate amplitude cor-
responding to another electron. Their interaction is represented by a wiggly
line in Fig. 14b. There are actually two possible contributions, depending on
the position of the interaction line. They are nothing but the Hartree and the
exchange (Fock) contributions. We can conveniently separate the “diagrams”
in three different parts :

• A short-range part close to the point r0. It resembles somehow to a quan-
tum crossing, with a dephasing between the three trajectories,

• two long ranged Diffusons,
• an interaction region between r and r′.

So, we can easily construct the structure of this additional contribution to the
density of states :

δρ

ρ0
' −λρ

g

∫ ~/ε

P (t)
dt

τD
. (82)

λρ is a dimensionless parameter which describes the strength of the inter-
action. It contains both the Hartree and exchange contributions. The 1/g
reduction comes from the quantum crossing. And the distribution of loops
formed by the paired trajectories is given by the return probability P (t). For
an energy ε, the two amplitudes must be taken at different energies ω and
ω − ε. Therefore the two trajectories can stay in phase only during a time
∆ ' ~/ε, so that the upper cutoff in the integral is ~/ε.

Here our aim is simply to present the structure of the result without en-
tering into details. Another qualitative derivation is given in [19], a detailed
discussion is proposed in [1], and the original calculation is done in [20]. We
see that the amplitude and the structure of this correction to the density of
states looks very similar to that of the weak localization correction (34), ex-
cept that the upper cutoff is not τφ but ~/ε. Unlike for the weak localization,
this correction depends on the classical return probability, so that it is not
suppressed by a magnetic field [21].

The form (82) is approximate. A more sophisticated calculation replaces
the upper cutoff by a Fourier transform. Moreover since g ∝ ρ0Ω/τD, (82)
becomes

δρ(ε) = − λρ
πΩ

∫ ∞

0

P (t) cos εt dt . (83)

From the expression (20) of P (t), we obtain the energy dependence of the
density of states anomaly :
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Fig. 14. (a) Diagram for the non-interacting density of states. After disorder av-
eraging, the contribution of diffusive trajectories vanishes because of their random
phase. (b) Hartree and (c) exchange (Fock) diagrams for the density of states
anomaly. These contributions survive disorder averaging since they contain paired
trajectories. Upper : schematic representation exhibiting clearly the three regions, a
short-range region, diffusive trajectories and the interaction region. Bottom : usual
diagrammatic representation. These two representations are equivalent

δρ(ε) ∝ − λρ
DΩ






Lε quasi− 1d

ln
Lε
le

d = 2

1

le
− 1

Lε
d = 3

(84)

where the characteristic length Lε is Lε =
√

~D/ε. The structure of this
correction related to P (t) is similar to the weak localization correction (39),
except that the characteristic length Lφ has been replaced by Lε. This re-
duction of the density of states can be observed experimentally by tunnel
measurements, since it reflects as an anomaly in the voltage dependence of
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the tunnel conductance Gt. At zero temperature, the relative correction to
the tunnel conductance is given by

δGt
Gt

=
δρ(ε = eV )

ρ0
. (85)

At finite temperature, it is not difficult to generalize the expression (83)
of the density of states anomaly as

δρ(ε, T ) = −
∫
f ′(ε− ω)δρ(ω)dω , (86)

where f ′ is the derivative of the Fermi function. After a Fourier transform,
we find

δρ(ε, T ) = − λρ
2πΩ

∫ ∞

0

RT (t)P (t) cos εt dt , (87)

where the thermal function RT (t) is given by RT (t) = πT t/ sinhπT t. The
temperature dependence of the tunnel conductance anomaly, also called zero-
bias anomaly is

δGt(V, T )

Gt
= − 1

ρ0

∫
δρ(ε, T )f ′(ε− eV )dε , (88)

or, after a Fourier transform :

δGt(V, T )

Gt
= − λρ

2πρ0Ω

∫ ∞

0

R2
T (t)P (t) cos eV t dt , (89)

This correction has been measured for various systems with different dimen-
sionalities and the 1/

√
V , lnV , and

√
V predicted by (84,89) respectively in

1, 2 and 3 dimensions have been observed [22].

9.3 Correction to the Conductivity

Taking into account the interaction between electrons leads also to a reduc-
tion of the conductivity. Without going into the details of the calculations,
we can argue that this reduction is a consequence of the correction to the
density of states. Both effects result from the scattering of an electron by
the charge fluctuations induced by disorder. The temperature dependence of
the conductivity σ(T ) is related to its energy dependence at T = 0 K by
σ(T ) = −

∫
f ′(ε)σ(ε)dε, where f ′(ε) is the derivative of the Fermi function.

Since the conductivity is proportional to the density of states (Einstein rela-
tion), we expect that the density of states anomaly leads to a correction of
the conductivity given by

δσ(T )

σ0
=

∫
dε

(
−∂f
∂ε

)
δρ(ε, T )

ρ0
, (90)
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where σ0 is the Drude conductivity (22). For a static interaction, the density
of states correction δρ(ε, T ) is given by (87). Upon Fourier transforming, we
have

δσ(T ) = −λσ
(
e2D

πΩ

)∫ ∞

0

R2
T (t)P (t)dt (91)

where λσ is a parameter which depends on the interaction [23]. Using the ex-
pression (20) of P (t), we obtain the temperature dependence of the correction
to the conductance

δg(T ) ∝ −λσ






LT
L

quasi− 1d

ln
LT
le

d = 2

L

le
− L

LT
d = 3

(92)

where the thermal length LT is defined by LT =
√

~D/T . In 2d, the temper-
ature dependence is logarithmic like the weak localization correction. Unlike
the weak localization correction, this correction to the conductivity is not
sensitive to a magnetic field. Therefore both corrections can be separated
experimentally by the application of a magnetic field.

9.4 Lifetime of Quasi-Particle

Consider a Fermi sea and inject a quasi-particle in a state |α〉 with energy εα
above the Fermi sea. It interacts with another particle (|γ〉, εγ) and the final
state consists in two quasi-particles (|β〉, εβ) and (|δ〉, εδ) above the Fermi sea
(Fig. 15). Energy conservation implies εα + εγ = εβ + εδ. The lifetime of the
state |α〉 is given by the Fermi golden rule and it is related to the matrix
element of the interaction :

WXZY

[X Y

\X Y
X Yδ

ε ω

ε '+ω

ε '

ε 

Fig. 15. A quasi-particle in a state |α〉 of energy εα = ε interacts with another
quasi-particle |γ〉 of energy εγ = ε′ in the Fermi sea. The final state is made of two
quasi-particles above the Fermi sea and one hole
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1

τα
= 2πs

∑

βγδ

|〈αγ|U |βδ〉|2δ(εα + εγ − εβ − εδ) , (93)

with the constraint that εγ < 0, εβ > 0 and εδ > 0. If the matrix element does
not depend on energies, we see immediately that the Landau ε2 dependence
comes simply from energy constraints : basically three final states can be cho-
sen in a range of energy ε, with the constraint of energy conservation, whence
the ε2 dependence. Indeed the matrix element of the interaction is energy in-
dependent in the ballistic case, but this is not true anymore in the diffusive
case. The goal of the following pages is to calculate the energy dependence of
the litetime in the diffusive regime. Since we do not specify a given state |α〉,
(93) can be rewritten for the lifetime at a given energy ε

1

τee(ε)
=

1

ν0

∑

α

1

τα
δ(ε− εα)

=
2πs

ν0

∑

αβγδ

|〈αγ|U |βδ〉|2δ(εα + εγ − εβ − εδ)δ(ε− εα) , (94)

where ν0 = ρ0Ω is the density of states. By introducing two energy integrals,
it can be rewritten in the form

1

τee(ε)
=

2πs

ν0

∫ ε

0

dω

∫ 0

−ω
dε′

∑

αβγδ

|〈αγ|U |βδ〉|2

× δ(ε− εα)δ(ε′ − εγ)δ(ε− ω − εβ)δ(ε′ + ω − εδ) , (95)

where ε > 0, ε′ < 0 and ε − ω > 0, ε′ + ω > 0 are respectively the two
energies of the initial states and of the final states. If the matrix element is
energy independent, we trivially recover the ε2 dependence. Upon averaging
over disorder, the lifetime has the form

1

τee(ε)
= 4πν3

0

∫ ε

0

ωW 2(ω)dω (96)

with

W 2(ω) =
1

ν4
0

∑

αβγδ

|〈αγ|U |βδ〉|2δ(ε− εα)δ(ε′ − εγ)δ(ε− ω − εβ)δ(ε′ + ω − εδ)

(97)
The characteristic matrix element W (ω) depends only on energy transfer ω,
but neither on ε, nor on ε′.

The matrix element 〈αγ|U |βδ〉 can be evaluated on the basis of eigenfunc-
tion of the non-interacting particles and reads

〈αγ|U |βδ〉 =

∫
dr1dr2φ

∗
α(r1)φ

∗
γ(r2)φβ(r1)φδ(r2)Uω(r1 − r2) , (98)
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where Uω(r) is the dynamically screened potential. The combination of wave
functions and δ function can be rewritten in terms of Green’s functions

− 1

π
ImG(r, r′) =

∑

α

φ∗α(r)φα(r′)δ(ε− εα) , (99)

so that W 2(ω) can be rewritten in the form

W 2(ω) =
1

ν4
0π

4

∫
dr1dr2dr

′
1dr

′
2Uω(r1 − r2)Uω(r′1 − r′2)

× ImGε(r1, r′1)ImGε−ω(r′1, r1) ImGε′(r2, r′2)ImGε′+ω(r′2, r2)(100)

where the average of the product of four Green’s functions has been decoupled
into the product of two average values. By pairing Green’s functions, it is
possible to show that the average product contains a long-range part related
to the probability P (see (14) and [1])

ImGε(r, r′)ImGε−ω(r′, r) = πρ0 ReP (r, r′, ω) . (101)

We deduce

W 2(ω) =
1

π2ν2
0Ω

2

∫
dr1dr2dr

′
1dr

′
2Uω(r1 − r2)Uω(r′1 − r′2)

× RePd(r1, r
′
1, ω)RePd(r2, r

′
2,−ω) (102)

or, upon Fourier transformation :

W 2(ω) =
1

π2ν2
0Ω

2

∑

q 6=0

|U(q, ω)|2[RePd(q, ω)]2 . (103)

At the diffusion approximation, the dynamically screened potential is given
by (80) so that

W 2(ω) =
1

4π2ν4
0

∑

q 6=0

1

ω2 +D2q4
, (104)

which can be expressed in terms of the return probability P (t)

W 2(ω) =
1

4π2ν4
0

1

ω

∫ ∞

0

P (t) sinωt dt . (105)

Finally, the electronic lifetime (96) is given by

1

τee(ε)
=

2

πν0

∫ ∞

0

P (t)

t
sin2 εt

2
dt . (106)

For a metal of volume Ω, we can identify two different regimes :

• ε � Ec where Ec is the Thouless energy. This corresponds to time
scales t � τD. In this case an electron described as a diffusive wave packet
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is insensitive to the boundaries and behaves as in an infinite medium where,
according to (20), P (t) = Ω/(4πDt)d/2. We obtain [24] for the integral (105) :

W 2(ω) =
dcd
16

1

ν4
0ω

2

(
ω

Ec

)d/2
, (107)

so that the electronic lifetime is equal to

1

τee(ε)
=
π

2
cd∆

(
ε

Ec

)d/2
(ε� Ec) (108)

where c1 =
√

2/π2, c2 = 1/4π2, c3 =
√

2/6π3. Such a behavior has been indeed
observed in silver wires (d = 1) for which W 2(ω) ∝ ω−3/2 and 1/τee(ε) ∝
ε1/2, although the measured prefactor came out to be larger than the value
predicted here [25].

• The limit ε � Ec, that is t � τD , corresponds to the ergodic regime in
which the diffusive electronic wave packet explores all the accessible volume
Ω. Thus we would expect P (t) to be driven only by the zero mode. This is
not so, because in expression (104) this mode has been removed in order to
ensure electronic neutrality. The excitation energy ε is smaller than Ec and it
is not possible to replace the sum (104) by an integral. In this limit, we obtain

W 2(ω) =
ad
4π6

∆4

E2
c

∝ ∆2

g2
, (109)

where the coefficient ad is defined by the series

ad =
∑

nx,ny,nz

1

(n2
x + n2

y + n2
z)

2
. (110)

The ratio Ec/∆ is the dimensionless conductance g. For ω � Ec, the charac-
teristic matrix element of the interaction is thus energy independent and of
order ∆/g. The inverse lifetime in this case is [26]

1

τee(ε)
=

ad
2π5

∆

(
ε

Ec

)2

(ε� Ec) . (111)

9.5 Quasi-Particle Lifetime at Finite Temperature

In Landau theory it is well-known that the quasi-particle lifetime at zero
energy ε = 0 and finite temperature T is simply obtained by replacing ε by T ,



224 Gilles Montambaux

so that it varies as T 2. The diffusive case is more subtle. It turns out that in
this case we cannot simply substitute ε by T . This is wrong in low dimension.
Let us see why.

What is changed at finite temperature? The Fermi golden rule is modified
to account for Fermi factors. The condition of filled or empty states has to be
replaced by Fermi factors and (95) generalizes as

1

τee(ε, T )
= 4πν3

0

∫ ∞

−∞
dω

∫ ∞

−∞
dε′F (ε, ε′, ω)W 2(ω) (112)

where F (ε, ε′, ω) is a combination of Fermi factors fε = 1/(eβε + 1) :

F (ε, ε′, ω) = fε′(1− fε−ω)(1− fε′+ω) + (1− fε′)fε−ωfε′+ω . (113)

The first term in this expression is larger when ε > 0. It describes the decay
of an electron-like state above the Fermi level. The second term dominates
when ε < 0 and describes the decay of a hole-like state into the Fermi sea.
For ε = 0, both terms are equal. Integrating upon ε′, we obtain

1

τee(ε, T )
= 4πν3

0

∫ ∞

−∞
dω ωW 2(ω)fε−ω

eβε + 1

eβω − 1
. (114)

This lifetime can also be obtained from the imaginary part of the self-energy
of a quasi-particle in the presence of a screened interaction [27]. At zero tem-
perature, we recover the result (108).

9.6 Quasi-Particle Lifetime at the Fermi Level

We now consider more specifically the lifetime of a quasi-particle at the Fermi
level (ε = 0) and at finite temperature. Physical properties such as conductance
are expressed in terms of single-particle states at the Fermi level. It is thus
essential to understand the range of validity of the description in terms of
independent quasi-particles. From relation (114), we have [28]

1

τee(T )
= 8πν3

0

∫ ∞

0

dωW 2(ω)
ω

sinhβω
. (115)

For the diffusion in free space, the matrix element W 2(ω) is proportional to
ωd/2 (relation (107)), so that

1

τee(T )
=
πdcd
2ν0

∫ ∞

0

dω

ω sinhβω

(
ω

Ec

)d/2
. (116)

Therefore, in three dimensions, we have

1

τee(T )
=

√
2

4π2ν0

∫ ∞

0

dω

ω sinhβω

(
ω

Ec

)3/2

' T

ν0

∫ T

0

dω

ω2

(
ω

Ec

)3/2

, (117)
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that is
1

τee(T )
' ∆

(
T

Ec

)3/2

(d = 3) (118)

up to a numerical factor. Note that the exponent of the power law is the same
as the exponent for the energy dependence of the lifetime at zero temperature
(108). This result follows at once if we notice that relevant processes in the
quasi-particle relaxation described by ωW 2(ω) are those for which the energy
transfer ω is of order T .

It would be tempting to generalize this result to any dimension and to
conclude that 1/τee(T ) ∝ T d/2. This is not correct for d ≤ 2. In this case, the
contribution of e-e processes with low energy transfer ω ' 0 dominates and
leads to a divergence in the integral (116). In order to cure this divergence, it
is worth noticing that τee(T ) represents precisely the lifetime of an eigenstate,
so that the energy transfer ω cannot be defined with an accuracy better than
1/τee. Consequently, there is no energy transfer smaller than 1/τee(T ), so
that the integral (116) needs to be cut off self-consistently for ω smaller than
1/τee(T ). For d ≤ 2, we thus obtain a self-consistent relation for τee :

1

τee(T )
' 1

ν0

∫ ∞

1/τee

dω

ω sinhβω

(
ω

Ec

)d/2
' T

ν0

∫ T

1/τee

dω

ω2

(
ω

Ec

)d/2
(119)

where the thermal factor has been replaced by a cutoff at ω ∼ T . In two
dimensions, 1/τee(T ) is proportional to the temperature (within logarithmic
corrections) :

1

τee(T )
' ∆ T

Ec
ln
Ec
∆

(d = 2) . (120)

In one dimension, and since Tτee � 1, the integral becomes proportional to√
τee so that the self-consistent relation leads to

1

τee(T )
' ∆

(
Ec
∆

)1/3(
T

Ec

)2/3

(d = 1) . (121)

9.7 Phase Coherence

The time (115) has been defined as the lifetime of a quasi-particle, generalizing
the notion introduced by Landau to the case of a diffusive system in d dimen-
sions. We should now evaluate the phase coherence time τφ(T ) which limits
coherent effects like the weak localization correction (34). This time can be in-
terpreted as the lifetime of the Cooperon. Its derivation consists in calculating
directly the dephasing 〈eiΦ(t)〉 resulting from electron-electron interaction and
accumulated between time-reversed conjugated multiple scattering sequences.
To that purpose, the interaction between electrons is replaced by an effective
interaction which describes the coupling of a single electron to the electro-
magnetic field created by the other electrons. This calculation [12, 29] is not
developed here; see [1] for a detailed derivation.
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An alternative and qualitative approach is to consider that phase coher-
ence is limited by the lifetime of quasi-particles. Since the multiple scattering
trajectories that are paired in the Cooperon are defined for a given energy
state, they cannot interfere for times larger than τee(T ). This results in an
irreversible dephasing between the trajectories and thus a loss of phase coher-
ence. It is therefore natural to assume that

τφ(T ) = τee(T ) . (122)

Indeed, the temperature dependences predicted in equations (118), (120) and
(121) have been confirmed experimentally, in all dimensions by weak localiza-
tion measurements.

It turns out that not only these two characteristic times τee(T ) and τφ(T )
are equal (within a numerical factor), but also that the two processes, quasi-
particles relaxation and phase relaxation, are very similar. Finally let us re-
mark that the introduction of the low-energy cutoff in (119) may appear as
a handwaving and artificial way to handle the low energy divergence. We
have shown recently that the profound reason for this divergence is that, for
d ≤ 2, relaxation of quasi-particles as well as the phase relaxation are not
exponential [30].
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1 Introduction

The aim of this article is to provide a very general and pedestrian introduction
to the notion of persistent currents in mesoscopic systems. Thus, this review
is not exhaustive and mainly addressed to non-experts. Step by step, it will
be shown that a single-particle picture is insufficient to explain the magnitude
and sign of the measured persistent currents. The main idea would be to ana-
lyze whether the interplay between disorder and electron-electron interaction
could eventually explain this discrepancy. This review gives the opportunity to
emphasize the challenges raised by the experiments. Indeed, it will be shown
that the amplitude and sign of the measured currents remain until now an
open issue.

1.1 What is a Mesoscopic System?

Before giving more details one can say that mesoscopic physics is the missing
bridge between macroscopic physics and atomic physics [1–4]. One can also
imagine that starting with a macroscopic system we reduce its volume further
and further: the mesoscopic regime starts when the system is small enough
that its physical properties cannot anymore be described by standard classi-
cal physics, the quantum description becomes the relevant one. The typical
length L of a mesoscopic system is between microscopic (Å) and macroscopic
(10−3 m) lengthscale, it is typically of the order of a micron. To be more pre-
cise the typical length L should be much smaller than the coherence length Lφ.
One can naively say that this important lengthscale separates the “classical
world” from the “quantum world”. Lφ is a typical lengthscale beyond which
the coherent propagation of the electrons in the material is lost. An electron
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propagates coherently when it keeps the memory of the phase of its wave func-
tion, the scattering with the defects are elastic. During elastic scatterings, the
energy is conserved and the dephasing induced into the electronic wave func-
tion are well-defined and deterministic (calculable). These scattering are for
example due to static defects in the material (dislocation, non-magnetic impu-
rity, etc.). We define le as the average distance between two elastic processes.
On the other hand, the processes during which the energy is not conserved and
that suppress phase coherence are called inelastic processes. As a consequence
the energy level of the electrons will have a finite lifetime. These inelastic
processes introduce uncontrollable and unpredictable dephasing into the elec-
tronic wave function. The inelastic scatterings are the source of dissipation in
the system. The inelastic processes which destroy the quantum interferences
are for example (i) the electron-phonon scatterings, (ii) the electron-electron
interaction, or (iii) the scattering between an electron with an impurity which
possess an internal dynamical degree of freedom (e.g., the spin in the case of a
magnetic impurity). This implies that mesoscopic physics is essentially a very
low temperature physics. To get rid of the effects of inelastic processes the so-
lution is to work at sufficiently low temperature. Typically below 1 Kelvin the
phonons are “frozen out” and the electron-electron scattering is the dominant
decoherence mechanism if no other source of inelastic processes is present.
Also note that the electronic dephasing time τφ increases by lowering temper-
ature. For quasi-1D systems τφ ∝ T−p, where p ' 2/3 [2]. Typically most of
the experiments are performed usually below 100 mK.

1.2 Ballistic, Diffusive and Localized Regimes

Because of the finite size of the samples and the finite concentration of elastic
scatterers, which we denote as disorder, we will see that the electron motion
can be of different nature. We have already defined the typical sample size
L and the elastic mean free path le (Lφ is here assumed to be infinite). The
third relevant typical lengthscale is the Fermi wave length λF. The strength
of disorder is defined by comparing these three lengthscales L, le and λF.

ballistic motion diffusive motion

Fig. 1. Diffusive and ballistic motion of an electron inside a cavity
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• Weak disorder:
In this regime λF � le, the elastic collision between electrons and im-
purities are well-separated. The notion of trajectory is well-defined and a
semi-classical approach is meaningful. This is the case for normal metal
as gold and copper used in the experiments that we will discuss later on.
For gold and copper λF ∼ 1 Å and le ∼ 100 Å, and for semiconductors
λF ∼ 4 Å and le ∼ 10 µm. In the weak disorder regime one can distinguish
two different situations (see Fig. 1):

– The ballistic regime: This regime is characterized by the inequality
λF ≤ L ≤ le. This is the very weak disorder regime (very low den-
sity of scatterers). The trajectories of the electrons are a succession of
reflections on the sample boundaries.

– The diffusive regime: It corresponds to λF ≤ le ≤ L. The electron un-
dergo a large number of collisions with the defects during its trajectory
across the sample. In this case the trajectories can be assimilated to
classical diffusive random walks. A new timescale appears naturally,
the diffusing time through the sample τD = L2/D where the diffusion
constant D = vFle/d, vF being the Fermi velocity and d the dimen-
sionality of the system.

• Strong disorder:
In this regime λF ≥ le, the notion of trajectory looses its meaning, and the
semi-classical approach becomes impossible. Thus we have to manage with
a purely quantum regime. The electron wave function decays exponentially
with the distance and a novel characteristic lengthscale appears ξ, the
localization length. In such Anderson insulator systems [5] electrons are
confined in boxes of volume ξd.

1.3 Persistent Currents

In 1983 Buttiker, Imry and Landauer have suggested the existence, at equi-
librium, of persistent currents flowing without dissipation in isolated metallic
rings pierced by a magnetic flux [6–8]. Figure 2 gives a schematic view of a
quasi-1D disordered mesoscopic ring. These currents result from the quan-
tum interferences of the electron wave functions [9]. It is important to stress
that these currents have nothing to do with the nature of the persistent cur-
rents in superconducting materials. However, they could be compared to the
diamagnetic currents induced by a magnetic field in atoms or molecules.

We now show how the persistent current is related to the ground-state en-
ergy of an electronic systems. For simplicity we assume a single-band Hamil-
tonian of non-interacting fermions in presence of disorder. The Hamiltonian
H(φ) reads,

H(φ) =
1

2m

(
p− eA

c

)2

+ V (x) (1)
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Φ

Fig. 2. Schematic diagram of a quasi-1D disordered mesoscopic ring threaded by
magnetic flux. Closed trajectory shows that the electrons undergo multiple scatter-
ings with the impurities

where A is the vector potential and its integral
∮
A · dl = φ. Here V (x) is

the local potential which contains both the contribution due to the crystalline
structure and impurities. With L as the ring perimeter, the periodicity of the
potential reads,

V (x+ L) = V (x) (2)

and thus,

〈x|Ψn〉 = 〈x+ L|Ψn〉 . (3)

|Ψn〉 is an eigenstate of the one-body Hamiltonian,

H|Ψn〉 = en|Ψn〉 . (4)

Both |Ψn〉 and en depend on φ. Let us define the function Φn as

〈x|Ψn〉 = Φn(x)e
−2iπ φ

φ0

x
L (5)

where φ0 = hc/e is the flux quantum. It immediately follows that

[
1

2m
p2 + V (x)

]
Φn = en Φn (6)

and the boundary conditions become,

Φn(x + L) = e2iπ φ
φ0 Φn(x) . (7)
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Thus with the simple gauge transformation, the Shrödinger equation does not
depend on the magnetic flux φ but the boundary conditions for the eigenstates
have changed. Equation (7) implies that the eigenvalues en are continuous
functions of φ with φ0 periodicity. On the other hand it also shows that the
effect of the flux is to produce a shift of the momentum by 2πφ/Lφ0. Thus
the eigenvalues are,

en(φ) = en(kn +
2π

L

φ

φ0
) . (8)

Let us now evaluate the current contribution of an energy level en. The velocity
associated to this energy level is given (we set for simplicity h = c = 1) by

vn =
∂ en
∂kn

=
Lφ0

2π

∂ en
∂ φ

. (9)

Thus the current of an electron in the energy level en is,

in = −evn
L

= − 1

2π

∂en
∂φ

. (10)

The total current in the ring is,

I(φ) = − 1

2π

Ne∑

n=1

∂en
∂φ

(11)

where Ne is the total number of electrons in the ring. In terms of the total
ground state energy E0(Ne) =

∑Ne

n=1 en, the total persistent current can be
re-expressed as

I(φ) = − 1

2π

∂E0(Ne)

∂φ
. (12)

Note that this expression is in fact very general, valid in any dimension,
in presence of disorder and electronic correlations. At finite temperature, the
ground state energy E0(Ne) should be replaced by the total free energy F (φ).

2 Persistent Currents in Non-Interacting Systems

2.1 One-Dimensional Ring

In this subsection we consider the case of a pure one-dimensional ring threaded
by a magnetic flux φ. We will discuss both the cases T = 0 K for which Lφ =∞
and the finite temperature case for which Lφ becomes finite.
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The Clean Case at T = 0 K

We have seen previously that the persistent current is φ0 periodic. Let us now
show that it also depends on the parity of the electron number Ne in the ring.
The eigenvalues of H are

en(φ) =
2π2

mL2

(
n+

φ

φ0

)2

, (13)

where n = 0, 1, . . . , L− 1. Thus the current associated to this level is

average

1/2−1/2 Φ/Φ0

I /I0 Even electron number

Odd electron number

Fig. 3. Persistent current in 1D non-disordered mesoscopic ring for even, odd and
averaged Ne

in(φ) = − 2π

mL2

(
n+

φ

φ0

)
. (14)

It is then straightforward to get the total current as

I(φ) = −I0
2φ

φ0
if Ne even and φ ∈ [− 1

2 ,
1
2 ] , (15)

I(φ) = −I0
(

2φ

φ0
− 1

)
if Ne odd and φ ∈ [0, 1] . (16)

Here we have introduced,

I0 =
e

τB
=
evF
L

(17)

where the Fermi velocity is vF = kF/m. The currents for even and odd number
of electrons are shown in Fig. 3.
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The decomposition of I(φ) into its harmonics leads to [10],

I(φ) =

∞∑

l

2I0
lπ

cos(lNeπ) sin(2lπ
φ

φ0
) . (18)

This expression shows that the sign of the harmonics depends on the parity
of the electron number in the ring. The odd harmonics have opposite sign for
odd and even Ne. Thus the average current over Ne leads to the suppression
of all odd harmonics, the current becomes φ0/2 periodic. This is illustrated
in Fig. 3. It is also interesting to remark that even harmonics are always of
positive sign. We will come back to these points in the next sections.

Effects of Finite Temperature

The calculations are performed at fixed chemical potential µ and finite tem-
perature T . The total persistent current is the sum of the contribution of each
individual level weighted by the probability of occupation of the corresponding
level,

I(T, φ) =
∑

n

pnin(φ) (19)

where pn = 1/(eβ(en−µ) + 1).
In the case of metallic systems and in the limit µ� kBT , the total current

is given by [10],

I(T ) = −4kBT
∞∑

n

∞∑

l

exp

[
− l(2n− 1)T

T ∗

]
cos(lkFL) sin(2lπφ) (20)

where a characteristic temperature scale T ∗ appears. It separates the high
from the low temperature regime,

kBT
∗ =

∆

2π2
=
vF
πL

(21)

where ∆ = 2πvF/L is the mean level spacing.
After performing the summation over n one finds,

I(T ) = −4I0T

π T ∗

∞∑

l

exp(−lT/T ∗)

1− exp(−2lT/T ∗)
cos(lkFL) sin(2lπφ) . (22)

This expression shows that the harmonics of the current are exponentially
suppressed by the temperature,

Il = −4I0T

π T ∗
exp(−lT/T ∗)

1− exp(−2lT/T ∗)
cos(lkFL) . (23)

This expression also implies that the number of harmonics∆N that contribute
dominantly to the persistent current is typically of the order of ∆N ∼ T ∗/T .
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Effects of Static Disorder

As mentioned before static disorder implies that the scattering of the elec-
trons with the defects is phase-coherent. To study the effects of disorder, it is
particularly convenient to consider the Anderson model,

H = − t
2

∑

i

[
exp(2iπφ/L) c†i ci+1 + h.c.

]
+
∑

i

wi ni . (24)

The first term describes the kinetic part (hopping of spinless fermions) and
disorder is introduced in the on-site potentials wi. The variable wi are chosen
randomly in the interval [−W/2,W/2], where W measures the strength of the
disorder. In 1D case, it is known that for uncorrelated disorder, all eigenstates
are localized for an infinitesimal amount of disorder. The localization of the
eigenstates results from the quantum interference of the electronic wave func-
tions. The manifestation of quantum interferences in presence of disorder in
small devices is also known as the weak localization phenomena [11–13]. For
general references on the Anderson localization see for example [14–17], and
also see the fundamental works of Thouless [18, 19] which is at the origin of
the scaling theory of localization and of the majority of quantum transport
theories in disordered systems.

Note that in the special case of a pure 1D system, there is no possibility of
diffusive regime. Thus, the two possible regimes are respectively the ballistic
and localized one. The ballistic regime corresponds to L ≤ ξ and the localized
to L� ξ, ξ being the localization length. For the tight-binding model in the
half-filled band case, the localization length has been calculated for long wires
in the two limiting situations [20, 21]. These results are

• weak disorder regime, i.e., W � t: ξ = 25t2/W 2 ,
• strong disorder regime, i.e., W � t: ξ = 1/ ln(W/t).

In the weak disorder regime, Cheung et al. [10] have shown that the persistent
current can be well approximated by the first harmonic only, the higher har-
monics being much smaller. The amplitude of the current is found to decay
exponentially with the system size,

〈I(φ)〉 =
I0
2

exp

(
−L
ξ

)
sin(2πφ) . (25)

In the case of very dirty ring (W � t) they found that

〈I(φ)〉 =
I0
2

W

π t
e−L ln(W/t) sin(2πφ) . (26)

This shows that both for weak and strong disorder, the currents are always
suppressed exponentially with increasing system size.
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2.2 The Multi-Channel Case

The multi-channel case is more interesting since it is closer to real systems.
Indeed the experiments which will be discussed in the following are performed
with quasi-1D rings. Motivated by the experimental studies, a large amount
of theoretical work was devoted to persistent currents in multi-channel meso-
scopic rings, especially in the diffusive regime. In this paragraph, we will only
present some results, those which appear to be the most relevant to the ex-
periments both in the diffusive and ballistic regimes.

0.00 0.25 0.50
Φ/Φ0

-0.0005

0.0005

0.0015

0.0025

0.0035
w=3
w=4
w=5

I

8x8

(a)

Ne=16
V=0

Fig. 4. I(φ) as a function of φ/φ0 in the absence of interaction (V = 0) in a multi-
channel ring of size 8 × 8 at quarter-filling 〈n〉 = 0.25 for various values of W . For
each value of W an average over 1000 configurations of disorder was done. Figure
from [22]

First, it is interesting to estimate the typical value of the persistent current
in the case of a multi-channel (quasi-1D) ring in the weak disorder regime
(ballistic regime). If we assume naively that each individual channel provides
a current of order I0 with a random sign as the number of electron varies in
the various channels, we would get for the amplitude of the typical current,

Ityp =
√
MI0 (27)

where Ityp =
√
〈I2〉 and M = k2

FS/4π is the number of transverse channel, S
being the cross-section of the ring.

On the other hand, in the diffusive regime and in absence of electron-
electron correlation, an analytical expression was obtained within Green’s
functions approach by Cheung et al. [23]. The important conclusion of their
study was that the typical current does not depend on the transverse dimen-
sions and thus on the number of channel,
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Fig. 5. I(φ) as a function of φ/φ0 in the absence of interaction (V = 0) in a multi-
channel ring of size 8 × 8 for W = 3t. The open symbols are for Ne = 4 while the
filled symbols correspond to an average over the rings with Ne = 2, 3, ...6. In both
the cases an average over 1000 configurations of disorder was performed. Figure
from [22]

Ityp ∝
e

τD
= ID . (28)

Note that this expression can be rewritten as Ityp = evD/L, where vD =
vFle/L is the diffusion velocity along the ring. On the other hand, the am-
plitude of the average persistent current 〈I〉 was shown to increase with the
number of channels and decrease exponentially with the disorder strength,

〈I〉 ≈
(
Mle
L

)1/2

I0 exp

(
− L

2le

)
sin

(
2π

φ

φ0

)
+ higher harmonics . (29)

Note that the average current is φ0 periodic.
Later, a numerical study based on the exact digitalizations of the one par-

ticle Hamiltonian, performed by Montambaux et al. [24–26] had lead to quite
different results. Let us summarize their results. In the zero disorder limit,
it was found that the amplitude of the average current 〈I〉 ∝ I0 and inde-
pendent of the number of channels. It is to be noted that the symbol 〈· · · 〉
means average over many rings that have a given number of electrons that
fluctuate from one ring to the another. As in the pure 1D case discussed pre-
viously, because of their random sign, the odd harmonics are suppressed after
averaging. Thus the total average current is φ0/2 periodic. In the presence of
disorder it was shown that 〈· · · 〉N = 〈· · · 〉N,D where N denotes average over
the electron number and D over the disorder configurations. Concerning the
average current 〈I〉 it was found that, as in the clean case, the periodicity
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remains φ0/2 while the amplitude decreases with the number of channels and
the variation with disorder is a power law

〈I〉 =

√
le
ML

I0 . (30)

This is in disagreement with the analytical results of Cheung et al., see
(29), where the currents increase with the number of channels but are ex-
ponentially suppressed by disorder. The main and fundamental origin of this
discrepancy is the following. The average persistent current is calculated at
fixed chemical potential (grand canonical ensemble) in the analytical study
whilst in the exact diagonalization approach the calculations were performed
with a fixed number of electrons in each disordered ring (canonical ensemble).
As already mentioned, we remind that in the exact diagonalization calcula-
tions the number of electrons fluctuates from one ring to another (see Fig. 4
and Fig. 5).

On the other hand, it was shown that the typical value of the current is φ0

periodic and the typical values of the first and second harmonics appeared to
be independent of the number of channels, in agreement with the analytical
results of Cheung et al.,

Iptyp = Cp
le
L
I0 . (31)

The ratio C1/C2 ≈ 3.5±0.3 was found to be independent of the characteristics
of the ring.

Later, Von Oppen and Riedel performed the calculation of the averaged
persistent current analytically in disordered mesoscopic ring with a fixed num-
ber of electrons [27]. They obtained for the current an expression which is in-
dependent of the disorder strength and inversely proportional to the number
of channels,

〈I2p〉 = I0/2πM . (32)

Unfortunately, this result is in disagreement with the exact diagonaliza-
tion calculation mentioned above. An interesting work, which sheds light on
the relation between the currents calculated in the grand canonical ensemble
versus the canonical ensemble, is given in [28].

3 Experimental Results

To measure experimentally the persistent currents in quasi-1D disordered
rings there are two kind of possible realizations. The first one consists in
measuring the response of a single isolated mesoscopic ring. This require a
very sensitive device (SQUID). The second approach consists in measuring
simultaneously the total magnetic response of a very large number of rings
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disconnected from each other. This setup requires much less sensitivity but
raise some important questions related to averaging over disorder configura-
tions. Indeed, one crucial question would be: What is the relation between
the currents measured in a single isolated ring with respect to that measured
in a multi-ring experiment where it is averaged over a large number of disor-
der configurations? This will be discussed in the following. These two different
type of experiments were realized for the first time more than a decade ago. As
we will see, even today, the measured current amplitudes are still a challenge
to theory.

3.1 Single Ring Experiments

The measurement of the magnetization of a single isolated mesoscopic ring is
an experimental challenge which has been accomplished respectively by Chan-
drasekhar et al. [29] in 1991 on a isolated golden ring and by Mailly et al. [30]
in 1993 on a ring made from high mobility GaAs-GaAlAs heterojunction. In
both experiments the magnetic moment was measured with a highly sensitive
micro-SQUID. In both experiments, and as expected, the currents were found
to be periodic of period φ0.

• In the golden ring experiment the regime was diffusive and the character-
istics of the ring were the following: L ∝ 3 µm, Lφ ≥ L , le ≈ 20 nm� λF,
M ≈ 105. The magnitude of the measured current Ityp was of the order
of the current in a 1D clean ring. According to what was previously dis-
cussed in this regime we would expect a typical current independent of
the number of channel, but of much smaller amplitude. Indeed, in the one
particle framework we expect Ityp ≈ ID = e/τD = 10−2I0 where the ratio
le/L ≈ 0.01. This disagreement with the theoretical predictions based on
non-interacting electrons systems is still today an open issue. In the fol-
lowing we will discuss a mechanism which may explain this discrepancy,
the electron-electron interaction.

• In the second experiment performed on semiconductors the magnitude of
the measured signal was Ityp ∝ I0. This is in agreement with the pre-
dictions of one particle theory. This is in fact not really surprising since
the disorder was very weak (i.e., the system was almost ballistic) and the
number of channel M was relatively small. Indeed in the semiconductor
ring used in this experiment L ∝ 8 µm and le ≈ 5 µm and

√
M ≈ 2.

3.2 Many Rings Measurements

This kind experiment was first performed in 1990 by Levy et al. [31]. They
have measured the total response of N = 107 disordered mesoscopic rings
of copper. The distance between the rings was such that the rings could be
considered as isolated from each other. The characteristics of the rings were
the following: the perimeter L ∝ 2.2 µm, the cross-section Ly Lz ∝ 0.3 (µm)2,
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the mean free path was estimated to be le ∝ 200 Å. The rings were in the
diffusive regime L > le > λF. The temperature of the order of 400 mK was
such that the coherence length was bigger than the size of the rings, i.e.,
L < Lφ. In this experiment, the physical quantity which is measured is the
induced total magnetization 〈M〉:

〈M〉 = 1

N

N∑

k=1

µk , (33)

where µk = Sik, ik is the persistent current flowing in the k-th ring and
S = L2/4π. The total average persistent current is,

〈I〉 =
1

NS

N∑

k=1

µk . (34)

The measured current was φ0/2 periodic and its magnitude 〈I〉exp ' 3.10−3I0.
The explanation of φ0/2 periodicity was already given in the previous section.
However, the theoretical estimate of the amplitude is, as in the single ring
experiment, inconsistent with the measured value. By using the theoretical
expression given in (30), valid in the diffusive regime, one finds a current
〈I〉th ' 10−4I0. Thus the calculated amplitude is about two orders of magni-
tude small.

3.3 Recent Experiments and the Sign of Persistent Current

All the theoretical calculations which were done within the framework of one
particle picture lead to the fact that the sign of the second harmonics is
always positive (paramagnetic). After the experiment of Levy et al. where
the sign of the current was not determined precisely, many efforts were made
to, first confirm the validity of the measured current and also to determine
the sign of the second harmonic. A first attempt was by Jariwala et al. [32]
in 2001. They measured the response of a very small ensemble of only 30
diffusive mesoscopic gold rings. They found that both the first and second
harmonics were negative (diamagnetic). The fact that the first harmonic was
also negative is not so relevant. One would expect for a larger ensemble of rings
the disappearance of the odd harmonics. One year later, Deblock et al. [33]
measured the response of an ensemble of 105 GaAs disconnected rings. The
measured amplitude was in agreement with previous experiment and the sign
of the current was found to be negative. In the same year, another experiment
was performed by the same people on a large ensemble of 105 silver rings in
the diffusive regime [34]. They found that both the periodicity and amplitude
of the current were in agreement with the pioneering experiment of Levy et
al. They also clearly demonstrated the diamagnetic nature of the induced
current.
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4 Persistent Currents in Interacting Electron Systems

In the previous section we have seen that the one particle theory cannot ex-
plain neither the magnitude of the persistent currents in the diffusive regime
nor the diamagnetic sign of the second harmonic. It is thus natural to won-
der if the electron-electron correlations are responsible for this discrepancy.
Is the effects of disorder are compensated by the effects of electron-electron
correlations? To include in the theory the correlation effects there are in fact
many possible ways. The possible theoretical approaches that were used are:
the perturbation theory, the Green’s functions methods, the diagrammatic ap-
proaches, the Renormalization Group (RG) methods, the exact diagonaliza-
tion techniques, the unrestricted Hartree-Fock approach, the Density Matrix
Renormalization Group (DMRG) method, etc. It is clear that the detailed dis-
cussion and comparison between so many possible different techniques would
require more than a chapter. Thus, we will discuss only some results, and
especially focus our attention on the calculations done in the framework of
perturbation theory, perturbative RG approach, exact diagonalization method
and Unrestricted Hartree-Fock approach.

4.1 The One-Dimensional Case

Persistent Current, Optical Conductivity and Charge Stiffness

To describe the motion of electrons in 1D disordered ring we consider the
Anderson Hamiltonian to which the electron correlation part is added (the
t− V −W model). The many-body Hamiltonian reads,

H = − t
2

∑

i

[
exp (2iπφ/L) c†i ci+1 + h.c.

]
+ V

∑

i

ni ni+1 +
∑

i

wi ni . (35)

There are two free parameters, the strength of the interaction term V and the
strength of disorder W . The hopping integral is set to t = 1.

We have seen in the non-interacting case that the total current is given by
the first derivative of the ground state energy E(φ) with respect to flux. This
expression is still valid in the many-body picture. This can be easily shown
by starting with the definition of current

I(φ) = 〈Ψ0|ĵx|Ψ0〉 , (36)

where the current operator is

ĵx = − 1

2π

∂H
∂φ

(37)

and |Ψ0〉 is the many-body ground state. In our case the current operator is,

ĵx = − it

2

∑

i

[exp (2iπφ/L) c†i ci+1 − h.c.] . (38)
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Another important physical quantity which can be calculated and directly
compared to experimental measurement is the optical conductivity. The real
part of conductivity can be calculated within the framework of linear response
theory, and it can be shown that the real part of conductivity has the following
form [35,36],

<eσxx(ω) = σ1(ω) = πD δ(ω) + σreg(ω) . (39)

The weight of the Dirac peak measures the contribution at zero frequency to
the optical conductivity, this term is called the Drude weight peak. When the
sample is connected to leads, the inverse of this term provides the resistivity
value. In the thermodynamic limit, the Drude weight or stiffness is the order
parameter which tells us about the nature of the system [37]:

• Metallic phase: D 6= 0,
• Insulating phase: D = 0.

This term is also a direct measure of the sensitivity of the energy spectrum
to the change of the boundary conditions limit. The regular part is given by
the Kubo formula,

σreg(ω) =
π

L

∑

m6=0

|〈Ψ0|ĵx(Φm)|Ψm〉|2
Em −E0

δ(ω − (Em −E0)) (40)

where |Ψm〉 is the mth excited states and Em is the corresponding energy.
Note that, depending on the parity of the number of electrons Φm = 0 or 1.
For this value of the flux the ground state energy is minimal.

There exists several sums rules and in particular one which relates the
total Kinetic energy 〈0|T̂ (Φm)|0〉 to the integral of the optical conductivity,

∫ ∞

0

σ1(ω)dω = −π e
2

2L
〈0|T̂ (Φm)|0〉 . (41)

This expression is very important and useful. If we assume that the kinetic
part is weakly affected by both disorder and correlation, then an important
consequence emerges from the sum rule is that we can directly calculate the
transfer of weight from the Drude peak to the regular part (finite frequency).
Note also that this expression allows to calculate the Drude peak D,

D

e2
= −〈T̂ 〉

L
+

2

L

∑

n6=0

|〈Ψ0|ĵx|Ψn〉|2
En −E0

. (42)

However to get the Drude weight directly from this term requires much
computational efforts since it requires the knowledge of the complete excita-
tion spectrum, eigenvalues and eigenvectors. We will see now that the Drude
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weight can in fact be calculated directly from the ground-state energy. Let us
expand the Hamiltonian to second order in φ,

H(φ) = H(0) +
2πφ ĵx(0)

L
− (2π φ)2 T̂ (0)

2L2
+ · · · . (43)

Thus, to second order, the ground state energy is,

E0(φ) = E0(0) +
2πφ

L
< 0|ĵx(0) |0 > − (2π φ)2

2L2
< 0|T̂ (0)|0 >

+
(2π φ)2

L2

∑

m

|〈ψ0|ĵx(0)|ψm〉|2
Em(0)−E0(0)

(44)

where |ψ0〉 is the ground state with energy E0(0) and |ψm〉 are the excited
states with energy Em(0) in the absence of external flux. Then it follows,

L

4π2

∂2E0

∂ φ2 = − 1

L
< 0|T̂ (0)|0 > +

2

L

∑

m6=0

| < 0|ĵx(0)|m > |2
Em(0)−E0(0)

. (45)

After identification with the Kubo formula (42), we get,

D

e2
=

L

4π2

∂2E0

∂ φ2 . (46)

Hence, the Drude weight is the second derivative of the ground-state energy
with respect to flux. This also explains why Drude weight is also called stiff-
ness.

4.2 Numerical and Analytical Results

The Case of Repulsive Interaction

A) The clean non-interacting case: W = 0 and V = 0

In the previous section we have already calculated the amplitude of
the persistent currents. It is interesting now to estimate the optical conduc-
tivity. In the absence of disorder the Hamiltonian commute with the current
operator,

[ĵx, Ĥ ] = 0 . (47)

Thus, the conductivity reduces to the Drude peak (perfect metal),

D = −e
2〈T̂ 〉
L

. (48)

A straightforward calculation leads to the following expression for the Drude
weight of a finite system,
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D(L, 〈n〉)
e2 t

=
1

π
sin(π〈n〉) +

π

3L2
sin(π〈n〉) + · · · (49)

where 〈n〉 = Ne/L is the spinless fermion density. Thus in the thermodynamic
limit

D∞(〈n〉)
e2 t

=
1

π
sin(π〈n〉) . (50)

Note that in the limit of low density of carrier (λF � a) we get

∫ ∞

0

<e (σ(ω))dω =
πD

2
=
π〈n〉e2
2meff

, (51)

where the effective mass is meff = 1/t.
This expression is similar to that obtained with the classical Drude ex-

pression. Indeed according to the classical Drude model the real part of the
classical conductivity σcl(ω) is,

<e (σcl(ω)) =
ne2τ0

m(1 + ω2τ2
0 )

(52)

which directly leads to,

∫ ∞

0

<e (σcl(ω))dω =
πne2

2m
. (53)

It may be noted that the integral does not depend on the scattering rate τ0.

B) The clean interacting case: W = 0 and V 6= 0

In the absence of disorder W = 0, it appears that, much is known
about the t − V Hamiltonian. This concerns especially the half-filled band
case. The method which appear to be the most powerful and appropriate
to tackle the problem is the bosonization technique. For more details one
can refer, for example to [38–41]. Note that the bosonization method allows
to treat non-perturbatively the effect of the electron-electron correlation,
but unfortunately it is suitable only for 1D systems. Let us now, remind
some of the physical properties of the t − V Hamiltonian. At half-filling,
for repulsive interaction the system exhibits a phase transition from metal
to insulator at the critical value (V/t)c1 = 1. This transition is called Mott
transition [42]. Above the critical value a gap ∆ opens up in the charge
excitation spectrum and the density-density correlation functions decays
exponentially 〈ρ(r)ρ(0)〉 ∝ exp(−r/ξ), where ξ ∝ 1/∆ is the correlation
length which diverge when approaching (V/t)c1 .

Note that the nature of Mott transition is completely different from the An-
derson transition. In the Anderson transition the quantum interference of the
wave functions are responsible for localization, thus the transition from metal
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insulating phase

V/t 1−1

Phase separation metallic phase

Fig. 6. Phase diagram of the t − V model in the half-filled band case

to insulator occurs at any filling if the disorder strength is strong enough. On
the other hand, the Mott transition results from the many-body character
of the problem, the mechanisms responsible for the transition are particu-
lar backward scattering processes between the electrons involving the lattice.
They are called the Umklapp processes. The Umklapp contribution is only rel-
evant at half-filling. Thus away from half-filling, these contributions become
irrelevant and thus no transition will be observed.

In the case of attractive interaction and at any filling, the system is phase
separated below a second critical value (V/t)c2 = −1. Below this critical
value, the metallic phase becomes unstable where the holes and the fermions
are separated from each other. In the metallic phase, or Luttinger liquid phase
(−1 ≤ V/t ≤ 1), the density-density correlation functions decays as a power
law and we say that we have a quasi-long-range order. We should emphasize
particularity on the Luttinger liquids: the low energy excitations are only col-
lective modes, there are no individual well-defined quasi-particle states as in
the usual Fermi liquids. In the Luttinger liquid phase exponents of the corre-
lation functions vary continuously with V/t. Away from half-filling the system
is always in the metallic phase. The phase diagram for the half-filled band case
is shown in Fig. 6. It is also interesting to mention that the spinless fermion
model can be mapped onto the spin- 1

2 XXZ model. The transformation which
allows this mapping is called the Wigner-Jordan transformation [43].

cl = exp(iΦl)S
−
l , (54)

c+l = exp(−iΦl)S
+
l , (55)

where the phase factor is defined by Φl = π
∑l−1

k=1(
1
2 +Szk) and Szl = c+l cl− 1

2 .
Then the Hamiltonian reduces to

HXXZ = − t
2

∑

i

[
exp (2iπφ/L)S+

i S
−
i+1 + h.c.

]

+V

(
L

4
+
∑

i

Szi S
z
i+1

)
+
∑

i

wi

(
Szi −

1

2

)
. (56)
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A site occupied by a spinless fermion corresponds to spin “up” and an
unoccupied site to spin “down”. Note that the on-site potential corresponds
to random local magnetic fields. The metal insulator transition discussed
above for spinless fermions corresponds now to a transition from XY phase
to the Ising phase. The special point V = t corresponds to the quantum
spin- 1

2 nearest-neighbor Heisenberg Hamiltonian. In the spin language, above
the critical value Vc1 a gap opens up in the spin excitation spectrum. Note
also that the Wigner-Jordan transformation is valid only in the 1D case.

C) Numerical results

In Fig. 7 we show I(φ) as a function of φ for a system with L = 16
at half- and quarter-filling for different values of V . We see that at half-filling
the current is weakly sensitive to the amplitude of V when V/t ≤ 1. However,
for larger values, say V/t = 2, the amplitude decreases significantly. This is
reminiscent of the metal insulator transition discussed above. On the other
hand, away from half-filling the effects of interaction are negligible.

Fig. 7. I(φ) as a function of φ in units of φ0 for a ring of size L = 16 at half- and
quarter-filling for various values of V . Figure from [44]

In Fig. 8 and Fig. 9, we have plotted the amplitude of the Drude weight
as a function of 1/L for the half-filled band and quarter-filled band cases,
respectively. The advantage is that it is possible to visualize directly the
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Fig. 8. Drude weight D as a function of the inverse of system size at half-filling
(〈n〉 = 0.5) for various values of V and W . Figure from [44]

Mott transition. We observe the following in Fig. 8:

Half-filled case: 〈n〉 = 0.5

• V/t < 1: In the thermodynamic limit D is finite and the system is per-
fectly metallic. D varies weakly with V , and we observe that in the ther-
modynamic limit D∞(〈n〉 = 0.5, V/t < 1) ≈ 1/π in agreement with the
analytical result obtained for V/t = 0 in (50).

• V/t > 1: We observe clearly that the Drude weight is zero in the thermo-
dynamic limit (Mott insulator).

It can be shown using bosonization techniques that the Drude weight is given
by,

πD∞(V,W = 0) =
1

2
uρKρ (57)

where the quantities uρ is the renormalized velocity and Kρ is the parame-
ter which controls the critical exponent of the correlation functions. These
quantities have been calculated by Luther and Peschel for the half-filled
band case [45]. Later Haldane have extended numerically the calculations
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away from the half-filled band case [46]. At half-filling we have the exponent
Kρ = [2(1 − δ

π )]−1 and uρ = π sin(δ)/δ where the parameter δ is defined by
the relation,

cos(δ) =
V

t
. (58)

Thus, at half-filling, in the Luttinger liquid phase the stiffness is given by [47],

D∞(V,W = 0) =
1

4

sin(δ)

δ(1− δ
π )

. (59)

From the above equation we recover the previous results for V = 0, e.g.,
D∞(V = 0,W = 0) = 1/π and we find D∞(V = t,W = 0) = 1/4 at the
critical point V/t = 1.

Fig. 9. Drude weight D as a function of the inverse of system size at quarter-filling
(〈n〉 = 0.25) for various values of V and W . Figure from [44]

Non-half-filled case: 〈n〉 6= 0.5

In Fig. 9, we have plotted the Drude weight away from half-filling. We
clearly observe that the effects of interaction are completely negligible
since, in the clean case, for any values of V (say, V/t = 0, 1, 20), the
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system remains metallic and D∞ is almost insensitive to V . The numerical
value is in agreement with the analytical expression (50) which gives
D∞(〈n〉 6= 0.5, 0) = 0.225.

Fig. 10. Real part of the optical conductivity σ(ω) as a function ω (it includes the
Drude part). Calculations were performed for L = 16 at half-filling (a) without and
(b) with disorder. In the disordered case an average over 100 configurations was
performed. Figure from [44]

Let us discuss the effect of interaction on the optical conductivity.
In contrast to the case of non-interacting electrons the conductivity has
also a contribution at finite frequency. In Fig. 10(a), we have plotted the
conductivity for the half-filled band case, in absence of disorder, and for
V/t = 0.5. We clearly see that the conductivity is concentrated in the Drude
part. The contribution at finite frequency is less than 2%. This is consistent
with the fact that at this value the Drude weight πD ≈ 0.98 is very close to
the maximum πD = 1 for the uncorrelated case.

D) The dirty interacting case: W 6= 0 and V 6= 0

In Fig. 11 we have plotted the persistent current I(φ) as a function of
φ at half- and quarter-filling in the presence of both disorder and correlation.
First we observe that the increase of the interaction strength reduces further
the amplitude of the current. Thus in this case, the correlations do not
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compensate the effect of Anderson localization due to disorder. The effect
of correlation is to reduce further the localization length ξ. Note however
that the effect of correlation is much stronger in the half-filled case which is
a signature of the Mott transition discussed previously. In these calculations
disorder strength is small and for this value le ≤ L so that we are in the
diffusive regime.

In Fig. 8 and Fig. 9, we have plotted the average value of Drude weight
in the presence of both interaction and disorder. The typical number of con-
figurations were of the order of 150. First we observe that for any finite W ,
in both the cases 〈n〉 = 0.25 or 0.5, the Drude weight goes to zero in the
thermodynamic limit. In 1D, for an infinitesimal amount of disorder, the sys-
tem is always in an insulating phase in the thermodynamic limit both in the
presence or absence of repulsive interaction. Additionally we see that for a
fixed value of W , the effect of V is much stronger at half-filling than away.
The figures suggest that at this special filling factor, the effects of V on the
localization length are of the same order of magnitude. However, at quarter-
filling we clearly observe that at fixed W the effect of V is extremely weak
and the localization length is essentially controlled by disorder.

Fig. 11. I(φ) as a function of φ in units of φ0 for a ring of size L = 16 at half-
and quarter-filling for a fixed disorder strength W = 0.5t with different values of the
interaction strength V . Figure from [44]
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In Fig. 10(a) and Fig. 10(b) we have plotted conductivity respectively
for the ordered and the disordered systems. We observe that conductivity at
finite frequencies are now significant. There is a strong reduction of the Drude
weight: for W = 0 we have πD ≈ 1 and for W = t it is πD ≈ 0.52. Since the
kinetic energy variation is small, then according to the sum rules discussed
previously, the transfer from the Drude weight to finite frequency is of the
order of 50%. The broad absorption peak which appear at ωabs ≈ 0.4t can be
understood in the following way. The disorder localizes the electron in small
finite regions of the sample. As a consequence the electron can oscillate in
these disconnected regions of different sizes. By assuming that the typical size
of these region is of order ξ ∝ le, we would expect naively that ωabs ≈ πvFle =
πvFW

2/A. It would be interesting to check this dependence numerically.
To conclude this part, in the case of spinless fermions, the screened short-

range repulsive interactions do not compete with the localization due to disor-
der. In the contrary, their effects are added to increase the localization effects.
At half-filling, the localization is both due to disorder and correlations, their
contribution to the localization length is of the same order of magnitude. Away
from half-filling, we can consider that the effects of the repulsive interaction
are negligible. The localization is mainly due to Anderson localization. Thus
the interaction reduces further the magnitude of the persistent currents.

In the case of long range Coulomb interaction, using a perturbative treat-
ment, it was shown by Kato and Yoshioka [48] that for weak disorder the
interaction does not increase the currents. On the other hand for very strong
disorder it was shown by Abraham and Berkovits [49] that the persistent
currents increase when the interaction are switched on.

The Case of Attractive Interaction

We have seen in the previous subsections that for the cases of 1D spinless
fermionic rings, the repulsive interaction does not counteract the effects of
localization due to disorder. In other words, the tendency to localization in-
creases when the repulsive interactions are switched on, leading to further de-
crease of the persistent currents. It is interesting to ask oneself “What would
happen in the case of attractive interaction?” Of course this does not mean
that the electron-electron interaction is attractive in the rings used in ex-
periments, but the problem of competition between disorder and attractive
interaction is of interest from the theoretical point of view.

In this subsection we consider that the parameter V in the Hamiltonian
(35) takes negative values. In Fig. 12 we have plotted the Drude weight cal-
culated exactly as a function of the inverse of system size for various values
of V and W . For weak but finite disorder amplitude, we observe that in the
thermodynamic limit the stiffness D is finite and its value is insensitive to the
disorder strength. Thus, the system remains metallic even in presence of dis-
order. This is in contrast to repulsive interaction case where for any arbritrary
small value of W, we see that D → 0 in the thermodynamic limit. For larger
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Fig. 12. Drude weight D of the attractive case as a function of 1/N at half-filling
for different values of the parameters V and W . The disorder averaging was per-
formed over 100 configurations in the case of weak disorder W = 0.25t and over 300
configurations for the stronger disorder W = t or 2t cases [22, 50]

values of the disorder strength (e.g., W = t), we observe that D decreases
with the system size but it seems that it does not saturate. For the special
case V = −t, we see that in all the cases Drude weight vanishes in the ther-
modynamic limit. This is consistent with the discussion that at this particular
value, there is a phase separation in the system for any filling. The study of
the attractive disordered systems show that in the (V ,W ) plane there is a
region of stability of the metallic phase in the presence of disorder. A more
systematic study should be performed to determine precisely the phase dia-
gram. Unfortunately, this is not a simple task within exact diagonalization
approach.

However, it is possible to calculate the phase diagram using perturbative
renormalization group approach [51, 52]. Of course, the perturbative RG is
not as accurate as the exact diagonalization calculations. In Fig. 13, we have
plotted the phase diagram of the t − V −W model calculated at half-filling
within the perturbative RG method [50]. The equation of the critical line was
found to be given by,

Wc(V ) =

[
12π3 sin2(δ)

δ2

(
2− 3δ

π
− ln[3(1− δπ−1)]

)] 1
2

. (60)
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Fig. 13. Phase diagram that represents the Kosterlitz-Thouless critical line which
separate the localized phase from the metallic phase in the attractive spinless fermion
model at half-filling [22, 50]

The maximum value of the disorder which separates the metallic from the
delocalized phase is Wmax ∼ 2.3 t. A comparison with the exact diagonal-
ization results indicates that the region of stability of the metallic phase is
overestimated by the RG calculations. It is also interesting to note that in
the vicinity of the critical line, the RG equations are similar to those which
describe the Kosterlitz-Thouless transition in the 2D XY model [53].

The Repulsive Hubbard Model: Role of Spin

We have seen in the previous subsections that the repulsive interaction in
the case of 1D ring of spinless fermions does not lead to an increase of the
persistent currents (stiffness). What would happen if we now take into account
the additional degree of freedom of the electron, its spin?

The disordered Hubbard model reads,

H = −t
∑

<i,j,σ>

c†i,σcj,σ + U
∑

i,σ

ni,σni,−σ +
∑

i

wini (61)

where σ denotes electron spin and U is the strength of the on-site interaction.
Exact diagonalization calculations on small rings have been performed

by Deng et al. [54]. Their study of the amplitude of persistent current as a
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CDW

SDW

Fig. 14. Schematic representation of a charge density wave and a spin density wave

function of U had shown a peak at a characteristic interaction strength and a
decrease beyond this value. Thus in the case of the Hubbard model interaction
can increase persistent currents. Later, calculations based on the perturbative
RG approach were performed by Giamarchi and Shastry [55]. They have also
found that the currents are enhanced by the repulsive interaction. However, in
contrast to the exact diagonalization calculations, no peak was observed in the
RG calculations. Further RG calculations by Mori and Hamada [56] resolves
the discrepancy. They have shown that by including in the RG equation the
4kF impurity scattering term, ignored in [55], the observed peak of the exact
diagonalization calculations can be reproduced. The reason of the importance
of this term is the following. In the spinless fermion model , the crucial term
which is responsible for the suppression of the persistent currents is the 2kF

scattering term. In the large U limit the Hubbard model approaches a spinless
fermion model were kF has to be replaced by 2kF. Thus, it is then expected
that 4kF term should become relevant for large U . A simple way to understand
the effect of electron-electron interaction is the following: the on-site repulsion
favors the formation of spin density wave in the system and thus tends to
smoothen out the charge density (see Fig. 14). Since disorder couples directly
to the charge, the repulsive Hubbard interaction reduces the pinning with the
impurity and thus leads to an increase of the localization length or equivalently
to larger persistent currents. On the other hand, the attractive interaction
which favors the formation of pairs (superconductivity), does not, in contrast
favor the naive expectation of delocalization [55]. In the case of large negative
U , only pairs of particle can hop, the Hamiltonian can be mapped onto a
hard-core boson (spinless fermions) with a hopping t′ = t2/U in presence of
disorder. It is possible to show more precisely that the Hamiltonian can be
mapped onto a spinless fermion model with a narrow bandwidth and nearest
neighbor interaction. Thus we expect a strong reduction of the persistent
currents in the attractive Hubbard model. Note that in the case of spinless
fermions the nearest neighbor repulsion V favors charge density wave in the
system and thus leads to the decrease of the persistent currents.
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4.3 The Multi-Channel Rings

In contrast to the 1D systems, the use of the exact diagonalization method
becomes impossible in the multi-channel systems, because of its limitation to
very small clusters. Other numerical approach like DMRG [57–60] cannot be
used. Unfortunately, the bosonization methods which appeared to be powerful
in the 1D case can neither be used in the multi-channel rings. Thus the number
of efficient tools to tackle the problem of the interplay between interaction and
disorder is drastically reduced. In the following section we will discuss two
possible approaches, (i) the perturbative methods and (ii) the self-consistent
Unrestricted Hartree Fock (UHF) approach.

The Perturbative Approach

The first attempt to evaluate the effects of electron-electron interaction on the
amplitude of the persistent currents in disordered mesoscopic multi-channel
rings was by Ambegaokar and Eckern [61]. Using diagrammatic methods, they
have calculated the correction to persistent currents due to screened Coulomb
interactions. More precisely they have calculated the Hartree and Fock cor-
rections to the persistent currents. They have found that the correction to the
second harmonic of the current is,

〈Ih2〉 =
8ρ0〈U〉

3π

le
L

evF
L

exp

(
− T

3T1

)
sin

(
4π

φ

φ0

)
(62)

where T1 = ~D/L2.
They have used as input parameters those of the experiment performed

by Levy et al. [31]: le = 200 Å and L = 2.2 µm. Additionally, Ambegaokar
and Eckern have estimated the value of the screened interaction parameter
ρ0〈U〉 = 0.6. This leads for the amplitude of the current to 〈Ih2〉 = 2.2 ×
10−3evF/L. We remind that the measured current was two times larger. This
seems to indicate an improvement with respect to one particle approaches.
Unfortunately, by including other relevant higher order diagrams, it was found
that the currents were strongly reduced [62,63] and that the resulting current
was about one order of magnitude smaller.

Similarly, Ramin et al. [64] have performed a numerical study and analyzed
the effect of the Hartree correction (first order perturbation calculation) on
the persistent current amplitude. They have obtained results in agreement
with the diagrammatic approach of [61]. Their results indicate a significant
enhancement of the second harmonic. Note, that this enhancement is valid
both in the cases for the spinless fermion model and for the Hubbard model.
One could also conclude from their study, that in contrast to the 1D case,
the spin does not play an important/relevant role in the multi-channel case.
Thus, on the basis of this promising results one could wonder if calculations
beyond the Hartree picture could eventually lead to sufficiently large value of
the persistent currents.



Transport and Persistent Currents in Mesoscopic Rings 257

The Unrestricted Hartree Fock Approach

The advantage of performing the calculations within unrestricted Hartree
Fock (UHF) approach is to allow to treat simultaneously and on equal
footings the effects of disorder and correlations and thus restore the many-
body physics. This is in contrast to the first order perturbative approaches
discussed in the previous subsection for which the ground state is calculated
in absence of interaction and the correction to the ground state energy is
done at the lowest order.

A) The spinless fermion model case

In the Hartree-Fock decoupling picture the spinless fermion Hamiltonian
reads,

Hhf(φ) = −
∑

i,j

teffij c
†
i cj +

∑

i

weff
i ni −

1

2

∑

i,j

Uij(〈ni〉〈nj〉 − |〈c†j ci〉|2) .(63)

Note that the site index corresponds to (xi,yi,zi).
The effective hopping parameters teffij and on-site potentials weff

i contain
the renormalization respectively due to Hartree and Fock terms,

weff
i = wi +

∑

j 6=i
Uij〈nj〉 , (64)

and

teffij = tij + Uij〈c†j ci〉 . (65)

The terms 〈ni〉 and 〈c†j ci〉 are determined self-consistently for a fixed disorder
configuration and given filling factor.

Note that the perturbative calculations of Ramin et al. would correspond
to teffij = tij and weff

i = wi +
∑

j 6=i Uij〈nj〉0, where 〈· · · 〉0 denotes calculations
with the unperturbed ground-state.

In Fig. 15 and Fig. 16 we have plotted the first two moment of the current
distribution calculated at φ = φ0/4 forW = t and at fixed density 〈n〉 = 1/4 as
a function of V . In these figures we clearly see that the UHF calculations agrees
very well with the exact diagonalization calculations. Note that, because of
the small system size considered here, we can consider the system to be in a
weak disorder regime. It is interesting to mention that exact diagonalization
calculations performed by Berkovits et al. [66] for very strong disorder indicate
a possible enhancement by the interaction. However the disorder strength was
so strong that, in my view, the system could be already in the localized regime.

In Fig. 17 and Fig. 18 we compare the calculation of the second harmonic
of the persistent current within the UHF approach to that obtained using a
first order perturbation theory (HF) as done by Ramin et al. These figures
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Fig. 15. First moment (M1) and second moment(M2) of the current distribution
as a function of V in units of I0, calculated at φ = φ0/4 for W = t with fixed
density 〈n〉 = 1/4. The system size is 4 × 4. The squares (triangles) correspond to
the UHF (exact) calculations. Average over disorder was performed over at least
500 configurations [22, 65]

show that in the case of weak interaction the UHF and HF agrees as expected
and lead to a small increase of the currents. However, for sufficiently strong
electron-electron coupling UHF disagree with the HF predictions. It is seen
that the currents are completely suppressed by the interaction. This also in-
dicates that higher order diagrams become highly relevant which invalidate
the first order perturbation calculations. Note also, that the reduction of the
currents occurs for smaller values of the parameter V in the case of stronger
disorder.

Thus, to conclude this part, in the case of spinless fermions, the screened
Coulomb interaction reduces further the amplitude of the currents in disor-
dered multi-channel rings as in the 1D case. This also indicate that the spin
should play an important role and cannot be assimilated to an additional
effective channel.

B) The Hubbard model case

In this subsection we analyze the case of the Hubbard model. We re-
mind that, in contrast to the spinless fermion case, the repulsive interaction
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Fig. 16. The plot is the same as that of Fig. 15 but for W = 3t [22, 65]

0.0 0.2 0.4 0.6 0.8
V

0.0000

0.0002

0.0004

0.0006

ha
rm

on
ic

2

Fig. 17. 〈Ih2〉 as a function of V . The calculations were performed with a 8×8 system
at half-filling. Average over disorder was performed over 1000 configurations. The
circle correspond to W = 3t and the square to W = 4t. The open symbols correspond
to first order perturbation theory and the filled symbols to UHF results [22, 65]
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Fig. 18. 〈Ih2〉 as a function of V within the UHF approximation. The circles,
squares and triangles correspond to W = 3t, 4t and 5t, respectively. The open
symbols correspond to the half-filled case and the filled symbols to the quarter-filled
case [22, 65]

increases the amplitude of the current in 1D systems. Note that, in the
Hubbard model, there is no Hartree term, thus no renormalization of the
hopping integrals are needed. The calculations which will be presented in this
subsection were obtained by diagonalization of the UHF Hamiltonian in the
spin sector 〈Sz〉 = 0 and assuming the absence of local magnetic moment,
e.g., 〈ni,↑〉 = 〈ni,↓〉.

In Fig. 19 we have plotted the variation of 〈Ih2〉(U,W )/〈Ih2〉(0,W ) as a
function of the Hubbard parameter U . This figure gives a comparison of the
simple first order perturbation calculations in the HF and UHF treatments.
We observe that in contrast to the results shown in Fig. 17 for the spin-
less fermion model, in the HF and UHF treatments current increases with
the strength of the interaction parameter. However, we clearly see that the
increase is smaller in the UHF picture with respect to HF results.

In Fig. 20, the relative variation of 〈Ih2〉(U,W )/〈Ih2〉(0,W ) is plotted as
a function of U for different system sizes. We clearly see that the increase of
the second harmonic of the current with respect to the non-interacting value
increases with the system size.

C) Difference between Hubbard model and spinless fermion model

The above results illustrate the crucial difference between spinless fermion
model and Hubbard model, the spin appears to play an important role. The
results obtained in the multi-channel case are similar to those obtained in the
1D case: in the spinless fermion model repulsion suppresses current whilst in
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Fig. 19. Variation of 〈Ih2〉(U, W )/〈Ih2〉(0, W ) as a function of U . Comparison be-
tween the first order calculation (HF) (open symbols) and the UHF results (filled
symbols) with systems size 8 × 8. (i) circle (W = 4t and Ne = 16), (ii) square
(W = 3t and Ne = 32) and (iii) triangle (W = 4t and Ne = 32) [22, 65]
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Fig. 20. 〈Ih2〉(U,W )/〈Ih2〉(0, W ) as a function of U for W = 3t. The UHF calcu-
lations were performed at half-filling with system size 6 × 6 (circle), 8 × 8 (square),
and 10 × 10 (triangles) [22, 65]
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the Hubbard model current increases. However, as in the 1D Hubbard model,
we would expect a maximum in 〈Ih2〉(U,W ) as a function of U . This would
require a more detailed analysis. We have seen, in the 1D disordered rings
that the difference between the spinless fermion case and the Hubbard model
is that in the first case the correlation favors CDW fluctuations and in the
other SDW. Let us show that this mechanism is in fact also relevant in the
multi-channel case. The advantage to work in real space is to allow the direct
observation of the charge density fluctuations in the system.

0.0 0.2 0.4 0.6 0.8
ρ
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0.05

0.10
W=0.5  V=0
W=0.5  V=0.6

Fig. 21. Probability distribution of the local charge density of a 10 × 10 spinless
fermion system with Ne = 40 and V = 0 or 0.6t for some fixed disorder strength.
This distribution was obtained after averaging over 30 disorder configurations [22,65]

In Fig. 21 and Fig. 22 we have plotted the distribution of the charge den-
sity P (ρ) in absence and presence of electron-electron correlations. We see
in Fig. 21 a drastic effect of the repulsive interaction. In the case V = 0 we
observe a broad peak at 〈n〉 = 0.4. As the interactions are switched on, we
see that charge fluctuations strongly increase and lead to two distinct peaks
around ρ = 0.7 and ρ = 0.2 showing that the system become phase separated.
Away from half-filling we observe a broadening of the charge density distri-
bution but no tendency of phase separation. On the other hand, in Fig. 22 we
see that the effect of U is to reduce the distribution width, thus U tends to
uniformize the charge density.

4.4 Conclusion

To conclude, we have in this chapter presented how the electron-electron in-
teraction could eventually compete with the effects of disorder and thus lead
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Fig. 22. Probability distribution of the local charge density of a 10 × 10 Hubbard
system with Ne = 2N↑ = 2N↓ = 100 and U = 0 or 0.5t for some fixed disorder
strength. This distribution was obtained after averaging over 30 disorder configura-
tions [22, 65]

to an increase of the persistent current amplitude. We have seen that the na-
ture of the interaction plays an important role. In the case of spinless fermions
the short-range electron-electron repulsive interaction tends to suppress the
persistent currents. The underlying mechanism is the tendency to favor CDW
fluctuations which strongly couple to the disorder and thus enhances the ten-
dency to localization. On the other hand, in the Hubbard case (spin taken
into account), the repulsive electron-electron interaction favors the SDW fluc-
tuations. Thus the pinning with the impurities is then reduced which leads
to an increase of the current. Interestingly, it was shown that this physics is
valid both in the cases of 1D rings and multi-channel systems. However, the
presented results suggest that the increase is unfortunately not sufficient to
explain the discrepancy between experiments and theory which concerns two
orders of magnitude. Additionally, the averaged second harmonic, appears
to be always of the same positive sign, in both the cases with or without
electron-electron interactions. Thus both the amplitude of the persistent cur-
rent and its sign remains an open issue and a challenge to theory. However,
we should mention that calculations of the persistent currents in the presence
of long range Coulomb interaction indicates a stronger enhancement of the
current with respect to screened Coulomb interaction [67]. Note also that all
the calculations are usually performed using only nearest neighbor hopping
integrals, the influence of further couplings could also be interesting. Recent
calculations performed for non-interacting electrons indicate a weaker effect
of the disorder in the case of extended hopping integrals [68,69].The influence
of the spin-orbit coupling is probably the most promising ingredient and cer-
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tainly one interesting problem which should be investigated in details. This
would require a treatment of the disorder and of the spin-orbit coupling on
equal footings.
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1 Introduction

An emerging tendency of modern material science is to propose and investigate
systems containing smaller and smaller structures. These smaller structures
approach the so-called mesoscopic or nanoscopic regimes in which quantum
effects become much more relevant for the behavior of these materials. This
situates mesoscopic physics at the interface of statistical physics and quantum
physics. The mesoscopic systems are very much smaller than the large-scale
objects and they often have unusual physical and chemical properties. The
study of mesoscopic systems provides a clear understanding of the behavior
of a material as it goes from a few atoms to large visible and tangible objects.

1.1 Mesoscopic Regime

Mesoscopic regime refers to the length scale at which one can reasonably de-
scribe the properties of a material or a phenomenon without discussing the
behavior of the individual atoms. Typically this length scale is of submicron
order and involves averaging over a few thousand atoms or molecules. In this
scale fluctuations of the physical quantities arising from the motion and be-
havior of individual particles can be reduced below some desirable threshold
(often a few percent) and it must be established rigorously within the context
of any particular problem. In the mesoscopic regime behavior of a system is
highly influenced by quantum interference of the electronic wave functions.
The quantum phase coherence, essential for the appearance of interference ef-
fects, is preserved only during a finite time τφ called the phase coherence time.
In electronic conductors, finite phase coherence time corresponds to a phase
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coherence length Lφ over which electrons can travel before their phase coher-
ence get lost. The quantum effects appear only when the characteristic time
or the characteristic length of the system are smaller than the phase coherence
time or the phase coherence length, respectively. In many cases this means
that the relevant system size L must be smaller than the phase coherence
length Lφ. For an electron, the phase coherence time/length is limited by
electron-electron and electron-phonon scattering processes. These processes
are important at high temperatures, but both are suppressed at low tempera-
tures implying that the phase coherence time/length is strongly material and
temperature dependent. The mesoscopic regime is therefore characterized by
small time and/or length scales and low temperatures. When temperature is
lowered, the phase coherence time/length increases (by a factor T−1) and the
mesoscopic regime gets extended. At sub-Kelvin temperatures, the time and
length scales in the semiconductor samples are of the order of picoseconds and
micrometers, respectively.

1.2 Some Extraordinary Mesoscopic Phenomena

The samples like quantum dots, quantum wires, two-dimensional electron
gases in the semiconductor heterostructures, etc. exhibit many exotic physical
properties due to extreme spatial confinement of electrons at the submicron
length scale. Here we briefly describe some spectacular effects that appear in
such systems as a consequence of quantum phase coherence of the electronic
wave functions.

Aharonov-Bohm Oscillations

One of the most remarkable consequences of quantum phase coherence is
the observation of Aharonov-Bohm (AB) oscillations in the conductance of
normal metal mesoscopic rings. At very low temperature, superposition of the
electronic wave functions corresponding to the two arms of the ring becomes
important. The pioneering experiment on the AB effect was on a ring-shaped
resistor made from a 38 nm film of polycrystalline gold. The diameter of the
ring was 820 nm and its thickness was 40 nm [1]. Conductance of this ring was
found to oscillate as a function of magnetic flux enclosed within the ring with
h/|e| periodicity [2]:

g = g0 + ĝ cos

[ |e|BS
~

+ φ

]
(1)

where S is the area enclosed by the ring and B is the magnetic field perpen-
dicular to the plane of the ring.

Integer and Fractional Quantum Hall Effects

An important discovery of 1980s was the phenomenon of integer quantum
Hall effect [3] which also results from quantum phase coherence of the elec-
tronic wave functions of two-dimensional electron gas systems. In the Hall
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measurement one drives a current along a two-dimensional conductor, and,
measures the longitudinal voltage Vx and the transverse Hall voltage VH as
functions of the magnetic field B applied perpendicular to the plane of the
conductor. According to the classical Drude formula, the Hall resistance RH
should be linearly proportional to B and the longitudinal resistance Rx should
remain unaffected by magnetic field. This behavior holds true only when mag-
netic field is very weak. In the strong magnetic field and at low temperature,
one gets completely new behavior which cannot be explained by the classical
Drude model. The longitudinal resistance exhibits a oscillatory behavior while
the Hall resistance shows sharp step-like structures with plateaus. The values
of RH on these plateaus are given by h/ne2, where n is an integer with values
1, 2, 3, · · · . It turns out that these values of RH are very robust and highly
reproducible with great precision, and this is the reason why they are often
used as the standard of resistance. The integer quantum Hall effect is a purely
quantum mechanical phenomenon due to the formation of the Landau levels
and we refer to [4–6] for its details.

The phenomenon of fractional quantum Hall effect [7] was discovered in
1982 when a two-dimensional electron gas was subjected to a very high mag-
netic field at a very low temperature. The two-dimensional electron gas then
exhibits additional plateaus in the Hall resistance at h/ne2 with fractional val-
ues of n. It is now well-established that Coulomb correlation among the elec-
trons becomes quit important for the explanation of the fractional quantum
Hall effect and its origin has been traced back to the existence of correlated
collective quasi-particle excitations [8]. An extensive review on this topic can
be found in [5].

Persistent Currents

Electrons in mesoscopic normal metal rings can support non-decaying circu-
lating current in thermodynamic equilibrium even at non-zero temperature
and it is the well-known phenomenon of persistent current in mesoscopic nor-
mal metal rings. This exotic phenomenon is due to phase coherence of the
electronic wave functions over the mesoscopic rings. This current depends on
the magnetic flux φ enclosed by the ring and it exhibits the elementary flux
quantum φ0 = hc/e periodicity. The possibility of persistent current was pre-
dicted in the very early days of quantum mechanics by Hund [9], but their
experimental evidences came much later only after the fabrication of meso-
scopic systems. A detailed discussion on the phenomenon of persistent current
in mesoscopic normal metal rings will be presented in Sect. 2.

Conductance Fluctuations

In the mesoscopic regime conductance of a disordered wire exhibits pro-
nounced fluctuations as a function of the external parameters like magnetic
field, Fermi energy, etc. These fluctuations that are observed [10] only at very
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low temperatures are perfectly reproducible. Conductance fluctuations are
due to quantum interference of the electronic wave functions corresponding
to various pathways that the electrons can take while traversing the sam-
ple. The most important feature of conductance fluctuation is that its typical
amplitude is universal in the diffusive regime [11] which actually gives the
fingerprint of the underlying quantum interference effects. The fluctuations
are always of the order of conductance quantum e2/h and depend only on the
basic symmetries of the system [12].

The conductance of a ballistic quantum point contact was found [13, 14]
to be quantized in units of 2e2/h and in a recent experiment [15] it has been
demonstrated that conductance quantization can be observed in an extremely
simple setup. A quantum point contact is a very narrow link between two
conducting materials which can be formed by imposing a narrow constriction
between them. With the decrease of the width (W ) of constriction conduc-
tance goes down in quantized steps. This is due to the fact that although the
width of constriction changes continuously, the number of sub-bands or trans-
verse modes (M) changes in discrete steps. This discreteness is not evident
if constriction is several thousands of wavelength wide as then a very small
fractional change in W changes M by many integers.

2 Persistent Current in Mesoscopic Normal Metal Rings

The phenomenon of persistent current in mesoscopic normal metal rings pro-
vides an excellent testing ground for many ideas of basic physics. In thermo-
dynamic equilibrium, a mesoscopic metallic ring threaded by magnetic flux φ
supports a current in the ring which does not decay dissipatively even at non-
zero temperature. It is the so-called persistent current which is a purely quan-
tum mechanical effect and it gives an obvious demonstration of the Aharonov-
Bohm effect [16]. In 1983 Büttiker et al. [17] predicted that persistent current
can exist in mesoscopic normal metal rings threaded by magnetic flux even
in the presence of impurity. In a pioneering experiment Levy et al. [18] first
gave the experimental evidence of persistent current in mesoscopic normal
metal rings and later its existence was further confirmed by other experi-
ments [19–22]. It has been observed that the experimental results do not
agree well with the theoretical predictions. The measured amplitudes of the
currents are orders of magnitude larger than the theoretical estimates, both
φ0 and φ0/2 periodicities were observed, and, the low-field magnetic suscep-
tibility were found to be diamagnetic as well as paramagnetic. Metals are
intrinsically disordered and electron-electron interaction becomes important
at the mesoscopic length scale as electrons are not screened much. In order
to understand the behavior of persistent current in mesoscopic normal metal
rings, one has to focus attention on the interplay of quantum phase coherence,
electron-electron interaction and disorder. This is a highly complex problem
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which has been addressed quite extensively over the last twenty years both
experimentally [18–22] as well as theoretically [23–34].

2.1 Single-Channel Non-Interacting Rings

The system under consideration is a quantum ring of N atomic sites, as
depicted schematically in Fig. 1. In the non-interacting picture, this system
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Fig. 1. Schematic view of a 1D mesoscopic ring threaded by magnetic flux φ

is usually modeled by a single-band tight-binding Hamiltonian

H =
∑

i

εic
†
i ci + v

∑

<ij>

[
eiθc†i cj + h.c.

]
, (2)

where c†i (ci) is the creation (annihilation) operator of an electron in the ith
Wannier state, εi’s are the site energies, and v represents the nearest-neighbor
hopping integral. Here θ = 2πφ/N is the phase factor due to magnetic flux
φ (measured in units of φ0 = ch/e, the elementary flux quantum). Unless
mentioned explicitly, henceforth we will use the units c = e = h = 1.

In a ring geometry, periodic boundary condition leads to quantized energy
levels En(φ) and the discreteness of the energy levels plays a very important
role for the existence of persistent current. At sufficiently low temperature
and/or for small system size, level spacings might become larger than the
thermal energy kBT and under this situation electrons will not suffer any in-
elastic collision. This in turn gives persistent current as the energy eigenstates
carry currents which cannot decay dissipatively [23]. At zero temperature per-
sistent current carried by the nth eigenstate is given by

In(φ) = −∂En(φ)

∂φ
. (3)

For a system characterized by fixed number of electrons Ne, the total cur-
rent is obtained by taking sum of the individual contributions of the lowest
Ne energy levels. On the other hand when a system is specified with fixed
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chemical potential µ, the total current is obtained by adding the individual
contributions from all the energy levels with energies less than or equal to µ.

In perfect rings the current-flux characteristics exhibit saw-tooth like
shapes with sharp discontinuities at φ = ±pφ0/2 and ±pφ0 (p being an in-
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Fig. 2. I − φ curves of a 1D mesoscopic ring of size N = 50 with (a) Ne = 15 and
(b) Ne = 10. The solid and dotted curves respectively corresponds to the perfect
and disordered (W = 1) rings

teger), respectively for the cases with odd and even Ne (see the solid curves
of Fig. 2). These discontinuities appear due to the degeneracy of the energy
levels at these values of φ. On the other hand, in the presence of impurity
all these degeneracies get lifted and persistent currents become continuous
functions of φ (see the dotted curves of Fig. 2). It may be noted that the
amplitudes of the currents are greatly reduced in the disordered rings due to
the tendency of localization of the electrons. It may be noted that both the
perfect and dirty rings exhibit the flux quantum φ0 periodicity.

Though the phenomenon of persistent current in mesoscopic normal metal
rings is well-understood within the one-electron picture [23–28], it fails to
explain the experimental results [18–22]. One major discrepancy between the-
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ory and experiment is that the amplitudes of the measured persistent currents
are orders of magnitude larger than the theoretical predictions. Another con-
troversial issue is that experimentally persistent currents exhibit both half-
integer and integer flux quantum periodicity. The explanation of these results
in terms of the ensemble averaged persistent currents is also quite intriguing
and calculations show that the disorder averaged current crucially depends on
the choice of the ensemble [23, 24]. It is believed that the interplay between
electron-electron interaction and disorder has a major role in the enhance-
ment of persistent currents and in the following sections this issue has been
addressed in detail.

2.2 Single-Channel Interacting Rings

In order to reveal the role of disorder and electron-electron interaction on
persistent current, in this subsection we calculate persistent currents in meso-
scopic normal metal rings with aperiodic site potentials. These systems closely
resemble the disorder systems and the advantage is that here we do not re-
quire any configuration averaging. A mesoscopic ring with incommensurate
site potentials can be described by the tight-binding Hubbard Hamiltonian

H =
∑

σ

N∑

i=1

ε cos(iλπ)c†i,σci,σ + v
∑

σ

N∑

i=1

(c†i,σci+1,σe
iθ + h.c.)

+U

N∑

i=1

ni↑ni↓ , (4)

where λ is an irrational number and in the present calculation it has been
taken as the golden mean (1+

√
5)/2. Here U denotes the strength of Hubbard

interaction and niσ represents the number operator.
At zero temperature persistent current can be calculated from the expres-

sion

I(φ) = −∂E0(φ)

∂φ
, (5)

where E0(φ) is the many-body ground state energy. We determine I(φ) from
the above equation via exact numerical diagonalization of the Hamiltonian
(4). To understand the precise role of electron-electron correlation and dis-
order on persistent current, here we present results for the simplest possible
system containing two opposite spin (↑, ↓) electrons with incommensurate
site potentials. In Fig. 3 we plot the current-flux characteristics for a 30-site
ring where the solid, dotted and dashed curves correspond to the interaction
strengths U = 0, 1 and 3, respectively. In the absence of electron-electron
interaction disorder suppresses persistent current enormously and it becomes
apparent from Fig. 3 as the I–φ curve for the non-interacting case (solid line)
almost coincides with the φ-axis. This is due to the fact that in the presence of
aperiodic site potentials electronic eigenstates are almost critical [35,36] with



274 Santanu K. Maiti and S. N. Karmakar

0.0 1.0
Φ

-0.015

0.015

IHΦL

Fig. 3. I − φ curves of a 1D mesoscopic ring (N = 30) with incommensurate site
potentials containing two opposite spin (↑, ↓) electrons. The solid, dotted and dashed
curves are respectively for U = 0, 1 and 3

power-law localization and persistent currents get reduced. But this situation
changes quite dramatically as we switch on electron-electron interaction. Fig-
ure 3 clearly shows that electron-electron interaction enhances persistent cur-
rent considerably for low values of U . This is because the repulsive Coulomb
interaction does not favor confinement of the electrons due to localization in
the presence of disorder. Thus mobility of the electrons increases as we in-
troduce Hubbard correlation and persistent currents get enhanced. However,
this enhancement of persistent current due to correlation is not enough to
explain the experimental results. Also this enhancement ceases to occur after
certain value of U due to the ring geometry and persistent current eventually
decreases as we increase U further.

A new feature appears in the I − φ characteristics in the presence of
electron-electron interaction. The I−φ characteristics exhibit kink-like struc-
tures and most interestingly we see that the currents inside these kinks are
independent of the strength of Hubbard correlation U . This result can be
analyzed as follows. For two opposite spin electrons, total spin S can have
the values 0 and 1. The Hamiltonian of this system for any φ can be block
diagonalized by proper choice of the basis states, and this can be achieved by
taking all the basis states in one sub-space with S = 0, while those in the
other sub-space with S = 1. It is easy to see that in the sub-space spanned by
the basis set with S = 1, the block Hamiltonian becomes free from U , and,
the corresponding energy eigenvalues and eigenstates become U -independent.
In absence of interaction, these U -independent energy levels are always above
the ground state energy of the system for any value of φ. But for non-zero
values of U , one of these U -independent energy levels becomes the ground
state energy of the system in certain domains of φ. In these regions we have
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kinks in the I–φ curves and obviously persistent currents inside these kinks
are independent of the strength of Hubbard correlation U . In a recent ex-
periment Keyser et al. [37] reported similar oscillations in the conductance
of small rings with less than ten electrons. The role of electron correlation
on persistent current both in perfect and dirty rings with higher number of
electrons has been discussed in [38, 39].

2.3 Enhancement of Persistent Current in Mesoscopic Rings

Free electron theory predicts that, at T = 0, an ordered one-dimensional
normal metal mesoscopic ring threaded by magnetic flux φ supports persistent
current with maximum amplitude I0 = evF/L, where vF is the Fermi velocity
and L is the circumference of the ring. Real samples are always disordered
which tends to decrease the amplitudes of the currents, and calculations show
that the disorder-averaged current < I > crucially depends on the choice
of the ensemble [23, 24]. The magnitude of current < I2 >1/2 is however
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Fig. 4. Schematic view of a mesoscopic cylindrical ring threaded by magnetic flux
φ. Filled circles represent the lattice sites

insensitive to the averaging issues and is of the order of I0l/L, l being the
elastic mean free path of the electrons. This expression remains valid even if
one takes into account the finite width of the ring by adding contributions
from the transverse channels, since disorder leads to a compensation between
the channels [23, 24].

Measurements on an ensemble of 107 Cu rings [18] reported a diamagnetic
persistent current of average amplitude 3× 10−3 evF/L with a half flux quan-
tum periodicity. Such φ0/2 oscillations with diamagnetic response were also
found in other persistent current experiments consisting of ensemble of iso-
lated rings [22,40]. The strange period-halving is due to the fact that the first
harmonic averages out to zero while the second harmonic survives [24]. The
measured average currents are comparable to the typical currents < I2 >1/2,
but are one or two orders of magnitude larger than the ensemble averaged
currents as expected from the free electron theory [23,24, 26, 27].
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Fig. 5. I–φ curves of multi-channel mesoscopic cylindrical rings (N = 50, M = 4)
with only NNH integrals for (a) Ne = 45 and (b) Ne = 40. The solid and dashed
curves respectively corresponds to the perfect (W = 0) and dirty (W = 1) systems

On the other hand measurements on single isolated mesoscopic rings
detected φ0-periodic persistent currents with amplitudes of the order of
I0 ∼ evF/L (close to the perfect ring result). Theory and experiment [19]
seem to agree only when disorder is weak. However, the amplitudes of the
currents in the diffusive single-isolated-disordered gold rings [20] were two
orders of magnitude larger than the theoretical estimates. This discrepancy
initiated intense theoretical activity and it is still an open problem.

In the previous section it has been shown that the simple nearest-neighbor
tight-binding Hamiltonian cannot explain the observed enhancement of persis-
tent current even in the presence of electron-electron interaction [38,39,41,42].
Some recent works [43,44] show that a much more realistic model with higher
order hopping integrals in the usual nearest-neighbor tight-binding Hamilto-
nian gives the desired enhancement of persistent current in the mesoscopic
normal metal rings. Physically, the higher order hopping integrals try to de-
localize the electrons even in one dimension preserving its phase coherence
and hence prevents the reduction of persistent current due to disorder. The
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Fig. 6. I–φ curves of multi-channel mesoscopic cylindrical rings (N = 50, M = 4)
with both NNH and SNH (α = 1) integrals for (a) Ne = 45 and (b) Ne = 40. The
solid and dashed curves respectively corresponds to the perfect (W = 0) and dirty
(W = 1) systems

fluctuations of the persistent currents also get suppressed in the presence of
higher order hopping integrals. As a result average amplitude of the persistent
currents becomes comparable to I0 and this is exactly what has been observed
experimentally.

So far we have confined our discussions to one-dimensional systems only
which do not really correspond to the experimental situations. Enhancement
of persistent current has been observed even in the single-isolated diffusive
(disordered) metallic rings. But diffusion is not possible strictly in one di-
mension and hence it becomes necessary to consider the finite width of the
samples. The simplest way of doing this is to consider a cylindrical meso-
scopic ring threaded by magnetic flux φ. A schematic view of this system is
presented in Fig. 4. Assuming that the lattice spacings both in the longitu-
dinal and transverse directions are identical (i.e., the surface of the cylinder
forms a square lattice), we can describe the system by the Hamiltonian
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H =
∑

x

εxc
†
xcx +

∑

<xx′>

[
vxx′eiθxx′ c†xcx′ + h.c.

]
, (6)

where εx is the site energy of the lattice point x of coordinate, say, (i, j).
Here vxx′ is the hopping integral between the lattice points x and x′, and,
θxx′ is the phase acquired by the electron due to this hopping in the presence
of magnetic flux φ. Let us investigate the role of just the second-neighbor
hopping integrals on persistent current and neglect the effects of all the other
higher order hopping integrals. Let v denotes the nearest-neighbor hopping
integral and the second-neighbor hopping integral (across the diagonal of the
square) is taken to have the exponential form v exp(−α), where α is a decay
constant.

In the absence of impurity, setting εx = 0 for all x, the energy eigenvalue
of the nth eigenstate can be expressed as

En(φ) = 2v cos

[
2π

N
(n+ φ)

]
+ 4ve−α cos

[
2π

N
(n+ φ)

]
cos

[
2πm

M

]

+2v cos

[
2πm

M

]
, (7)

and the persistent current carried by this eigenstate is

In(φ) =

(
4πv

N

)
sin

[
2π

N
(n+ φ)

]
+

(
8πv

N

)
e−α sin

[
2π

N
(n+ φ)

]

× cos

[
2πm

M

]
, (8)

where n and m are two integers in the intervals −bN/2c ≤ n < bN/2c and
−bM/2c ≤ m < bM/2c, respectively. The symbol b. . .c denotes the integral
part of its argument. Here M and N are the number of sites along the longi-
tudinal and transverse directions of the cylinder, respectively.

Let us first describe the behavior of persistent currents in the multi-channel
cylindrical rings using the nearest-neighbor tight-binding Hamiltonian. Fig-
ure 5 shows the current-flux characteristics of some mesoscopic cylindrical
rings with N = 50 and M = 4. Figures 5(a) and 5(b) respectively corre-
sponds to the systems with the number of electrons Ne = 45 and 40, where
the solid curves represent currents in the absence of any impurity and the
dotted curves are for the disordered systems. In the disordered cases εx’s are
taken as random variables with uniform box distribution of width W . These
figures show that persistent currents for the perfect systems (solid curves) have
many discontinuities within each φ0 period. These discontinuities are due to
the existence of degenerate energy levels at certain values of φ and these de-
generacies get lifted as we introduce impurity into the system. Accordingly
persistent currents of the disordered systems become continuous functions of
φ as shown by the dashed curves in Figs. 5(a) and 5(b). It is observed that,
even in the multi-channel cylindrical rings, the nearest-neighbor tight-binding
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model gives orders of magnitude reduction of the persistent currents in the
disordered rings compared to its value in the ballistic cases.

The behavior of persistent current in the multi-channel disordered meso-
scopic rings changes drastically as we switch on the second-neighbor hopping
integrals. In Fig. 6 we plot the current-flux characteristics of some disordered
multi-channel cylindrical rings in the presence of second-neighbor hopping
integral with system size M = 50 and N = 4. Figures 6(a) and 6(b) re-
spectively corresponds to the cases with Ne = 45 and 40, where the solid
and dashed curves have the same meanings as those of Fig. 5. It is apparent
from Figs. 6(a) and 6(b) that the amplitudes of persistent currents in the
dirty systems (dashed curves) are comparable to those of the perfect systems
(solid curves). Physically the higher order hopping integrals try to delocalize
the electrons and the current amplitudes get enhanced, even by an order of
magnitude, in comparison to its estimates in the dirty samples by the usual
nearest-neighbor tight-binding Hamiltonian. The present study reveals that
the higher order hopping integrals play a very significant role in the enhance-
ment of persistent current in diffusive mesoscopic rings.

2.4 Low-Field Magnetic Susceptibility of Mesoscopic Rings

The diamagnetic or paramagnetic sign of the low-field persistent currents also
becomes a controversial issue due to the discrepancy between theory and ex-
periment. Cheung et al. [23] predicted that the sign of the low-field persistent
current is quite random with respect to the total number of electronsNe or the
specific realization of the disordered configurations of the ring. The possibility
of both the diamagnetic and paramagnetic responses were also predicted the-
oretically by Yu and Fowler [45] in mesoscopic Hubbard rings. They observed
that rings with odd Ne exhibit paramagnetic response while those with even
Ne have diamagnetic response in the limit φ → 0. In an experiment on 107

isolated mesoscopic Cu rings Levy et al. [18] reported diamagnetic response
for the low-field currents, while with Ag rings Chandrasekhar et al. [20] ob-
tained paramagnetic response. In another experiment Jariwala et al. [21] also
detected diamagnetic persistent currents in an array of 30 diffusive mesoscopic
gold rings. The diamagnetic sign of persistent current in the vicinity of zero
magnetic field was also observed in an experiment [22] on 105 disconnected Ag
ring. Thus the sign of the low-field current is a priori not consistent with the
theoretical predictions. In this section we will study the behavior of low-field
magnetic susceptibility of single- and multi-channel mesoscopic rings through
some exact calculations.

The magnetic susceptibility of a mesoscopic ring is given by the general
expression

χ(φ) =
N3

16π2

(
∂I(φ)

∂φ

)
. (9)
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The sign of χ(φ) determines the paramagnetic or diamagnetic nature of the
persistent currents. Here we will present results for the systems either with
fixed number of electrons (Ne) or with fixed chemical potential (µ).

Let us first study the behavior of low-field magnetic susceptibility of im-
purity free single-channel mesoscopic rings with fixed Ne. Figure 7(a) gives
the variation of χ(φ→ 0) with respect to Ne for a perfect ring. It is observed

50 100 150 200
Ne

-4´103

8´103

4´103

ΧHΦL

HbL

25 75 125 175
Ne

-6´103

-4´103

0

-2´103

ΧHΦL

HaL

Fig. 7. Low-field magnetic susceptibility as a function of Ne for (a) perfect (W = 0)
and (b) disordered (W = 1) rings of size N = 200. The solid and the dotted curves
in Fig. 7(b) respectively corresponds to the cases with odd and even Ne

that the currents are always diamagnetic for both the cases with even and odd
Ne. The effects of impurity on the low-field currents are quite interesting and
we see that the sign of the currents can be predicted without any ambiguity
even in the presence of disorder. Figure 7(b) is a plot of χ(φ → 0) as a func-
tion of Ne for the disordered rings. The solid and dotted curves in Fig. 7(b)
respectively corresponds to the cases with odd and even Ne. Interestingly, we
observe that the rings with odd Ne exhibit only diamagnetic sign while those
with even Ne always have the paramagnetic sign. As disorder lifts the degen-
eracy of the energy levels of a perfect ring, the sharp discontinuities of the
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I–φ characteristics (see the solid curves of Fig. 2) disappear and the slopes
of the I–φ curves for even and odd Ne always have opposite signs near zero
magnetic field (see the dashed curves of Fig. 2). It explains why the sign of
the low-field currents of one-dimensional disordered rings with fixed number
of electrons are quite independent of the specific realization of the disordered
configurations and depends only on the oddness or evenness of Ne.

The above results hold true only at zero temperature. We now describe
the effect of temperature on the sign of the low-field currents of single-channel
mesoscopic rings. At finite temperature, the probability that an electron will

16 20 24 28
Ne

.16

.20

.24
Φc HTL

Fig. 8. φc(T ) versus Ne curves of perfect rings with N = 45

occupy higher energy levels increases and the amplitude of persistent current
decreases due to mutual cancellations of the opposite currents carried by the
individual energy levels. Thermal excitations can scatter electrons inelasti-
cally and may randomize the phase of the electronic wave functions. This will
try to destroy phase coherence of the electrons and may eliminate the quan-
tum effects. So it becomes necessary to work at sufficiently low temperatures
(defined by T < T ?, where T ∗ is a characteristic temperature determined by
the average level spacing ∆) such that phase coherence length of the electrons
is larger than the circumference of the ring.

At finite temperature, we observe an interesting behavior in the low-field
magnetic susceptibility of mesoscopic rings. Let us confine ourselves only to
the systems with even Ne as we have observed that the systems with odd
Ne also exhibit similar behavior. We see that the magnetic response of both
the perfect and disordered rings with even Ne are always paramagnetic in the
vicinity of zero magnetic field. The most interesting observation is that at
finite temperature magnetic response of a given system becomes diamagnetic
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beyond some critical magnetic flux φc(T ). It may be noted that persistent
currents do not show this kind of behavior at T = 0.

In Fig. 8 we plot φc(T ) with respect to Ne for a perfect single-channel

16 20 24 28
Ne

.21

.23

.25

Φc HTL

Fig. 9. φc(T ) versus Ne curves of dirty (W = 1) rings with N = 40

ring of size N = 45. The curve with higher values of φc(T ) corresponds to the
temperature T/T ? = 1.0, while the other curve corresponds to T/T ? = 0.5.
Figure 9 represents the behavior of φc(T ) of the dirty samples (W = 1) for
the same two temperatures T/T ? = 1.0 (upper curve) and T/T ? = 0.5 (lower
curve). From Fig. 8 and Fig. 9 it is clear that the critical value of φ, where tran-
sition from paramagnetic to diamagnetic phase takes place, increases with the
increase of temperature. Thus at finite temperature both the perfect and the
dirty mesoscopic rings exhibit transition from paramagnetic to diamagnetic
phase in the neighborhood of some critical values of magnetic flux.

The situation is quite different even at zero temperature when we describe
the system by constant chemical potential, instead of fixed Ne. It may be
noted that only for some particular values of µ, the system will have some fixed
number of electrons, and, the sign of the low-field currents can be predicted
according to the above prescriptions for these values of µ. While for other
choices of µ, the total number of electrons varies even for a slight change of φ
in the neighborhood of zero flux. Hence it is not possible to predict the sign
of the low-field currents precisely even in the absence of any impurity in the
system. Thus the sign of the low-field currents strongly depends on the choice
of µ, the strength of disorder and the specific realization of the disordered
configurations.

The study of the low-field magnetic responses of multi-channel mesoscopic
rings reveals that it is not possible to predict the sign of the low-field currents
precisely even for the impurity free cases with fixed number of electrons. So we
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conclude that in the diffusive multi-channel mesoscopic rings, the sign of the
low-field currents is a highly unpredictable quantity as it can be easily affected
by the total number of electronsNe, chemical potential µ, magnetic flux φ, the
strength of disorder, the specific realization of the disordered configuration,
etc. This is exactly what has been observed experimentally regarding the sign
of the low-field currents.

3 Electron Transport in Molecular Bridge Systems

Remarkable progress in the fabrication of nanoscale quantum devices has al-
lowed one to study electron transport through molecules in a very controllable
way and these systems have attracted enormous attention in recent years since
the molecules constitute the most promising building blocks for the future gen-
eration electronic devices. Electron conduction through molecules was first
studied theoretically in 1970 [46]. Since then electronic transport properties
of molecular bridge systems were studied in numerous experiments [47–56]
placing the sample between two metallic electrodes with few nanometer sep-
aration. It becomes important to know how electron transport is affected by
the structure of the molecule itself or by the nature of its coupling with the
electrodes. Electronic transport through such two-terminal devices can also
be controlled by some bias voltage. The current across the junction happens
to be a strongly nonlinear function of the applied bias voltage understanding
of which is a highly challenging problem.

In this section we will develop a simple analytical method for studying
electronic transport properties of such molecular bridge systems within the
framework of the tight-binding model. In this context it is worth mentioning
that there are some excellent works on electron transport through molecular
devices using ab initio methods [57–62] or in terms of some physical mod-
els [63–66].

3.1 Basic Theoretical Formulation

In this subsection we briefly describe how electronic transmission probability
(T ), conductance (g) and current (I) through a finite-size conducting system
sandwiched between two semi-infinite metallic electrodes can be calculated
using the Green’s function technique. Let us first consider a one-dimensional
conductor with N sites which is connected to the semi-infinite electrodes,
the source and the drain, as shown schematically in Fig. 10. The conducting
system in between the two electrodes can be a single molecule, an array of
few molecules, an array of few quantum dots, etc. At low voltage and low
temperature its conductance is given by the Landauer conductance formula

g =
2e2

h
T . (10)
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Source Drain

1 N

Fig. 10. Schematic view of a 1D conductor with N sites attached to the electrodes

The transmission probability T can be obtained from the relation [67]

T = Tr [ΓSG
r
cΓDG

a
c ] , (11)

whereGrc andGac are respectively the retarded and advanced Green’s functions
for the conductor including the effects of the electrodes. The matrix ΓS(D)

depends on the coupling between conductor and source (drain), and can be
expressed in terms of the self-energies of source (drain). The Green’s function
for the complete system (i.e., conductor with the electrodes) is defined as

G = (ε−H)
−1

, (12)

where ε = E + iη, E being the energy of the source electrons and η is an
infinitesimal real number. Evaluation of G requires the inversion of an infinite
matrix as the system consists of the finite conductor and the semi-infinite
electrodes. However, it can be partitioned into sub-matrices corresponding
to the individual sub-systems and eliminating the degrees of freedom of the
electrodes, the effective Green’s function for the conductor can be expressed
as

Gc = (ε−Hc −ΣS −ΣD)
−1

. (13)

Here Hc is the bare Hamiltonian for the conductor which in the tight-binding
model reads as

Hc =
∑

i

εic
†
i ci +

∑

<ij>

t
(
c†i cj + h.c.

)
, (14)

where εi’s are the site energies and t denotes the nearest-neighbor hopping
integral. In (13) the symbol ΣS(D) corresponds to the self-energy operator of

source (drain). Explicitly we can write them as ΣS = h†ScgShSc and ΣD =

hDcgDh
†
Dc. Here gS(D) represents the Green’s function for the source (drain)

and hSc(hDc) is the coupling matrix between source (drain) and conductor.
In terms of the retarded and advanced self-energies Σr

S(D) and Σa
S(D), the

matrices ΓS and ΓD can be calculated from the expression

ΓS(D) = i
[
Σr
S(D) −Σa

S(D)

]
. (15)

Tian et. al. [67] have shown that the self-energies can be written into the form

Σr
S(D) = ΛS(D) − i∆S(D) . (16)
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The real part ΛS(D) of self-energy gives a shift to the energy levels of the con-
ductor whereas the imaginary part ∆S(D) produces some broadening to the
energy levels. As these broadenings are much larger than the thermal broad-
ening, we can restrict ourselves to zero temperature. The real and imaginary
parts of the self-energies can be calculated in terms of the hopping integral
τS(D) between the boundary sites of the conductor and the electrode S(D),
the energy E of the transmitting electron and the hopping integral v between
the nearest-neighbor sites of the electrodes. All informations about the elec-
trodes along with their couplings with the conductor are now contained within
these two self-energies and this is just an extension of the Newns-Anderson
chemisorption theory [63,64].

Since the electrodes are connected to the conductor only at the boundary
sites “1” and “N” as depicted in Fig. 10, we can express T as

T (E, V ) = 4∆S
11(E, V )∆D

NN (E, V )|G1N (E, V )|2 (17)

where ∆11 =< 1|∆|1 >, ∆NN =< N |∆|N > and G1N =< 1|Gc|N >.
The current that passes through the conductor can be considered as a

single-electron scattering process between the two reservoirs. Then current-
voltage relation can be obtained from the following expression [68]

I(V ) =
e

π~

∫ EF+eV/2

EF−eV/2
T (E, V )dE , (18)

where EF is the equilibrium Fermi energy. For the sake of simplicity, here we
assume that the entire voltage drop is across the conductor-electrode interfaces
and this assumption does not greatly affect the qualitative aspects of the I–V
characteristics. Using (17) we can express I(V ) as

I(V ) =
4e

π~

∫ EF+eV/2

EF−eV/2
∆S

11(E, V )∆D
NN (E, V )|G1N (E, V )|2dE . (19)

Equations (10), (17) and (19) are respectively the basic working formulae
for the calculation of transmission probability T , conductance g and current I
through any finite size conductor sandwiched between two metallic electrodes.

3.2 Electron Transport Through Organic Molecules

In a recent experiment Reed et al. [55] studied the behavior of conductance and
the current-voltage characteristics of benzene-1, 4-dithiolate (BDT) molecule
in a two terminal geometry and obtained many interesting features that are
highly reproducible. We will see that the qualitative behavior of the electronic
transport properties of BDT molecules can be explained using the nearest-
neighbor tight-binding model.

Transport through a molecule strongly depends on the geometry of its
contacts with the electrodes, and also on the strengths of coupling between
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Fig. 11. Schematic view of a single benzene molecule attached to the electrodes
by the thiol (S-H) groups. (a) The benzene molecule is attached symmetrically
to the electrodes, (b) the symmetry is broken by adding the chemical substituent
CH3 in upper arm of the molecular ring and (c) the benzene molecule is attached
asymmetrically to the electrodes

molecule and the electrodes. The behavior of electron transport through such
molecular devices can be distinguished into two distinct regimes. One is the
so-called weak coupling regime τS(D) << t while the other one is the strong
coupling regime τS(D) ∼ t, where τS(D) is the hopping integral between the
boundary sites of molecule and source (drain). In the subsequent discussions,
the parameters in these two regimes are chosen as τS = τD = 0.5, t = 3 (in
the weak coupling regime) and τS = τD = 2.5, t = 3 (in the strong coupling
regime). The hopping integrals within the electrodes are taken as v = 4. Here
all the parameters are measured in arbitrary units.

Our scheme of study in this section is as follows. In part A, we describe
the conductance-energy and current-voltage characteristics of a single benzene
molecule with contacts at non-equivalent geometrical points as well as with
chemical substituents, while in part B we study electron transport through
an array of benzene molecules. Lastly, in part C we investigate the effect
of transverse magnetic field on electron transport through a single benzene
molecule.
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A) A Single Benzene Molecule

A single benzene molecule attached to the electrodes by thiol (S-H) groups
are shown schematically in Fig. 11 for various inequivalent electrode-molecule-
electrode geometries. Usually in the experiments gold (Au) electrodes are
attached to the molecule by thiol (S-H) groups via chemisorption technique
in which hydrogen atoms get removed and the sulfur (S) atoms reside. In
Fig. 11(a) thiol groups are attached symmetrically at 1 and 4 positions of the
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Fig. 12. g-E characteristics of the molecular bridges of Fig. 11 in the weak coupling
regime. Figures (a), (c) and (e) respectively corresponds to Figs. 11(a), 11(b) and
11(c). The second column shows the lower portions of the curves given in the first
column to exhibit the anti-resonances of the conductance spectra

benzene molecule and it is known as benzene-1, 4-dithiolate (BDT) molecule.
This symmetry can be broken either by adding some chemical substituent
(say, CH3) at any one arm of the molecular ring as shown in Fig. 11(b)
or by sandwiching the molecule asymmetrically between the electrodes as
illustrated in Fig. 11(c). In this way one can change the interference conditions
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for the electronic wave functions which in turn greatly influence the behavior
of electron transport through the molecular bridge systems.

In Fig. 12 we plot the conductance g of benzene molecule as a function of E
in the weak coupling regime. Figures 12(a), 12(c) and 12(e) correspond to the
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E

0

2

g

Fig. 13. g–E characteristics of the molecular bridges of Fig. 11 in the strong coupling
regime. The solid, dotted and dashed curves respectively corresponds to Figs. 11(a),
11(b) and 11(c)

systems of Figs. 11(a), 11(b) and 11(c), respectively. In the second column of
Fig. 12, we have magnified the lower portions of the curves given in Figs. 12(a),
12(c) and 12(e) to exhibit the various resonance and anti-resonance (zero-
conductance) peaks more clearly. In the weak coupling regime conductance
spectra exhibit sharp peaks. It has been observed that the resonance peaks
appear exactly at the energy eigenvalues of the benzene molecule and hence
the conduction spectrum may be considered as a fingerprint of the energy
spectrum of the molecule itself.

It becomes apparent from the curves of Fig. 12 that quantum interfer-
ence of the electronic wave functions plays a very significant role on electron
conduction through such molecular devices. At some resonances conductance
reaches its maximum possible value 2 with transmission probability being
unity. However, there are other resonance peaks where conductance no-longer
has the maximum possible value. This behavior can be easily understood
from quantum interference of the electronic wave functions. As electrons are
carried from source to drain through the molecule, there might be construc-
tive or destructive interference due to superposition of the electronic wave
functions corresponding to the two arms of the molecular ring. Accordingly
electron transmission through the molecular device strongly depends on the
electrode-molecule-electrode geometry. The anti-resonances (or zeros) of the
conductance spectra are due to exact cancellation of the transmittances along
the two paths.
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In the strong coupling regime resonance peaks of the conduction spectra
acquire substantial widths as shown in Fig. 13. The solid, dotted and dashed
curves are respectively for the molecular bridges given in Figs. 11(a), 11(b)
and 11(c). The strong coupling between molecule and the leads broadens the
molecular energy levels and the resonance peaks become wider.

The most remarkable feature of the conductance spectra of these molecular
bridge systems is that there exist conductance (transmittance) zeros both
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Fig. 14. I − V curves of the molecular bridges of Fig. 11 in the (a) weak and
(b) strong coupling regimes. The solid, dotted and dashed curves respectively cor-
responds to Figs. 11(a), 11(b) and 11(c)

in the weak and strong coupling regimes. Such anti-resonances are specific
to the interferometric nature of the scattering states and do not occur in
the usual one-dimensional scattering problems involving potential barriers. It
may be noted that the positions of the anti-resonances on the energy scale
are quite independent of the electrode-molecule-electrode coupling strengths
(see Fig. 12 and Fig. 13). Since the width of the anti-resonance peaks are very
small, they do not have any significant contribution in the current-voltage
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characteristics. However, any change of interference condition has strong effect
on the magnitude of currents that flow through the molecular bridge systems.

The scenario of electron transport through molecular junctions can be un-
derstood more from the current-voltage characteristics. Current that flows
through a molecular junction can be computed from (19) and in Fig. 14 we
display the current-voltage characteristics of the molecular bridge systems
given in Fig. 11. Figures 14(a) and 14(b) respectively corresponds to the weak
and strong coupling regimes. The solid, dotted and dashed curves are for
the molecular bridges shown in Figs. 11(a), 11(b) and 11(c) respectively. It
is observed that in the weak coupling regime currents exhibit staircase-like
structures with sharp steps. This is due to the fact that as voltage increases,
the electrochemical potentials of the electrodes gradually get shifted and a
current channel opens up once they cross one of the molecular energy lev-
els. Accordingly, a jump appears in the I–V characteristic. The shape and
height of the steps depend on the widths of the resonance peaks. In the weak
coupling regime we get steep jumps in the I − V characteristics due to the
presence of sharp resonance peaks in the conductance spectra. With the in-
crease of electrode-molecule-electrode coupling strengths, the magnitude of
current increases but its step-like behavior gradually disappears. Another fea-
ture of the I − V characteristics is that the amplitudes of the currents are
reduced as we introduce asymmetry in the system (see the dotted and dashed
curves). It is solely due to quantum interference between the electronic wave
functions corresponding to the two arms of the molecular ring. It is clear from
the present study that electron transport through a molecular device strongly
depends on the geometry of the junction and also on the coupling strengths
between molecule and electrodes. Most importantly the model calculations
provide a physical insight to the mechanism of electron conduction through
the molecular bridge systems and the predictions are in good agreement with
the qualitative features of the g − E and I − V characteristics that were
observed experimentally [55].

B) An Array of Benzene Molecules

Recent experimental techniques allow one to connect an array of molecules
between the electrodes [69], and it opens up the possibility to measure elec-
tron conduction through such array of molecules bounded chemically to the
electrodes. In this subsection we will study electron transport through some
arrays of benzene molecules within the tight-binding framework. Some typi-
cal arrays of benzene molecules are shown schematically in Fig. 15 which are
attached with the electrodes by thiol (S-H) groups. Figure 15(a) is an array of
benzene molecules without any chemical substituent, while Figs. 15(b), 15(c)
and 15(d) are three inequivalent arrays with the chemical substituent CH3.

The conductance spectra of these systems exhibit resonance and anti-
resonance peaks similar to those of the single molecule bridges and hence
we do not display them here explicitly. In these cases conductance spectra
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Fig. 15. Schematic view of array of benzene molecules attached to the electrodes
by the thiol (S-H) groups, where (a) without any chemical substituent, (b) with
chemical substituent (CH3) at 1st molecule, (c) with chemical substituent (CH3)
at 2nd molecule and (d) with chemical substituent (CH3) at 3rd molecule

have dense resonance peaks compared to those of Fig. 12 and Fig. 13 as the
energy spectra of these systems are much more dense. Anti-resonance peaks
appear in the conductance spectra of the bridges given in Figs. 15(b), 15(c)
and 15(d) due to the breaking of molecular symmetry by the chemical sub-
stituent CH3, In the weak coupling regime resonance peaks become very sharp
and they broaden up in the strong coupling regime.

The current-voltage characteristics for these arrays of benzene molecules
are shown in Fig. 16, where, Fig. 16(a) corresponds to the weak coupling cases
while Fig. 16(b) corresponds to the strong coupling cases. The solid, dotted,
small dashed and dashed curves are respectively for the molecular bridges
given in Figs. 15(a), 15(b), 15(c) and 15(d). Currents have sharp staircase-
like structures (see Fig. 16(a)) in the weak coupling regime and it is associated
with the fact that the broadening of the molecular energy levels are not too
much in this regime. With the increase of coupling strength current increases
and the I–V curves becomes much more smooth as shown in Fig. 16(b). In the
presence of chemical substituent CH3 amplitude of the currents get reduced
as a result of destructive quantum interference.
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Fig. 16. I−V curves for the systems given in Fig. 15 in the (a) weak and (b) strong
coupling regimes. The solid, dotted, small dashed and dashed curves are respectively
for the bridges shown in Figs. 15(a), 15(b), 15(c) and 15(d)

C) A Single Benzene Molecule Threaded by Magnetic Flux

In this subsection we will investigate the transport properties of electrons
through a single benzene molecule in the presence of magnetic flux. The sys-
tems that we consider are the molecular bridges shown in Fig. 11. We assume
that the magnetic flux φ threads the molecular ring in such a way that it does
not penetrate the ring circumference and hence we can neglect the Zeeman
term. Due to this magnetic flux φ, the electronic wave functions corresponding
to the two arms of the molecular ring acquire different phase factors. Using
gauge transformation, the Hamiltonian of the system can be expressed as

Hc =
∑

i

εic
†
i ci +

∑

<i,j>

t
(
eiθc†i cj + h.c.

)
, (20)

where θ = 2πφ/N is a phase factor due to the magnetic flux φ (measured
in units of φ0 = hc/e). In Fig. 17, we plot g as a function of φ where the
first, second and third rows respectively corresponds to the molecular bridges
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shown in Figs. 11(a), 11(b) and 11(c). The left panel of Fig. 17 corresponds to
the injection energy E = 0.75 of the electrons, while that in the right panel is
E = 1.0. The solid and dotted curves respectively corresponds to the strong
and weak coupling regimes. We observe that conductance exhibits the flux
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Fig. 17. g−φ curves for the systems given in Fig. 11 in the presence of magnetic flux.
The first, second and third rows are respectively for the molecular bridges shown in
Figs. 11(a), 11(b) and 11(c). The first and second columns respectively corresponds
to E = 0.75 and E = 1.0. The solid and dotted curves respectively corresponds to
the cases with strong and weak couplings between molecule and the electrodes

quantum φ0 periodicity with extrema at half-integer values flux quantum and
these features are quite independent of the strengths of coupling between the
molecule and the electrodes. Conductance is very low in the weak coupling
regime (dotted curves) whereas it is quite high in the strong coupling regime
(solid curves). Though magnetic flux affects conductance spectra consider-
ably, there is no appreciable change in the current-voltage characteristics. It
shows that current across such molecular bridge junctions cannot be controlled
effectively by applying magnetic field.
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Let us now summarize all the results that we have obtained in this subsec-
tion on electron transport through BDT molecular bridge systems. Molecular

N N
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CC HH

H H
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N C
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CC HH
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H

Pyrazine

N C

N C
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Pyrimidine

 HH

Fig. 18. Schematic view of the isomer molecules pyridazine, pyrazine and pyrimidine

geometry and electrode-molecule-electrode couplings have very important role
on electron transport through the molecular bridge systems. In the symmet-
ric cases conductance spectra have only resonance peaks and they appear
exactly at the molecular energy levels. When molecular symmetry is broken
by chemical substituent or by sandwiching the molecule asymmetrically be-
tween the electrodes, anti-resonance peaks appear in the conductance spectra
due to quantum interference and the positions of these anti-resonance dips
are quite independent of the coupling strengths between the molecule and the
electrodes. In the weak coupling regime I–V characteristics have staircase-
like structures due to the presence of sharp conductance resonances, while,
in the strong coupling cases I − V characteristics become smooth due to the
broadening of the molecular energy levels. For same coupling strength be-
tween molecule and the electrodes, the amplitude of current is higher in a
symmetrically connected molecule than that of a asymmetrically connected
one. One can get even an order of magnitude large current just by increas-
ing the coupling strengths between molecule and the electrodes. It has also
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Fig. 19. g − E curves for the isomer molecules (a) pyridazine, (b) pyrazine and
(c) pyrimidine in the weak coupling regime

been observed that one cannot control current in the molecular bridge systems
quite efficiently just by applying magnetic field.

3.3 Electron Transport Through Isomer Molecules

Electron transport through isomer molecules strongly depends on the arrange-
ment of the atoms in these molecules even though they have the same chemical
formula. This is due to the fact that the structural differences are associated
with certain changes in the electronic structure of these molecules. Here we
study the electron transport properties of pyridazine, pyrazine and pyrimidine
molecules which are three different isomer molecules. Pyridazine, pyrazine
and pyrimidine molecules are shown schematically in Fig. 18 indicating the
position of the nitrogen atom in each of these molecules. Each molecule is
connected to the electrodes via the thiol (S-H) groups (not shown explicitly
in the figure). We assume that the electrodes are connected to the extreme
left and to the extreme right hydrogen atoms of each molecule via the sulfur
atoms of the thiol groups, where the hydrogen atoms of the thiol groups are
removed by the chemisorption procedure.

We study electron transport properties of the isomer molecules using the
nearest-neighbor tight-binding model. In this particular study, the Hamilto-
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Fig. 20. g − E curves for the isomer molecules (a) pyridazine, (b) pyrazine and
(c) pyrimidine in the strong coupling regime

nian parameters for the weak coupling cases are taken as τS = τD = 0.5,
t = 3, while those for the strong coupling cases are set to τS = τD = 2, t = 3.
The hopping integrals inside the electrodes are taken as v = 4.

Figure 19 shows the variation of conductance g as a function of E for all
the three isomer molecules in the weak coupling regime. Figures 19(a), 19(b)
and 19(c) respectively corresponds to the pyridazine, pyrazine and pyrimidine
molecules. Conductance spectra exhibit sharp resonance peaks and we observe
that at the resonances transmission probability of pyridazine and pyrazine
molecules becomes unity, while that for the pyrimidine molecule is less than
unity. The most significant result is that both for the pyrazine and pyrimidine
molecules, the systems are conducting even at low energy values (close to zero),
and therefore these two molecular bridges allow electron conduction as soon
as we apply a small voltage. On the other hand for the pyridazine molecule
electron conduction starts only after some threshold energy and hence it be-
comes conducting only beyond some finite threshold voltage. It indicates that
just by changing the arrangements of atoms in the molecule, one can go from
a metallic phase to an insulating phase.

In Fig. 20, we plot the g − E characteristics for the isomer molecules in
the strong coupling regime, where Figs. 20(a), 20(b) and 20(c) are respectively
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Fig. 21. I − V curves of pyridazine (solid), pyrazine (dotted) and pyrimidine
(dashed) molecules in the weak coupling regime

for the pyridazine, pyrazine and pyrimidine molecules. Though the resonance
peaks become wider in the strong coupling regime, the most striking result
is that the pyridazine molecule becomes conducting only beyond some finite
threshold voltage whereas the other two isomer molecules start conducting as
soon as we apply some non-zero voltage.

The above observations also become apparent from the I − V charac-
teristics of the isomer molecules. In Fig. 21 and Fig. 22 we plot the I − V
characteristics of these molecules in the weak and strong coupling regimes,
respectively. The solid, dotted and dashed curves respectively corresponds

-5 0 5
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0

6

I

Fig. 22. I − V curves of pyridazine (solid), pyrazine (dotted) and pyrimidine
(dashed) molecules in the strong coupling regime

to the pyridazine, pyrazine and pyrimidine molecules. These figures clearly
show that the bridges with the pyrazine and pyrimidine molecules have finite
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currents (dotted and dashed curves) as soon as the applied voltage becomes
non-zero while the molecular bridge with pyridazine molecule allows current
only beyond some threshold voltage (solid curves). These properties of the
isomer molecules might be useful in the fabrication of molecular switches.

3.4 Electron Transport Through a Quantum Wire Attached with a
Mesoscopic Ring

Electron transport through a molecular bridge depends on several aspects,
like, the geometry of the molecule, coupling strengths between molecule and
the electrodes, isomeric variety, etc. and it can be tuned quite effectively just
by adjusting the parameters of the system or its geometry. Now we describe a
system where electron transport can be controlled by some external fields in-
stead of changing the parameters of the system. It is a quantum wire attached
with a mesoscopic ring as depicted in Fig. 23, where the ring is placed in an
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Fig. 23. A schematic view of a quantum wire attached with a quantum ring, the
wire being connected to the electrodes. The ring is placed in an in-plane electric
field E and encloses a magnetic flux φ

in-plane electric field E and it also encloses a magnetic flux φ. We describe
the system by the tight-binding Hamiltonian

Hc = HW +HR +HWR , (21)

where
HW =

∑

i

εwi c
†
i ci +

∑

<ij>

tw

(
c†i cj + h.c.

)
,

HR =
∑

m

εri c
†
mcm +

∑

<mn>

tr
(
c†mcne

iθ + h.c.
)
,

HWR = t0

(
c†1c0 + c†0c1

)
. (22)

Here εwi (εri ) is the site energy of the atoms belonging to ring(wire), tw(tr)
is the hopping integral between two nearest-neighbor sites of the ring(wire)
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Fig. 24. g−E curves for the system depicted in Fig. 23 in the weak coupling regime
with N = 10 for the cases: (a) In the absence of any electric filed with φ = 0 (solid)
and 0.4 (dotted) and (b) in the presence of magnetic flux φ = 0.4 with E = 2 (solid)
and 4 (dotted)

and the phase factor θ = 2πφ/N is due to the magnetic flux φ. The ring is
connected with the wire via the hopping integral t0 between the sites “1” and
“0” as shown in Fig. 23.

In the presence of an in-plane electric field E perpendicular to the wire,
the site potentials of the atoms that belong to ring can be taken as

εri = (eEaN/2π) cos [2π(i− 1)/N ] (23)

where a is lattice the spacing and N is the number of sites in the ring. For
simplicity we set εwi = 0 and take tw = tr = t0 = t (say). We investigate
the electronic transport properties of this system for the following two cases:
τS = τD = 0.5, t = 3 (in the weak coupling regime) and τS = τD = 2, t = 3
(in the strong coupling regime).

In Fig. 24, we plot conductance g as a function of energy E for this system
in the weak coupling regime. Figure 24(a) shows the nature of the conductance
spectra in the absence of any electric filed, where the solid and the dotted
curves are respectively for φ = 0 and 0.4. In Fig. 24(b) we present conductance
spectra for non-zero electric fields keeping magnetic flux fixed at some typical
value φ = 0.4, where the solid and the dotted curves respectively corresponds
to E = 2 and 4. We observe that conductance vanishes everywhere excepting
the resonances where it approaches the maximum possible value 2. For zero
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Fig. 25. g − E curves for the system depicted in Fig. 23 in the strong coupling
regime with N = 10 for the cases: (a) In the absence of any electric filed with φ = 0
(solid) and 0.4 (dotted) and (b) in the presence of magnetic flux φ = 0.4 with E = 2
(solid) and 4 (dotted)
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Fig. 26. I −V curves of the system depicted in Fig. 23 in the weak coupling regime
with N = 10 and φ = 0.4. The solid and dotted curves respectively corresponds to
E = 0 and E = 3

electric field conductance spectrum shows only one resonance peak at E = 0
when φ is zero (see the solid curve of Fig. 24(a)), while more resonance peaks
appear in the spectrum when φ is non-zero (see the dotted curve of Fig. 24(a)).
These additional peaks appear due to removal of degeneracy of the energy
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levels in the presence of magnetic flux. When we apply electric field, the
resonance peaks get shifted and conductance spectra become asymmetric with
respect to E (see Fig. 24(b)).

In the strong coupling regime, the resonance peaks become wider [67] as
shown in Fig. 25 where the solid and dotted curves correspond to the same
cases as those in Fig. 24. We see that the behavior of the g−E characteristics
in this regime are very similar to those of the weak coupling regime. It may
be noted from Fig. 24 and Fig. 25 that just by adjusting the in-plane electric
field E or magnetic flux φ, the device can be made either conducting or non-
conducting at some particular energy.

In Fig. 26 and Fig. 27 we plot the I − V characteristics of this system in
the weak and strong coupling regimes respectively with E = 0 (solid curve)
and E = 3 (dotted curve) keeping magnetic flux fixed at φ = 0.4. We observe
that in both the cases electric field suppresses current and most importantly
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I

Fig. 27. I−V curves of the system depicted in Fig. 23 in the strong coupling regime
with N = 10 and φ = 0.4. The solid and dotted curves respectively corresponds to
E = 0 and E = 3

in the presence of electric field the system becomes conducting only beyond
some threshold voltage. Thus the junction can be made either conducting or
insulating just by applying an external electric field and this prediction on
the basis our model calculations might be useful towards the fabrication of
nanoscale switches.

4 Conclusions

In this article we have studied first the phenomenon of persistent current in
mesoscopic normal metal rings in some details and show that the observed
enhancement of persistent current in the diffusive mesoscopic rings can be ex-
plained by the simple tight-binding model just by including second-neighbor
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hopping integrals in the Hamiltonian. We have also investigated the role of
disorder and electron-electron interaction on persistent current through some
exact numerical calculations. We observe that the dia- or para-magnetic sign
of persistent current cannot be predicted precisely in the disordered samples.
The second topic that has been discussed in this article is on electron trans-
port through nanoscale devices. The qualitative behavior of the conductance-
energy or current-voltage characteristics can be understood well using the
tight-binding model. Our study based on the model calculations provides a
physical insight to the behavior of electron conduction through such molecular
devices. One importance result is the appearance of conductance (transmit-
tance) zeros in the conductance spectra. These anti-resonance states do not
occur in the conventional one-dimensional scattering problems involving po-
tential barriers and are solely due to quantum interference of the electronic
wave functions in these nanoscale systems. As a result we see that the po-
sitions of the anti-resonance peaks in the conductance spectra are quite in-
dependent of the coupling strengths between the device and the electrodes.
We have studied electron transport through several molecular bridge systems
(e.g., benzene molecules, isomer molecules, quantum wire, etc.) and show that
quantum interference depends on the electrode-molecule-electrode geometry,
position of the chemical substituents in the molecule, configuration of atoms
of the isomer molecules, etc. We observer that quantum interference of the
electronic wave functions also depends on external electric and magnetic fields
and thus the device can be made either conducting or non-conducting just by
adjusting these external fields.
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1 Introduction

The quantum Hall effect is one of the most remarkable phenomena in con-
densed matter physics discovered in the second half of the 20th century. In
1980 Klaus von Klitzing [1], who was investigating the magneto-galvanometric
properties of the two-dimensional electron gas in high quality Silicon MOS-
FET in presence of high magnetic field, observed plateaus at integer multiples
of the fundamental conductance quantum e2/h in the Hall conductance and
a vanishing longitudinal resistivity at a very low temperature (∼ 1oK). This
phenomena is known as Integer Quantum Hall Effect (IQHE) (see Fig. 1).

It turns out, that the quantization of Hall resistivity was exact to one
part in 108 [2]. This incredibly accurate quantization of Hall resistance in
disordered two-dimensional semiconductors produced an important impact
in physics (see reviews [2–4]), and necessitated a complete revision of the
theory of electronic transport and Anderson localization [5–8]. Then just when
everybody started to believe that two-dimensional electron systems were truly
understood, this illusion was shattered in 1982 by the discovery of Fractional
Quantum Hall Effect (FQHE) [9], where the Hall conductance is quantized in
fractional multiples of e2/h (see Fig. 2). Again this phenomena showed that
existing transport theory of two-dimensional electronic system is inadequate
to explain the surprises of nature and an improvement of the existing electronic
transport theory is required.

In the early eighties a simple explanation was found for the integer quan-
tum Hall effect in terms of non-interacting electrons in presence of disor-
der [3, 10, 11]. It was realized that the combination of a random potential,
created by the impurities in a sample, and a strong magnetic field gives rise
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Fig. 1. The stepwise behavior of the transverse resistivity superimposed with the
oscillatory behavior of the longitudinal resistance as a function of magnetic field.
The plateaus of transverse resistivity coincide with the dissipationless behavior of
the longitudinal resistance at each integer value of ν. Figure from [4]

to special coexistence of localized and extended states. Basically, the mag-
netic field controls the dimensionality of the wave function and makes the
states lying near the equipotential lines of the potential in the strong mag-
netic field. Thus the states associated with closed loops of the equipotential
lines are localized and states associated with the percolating equipotential
lines are extended. When the Fermi level lies in an energy interval devoid
of extended states, called a mobility gap, a change in the electron density
or the magnetic field can only result in a different occupation of localized
states, which does not affect the conductance. Thus a plateau is developed
with respect to the change of electron density or magnetic field. Only when
the Fermi-level reaches the extended states of the Landau sub-bands the con-
ductance starts changing. The fact that the plateau of the quantum Hall effect
lie exactly at integer multiple of e2/h can be explained by relating the effect
of impurity scattering on the localized electrons. A detailed investigation of
the electron-impurity scattering in presence of a strong magnetic field shows
that the extended states which are scattered by the impurity potential carry
additional current and the sum of the excess current carried by the these de-
localized electrons just exactly compensate the loss of the current caused by
the localized states [2, 12, 13].

The fractional quantum Hall effect is the result of quite different underlying
physics involving Coulomb interactions and correlation among the electrons.
Many fancy ideas have been proposed to understand the role of electronic cor-
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Fig. 2. The stepwise behavior of the transverse resistivity superimposed with the
longitudinal resistance as a function of magnetic field, both for integer and fractional
values of ν. Figure from [10]

relation in quantum Hall systems [14–19]. In 1983 Laughlin [14] introduced the
famous Laughlin wave function to describe the fractional quantum Hall effect.
It turns out that the ground state of the interacting electrons in strong mag-
netic field is an incompressible quantum fluid and the excitations of such fluid
have the property of being fractional quantum numbers including fractional
charge and fractional statistics that are neither Bose nor Fermi statistics. This
correlated electron state can be interpreted in terms of electrons attached to
magnetic flux quanta, which behave like composite particle. Since a large part
of the magnetic field has gone into the formation of composite particle, the
field that these particles feel is much smaller than the original one; in fact it
exactly mimics the integer quantum Hall effects field strength. In this way the
fractional quantum Hall effect is explained as the integer effect for composite
particles.

The review presented here is an introduction to the basics of the integer
and fractional quantum Hall effects. In the Sect. 2 and Sect. 3 we briefly
present an explanation of the integer quantum Hall effect followed by the role
played by edge states in a quantum Hall bar. In Sect. 4 and Sect. 5 we discuss
the fractional quantum Hall effect followed by an introduction to the theory
of edge states in fractional quantum Hall effect.
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2 Integer Quantum Hall Effect

In this section we will discuss the behavior of non-relativistic electrons in
presence of high magnetic field and disorder in the two-dimensional plane.
In the presence of a strong magnetic field we can assume that the electron
spins are polarized, so that their spin degrees of freedom can be discarded.
When the short-range disorder potential is strong enough, the motion of the
charge-carriers are mostly governed by the electron-disorder scattering and
the coulomb repulsion between the electrons can be neglected. Therefore, the
Hamiltonian for an electron in a strong homogeneous field and disorder can
be expressed as

H =
1

2m
((px + eAx)

2 + (py + eAy)
2) + V (x, y) , (1)

where, px = −i� ∂
∂x = −i�∂x and py = −i� ∂

∂y = −i�∂y are the x- and y-
component of the kinetic momentum, and Ax and Ay are the components
of the vector potential describing the magnetic field B = (0, 0,−B). The
corresponding covariant momentum is

Px = −i�∂x + eAx ,

Py = −i�∂y + eAy . (2)

We decompose the electron coordinate r = (x, y) to the guiding center
(X,Y ) and the relative coordinate (ζ, η) = (− 1

eBPy,
1
eBPx) as

x = X + ζ ,

y = Y + η . (3)

In the presence of a magnetic field B we observe the following commutation
relations,

[X,Y ] = −il2B , [ζ, η] = il2B , (4)

[X, η] = [X, ζ] = [Y, η] = [Y, ζ] = 0 , (5)

with lB =
√

�/eB is the fundamental length-scale of the Quantum Hall (QH)
system. We now construct two pairs of Landau level ladder operators as

a =
lB√
2�

(Px + iPy), a
† =

lB√
2�

(Px − iPy),

b =
1√
2lB

(X − iY ), b† =
1√
2lB

(X + iY ), (6)

obeying
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[a, a†] = [b, b†] = 1 ,

[a, b] = [a†, b] = 0 .

The Hamiltonian can be rewritten as

H = �ωc(a
†a +

1

2
) + V (X + ζ, Y + η) , (7)

with the cyclotron frequency ωc = eB/m. In the absence of impurity potential
(V (x, y) = 0) eigenvalues of the energy are similar to those of the harmonic
oscillator with frequency ω = ωc,

En = �ωc(n +
1

2
) . (8)

They are called the Landau levels. There exists a degeneracy in each Landau
level since the Hamiltonian (7) does not depend on b and b†. The degeneracy
is proportional to the size of the system and is given by AeB/h, where A
is the area of the system and h is the Planck’s constant. The motion of an
electron within one Landau level is specified by the guiding center (X,Y ).
Since coordinates X and Y do not commute, it is necessary to choose one of
them or appropriate combination of them to construct the eigenstates. This
is related to the choice of gauge. We take the Landau gauge which is the best
gauge to analyze the QH system in a rectangular geometry. In the Landau
gauge the external magnetic field is expressed as

Ax = By, Ay = 0 . (9)

Now it is straight forward to obtain the wave function of the system as

ψn,k =
1√
L

exp[−ikx] exp[−(y − yk)
2/2l2B]Hn(y/lB) , (10)

where L is the length of the system, yk = kl2B and Hn(y/lB) is the nth Hermite
polynomial. However, a real QH system consists of some kind of disorder
potential due to lattice defects or ionized donors. Moreover, electrons interact
with each other to produce correlation effects on the motion of the electrons.
In the case of integer quantum Hall effect, the effect of disorder on the motion
of the electron dominates over the electron-electron interaction and we can
ignore the role of electron-electron interaction in the system (for fractional
quantum Hall effect the electronic correlations are important). In the presence
of disorder the degeneracy of the Landau levels are lifted and the delta peaks
in the density of states transform into structures with finite width. A well-
known approach to calculate the shape of the disorder broadened Landau
levels is the self-consistent Born approximation (SCBA), where only single
scattering events are taken into account. Within the SCBA approach, the
density of states of the integer quantum Hall system is found to be [20]
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ρ(E) =
1

2πl2B

∑

n

2π

Γn
exp

[
−2(E −En)2/Γ 2

n

]
, (11)

where Γn is a Landau level dependent width. In addition to the broadening of
the Landau levels a disorder potential changes the nature of the eigenstates
significantly. In two dimensions (for zero magnetic field and non-interacting
electrons) all states are localized even for arbitrary weak disorder. The essence
of this weak localization effect is the current ‘echo’ associated with the quan-
tum interference correction to Boltzmann transport. These quantum inter-
ference effects rely crucially on the existence of time-reversal symmetry. In
the presence of a strong magnetic field, time-reversal symmetry is destroyed
and the localization properties of the disordered 2D electron gas is expected
to be destroyed. This is in contradiction to the experimental observation of
quantum Hall plateau which is a manifestation of localized states at the tail
of Landau sub-bands and extended states at the middle. To understand the
nature of eigenstates in the Landau sub-band we consider the limiting case
of very high magnetic field (B →∞) so that the magnetic length is small on
the scale over which the potential varies.

Since the expectation value of ζ and η in the Hamiltonian (7) are of the
order of lB ∼ 1/

√
B, we can neglect ζ and η in the argument of the impurity

potential V (X + ζ, Y + η) in the limit B → ∞. Thus in the very strong
magnetic field the Hamiltonian (7) reduces to

H = �ωc(a
†a +

1

2
) + V (X,Y ) . (12)

Furthermore, in the limit B → ∞ the commutator of X and Y vanishes
like 1/B and thus quantities X and Y can be treated as classical variables.
Therefore,

dV

dt
=

∂V

∂X

dX

dt
+
∂V

dY

dY

dt
= 0 (13)

because of the canonical equations of motion

dX

dt
=

l2B
�

∂V

∂Y
,

dY

dt
= − l

2
B

�

∂V

∂X
. (14)

Since dV/dt = 0, the electron moves along the equipotential orbits V (X,Y ) =
constant. If the random potential V (x, y) is symmetrically distributed around
V = 0 and its variation ∆V = Vmax − Vmin is small compared to the Landau
level splitting (∆V � �ωc), all equipotential orbits with V �= 0 are closed and
open equipotential orbits exist only for V = 0, i.e., at energy εn = �ωc(n+ 1

2 )
(A sketch of the equipotential orbits in a randomly distributed disordered
potential is shown in Fig. 3 [21]). Therefore, we would expect localized states
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Fig. 3. Disorder potential with closed orbits (localized states) and open orbits
(extended states). Figure from [21]

at the tail of the Landau sub-bands while extended states exist at the middle.
The electronic density of states for the disordered Landau model is sketched
in Fig. 4.

In the presence of an infinitely weak external electric field the closed
equipotential orbits do not contribute to the net charge transfer; all the av-
erage current is carried by the open orbits. As long as temperature T is very
low and the Fermi energy εF varies in a range of closed equipotential orbits
(localized states) the Hall current remains constant (plateau). Around εF = εn
the Hall conductivity increases with increasing number of occupied extended
states and 1/RH rises from one plateau value to the next (where RH ≡ Rxy is
the Hall resistance). A detailed numerical studies on the nature of the eigen-
states in the integer quantum Hall system is given by Ando [22]. Aers and
Mcdonald [23] also confirms the existence of localized states, confined to a
small region centered on an impurity at the tail of the Landau sub-bands
and extended states, that spread through the whole system at the center of
Landau sub-bands.

An electron in a two-dimensional plane in the presence of a perpendic-
ular magnetic field makes a cyclotron motion around the guiding center.
The guiding center induces a current in response to an external electric field
E = (Ex, Ey). In the absence of any impurity potential, the Hamiltonian of
the system is given by

H =
1

2m
(P 2
x + P 2

y ) + eExx+ eEyy . (15)
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The x- and y-component of the drift velocity (vDx
, vDy

) can be obtained
as

vDx
=

dX

dt
=

1

i�
[X,H ] =

eEy
i�

[X,Y ] = − 1

B
Ey ,

vDy
=

dY

dt
=

1

i�
[Y,H ] =

eEx
i�

[Y,X ] =
1

B
Ex . (16)

When the system consists of a homogeneous distribution of electrons with
density ρ0, the current density is

B

R

R

DOS

BBB

Extended states

Localized states

Landau levels

Width

B

xx

xy

c c c

B

Slope

Fig. 4. Schematic density of states for the disordered Landau model. The shaded
regions represent localized states

Jx = −eρ0Ẋ =
eρ0

B
Ey =

e2ν

h
Ey ,

Jy = −eρ0Ẏ = −eρ0

B
Ex = −e

2ν

h
Ex , (17)

where ν = hρ0/eB is the filling factor. Note that the current flows in the
direction perpendicular to the direction of the applied electric field. This is
the Hall current. The Hall resistivity RH is

RH ≡ Rxy =
h

νe2
. (18)
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When the filling fraction ν attains an integer value, i.e., when Landau sub-
bands are completely filled, the Hall resistivity shows value h/ne2 which is the
Hall resistivity in the plateau region of the integer quantum system. However,
in the plateau region of the integer quantum Hall system the filling fraction is
not an integer. In a real quantum Hall system we have shown that there are
localized states in the Landau sub-band which do not contribute to conduc-
tivity. So one would expect that the Hall conductivity in the plateau region
will be less that the quantized value ne2/h which is different from the exper-
imental observation. From the experimental results it follows that the loss of
the contribution of current due to localized states is exactly compensated by
the electrons in the remaining delocalized (extended) states. A very important
result in this context has been given by Prange [11]. This is an exact solu-
tion of a single δ function impurity potential inside an otherwise ideal system.
Such a potential (attractive or repulsive) binds a single localized state from
each Landau level. The localized state does not carry current. Each of the
remaining extended state, however, carries a little bit more current, exactly
compensating the loss of the companion. As discussed before, in the presence
of disorder some states will be localized around impurities, while others, the
states near the center of the Landau sub-bands, will be slightly modified. En-
ergies in the scattering states εn will differ from those of the corresponding
states of ε0n of the pure system by a small amount ∆ε0n. Energies of localized
states on the other hand will change appreciably. The important point is that
energies of the extended states depend on the gauge potential, while those of
localized states do not.

In the presence of scattering the wave function of the incoming wave
ψ0(r, E) goes through a phase shift δ(E) in the asymptotic region [24], i.e.,

ψ(r, E)→ eiδ(E)ψ0(r, E) . (19)

Let the wave packet, before it reaches the scattering center, have the form

W0(r, t) =

∫
dE F (E)ψ0(r, E)e−iEt (20)

where F (E) is an envelop function strongly peaked around E0. The form for
W after the scattering is

W (r, t) =

∫
dE F (E)ψ0(r, E)eiδ(E)−iEt

=

∫
dE F (E)ψ0(r, E) exp

[
i

(
δ(E0) + (E −E0)

dδ

dE

∣∣∣∣
E0

−Et

)]

= exp

[
i

(
δ(E0)−E0

dδ

dE

∣∣∣∣
E0

)]
W0(r, t+ tA) , (21)

where tA = − dδ
dE

∣∣
E0

and W0 is the form of the wave packet in the absence
of scattering. The packet is then advanced from its unscattered position if



314 S. Sil, S. N. Karmakar, and Efrat Shimshoni

dδ
dE

∣∣
E0

is negative, which is typical when the scattering potential has bound
states. This implies that a wave packet moving along a line at constant speed
v will suffer an acceleration due to scattering. This acceleration makes the
extended state carry an extra current to compensate the losses due to the
localized states associated with the scattering center.

To see the exact current compensation we will calculate the contribution
to the current due to the extended states when Fermi-energy lies in the region
of localized states [24]. In the presence of a magnetic field along z−direction
and electric filed (0, Ey, 0), the current operator

jx =
e

m
Px =

e

m
(−i�

∂

∂x
+ eAx) (22)

can be written as δH
δAx

. The Hellman-Feynman theorem states that if the
Hamiltonian H depends on arbitrary parameter λ, then

∂En
∂λ

=

〈
φn(λ)

∣∣∣∣
∂H

∂λ

∣∣∣∣φn(λ)

〉
(23)

where H(λ)|φn(λ) >= En(λ)φn(λ). Thus

jx,α =
∂Eα
∂A0

. (24)

Here, A0 is the additional (constant) vector potential so that A′
x = −By+A0.

The introduction of A0 can be considered by a gauge transformation as well,
as a change in the boundary conditions:

ψ(x = 0, y) = ψ(x = Lx, y)→ ψ(x = 0, y) = e−iθLxψ(x = Lx, y) . (25)

Owing to the magnetic field in the system the degeneracy due to time-reversal
symmetry is lacking. This means that the elastic scattering cannot change the
direction of propagation of wave packet, i.e., there is only forward scattering.
In the forward scattering along the x-axis the outgoing plane wave differs from
the incoming plane wave by a certain phase shift δ. The periodic boundary
condition in this direction requires the phase of the scattered wave to satisfy
the condition

kx,µLx + δ(kx,µ)− θLx = 2πµ , (26)

where µ is an integer. The variation of A0 can be performed by a differential
change of θ from θ → (θ + 2π

Lx
). Now, the shifting θ by 2π

Lx
is equivalent to

changing µ by unity. Therefore the change of kx,µ because of change of θ by
2π
Lx

is given by

kx,µ+1 − kx,µ =
2π

Lx

[
1− 1

2π
(δ(kx,µ+1)− δ(kx,µ))

]
(27)

with
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En(kx,µ+1)−En(kx,µ) = �vDx
(kx,µ+1 − kx,µ)

=
2π

Lx
�vDx

[
1− 1

2π
(δ(kx,µ+1)− δ(kx,µ))

]
. (28)

Therefore, the x-component of the current (Hall current) carried by the state
|n, kx > is

−�jx,kx

e
=

Lx
2π

(En(kx,µ+1)−En(kx,µ))

= �vDx
− �vDx

2π
(δ(kx,µ+1)− δ(kx,µ)) . (29)

The total current in the system is the sum over all current carrying states
within the band,

jx = −evDx
(N −NB) + e

vDx

2π

occu∑

n,kx

(δ(kx,µ+1)− δ(kx,µ)) (30)

where N is the total number density of states and NB is the total number
density of the bound states of the filled or partially filled bands. Now, accord-
ing to the Levinson theorem [25], the total phase shift of the scattering states
within a band is exactly given by the number of localized states in the band
multiplied by (2π). Thus, the total current is found to be

jx = −evDx
(N −NB)− evDx

NB = −eNvDx
=

e2n0

h
Ey , (31)

where n0 is the number of occupied Landau sub-bands, i.e., the same as that
carried by a pure system with filled bands.

3 Edge States in the Integer Quantum Hall Effect

A realistic quantum Hall system has finite width which gives rise to edge
effects. The surprising accuracy at quantized values of the Hall resistance
necessitates an investigation on the role of the boundaries (edges) on the
Hall resistance. To study the edge effects on the integer quantum Hall ef-
fect we consider a two-dimensional electron gas confined to a finite strip in
y-direction, in the presence of a magnetic field along the z-direction (for refer-
ence, see [10, 26–28]). For simplicity, we assume translation invariance in the
x-direction. The confinement of the electron can be represented by a confining
potential U(y) (shown in Fig. 5(a)). In the Landau gauge the eigenfunctions
ψ(x, y) = exp(ikxx)φ(y) satisfy the Schrödinger equation

[
− �2

2m

∂2

∂y2
+

1

2
mω2

c (y − ykx
)2 + U(y)

]
φ(y) = Eφ(y) , (32)
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where ykx
= kxl

2
B. It should be noted that in the absence of a confining po-

tential U(y), the eigenstates of the system with equal eigenvalues are centered
around different locations ykx

in the transverse direction and with a spatial
extent of ≈ lB. Assuming that the potential U(y) is nearly constant over the

extent of each state, i.e., ∂U(y)
∂y � �ωc/lB , we can replace U(y) by U(ykx

)
and express the energy eigenvalues as

E(n, kx) = �ωc(n +
1

2
) + U(ykx

) . (33)

Figure 5(b) shows a sketch of the dispersion relation E(n, kx) versus ykx
.
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carrying a net current
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k  ,yx kx
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Fig. 5. The confining potential U(y) of the finite boundary quantum Hall system
is shown in figure (a). Figure (b) shows the energy levels of the two-dimensional
electronic system, confined by the potential U(y), as a function of ykx . The two
edges of the system is in equilibrium with the chemical potential µ1 and µ2 with
µ1 > µ2
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In the middle of the sample the states just look like the Landau levels of
an unconfined 2D conductor. Near the two edges there are allowed states with
a continuous distribution of energies. These are referred to as the edge states.
The velocities of these edge states are given by

vx(n, kx) =
1

�

∂E(n, kx)

∂kx
=

1

�

∂U(ykx
)

∂kx

=
1

�

∂U(y)

∂y

ykx

∂kx
=

1

eB

∂U(y)

∂y
. (34)

Since ∂U(y)
∂y has different sign at the two edges of the sample, the edge states

located at the two edges carry currents in opposite directions. We now consider
a situation like in Fig. 6, where the chemical potential µ of the two electron
reservoirs, namely the left (µ = µL) and the right (µ = µR), differ by a value
δµ = µL − µR.

Edge states in
equilibrium with µ

Edge states in 
equilibrium with µ

µ µ RL

x

y

 R

 L

Fig. 6. A two-dimensional electronic system is connected to the electrodes with
chemical potential µR and µL. The current injected at the upper corner is in equi-
librium with chemical potential µR and the current injected at the lower corner is
in equilibrium with chemical potential µL. The potential difference between these
to electrodes is the Hall voltage

This chemical potential difference is the driving force for the current flow
and is the voltage difference between the reservoirs times e. The situation
is quite similar to that in an ordinary conductor carrying current. The pos-
itive kx−states are occupied to a higher quasi-Fermi level than the negative
kx−states. The only difference in the QH edge states and the states of ordinary
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conductor is that here the states carrying current in one direction are spatially
separated from those carrying current in opposite direction. The resistance at
low temperatures arises because of the momentum relaxation in the positive
kx states. However, to relax momentum in QH edge states an electron has to
be scattered from the left of the sample to the right of the sample. This is
practically impossible since the overlap between the wave functions with pos-
itive and negative momentum is exponentially small and there are no allowed
states in the interior of the sample in this energy range (µL > E > µR). As
a result of this complete suppression of backscattering, electrons originating
in the left contact that enter the edge states carry current to the right while
electrons in right contact that enter the edge states carry current to the left.
Consequently, the edge states carrying current to the right are in complete
equilibrium with the left contact and have Fermi energy equal to µL and the
edge states carrying current to the left originating from the right contact have
Fermi energy equal to µR. Clearly the longitudinal voltage drop VL as mea-
sured by two voltage probes located any where on the same side of the sample
is zero, while the transverse (Hall) voltage VH measured by two probes located
any where on opposite edges of the sample in the y direction is equal to the
applied voltage

eVH = µL − µR . (35)

The above mention phenomena arises only when the electrochemical potential
lie between two bulk Landau levels. If the electrochemical potential lie on a
bulk Landau level, there is a continuous distribution of allowed states from
one edge to the other and electrons can scatter from the left of the sample
to the right of the sample through the allowed energy states in the interior of
the sample.

We now turn our attention to the current carried by the edge electrons in
the system. The contribution to the current from a single-channel of the edge
state is

Ii = e

∫ µL

µR

dn

dE
vx(E)dE

= e

∫ µL

µR

dn

dkx

dkx
dE

1

�

dE

dkx
dE

=
e

2π�

∫ µL

µR

dE =
e

h
(µL − µR) , (36)

where dn
dE is the density of states for the edge states, and vx(E) is the x-

component of the velocity of the edge state with energy E. The total current
due to edge states is given by

I =
∑

i

Ii =
Me2

h
VH , (37)
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where M signifies the number of edge states at the Fermi energy (which is
equal to the number of the filled Landau sub-bands in the bulk below the
Fermi energy). M takes integer values that decreases as the magnetic field is
increased. Hence the Hall resistance of the one-dimensional edge channel is

rH =
VH
I

=
h

Me2
. (38)

This quantized nature of Hall resistivity explains the striking accuracy (better
than one part per million) even in presence of sample boundaries.

4 Fractional Quantum Hall Effect

Tsui et al. [9] created two-dimensional electron gases in GaAs-AlGaAs with
electron mobilities of the order of 5 × 105 cm2V−1s−1, which is 100 times
larger than the mobility of the samples where the integer quantum Hall effect
was observed. The importance of impurities was correspondingly less, but
instead of eliminating plateaus in the Hall voltage, a host of new plateaus
appeared. This is a very counter intuitive physical phenomenon and is known
as fractional quantum Hall effect (FQHE). It implies that many electrons
acting in concert, can create new quasi-particles having charge smaller than
the charge of any individual electron and to be more precise they are exactly
1
3 or 1

5 or 1
7 etc. of an electronic charge. The fractional quantum Hall state is

something unprecedented - a new state of matter. Its phenomenology, however,
is the same as that of the integral quantum Hall state in almost every detail:
There is a plateau. The Hall conductance in the plateau is accurately a pure
number times e2/h. The parallel resistance and conductance are both zero in
the plateau. The only qualitative difference between the IQHE and FQHE is
the value of the quantum Hall conductance. This can only be explained on the
basis of electron-electron interactions, in which the Coulomb repulsion favors
a state with an energy gap at these rational fractional fillings. Laughlin [14]
proposed a generalization of the free electron state in which the density of
states within filled Landau level is eB/phc. In a metal, the Coulomb energy
would be much larger than the magnetic energy at any realistic field strength,
but in Gallium Arsenide heterostructures magnetic fields of a few Tesla are
sufficient for magnetic energy to dominate. The significance of reaching the
high-field limit is that the true ground state of the system of interacting
electrons can accurately be written using only states in the lowest Landau
level as basis. States in the higher Landau levels cost energy �ωc, and Coulomb
repulsion is too small an energy to force any electron to make the transition.

To construct the ground state of the interacting electrons, it is useful to
represent the Hamiltonian for electrons in magnetic field in symmetric gauge
(the vector potential A(r) = (By/2,−Bx/2, 0)) and in terms of complex
variable z = (x+ iy)/2lB and z∗ = (x− iy)/2lB [29]. The harmonic oscillator
operators a, a† , b, b† and the angular momentum operator (L) now reads
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L = xpy − ypx =
eB

2
(X2 + Y 2)− 1

2eB
(P 2
x + P 2

y ) = (b†b− a†a)� , (39)

where

a = − i√
2
(z +

∂

∂z∗
) , a† =

i√
2
(z∗ − ∂

∂z
) ,

b =
1√
2
(z∗ +

∂

∂z
) , b† =

1√
2
(z − ∂

∂z∗
) .

The degeneracy in each Landau level may be attributed to the arbitrariness
in the angular momentum, where b† increases (b decreases) the angular mo-
mentum by one unit. As X2 + Y 2 = 2(b†b + 1/2)l2B the position of guiding
center determines the angular momentum of the particle. A state in the nth
Landau level is given by

|n, l >=

√
1

n!(l + n)!
(a†)n(b†)l+n|0 > , (40)

which has the energy E = (n+ 1
2 )�ωc and angular momentum L = l�, where

|0 > is the Fock vacuum, a|0 >= b|0 >= 0. The state |n, l > is also an
eigenstate of the operator X2 + Y 2.

The ground state satisfies H |φ >= 1
2�ωc|φ > with a|φ >= 0, i.e.,

aφ(x, y) = − i√
2
(z +

∂

∂z∗
)φ(x, y) = 0 (41)

where φ(x, y) =< x, y|φ >. The general solution of the above equation is

φ(x, y) = f(z) exp(−zz∗) , (42)

where, f(z) is an arbitrary analytic function. The zero angular-momentum
state in the lowest Landau level characterizes

bφ0(x, y) =
1√
2
(z∗ +

∂

∂z
)φ0(x, y) = 0 (43)

which is solved as

φ0(x, y) =
1√
2πl2B

e−|z|2 =
1√
2πl2B

exp(− r2

4l2B
) . (44)

The angular momentum state |l > in the lowest Landau level is described by
the wave function,

φl(x, y) =

√
1

l!
(b†)lφ0(x, y) = Clz

l exp(−|z|2) (45)

with Cl the normalization factor, Cl =
√

2l/2πl2Bl!.
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The probability of finding the electron at r = 2lB|z| is given by

|φl(x, y)|2 = |Cl|2|z|2l exp(−2|z|2) ∝ r2l exp(− r2

2l2B
) , (46)

which has a sharp peak at r =
√

2llB. The states φl(x, y) then represents a
series of concentric rings of charge. The difference of area ∆S of two consecu-
tive rings is equal for all l and is given by πr2

l+1−πr2l = 2πl2B. The position of
an electron cannot be localized within an area smaller than |∆S| because the
guiding centers of the electron do not commute and in the lowest Landau level
[X,Y ] = −il2B. When we put several electrons into the system in the lowest
Landau level, they occupy the angular momentum states. Due to the Pauli
exclusion principle one state accommodates one electron. Since it turns out
that the origin of the FQHE is interaction between electrons, the correlation
between the relative motion of the electrons should be taken into account.
Therefore the generic N-body state can be expressed as

Ψ = f(z1, z2, . . . zN) exp

(
−

N∑

r=1

|zr|2
)

, (47)

where f(z1, z2, . . . zN ) is an analytic function of all its arguments. Laughlin
proposed that a trial many-body wave function, called Jastrow function can
describe the underline feature of the Coulomb correlation between the elec-
trons. The ground state wave function of the interacting electronic system
is

Ψ = Πr<s(zr − zs)
m exp

(
−

N∑

r=1

|zr|2
)

. (48)

The restriction that the wave function is analytic implies that m must be an
integer, and for the wave function to be antisymmetric m must be restricted
to the odd integers. The most important feature of this wave function is
that it locks electron density at exactly 1/(2πml2B) in the limit the number of
particles N becomes thermodynamically large. This fact can be observed from
the comparison of the equivalent probability distribution function obtained
from Laughlin conjecture and classical one-component plasma. Expressing

|Ψ |2 = e−βΦ(z1,...zN) (49)

and choosing β = 1/m we get

Φ = −2m2
N∑

j<k

ln |zj − zk|+ 2m
N∑

j

|zj |2 . (50)

This is the potential energy of particles of “charge” m repelling each other
logarithmically - the natural Coulomb potential in two dimensions - and being
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attracted to the uniform “charge” density 1/(2πl2B). In order to keep the local
electrical neutrality the particles must have density ρ = ρm = 1/(2πml2B).
This is equivalent to filling fraction ν = 1/m. Numerical studies have shown
that every Laughlin state lies at a deep energy minimum; states with filling
other than ρm have much higher energies. This energy difference is caused
by the electron-electron repulsion. When the Coulomb interaction is slowly
turned off, the depth of the minim gradually decreases to zero and we re-
obtain the non-interacting picture. In the case like FQHE, there exists a gap
for density fluctuation and the system becomes incompressible quantum fluid.
The Laughlin wave function is a particular state in which all electrons, having
their own cyclotron motions, stay away from each other as much as possible.
This wave function naturally builds in good correlations among the electrons
because each particle sees an m−fold zero at the position of all other particles.
The wave function vanishes extremely rapidly if any two particles approach
each other and minimizes the expectation value of the Coulomb energy.

A typical term in the Laughlin wave function is

z
(N−1)m
1 z

(N−2)m
2 · · · z0

N exp(−
N∑

r=1

|zr|2) , (51)

where N is the number of electrons. Because the state (45) has the angular
momentum l�, the total angular momentum of the state (51) is

Ltotal = m�

N−1∑

j=0

j =
(N − 1)Nm

2
� . (52)

As all the terms in the correlation function f(z1...zN ) are the polynomial of
degree (N−1)Nm/2, the Laughlin wave function has total angular momentum
given by (52). The maximum angular momentum lmax� that a single electron
can have is the maximum power of one of the variables in the wave function

lmax = m(N − 1) . (53)

Therefore the area of the system S and electronic filling of the Laughlin state
are:

S = π(X2
max + Y 2

max) = π(2lmax + 1)l2B = 2πm(N − 1)l2B , (54)

ν =
N

lmax
=

N

m(N − 1)
=

1

m
, (55)

for N � 1. Thus there are eBS
2π�N = m magnetic flux quanta per electron.

Laughlin furthermore proposed that the excitation of the fractional quan-
tum Hall state carry fractional charge. This can be justified intuitively. Let us
imagine that the magnetic flux φ(t) as shown in Fig. 7 is changed adiabatically
through a thin solenoid passing through the point (x0, y0) in the sample, so
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that the wave function is an eigenstate of the changing Hamiltonian at any
moment in time. When the magnetic flux through (x0, y0) is exactly one flux
quantum φD = ±h/e, the electronic wave function will go through a phase
change 2π and no physical measurement can detect the presence of the tube.

   E(t)

Φ

J(t)

Fig. 7. Construction of a Laughlin quasi-particle by adiabatically threading flux Φ
through a point in the sample. Faraday induction gives an azimuthal electric field
E(t) which in turn produces a radial current J(t)

Therefore the electron gas after the tube reaches flux φD must be in an
eigenstate of the original Hamiltonian. This state cannot be the ground state
because turning on the flux tube at (x0, y0) drives charge away from the center
(x0, y0), and we are left with an excited state of the original Hamiltonian. Now
the time dependent magnetic flux gives rise to an electric field

E(t) = − 1

2πr

dφ

dt
(56)

which is detected azimuthally around the solenoid. In the quantum Hall state
the electric filed generates a Hall current perpendicular to it,

J(t) =
eρ0

B
E(t) , (57)

which holds far away from the flux tube. When the solenoid is removed the
total change in the charge is

Q = 2πr

∫
dtJ(t) = −eρ0

B

∫
dt

dφ

dt
= −eρ0

B
φD sgn(φ) = −eν sgn(φ) . (58)
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This kind of excitation is called a quasi-particle or quasi-hole. We call it
“quasi-particle (quasi-hole)” because the excitation is not a true particle, but
a collective behavior of many particles. This quasi-particle (quasi-hole) has
fractional charges Q = −eν = −e/m at the fractional filling ν = 1/m. The
excitation in the form of generating a quasi-particle has the effect of increasing
the angular momentum of each particle by 1 and in the case of quasi-holes
decreasing the angular momentum of each particle by 1.

When the number density of the electron is changed by ∆ρ with the mag-
netic field B fixed, the filling factor is changed as

ν =
2π(ρ0 +∆ρ)�

eB
=

1

m
(1 +

∆ρ

ρ0
) . (59)

Because the electronic charge of the quasi-particle is ±e/m, m quasi-particles
are created per electron on the Laughlin state at ν = 1/m. The number
density ρqp of quasi-particles created is

ρqp = m|∆ρ| . (60)

Quasi-particles are quasi-electrons (quasi-holes) when ∆ρ > 0 (∆ρ < 0).
Alternatively, a change in the perpendicular magnetic field B by ∆B with
fixed number density gives rise to the change of the filling factor

ν =
2πρ0�

e(B +∆B)
=

1

m

(
1 +

∆B

B

)−1

. (61)

Since one quasi-particle carries one flux quanta ±φD, the number density of
quasi-particles created is

ρqp =
|∆B|
φD

=
e|∆B|
2π�

. (62)

Quasi-particles are quasi-electrons (quasi-holes) when ∆B > 0 (∆B < 0).
If the density of the quasi-particle is low, there is effectively no Coulomb
repulsion between the quasi-particles as they are far apart. Impurities will have
the same effects on this non-interacting particles in the fractional quantum
Hall effect as on electrons in the integer quantum Hall effect. The localization
mechanisms will act in the same way and consequently, the current will be
independent of the filling fraction in an interval around ν = 1/m. This leads to
a plateau formation in the Hall resistivity Rxy and vanishing of the diagonal
resistivity Rxx around ν = 1/m. For higher quasi-particle densities the sum
of the quasi-particle states correspond to extended states which contribute to
the current. This situation corresponds to the transition region between the
plateaus.

5 Edge States in Fractional Quantum Hall Effect

We learned in our study of the IQHE that gapless edge excitations exist
even when the bulk has a large excitation gap. Since the fractional QH state
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is an incompressible liquid confined within a finite domain, the low energy
excitations are the deformation of the boundary shape which preserve the
area of the liquid as illustrated in Fig. 8. At the edge, the Landau levels are
bent by the confining potential U(y), cross the Fermi level, and form edge
channels. Edge excitations are gapless modes since infinitesimal deformation
of the boundary costs an infinitesimal energy.

B

y

x

y = h(x)

Fig. 8. The edge excitation of the QH droplet is a deformation of the boundary.
Its shape is parametrized by a function y = h(x). The electron density is constant
within the droplet

The simplest way to understand the dynamics of the edge excitation is to
use the hydrodynamical approach [30–33]. In the hydrodynamical approach
we first study the classical theory of surface waves on the QH droplet. Then
we quantize the classical theory to obtain the quantum description of the
edge excitations. Let us consider a QH droplet with filling fraction ν confined
by a smooth potential well. The electric field generates a Hall current j =
σxyẑ×E = ρ0e(ẑ×E)/B which produces a drift velocity of the edge current
v = E/B. Thus the edge wave (i.e., the deformation at the surface) propagates
with velocity v. Let us consider one-dimensional density ρ(x) = ρ0h(x) to
describe the edge wave where h(x) is the displacement of the edge at the
position x. This deformation at the edge of the QH droplet can be expressed
by the Hamiltonian

H =
1

2

∫
dxρ(x)h(x)eE =

π�v

ν

∫
dxρ2(x) , (63)

where ρ satisfies the hydrodynamic wave equation

∂ρ(x)

∂t
− v

∂ρ(x)

∂x
= 0 . (64)

It should be noted that the edge excitations are chiral excitation, i.e., propa-
gate in one direction only. In the momentum space the Hamiltonian (63) and
the wave equation (64) reduces to
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H =
2π�v

ν

∫ ∞

0

dkxρ(kx)ρ(−kx) , (65)

∂ρ(kx)

∂t
= ivkxρ(kx) , (66)

where ρ(kx) = 1√
L

∫
dxeikxxρ(x) and L is the length of the edge. The system

is now quantized according to the standard prescription. Let us identify ρ(kx)
(kx > 0) as the coordinate. From equation (66) the conjugate momentum can
be evaluated as

π(kx) =
∂H

∂ρ̇(kx)
= −i

2π�

νkx
ρ(−kx) for kx > 0 . (67)

The theory can now be quantized by imposing the canonical quantization
relation [ρ(kx), π(lx)] = i�δ(kx − lx) or

[ρ(kx), ρ(lx)] = −kxν
2π

δ(kx + lx) . (68)

In the coordinate space the above commutation relation reads

[ρ(x), ρ(x′)] =
iν

2π

∂δ(x− x′)

∂x
. (69)

The above commutation relation is known as U(1) Kac-Moody algebra [34].
The Hamiltonian (63) together with the commutation relation defines a chiral
version of the Luttinger model.

Let us now define the annihilation and creation operator for edge excitation
of left going electron by

a(kx) =

√
2π

νkx
ρ(kx), a

†(kx) =

√
2π

νkx
ρ(−kx) (70)

respectively. a†(kx) and a(kx) are indeed creation and annihilation operators
because they obey the commutation relation

[a(kx), a
†(lx)] = δ(kx − lx) . (71)

In this notation ground state is defined by a(kx)|0 >= 0. The Hamiltonian H
now reduces to

H =

∫ ∞

0

dkxε(kx)a
†(kx)a(kx) , (72)

where the energy dispersion ε(kx) = �vkx. Here normal ordering is made so
that the filled Fermi sea has zero energy. The Hilbert space is constructed as
a Fock space by operating a†(kx) on the vacuum |0 >.

We find that the gap-less excitations in QH states are described by free
chiral bosons represented by the creation and annihilation operators a†(kx)
and a(kx). This chiral boson in general can be expressed by the Lagrangian
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L =
π�

ν
(2∂tφ(x, t)∂xφ(x, t) − v∂xφ(x, t)∂xφ(x, t)) , (73)

where φ(x, t) is the corresponding bosonic field. The canonical momentum
π(x, t) = ∂L/∂φ̇(x, t) = (2π�/ν)∂xφ(x, t) obeys the commutation relation

[φ(x, t), π(x′, t)] = i�δ(x− x′) (74)

or,

[φ(x, t), ρ(x′, t)] =
iν

2π
δ(x− x′) (75)

with ρ(x, t) = ∂xφ(x, t). The Hamiltonian is

H =

∫
dxπ(x, t)φ̇(x, t)− L =

π�v

ν

∫
dxρ(x, t)2 (76)

and the corresponding Heisenberg equation of motion is

i�∂tφ(x, t) = [φ(x, t), H] = i�v∂xφ(x, t) (77)

or,

∂tφ(x, t) = v∂xφ(x, t) . (78)

The above wave equation (78) is the hydrodynamical equation (64). From the
commutation relation (75) we obtain the Kac-Moody algebra

[ρ(x, t), ρ(x′, t)] =
iν

4π
∂xδ(x− x′) , (79)

Integrating the Kac-Moody algebra (79) we get

[φ(x, t), φ(x′, t)] = −i
ν

4π
sgn(x− x′) . (80)

Note that the standard quantization theory is not applicable to the Lagrangian
because φ(x, t) and φ(x′, t) do not commute. It implies that φ(x, t) is a non-
local field operator. It is precisely the left chiral component of the massless
Klein-Gordon theory, where the left and right components travel indepen-
dently. The chiral boson can also be represented by the chiral Fermion system
defined by the Lagrangian

L = i�ψ†(x, t)(∂t − v∂x)ψ(x, t) (81)

and the anti-commutation relation

[ψ(x, t), ψ†(x′, t)]+ = δ(x− x′), [ψ(x, t), ψ(x′, t)]+ = 0 . (82)

The corresponding Hamiltonian and the equation of motion are then given by
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H = i�v

∫
dxψ†(x, t)∂xψ(x, t) , (83)

i�∂tψ(x, t) = [ψ(x, t), H] = i�v∂xψ(x, t) . (84)

The equivalence between the fermion theory (83, 84 ) and the boson theory
(73, 77) is provided by the bosonization formula [35–37]

ψ(x, t) = lim
ε →0

√
ν

2πε
ei 2πφ(x,t)

ν (85)

and ρ(x, t) = ψ†(x, t)ψ(x, t). Using the Kac-Moody algebra and Hausdorff
formula

eAeB = e[A,B]eBeA , (86)

with A = i 2πν φ(x, t) and B = ±i 2πν φ(x′, t), and

BeA = eAB − [A,B]eA (87)

with A = ±i 2πν φ(x′, t) and B = ρ(x, t), we obtain the commutation relation

[ρ(x, t), ψ(x′, t)] = −δ(x− x′)ψ(x, t) . (88)

The physical meaning of the commutation relation (88) is that ψ(x′, t) anni-
hilates one electron at the position x′ by decreasing density ρ(x, t) at x = x′.
Thus the fermionic operator ψ(x) is identified with the one-dimensional elec-
tronic field on the edge. For the fractional quantum Hall state ν = 1/m,
where m is an odd-integer, the electronic field ψ(x, t) may be regarded as a
composite of m basic fields.

ψqe(x, t) = lim
ε→0

√
1

2πεm
ei2πφ(x,t) . (89)

Using the Kac-Moody algebra and Hausdorff formula (86, 87) we obtain

[ρ(x, t), ψqe(x
′, t)] = − 1

m
δ(x− x′)ψqe(x, t) (90)

The physical meaning of (90) is that ψqe(x
′, t) annihilates a 1/m electron at

the position x′ by decreasing the density ρ(x, t) at x = x′ with electric charge
−e/m. We can identify it with the quasi-electron field on the edge. We also
calculate the bosonic correlation function

< 0|φ(x, t)φ(x, 0)|0 >= −ν ln(x− vt) + const. , (91)

which yields the fermionic correlation function
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< 0|T (ψ†(x, t)ψ(x, 0))|0 > = exp

[
1

ν2
< 0|φ(x, t)φ(x, 0)|0 >

]

∝ 1

(x− vt)m
. (92)

The electron propagator are standard ones in the integer QH state at ν =
1/m = 1, where edge state is described by non-interacting electrons and forms
a Fermi-liquid. However, the electron propagator on the edge of the fractional
QH state are strongly correlated and cannot be described by Fermi-liquid
theory. This type of an electronic state is known as chiral Luttinger liquid.
Note, however, that unlike the conventional Luttinger liquid, where the non-
trivial power-law in the electron propagator depends on the strength of the
electron-electron interactions - here it is dictated by the bulk filling factor
characterizing the QH state.
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